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In statistical mechanics, computing the partition function is generally difficult. An approximation method using a

variational autoregressive network (VAN) has been proposed recently. This approach offers the advantage of directly

calculating the generation probabilities while obtaining a significantly large number of samples. The present study in-

troduces a novel approximation method that employs samples derived from quantum annealing machines in conjunction

with VAN, which are empirically assumed to adhere to the Gibbs–Boltzmann distribution. When applied to the finite-

size Sherrington–Kirkpatrick model, the proposed method demonstrates enhanced accuracy compared to the traditional

VAN approach and other approximate methods, such as the widely utilized naive mean-field.

1. Introduction

Statistical mechanics investigates the microscopic compo-

nents such as atoms and molecules, utilizing statistical meth-

ods to characterize their macroscopic behaviors. For instance,

the analysis of magnetic materials involves considering spin

as a microscopic component to discuss material properties

based on their interactions. However, as the size of these mi-

croscopic systems increases, the components become more

complex, necessitating rigorous calculations that demand ex-

tensive time and computational resources. Consequently, nu-

merous approximate computational and sampling methods

have been developed in this discipline.1–8)

Among these, the naive mean-field (NMF) and Bethe ap-

proximations are prevalent.1–3) These methods approximate

the Gibbs–Boltzmann distribution, typically challenging to

compute, by preparing variational trial distributions that are

directly computable. The NMF approximation neglects corre-

lations between spins, whereas the Bethe approximation ac-

counts for the total interaction with neighboring spins. Nev-

ertheless, these methods exhibit limitations in strongly cou-

pled systems and graph structures characterized by numerous

loops.

Recent advancements introduced variational autoregressive

networks (VAN),9) which is an extension of the variational

NMF structure that reportedly achieved superior accuracy

in obtaining physical quantities compared to both NMF and

Bethe approximations. This method is independent of Markov

chains and can enable the acquisition of simultaneous of mul-

tiple samples without autocorrelation and calculates upper

bounds on the free energy. Despite these advantages, it en-

counters challenges in optimizing parameters such as the ap-

propriate batch size and number of iterations.

An alternative approach to generating samples according to

the Gibbs–Boltzmann distribution involves the Markov-Chain

Monte Carlo (MCMC) method and other approximate sam-

pling techniques.4, 5) Recent advancements in quantum com-

puter hardware have prompted numerous attempts to utilize

this technology for sampling the Gibbs–Boltzmann distri-

bution.6–8) Quantum annealing (QA) is a generic algorithm

leveraging quantum fluctuations to address combinatorial op-

timization problems, has seen significant application.10, 11)

Specifically, the D-Wave quantum annealer developed by D-

Wave Systems has facilitated commercial implementations of

the QA protocol.

The introduction of the D-Wave quantum annealer has

spurred efforts to identify practical applications of quantum

computing. Notably, it has been employed to resolve opti-

mization challenges in real-world contexts, including traffic

flow,12–15) maze generation,16) finance,17, 18) logistics,19) man-

ufacturing,20–22) preprocessing in material experiments,23, 24)

marketing,25) steel manufacturing,21) and decoding prob-

lems.26, 27)

Furthermore, model-based Bayesian optimization has been

proposed to solve intractable problems.28) Benchmark tests

comparing the performance of quantum annealers have been

conducted in solving optimization problems.29) Prior discus-

sion have highlighted that QA in the transverse field Ising

model does not equitably sample optimal solutions when mul-

tiple such solutions exist.30–38)

Due to inevitable environmental effects, the quantum an-

nealer is deemed as a simulator for quantum many-body dy-

namics.39–41) Additionally, the application of quantum anneal-

ing as an optimization algorithm in machine learning has been

documented.42–50)

However, the current D-Wave quantum annealer often

yields incomplete solutions due to the non-absolute zero oper-

ating environment and finite time evolution. As reported ear-

lier, the distribution of these incomplete solution candidates

by the D-Wave quantum annealer approximates the Gibbs-

Boltzmann distribution.51) This characteristic has been lever-

aged in applications such as Boltzmann machine learning,

where the expectation of the Gibbs–Boltzmann distribution

is utilized.6–8)

As an approach to statistical mechanics, variational autore-

gressive networks (VANs) have been extensively studied in

recent years; nonetheless, challenges such as sampling effi-

ciency, computational cost, and mode collapse persist.52–57)

Consequently, a method integrating quantum annealing (QA)

with autoregressive networks has been proposed.58) This tech-

nique involves training an autoregressive network with sam-
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ples from the QA machine, demonstrating high efficiency in

the two-dimensional spin glass model.

