
On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised
Learning

Yun-Hao Cao, Jianxin Wu*

National Key Laboratory for Novel Software Technology, Nanjing University, China
caoyh@lamda.nju.edu.cn, wujx2001@nju.edu.cn

Abstract

Self-supervised learning (SSL) has developed rapidly in
recent years. However, most of the mainstream methods
are computationally expensive and rely on two (or more)
augmentations for each image to construct positive pairs.
Moreover, they mainly focus on large models and large-
scale datasets, which lack flexibility and feasibility in many
practical applications. In this paper, we propose an effi-
cient single-branch SSL method based on non-parametric
instance discrimination, aiming to improve the algorithm,
model, and data efficiency of SSL. By analyzing the gradi-
ent formula, we correct the update rule of the memory bank
with improved performance. We further propose a novel
self-distillation loss that minimizes the KL divergence be-
tween the probability distribution and its square root ver-
sion. We show that this alleviates the infrequent updat-
ing problem in instance discrimination and greatly acceler-
ates convergence. We systematically compare the training
overhead and performance of different methods in different
scales of data, and under different backbones. Experimental
results show that our method outperforms various baselines
with significantly less overhead, and is especially effective
for limited amounts of data and small models.

1. Introduction
Deep supervised learning has achieved great success in

the last decade. However, traditional supervised learning
approaches rely heavily on a large set of annotated train-
ing data. Self-supervised learning (SSL) has gained pop-
ularity because of its ability to avoid the cost of annotat-
ing large-scale datasets as well as the ability to obtain task-
agnostic representations. After the emergence of the con-
trastive learning (CL) paradigm [42, 9], SSL has clearly
gained momentum and several recent works [10, 21, 7] have
achieved comparable or even better accuracy than the su-
pervised pertaining when transferring to downstream tasks.

*J. Wu is the corresponding author.

4 6 8 10 12
Total training hours (h)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Li
ne

ar
 A

cc
ur

ac
y 

on
 C

IF
A

R
-1

00
 (%

) Ours

SimCLR

MoCov2

SimSiam

BYOL

PID

NPID

JigClu

Ours

SimCLR

MoCov2

SimSiam

BYOL

ResNet-18
MobileNet-v2

Figure 1: Linear probing accuracy and training cost (in
hours) of different SSL methods on CIFAR-100 [30].

However, these methods are almost all dual-branched, that
is, the network needs to generate at least two views for each
image during learning. What’s worse, the combination of
a time-consuming algorithm (dual-branched), a large-scale
dataset (e.g., ImageNet), a complex backbone (e.g., ResNet-
50), and a large number of epochs (800 or more) means
that SSL methods are computationally extremely expensive.
This phenomenon makes SSL a privilege for researchers at
few institutions. In this paper, we propose to improve the
efficiency of SSL methods from three aspects: algorithm
(training) efficiency, model efficiency, and data efficiency.

As an alternative to dual-branch SSL, single-branch
methods [6, 20, 36] only require a single crop for each im-
age in each iteration, which naturally reduces the training
overhead per iteration. As a representative of them, para-
metric instance discrimination methods [16, 34, 5] learn
to classify every example into its own category. However,
the final parametrized classification layer will bring an in-
tolerable increase in computation and GPU memory us-
age as the number of training data increases. As a solu-
tion, NPID [44] transforms instance discrimination into a
non-parametric version by maintaining a memory bank but
its accuracy is far behind mainstream contrastive learning
methods. MoCo [23] improves NPID using a momentum

ar
X

iv
:2

40
4.

19
28

9v
1 

 [
cs

.C
V

] 
 3

0 
A

pr
 2

02
4



encoder at the cost of turning to dual-branch again. Chen et
al. [8] proposed a jigsaw clustering task to improve single-
branch SSL but the complicated pipeline makes its train-
ing overhead even larger than many dual-branch methods.
Therefore, how to design an efficient and effective single-
branch self-supervised method is challenging.