In this study, we propose a hybrid approach employing both

QA and VAN. The innovation of this method lies in the direct

use of raw samples from the QA as input to the autoregressive

networks, unlike previous practices where QA samples were

utilized solely for training neural networks. We compute the

free energy for the Sherrington–Kirkpatrick (SK) model using

two methodologies: the QA VAN, with samples from QA as

input, and the MCMC VAN, with samples from MCMC as

input.59)

2. Method

2.1 Variational autoregressive networks

In the statistical mechanics model exemplified by the Ising

model, the joint probability of spins s ∈ +1,−1N adheres to

the Boltzmann distribution,

p(s) =
e−βE(s)

Z
, (1)

where β = 1/T denotes the inverse temperature, and Z indi-

cates the partition function. Given the complex computation

of the partition function, variational approaches like the naive

mean-field (NMF) and Bethe approximations are frequently

utilized. These methods employ an approximate distribution

qθ(s), parameterised by variational parameters θ, which is

simpler to compute. The objective is then to adjust θ such that

qθ(s) closely approximates the Boltzmann distribution p(s).

Generally, the Kullback–Leibler (KL) divergence is em-

ployed to measure the proximity between these two distribu-

tions:

DKL(qθ||p) =
∑

s

qθ(s) ln

(

qθ(s)

p(s)

)

= β(F[q] − F), (2)

where

F[q] =
1

β

∑

s

qθ(s)
[

βE(s) + ln qθ(s)
]

, (3)

represents the variational free energy of qθ(s) and F = − 1
β

ln Z

indicates the free energy. Based on Eq. (19), minimizing the

variational free energy F[q] is equivalent to minimizing the

KL divergence. In addition, as the KL divergence is non-zero,

the variational free energy F[q] provides an upper bound on

the true free energy.

Recent advancements in neural networks have facilitated

the development of potent methods for representing this vari-

ational distribution qθ(s). This VAN approach enables direct

probability computation and efficient sampling. In VAN, the

variational approximate distribution qθ(s) is autoregressive,

allowing each variable to be expressed as a product of con-

ditional probabilities.9, 60, 61)

qθ(s) =

N
∏

i=1

qθ(si|s<i) =

N
∏

i=1

qθ(si|s1, ..., si−1), (4)

where N denotes the total number of spins. We note that in

VAN, the distribution in Eq. (21) is represented by a neu-

ral network to compute statistical mechanics in a variational

manner. The learning process in VAN is optimized using

gradient-based machine learning algorithms such as Adam,

which evaluate the gradient of the variational free energy as

expressed in Eq. (22).

β∇θF[q] = Es∼qθ(s)

[

∇θ ln qθ(s){ln qθ(s) + βE(s)}
]

, (5)

VAN is distinguished by its capability to provide an upper

bound on the true free energy compared to existing frame-

works such as MCMC and tensor networks,62) its efficiency

in generating independent samples without the reliance on

Markov chains, and its suitability for parallelization.

2.2 Variational autoregressive networks with prior distribu-

tion

Previous studies have highlighted that VAN is a formidable

approach to addressing statistical mechanics problems rel-

ative to traditional approximation methods like NMF and

Bethe.9) Nonetheless, several challenges persist, including the

efficiency of the sampling and learning steps, the conditions

under which learning is conducted, and the domains of ap-

plicability. For instance, in the learning phase of the gradient

method, opportunities still exist for optimizing the annealing

schedule.9) The present method innovates by integrating VAN

with a prior distribution p(s
′) to achieve a more accurate ap-

proximation.

qθ(s) =

∑

s′

qθ(s|s′)p(s
′), (6)

qθ(s|s′) =

N
∏

i=1

qθ(si|s1, ..., si−1, s
′), (7)

The approximate distribution represented by Eq. (24) is vari-

ably trained by deploying it through a neural network, as de-

picted in Fig. 2. Here, the spin s
′ ∈ +1,−1N is such that the

prior distribution p(s
′) can be computed for any given oracle.

For this prior distribution, we utilized samples from MCMC

and QA.4, 5, 51) In Fig. 2, the hidden layer h and the output

layer ŝ are computed as follows:

hi = σ

















∑

i> j

W1
i j s j +

∑

j

W2
i js
′
j

















, (8)

ŝi = σ

















∑

i≥ j

W3
i jh j

















, (9)

where W1,W2, and W3 denote the weight matrices of the neu-

ral network and constitute the learning parameters. The spin

configuration s determined by the output layer ŝ is governed

by the binomial distribution as expressed in Eq. (27). Addi-

tionally, the spin configuration s
′ is obtained by sampling di-

rectly from the prior distribution p(s
′), as stated in Eq. (28).

si ∼ ŝi

1+si
2 (1 − ŝi)

1−si
2 , (10)

s
′ ∼ p(s

′), (11)

The variational free energy F[q] and its gradient ∇θF[q]

can be calculated using Eqs. (20)-(24) by sampling similar to

Eqs. (30)-(32).

F[q] =
1

β

∑

s

qθ(s)(ln qθ(s) + βH(s)) (12)
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Fig. 1. Architectural diagram of an autoregressive network with a prior dis-

tribution. The spin configuration s and s
′ represent the inputs to the network,

ŝ indicates the output of the network. h represents the hidden layer, and this

quantity is arbitrary. The variational free energy F[q] is calculated by Eq.

(20)

=
1

β

∑

s

∑

s′

qθ(s, s′) (ln qθ(s) + βH(s)) (13)

=
1

β
Es,s′∼qθ(s,s′)

[

ln qθ(s) + βH(s)
]

, (14)

β∇θF[q] = Es,s′∼qθ(s,s′)

[

∇θ ln qθ(s|s′){ln qθ(s) + βH(s)}
]

,

(15)

where

qθ(s, s′) = qθ(s|s′)p(s
′) (16)

represents the joint probability distribution of spin configu-

ration s and s
′ . If the prior distribution p(s) is informed

about the target distribution, a more accurate approximation

can be anticipated by integrating the shape of the distribution.

The computational cost of sampling with this method remains

comparable to that of VAN, as it only requires an increase in

the number of input variables.

2.3 Quantum annealing

QA is an algorithm designed to solve combinatorial opti-

mization problems leveraging quantum effects.10) Several of

these optimization challenges can be represented by the prob-

lem of finding the ground state of the Ising model:

E(s) = −

N
∑

i=1

cisi −
∑

i> j

Ji jsi s j, (17)

where Ji j represents the interaction between adjacent spins,

and ci indicates the local longitudinal magnetic field acting

on the i-th spin.

Although QA machines aim to find the ground state of the

Ising model as depicted in Eq. (34), their real-world perfor-

mance often yields solutions that deviate from the ground

state owing to an imperfect operating environment and un-

resolved technical challenges. However, it has been reported

that the output distribution pQA(s
′) of their output solutions is

approximate to the Gibbs–Boltzmann distribution.51, 63) This

resemblance has spurred interest in using QA outputs to train

Boltzmann machines.6–8) Such methodologies are promising

for future advancements, as they are highly efficient and can

effectively utilize samples that would otherwise be discarded

in the pursuit of the ground state.