In this paper, we aim to bridge the accuracy gap be-
tween single- and dual-branch methods while maintain-
ing the training efficiency of single-branch methods. Our
method is based on NPID [44], but with the following three
important improvements. First, we perform a forward pass
on the untrained network to obtain features as the initializa-
tion of the memory bank, which was randomly initialized in
both NPID and MoCo. Inspired by [21, 34], we know that
a randomly initialized network also has representation abil-
ity, and experiments show that our initialization can speed
up the convergence with negligible cost. Second, we revise
the update rule of the memory bank based on gradient for-
mulation. In [44], the feature of the i-th instance will only
be used to update the weights of the i-th class. By analyz-
ing the weights’ gradient, we know that the feature of an in-
stance will also be passed back to update the weights corre-
sponding to other instances using our update rule. Third, we
design an effective self-distillation loss that minimizes the
KL divergence of the probability distribution and the distri-
bution after taking the square root. Theoretical and empir-
ical results demonstrate that this loss can effectively solve
the problem of infrequent updating [5] in instance discrimi-
nation and greatly accelerate convergence, achieving better
performance with less overhead, as shown in Fig. 1.

In addition to improving algorithm efficiency, we also try
to improve the model and data efficiency in self-supervised
learning. In practical applications, many models need to be
deployed on terminal devices with limited memory, com-
putation, and storage capabilities. Hence, self-supervised
learning with small models is an important problem. Fang
et al. [18] found that small models perform poorly under
the paradigm of self-supervised contrastive learning and
smaller models with fewer parameters cannot effectively
learn instance-level discriminative representation with a
large amount of data. SEED [18] and DisCo [19] adopt
knowledge distillation to address this problem and Shi et
al. [40] tweaked hyperparameters and image augmentations
to improve performance on small models. In this paper, we
show that our method can effectively improve the perfor-
mance of small models and speed up the convergence of
instance discrimination tasks for them.

From the perspective of data efficiency, many realistic
scenarios require that we cannot always rely on large-scale
training data. For example, it is difficult to collect large-
scale training data in some fields (e.g., medical images).
Also, fast model iteration (e.g., update a model in 10 min-
utes) forbids us from using large-scale data for training.

Therefore, in this paper, we study the performance of dif-
ferent SSL methods under different scales of training data.
Experimental results demonstrate the data efficiency of our
method, and our improvements will increase as the amount
of data decreases. In summary, our contributions are:
• We propose a single-branch method, which improves the

training efficiency, model efficiency, and data efficiency
of self-supervised learning.

• We propose the initialization method of the memory bank,
and revise the update rule based on the gradient formula.

• We propose a self-distillation KL loss to alleviate the in-
frequent updating problem for instance discrimination,
which greatly accelerates the convergence.

• We systematically compare the efficiency of different
SSL methods, and exhaustive experiments show that our
method achieves better performance on various bench-
marks with less training overhead. Moreover, our method
is extremely effective for lightweight models and small
data, and our advantages will be further amplified as the
amount of data decreases.

2. Related Works

Self-supervised learning (SSL) has emerged as a pow-
erful method to learn visual representations without la-
bels. Many recent works follow the contrastive learning
paradigm [42]. For instance, SimCLR [9] and MoCo [23]
train networks to identify a pair of views originating from
the same image when contrasted with many views from
other images. Follow-up works BYOL [21] and Sim-
Siam [11] discard negative sampling in contrastive learn-
ing but achieve even better results using siamese networks.
Unlike the siamese structure in contrastive methods, single-
branch methods [20, 36, 6, 16] propose different pretext
tasks to train unsupervised models. Pretext-based ap-
proaches mainly explore the context features of images or
videos such as context similarity [36, 14], spatial struc-
ture [20], clustering property [6], temporal structure [31],
etc. Parametric instance discrimination [16, 2, 34] learns
to discriminate between a set of surrogate classes, where
each class represents different transformed patches of a sin-
gle image. NPID [44] employs non-parametric instance
discrimination by maintaining a memory bank but its per-
formance is far behind the mainstream contrastive learning
methods. JigClu [8] improves the performance of single-
branch methods at the cost of greater training overhead.

There are also some recent works trying to improve the
efficiency of SSL in different dimensions. SEED [18] and
DisCo [19] study self-supervised learning with small mod-
els. SSQL [3] proposes to pretrain quantization-friendly
self-supervised models to facilitate downstream deploy-
ment. Cao et al. [4] and Cole et al. [13] investigated the
data efficiency of self-supervised methods. Fast-MoCo [12]



CNN

𝒘𝒘1 𝒘𝒘𝑁𝑁−1 𝒘𝒘𝑁𝑁𝒘𝒘𝑖𝑖

Feature Memory Bank

𝐿𝐿𝐶𝐶𝐶𝐶(𝒑𝒑, 𝑖𝑖)

Forward Pass

Proj L2 Norm

𝒛𝒛𝑖𝑖

Non-param
Softmax

𝒑𝒑

𝒖𝒖

Sqrt Distribution
𝐿𝐿𝐾𝐾𝐾𝐾(𝒑𝒑,𝒖𝒖)

Backward Pass

Bank Update

𝒘𝒘2

1-th 2-th 𝑖𝑖-th 𝑁𝑁 − 1-th 𝑁𝑁-th

𝑖𝑖-th image

Figure 2: The general framework of our method.

tries to accelerate the training of MoCov2 [10], which is still
a dual-branch method. These previous methods try to im-
prove the SSL efficiency from a single dimension, but we
study the efficiency of SSL from three dimensions for the
first time in this work.

3. The Proposed Method
We begin with the basic notation and a brief introduction

of our framework, followed by our algorithm and analysis.

3.1. Preliminaries

An input image xi (i = 1, · · · , N ) is sent to a network
f(·) and get output representation zi = f(xi) ∈ Rd, where
N denotes the total number of instances. Then, a fully con-
nected (FC) layer w is used for classification and the num-
ber of classes equals the total number of training images N
for parametric instance discrimination. Let us denote the
FC’s weights as wi (i = 1, 2, . . . , N ), then the prediction
for the i-th instance is

pi =
exp(wT

i zi)∑N
j=1 exp(w

T
j zi)

. (1)

The loss function for the i-th instance is

LCE = − log(pi) , (2)

because every instance is a class and the label for xi is i.
As shown in Fig. 2, we use a non-parametric variant fol-

lowing [44], where each wi is stored in a feature memory
bank without using gradient back-propagation. This elimi-
nates the need for computing and storing the gradients for
wi, improving the storage and training efficiency.

3.2. Feature Bank

Now we describe how we initialize and update the fea-
ture memory bank.
Feature Calibrate. NPID [44] and MoCo [23] randomly
initialize the memory bank while we perform a forward pass

on the untrained network to obtain features for initialization,
i.e, wi = z

(0)
i . This brings negligible overhead, but as we

show later in Sec. 4.4, speeds up convergence and improves
performance.
Grad Update. A naive way to update the weights in the
feature bank is to use the current output feature [44]:

wi ← mwi + (1−m)z
(t)
i , (3)

where z
(t)
i is the output representation for the i-th instance

at the t-th iteration and m is a hyper-parameter.
However, if we calculate the gradient w.r.t wk:

∂LCE

∂wk
= −δ{k=i}zi+

ew
T
k zi∑N

j=1 e
wT

j zi
zi = (pk−δ{k=i})zi ,

(4)
where δ is an indicator function, equals 1 iff k = i.

According to (4), when we sum the loss from all in-
stances, the update direction (i.e., negative gradient) for wi

will be affected by the output of other instances. Specifi-
cally, the corrected update direction will be:

ẑ
(t)
i = (1− pi)z

(t)
i −

∑
j ̸=i

pjz
(t)
j . (5)

Then we use this corrected direction to update the bank:

wi ← mwi + (1−m)ẑ
(t)
i . (6)

3.3. SqrtKL

When we do instance discrimination, one important is-
sue is that the updates to FCs are very rare: the gradient with
respect to wj (j ̸= i) has to be calculated from − 1

pi
, which

is mostly related to pi. Now if we back propagate from pi to
w, it is mostly focused only on updating wi, but not other
FC weights wj (j ̸= i). Although the

∑C
j=1 exp(w

T
j zi)

term involves wj for j ̸= i, its impact is negligible in most
cases. To be more precise, from (4) we know that when



j ̸= i, then the gradient with respect to wj is pjzi — clearly
negligible when pj ≈ 0. Or, wi is updated roughly only
once per epoch, thus we need many epochs to converge.