2.4 Variational autoregressive networks

In the statistical mechanics model exemplified by the Ising

model, the joint probability of spins s ∈ +1,−1N adheres to

the Boltzmann distribution,

p(s) =
e−βE(s)

Z
, (18)

where β = 1/T denotes the inverse temperature, and Z indi-

cates the partition function. Given the complex computation

of the partition function, variational approaches like the naive

mean-field (NMF) and Bethe approximations are frequently

utilized. These methods employ an approximate distribution

qθ(s), parameterised by variational parameters θ, which is

simpler to compute. The objective is then to adjust θ such that

qθ(s) closely approximates the Boltzmann distribution p(s).

Generally, the Kullback–Leibler (KL) divergence is em-

ployed to measure the proximity between these two distribu-

tions:

DKL(qθ||p) =
∑

s

qθ(s) ln

(

qθ(s)

p(s)

)

= β(F[q] − F), (19)

where

F[q] =
1

β

∑

s

qθ(s)
[

βE(s) + ln qθ(s)
]

, (20)

represents the variational free energy of qθ(s) and F = − 1
β

ln Z

indicates the free energy. Based on Eq. (19), minimizing the

variational free energy F[q] is equivalent to minimizing the

KL divergence. In addition, as the KL divergence is non-zero,

the variational free energy F[q] provides an upper bound on

the true free energy.

Recent advancements in neural networks have facilitated

the development of potent methods for representing this vari-

ational distribution qθ(s). This VAN approach enables direct

probability computation and efficient sampling. In VAN, the

variational approximate distribution qθ(s) is autoregressive,

allowing each variable to be expressed as a product of con-

ditional probabilities.9, 60, 61)

qθ(s) =

N
∏

i=1

qθ(si|s<i) =

N
∏

i=1

qθ(si|s1, ..., si−1), (21)

where N denotes the total number of spins. We note that in

VAN, the distribution in Eq. (21) is represented by a neu-

ral network to compute statistical mechanics in a variational

manner. The learning process in VAN is optimized using

gradient-based machine learning algorithms such as Adam,

which evaluate the gradient of the variational free energy as

expressed in Eq. (22).

β∇θF[q] = Es∼qθ(s)

[

∇θ ln qθ(s){ln qθ(s) + βE(s)}
]

, (22)

VAN is distinguished by its capability to provide an upper

bound on the true free energy compared to existing frame-

works such as MCMC and tensor networks,62) its efficiency

in generating independent samples without the reliance on

Markov chains, and its suitability for parallelization.
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2.5 Variational autoregressive networks with prior distribu-

tion

Previous studies have highlighted that VAN is a formidable

approach to addressing statistical mechanics problems rel-

ative to traditional approximation methods like NMF and

Bethe.9) Nonetheless, several challenges persist, including the

efficiency of the sampling and learning steps, the conditions

under which learning is conducted, and the domains of ap-

plicability. For instance, in the learning phase of the gradient

method, opportunities still exist for optimizing the annealing

schedule.9) The present method innovates by integrating VAN

with a prior distribution p(s
′) to achieve a more accurate ap-

proximation.

qθ(s) =

∑

s′

qθ(s|s′)p(s
′), (23)

qθ(s|s′) =

N
∏

i=1

qθ(si|s1, ..., si−1, s
′), (24)

The approximate distribution represented by Eq. (24) is vari-

ably trained by deploying it through a neural network, as de-

picted in Fig. 2. Here, the spin s
′ ∈ +1,−1N is such that the

prior distribution p(s
′) can be computed for any given oracle.

For this prior distribution, we utilized samples from MCMC

and QA.4, 5, 51) In Fig. 2, the hidden layer h and the output

layer ŝ are computed as follows:

hi = σ

















∑

i> j

W1
i js j +

∑

j

W2
i j s
′
j

















, (25)

ŝi = σ

















∑

i≥ j

W3
i jh j

















, (26)

where W1,W2, and W3 denote the weight matrices of the neu-

ral network and constitute the learning parameters. The spin

configuration s determined by the output layer ŝ is governed

by the binomial distribution as expressed in Eq. (27). Addi-

tionally, the spin configuration s
′ is obtained by sampling di-

rectly from the prior distribution p(s
′), as stated in Eq. (28).

si ∼ ŝi

1+si
2 (1 − ŝi)

1−si
2 , (27)

s
′ ∼ p(s

′), (28)

The variational free energy F[q] and its gradient ∇θF[q]

can be calculated using Eqs. (20)-(24) by sampling similar to

Eqs. (30)-(32).