Now we define a square root probability distribution

ui =

√
pi∑N

j=1

√
pj

for i = 1, 2, . . . , N . u = {u1, . . . , uN} will be clearly
more balanced than p = {p1, . . . , pN}, as shown in Fig. 2.
In addition to the cross entropy loss, we can add a KL di-
vergence loss:

LSqrtKL = KL(p,u) . (7)

Because u is generated out of p, one network is enough
and it is a self-distillation. Note that “more balanced”
means even though the prediction p is very sharp (hence
pj ≈ 0 if j ̸= i), u will be less sharp. One exam-
ple: let N = 10, p = {0.91, 0.01, . . . , 0.01}. Then
u = {0.5145, 0.0539, . . . , 0.0539} is much flatter and
hence more wj for j ̸= i will be updated in every epoch.

3.3.1 Alleviate the Infrequent Updating Problem

We only consider the gradient of KL(p,u) with respect to
wj (j ̸= i). Note that u is not involved in gradient compu-
tation (in knowledge distillation [27] the teacher predictions
are not involved in gradient computation, either). Now we
can get (see appendix for derivations)

∂KL(p,u)

∂pk
= 0.5 log pk + (1 + log c) , (8)

where we define c =
∑

s

√
ps. Using the above example

where pj = 0.01, from (4) we can get:∥∥∥∥∂LCE

∂wj

∥∥∥∥
2

= pj ∥zi∥2 = 0.01 ∥zi∥2 . (9)

For LSqrtKL, we can also calculate the gradient w.r.t. wj

(see appendix for detailed derivations):∥∥∥∥∂LSqrtKL

∂wj

∥∥∥∥
2

≈ 0.021 ∥zi∥2 , (10)

where the update range of wj is doubled, hence mitigating
the infrequent updating problem and it will be further alle-
viated by increasing the coefficient λ introduced later.

Note that NPID [44] uses proximal optimization to ac-
celerate convergence of instance discrimination:

Lp = ∥zi −wi∥22 . (11)

However, we can find that ∂Lp

∂wj
= 0 for j ̸= i, which

means this loss does not solve the infrequent updating issue.
The difference between LSqrtKL and Lp in gradient calcula-
tion explains why our method is significantly better than
NPID in the following experimental results.

3.3.2 From an Optimization Perspective

LSqrtKL can be decomposed into two components:

LSqrtKL =
∑
k

pk log pk︸ ︷︷ ︸
L1

−
∑
k

pk log uk︸ ︷︷ ︸
L2

(12)

To minimize L1 amounts to maximize −
∑

k pk log pk,
or max entropy [29]. L1 achieves its minimum when pk =
1
N for all k. Obviously, L2 achieves its minimum when

pj =

1 j = argmaxuk
k

0 otherwise
.

Note that L2 is determined by the largest value in the dis-
tribution, hence minimizing the cross entropy loss will in
effect minimize L2, too.

While L2 makes the distribution sharper, L1 makes it
flatter. In the appendix, we show that combining L1 and L2

gives the best results, and L1 is more important in LSqrtKL.
The overall loss function of our method is:

L = LCE + λLSqrtKL , (13)

where λ is a hyper-parameter.

4. Experimental Results
We introduce the implementation details in Sec. 4.1. We

experiment on CIFAR-10 [30], CIFAR-100 [30], and Tiny-
ImageNet in Sec. 4.2. We experiment on ImageNet [38]
and study the transfer performance of ImageNet pretrained
models on downstream recognition, object detection, and
instance segmentation benchmarks in Sec. 4.3. Finally, we
investigate the effects of different components and hyper-
parameters in our method in Sec. 4.4. All our experiments
were conducted using PyTorch with Tesla K80 and 3090
GPUs. Codes will be publicly available upon acceptance.

4.1. Implementation Details

Datasets. The main experiments are conducted on four
benchmark datasets, i.e., CIFAR-10, CIFAR-100, Tiny-
ImageNet and ImageNet. Tiny-ImageNet contains 100,000
training and 10,000 validation images from 200 classes at
64 × 64 resolution. We also conduct transfer experiments
on 2 recognition benchmarks as well as 2 detection bench-
marks Pascal VOC 07&12 [17] and COCO2017 [33].
Backbones. In addition to the commonly used ResNet-
50 [25] in recent SSL papers, we also adopt 4 smaller net-
works to study model efficiency, i.e., ResNet-18 [25], Mo-
bileNetv2 [39], MobileNetv3 [28], and EfficientNet [41] for
our experiments. Sometimes we abbreviate ResNet-18/50
to R-18/50, and MobileNetv3 to Mobv3.



Table 1: Linear evaluation results on three benchmark datasets. All pretrained for 400 epochs and we report the total
pretraining cost (in hours) using 4 Tesla K80 cards on CIFAR-10 as an example.

Backbone Method Single Single Training GPU Accuracy (%)
Crop Network Cost (h) Memory (MB) CIFAR-10 CIFAR-100 Tiny-ImageNet

ResNet-18

BYOL [21] × × 11.94 2897 89.3 62.6 32.6
JigClu [8] ✓ ✓ 11.59 2344 88.7 55.3 33.4

SimSiam [11] × ✓ 7.16 2501 90.7 65.5 37.1
SimCLR [9] × ✓ 6.63 2185 89.4 59.2 37.6
MoCov2 [10] × × 6.54 1757 88.9 62.5 35.8

PID [5] ✓ ✓ 6.53 3639 89.8 63.6 36.8
NPID [44] ✓ ✓ 4.15 1879 80.8 50.9 27.3

Ours ✓ ✓ 3.36 1715 91.1 67.9 39.7

MobileNetv2

BYOL [21] × × 12.61 4503 88.1 61.2 28.7
SimSiam [11] × ✓ 9.36 4275 86.1 50.0 20.5
SimCLR [9] × ✓ 8.95 4061 88.9 62.4 23.6
MoCov2 [10] × × 8.12 2599 83.3 51.6 21.3

Ours ✓ ✓ 3.95 2181 88.7 65.5 36.2

ResNet-50

BYOL [21] × × 31.08 9435 90.3 66.7 41.1
SimSiam [11] × ✓ 22.32 9139 90.9 64.3 39.3
SimCLR [9] × ✓ 21.94 8951 91.5 66.2 42.8
MoCov2 [10] × × 14.72 5373 90.2 66.5 42.2

Ours ✓ ✓ 10.75 5095 92.0 71.6 44.9

Training details. We use SGD for pretraining, with a batch
size of 512 and a base lr=0.1. The learning rate has a co-
sine decay schedule. The weight decay is 0.0001 and the
SGD momentum is 0.9. We set m = 0.5 and λ = 20 and
we pretrain for 400 epochs on CIFAR-10, CIFAR-100, and
Tiny-ImageNet, and 200 epochs on ImageNet by default.

4.2. Experiments on CIFAR and Tiny ImageNet

We first compare our method with 4 popular dual-branch
SSL methods (BYOL [21], SimSiam [11], SimCLR [9],
MoCov2 [10]) and 3 single-branch methods (PID [16],
NPID [44], Jigclu [8]) on CIFAR-10, CIFAR-100 and Tiny-
ImageNet using three CNN backbones in Table 1. All meth-
ods are pretrained for 400 epochs for fair comparisons and
we report the total training hours on CIFAR-10 using 4 K80
GPUs. We also report the GPU memory usage of each
method during training and here we use the same batch size
512 for fair comparisons. We report the linear probing ac-
curacy on each dataset, following the practice in [3].
Comparison with Dual-Branch Methods. As shown in
Table 1, our method only requires a single network branch
and a single crop, thus achieving much lower memory usage
and training time than mainstream dual-branch SSL meth-
ods. When compared with SimSiam [11], our method only
needs 46.9% of the training time and 68.6% of the GPU
memory usage, but achieves 0.4%, 2.4% and 2.6% higher
accuracy on CIFAR-10, CIFAR-100 and Tiny-ImageNet
under R-18, respectively. When compared with BYOL [21],
our method achieves significantly higher accuracy, using
only one-third of the training time and nearly half of the
GPU memory usage. We can reach similar conclusions by
comparing with other methods and backbones.