F[q] =
1

β

∑

s

qθ(s)(ln qθ(s) + βH(s)) (29)

=
1

β

∑

s

∑

s′

qθ(s, s′) (ln qθ(s) + βH(s)) (30)

=
1

β
Es,s′∼qθ(s,s′)

[

ln qθ(s) + βH(s)
]

, (31)

β∇θF[q] = Es,s′∼qθ(s,s′)

[

∇θ ln qθ(s|s′){ln qθ(s) + βH(s)}
]

,

(32)

where

qθ(s, s′) = qθ(s|s′)p(s
′) (33)

Fig. 2. Architectural diagram of an autoregressive network with a prior dis-

tribution. The spin configuration s and s
′ represent the inputs to the network,

ŝ indicates the output of the network. h represents the hidden layer, and this

quantity is arbitrary. The variational free energy F[q] is calculated by Eq.

(20)

represents the joint probability distribution of spin configu-

ration s and s
′ . If the prior distribution p(s) is informed

about the target distribution, a more accurate approximation

can be anticipated by integrating the shape of the distribution.

The computational cost of sampling with this method remains

comparable to that of VAN, as it only requires an increase in

the number of input variables.

2.6 Quantum annealing

QA is an algorithm designed to solve combinatorial opti-

mization problems leveraging quantum effects.10) Several of

these optimization challenges can be represented by the prob-

lem of finding the ground state of the Ising model:

E(s) = −

N
∑

i=1

cisi −
∑

i> j

Ji jsi s j, (34)

where Ji j represents the interaction between adjacent spins,

and ci indicates the local longitudinal magnetic field acting

on the i-th spin.

Although QA machines aim to find the ground state of the

Ising model as depicted in Eq. (34), their real-world perfor-

mance often yields solutions that deviate from the ground

state owing to an imperfect operating environment and un-

resolved technical challenges. However, it has been reported

that the output distribution pQA(s
′) of their output solutions is

approximate to the Gibbs–Boltzmann distribution.51, 63) This

resemblance has spurred interest in using QA outputs to train

Boltzmann machines.6–8) Such methodologies are promising

for future advancements, as they are highly efficient and can

effectively utilize samples that would otherwise be discarded

in the pursuit of the ground state.

3. Results

To demonstrate the effectiveness of VANs with prior dis-

tribution in minimizing variational free energy, we con-

ducted experiments on a specific instance of the Sherrington–

Kirkpatrick (SK) model,59) wherein spins are interconnected

by couplings Ji j derived from a Gaussian distribution with

variance 1/N. As prior distributions, we constructed approx-

4
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Fig. 3. Relative error obtained for SK model (N = 30). In the expectation

of VANs, the calculation is performed for Nbatch = 256.

imate distributions using samples from QA machines (QA

VAN) and MCMC (MCMC VAN). For QA VAN, the D-Wave

Advantage 4.1 system was utilized for QA, and for MCMC

VAN, the Metropolis–Hastings algorithm was employed.4, 5)

The interactions reflected those in the SK model instance

under investigation. Additionally, for MCMC VAN, experi-

ments were executed at high (β = 0.5) and low (β = 2.0)

temperatures to assess the influence of the prior distribution.

Neural networks were trained over 10,000 steps using the

gradient-based optimization algorithm Adam.64) To circum-

vent mode collapse,57) the training started at an inverse tem-

perature β = 0 and linearly and progressively increased to the

desired value.

First, the results for the case where N = 30 and Nbatch =

256, which is the number of samples used to calculate the ex-

pected value in Eq. (32), are displayed in Fig. 3. For all VANs,

we use the structure without hidden layers. In addition, for the

relative error
F[q]−F

F
, F denotes the exact free energy added up

for all 230 configurations. Both QA VAN and MCMC VAN

(β = 2.0) produced superior results compared to the conven-

tional VAN method. At low temperatures, these methods out-

performed other methods because the near-cold samples from

QA and MCMC positively impacted the learning of VANs.