Note that current self-supervised methods such as Mo-
Cov2 [10] and SimSiam perform poorly on small architec-
tures such as MobileNetv2, as mentioned in [18]. In con-
trast, our method can also achieve very good results to-
gether with small models, especially on CIFAR-100 and
Tiny-ImageNet. We think the reason for this is that the ca-
pacity of the small model is not enough to learn difficult
self-supervised tasks. In contrast, our single-branch classi-
fication method is simple to learn and our proposed method
makes the model easier to converge.
Comparison with Single-Branch Methods. Although
both our method and PID [16, 5] are single-branch ones,
PID requires a parameterized classification layer, which
brings additional training (gradient back-propagation) and
storage overhead, and will inevitably deteriorate with more
training data. In contrast, our method is non-parametric and
the training time and storage are less affected by the amount
of training data. At the same time, our corrected update rule
and SqrtKL loss also enable us to achieve much better re-
sults on all three datasets than NPID [44] and PID, which
are also based on instance discrimination. When compared
with the state-of-the-art single-branch method JigClu [8],
the training time of our method is reduced by 71% for
ResNet-18 (from 11.59 to 3.36 hours), because we do not
need complex patch-level augmentations.

In short, our method greatly improves the training effi-
ciency of the SSL method, achieves the best results with
the least training overhead, and has a greater improvement
in small models. It can be seen that among all comparison
methods, MoCov2 is the strongest opponent in the tradeoff
between accuracy and efficiency, so the main comparison
method in our subsequent experiments will be MoCov2.



Table 2: Downstream object detection performance on VOC 07&12 and linear evaluation accuracy on Tiny-ImageNet when
pretrained on ImageNet subsets using R-18 and R-50. Improvements compared to MoCov2 are listed in parentheses.

Backbone Pretraining VOC 07&12 Tiny-ImageNetMethod #Images Epochs Cost (h) AP50 AP AP75

ResNet-18

random init. 0 0 0 59.2 32.5 31.5 0.5
MoCov2 [10] 10,000 200 0.43 61.8 34.3 33.4 9.7

Ours 0.28 67.1 (+5.3) 38.5 (+4.2) 37.8 (+4.4) 19.4 (+9.7)
MoCov2 [10] 10,000 800 1.72 65.0 37.2 37.0 13.7

Ours 1.12 68.5 (+3.5) 39.8 (+2.6) 39.8 (+2.8) 20.5 (+6.8)
MoCov2 [10]

100,000 200
4.33 70.6 41.6 42.7 23.6

SimSiam [11] 4.47 71.1 42.5 44.3 24.3
Ours 2.81 71.8 (+1.2) 43.1 (+1.5) 44.7 (+2.0) 29.5 (+5.9)

MoCov2 [10] 100,000 800 17.32 72.7 43.6 45.3 27.4
Ours 11.24 73.4 (+0.7) 44.8 (+1.2) 47.0 (+1.7) 32.4 (+5.0)

ResNet-50

random init. 0 0 0 63.0 36.7 36.9 0.5
MoCov2 [10] 10,000 800 1.88 71.6 43.9 45.9 23.6

Ours 1.64 76.8 (+5.2) 49.3 (+5.4) 53.6 (+7.7) 26.3 (+2.7)
MoCov2 [10]

100,000 200
4.65 76.2 48.0 51.6 35.3

SimSiam [11] 5.42 76.4 49.8 54.2 30.5
Ours 4.09 78.2 (+2.0) 51.1 (+3.1) 55.7 (+4.1) 36.3 (+1.0)

MoCov2 [10] 100,000 800 18.62 78.7 51.5 56.3 43.7
Ours 16.36 79.7 (+1.0) 53.3 (+1.8) 58.8 (+2.2) 44.3 (+0.6)

Table 3: ImageNet (subsets) pretraining results on small architectures. All pretrained for 200 epochs and we report the linear
evaluation accuracy (%) when transferring to CIFAR-100 and the pretraining hours using 8 3090 cards. †: Results from [40].