The QA VAN (β = 0.5) with samples from high temper-

atures displays significantly worse performance at low tem-

peratures. Additionally, the better accuracy of the proposed

VANs compared to naive VAN, although the number of sam-

ples used for the expected value calculation is as small as

Nbatch = 256, indicates the robustness of the proposed VANs.

Figure 4 depicts the results when a larger sample size

of Nbatch = 8192 is used. Figure 3 portrays that the low-

temperature MCMC VAN is superior to QA VAN. Thus, in

this experiment, we considered only QA VAN for compara-

tive analyses. As observed in Fig. 4, the accuracy of both VAN

and QA VAN can be significantly improved, and the approx-

imation is stable and highly accurate for all inverse tempera-

ture β. For a small sample size, the performance of QA VAN

is superior to that of all other methods in case of low tem-

peratures. Conversely, as the temperature approaches lower

temperatures, the performance of the VAN deteriorates sig-

nificantly, which is apparently caused by the increase in the

update range of the inverse temperature β during the learning

step. We believe that the performance can be improved by ad-

justing the scheduling of the inverse temperature to minimize

Fig. 4. Relative error obtained for SK model (N = 30). In the expectation

of VANs, the calculation is performed for Nbatch = 8192.

the effect of mode decay.

4. Conclusion

In this work, we elucidate the utility of VANs aug-

mented by prior distributions. Specifically, when QA and low-

temperature MCMC are utilized for prior distribution, the free

energy of the SK model can be computed with exceptional

accuracy across various approximation methods, including

NMF and Bethe approximation. Although previous frame-

works have effectively utilized incomplete samples from QA,

this study broadens the potential application to diverse sta-

tistical mechanics models. Moreover, the capability to di-

rectly calculate the free energy heralds the prospect of a novel

framework employing QA. Nonetheless, this method operates

as a black box owing to the inherent uncertainties associated

with QA, highlighting the need for further empirical research

on QA applications.
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Ruiz, D. A. Lidar, S. Suzuki, A. del Campo, and H. Nishimori: Phys.

Rev. Research 2 (2020) 033369.

40) Y. Bando and H. Nishimori: Phys. Rev. A 104 (2021) 022607.

41) A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare,

A. J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky,

A. J. R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis,

C. Rich, Y. Sato, J. D. Whittaker, J. Yao, R. Harris, D. A. Lidar,

H. Nishimori, and M. H. Amin: Nature Physics 18 (2022) 1324.

42) H. Neven, V. S. Denchev, G. Rose, and W. G. Macready: Asian Confer-

ence on Machine Learning, 2012, pp. 333–348.

43) A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, H. Sadeghi, and

M. H. Amin: Quantum Science and Technology 4 (2018) 014001.

44) D. O’Malley, V. V. Vesselinov, B. S. Alexandrov, and L. B. Alexandrov:

PloS one 13 (2018) e0206653.

45) M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko:

Physical Review X 8 (2018).

46) V. Kumar, G. Bass, C. Tomlin, and J. Dulny: Quantum Information Pro-

cessing 17 (2018) 39.

47) S. Arai, M. Ohzeki, and K. Tanaka: J. Phys. Soc. Jpn. 90 (2021) 074002.

48) T. Sato, M. Ohzeki, and K. Tanaka: Sci. Rep. 11 (2021) 13523.

49) M. Urushibata, M. Ohzeki, and K. Tanaka: Journal of the Physical So-

ciety of Japan 91 (2022) 074008.

50) Y. Hasegawa, H. Oshiyama, and M. Ohzeki. arXiv:2304.10144 [quant-

ph].

51) M. H. Amin: Phys. Rev. A 92 (2015) 052323.

52) G. Scriva, E. Costa, B. McNaughton, and S. Pilati: (2022).

53) D. Wu, R. Rossi, and G. Carleo: ArXiv abs/2105.05650 (2021).
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