Backbone # Images 10,000 100,000 1,281,167
Method Linear (%) ↑ Cost (h) ↓ Linear (%) ↑ Cost (h) ↓ Linear (%) ↑ Cost (h) ↓

Mobv3-small (2.5M) MoCov2 21.8 0.42 33.0 4.18 40.4† 53.55
Ours 34.0 0.34 39.9 3.43 44.3 43.94

Mobv3-large (5.4M) MoCov2 28.1 0.42 32.5 4.23 42.4† 54.19
Ours 31.5 0.38 36.1 3.79 50.1 48.56

EfficientNet-b0 (5.3M) MoCov2 26.0 0.43 34.8 4.31 43.2† 55.22
Ours 38.1 0.39 39.9 3.87 47.8 49.56

ResNet-18 (11.7M) MoCov2 39.9 0.43 51.7 4.33 54.0† 55.47
Ours 48.8 0.28 55.3 2.81 60.4 36.05

4.3. ImageNet and Transferring Experiments

In this subsection, we first perform unsupervised pre-
training on the large-scale ImageNet training set without
using labels, then investigate the downstream object de-
tection performance on COCO2017 [33] and Pascal VOC
07&12 [17]. The detector is Faster R-CNN [37] for Pascal
VOC, and Mask R-CNN [24] for COCO, both with the C4
backbone [37], following [10, 11].
Data Efficiency. In order to study the data efficiency of
different methods, we first compare the performance under
different data volumes by sampling the original ImageNet
to smaller subsets. We randomly sample (without using any
image label) 10 thousand (10k) and 100 thousand (100k)
images to construct IN-10k and IN-100k, respectively. We
only change the amount of data here and other training set-
tings remain the same as before.

We experiment with ResNet-18 and ResNet-50 on Ima-
geNet subsets in Table 2 and transfer the pretrained weights

to Pascal VOC 07&12 for object detection and to Tiny-
ImageNet for linear evaluation. As Table 2 shows, our
method achieves significant improvements on both down-
stream tasks. Take R-18 as an example, when both are
trained for 200 epochs on IN-100k (100,000 images), our
method is significantly better than the baseline counterpart
MoCov2: up to +1.2 AP50, +1.5 AP, +2.0 AP75 on VOC
07&12 and +5.9% accuracy on Tiny-ImageNet, with 35.1%
reduction in training time. When the amount of training
data is further reduced to 10,000, our advantages will be
further expanded: up to +5.3 AP50 on VOC and +9.7%
accuracy on Tiny-ImageNet. Note that the results of our
method trained for 200 epochs on IN-10k even surpass the
results of MoCov2 trained for 800 epochs on IN-100k for
R-50. Moreover, when comparing the results of R-18 and
R-50, we find that our method will have a greater relative
improvement on the smaller model R-18, especially on the
linear evaluation metric of Tiny-ImageNet. These results



Table 4: Transfer Learning. All unsupervised methods are based on 200-epoch pretraining in ImageNet. We use Faster
R-CNN for VOC and Mask R-CNN for COCO under the C4-backbone. Bold entries are the best two results following the
style of [11]. †: Results from [11].

Method Single VOC 07 detection VOC 07+12 detection COCO detection COCO instance seg.
Branch AP50 AP AP75 AP50 AP AP75 APbb

50 APbb APbb
75 APmask

50 APmask APmask
75

scratch† - 35.9 16.8 13.0 60.2 33.8 33.1 44.0 26.4 27.8 46.9 29.3 30.8
ImageNet supervised† ✓ 74.4 42.4 42.7 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR† [9] × 75.9 46.8 50.1 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCov2† [10] × 77.1 48.5 52.5 82.3 57.0 63.3 58.8 39.2 42.5 55.5 34.3 36.6
BYOL† [21] × 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0
SwAV† [7] × 75.5 46.5 49.6 81.5 55.4 61.4 57.6 37.6 40.3 54.2 33.1 35.1

SimSiam† [11] × 75.5 47.0 50.2 82.0 56.4 62.8 57.5 37.9 40.9 54.2 33.2 35.2
Ours ✓ 75.5 47.5 51.4 82.0 56.5 62.6 58.1 38.4 41.3 54.8 33.6 35.9

Table 5: Object detection and instance segmentation results
using ResNet-18 C4. †: Results from [18]. ‘T’ and ‘APmk’
abbreviate for pretrained teacher and ‘APmask’, respectively.

Method T COCO detection COCO instance seg.
APbb

50 APbb APbb
75 APmk

50 APmk APmk
75

MoCov2† [10] × 53.9 35.0 37.7 51.1 31.0 33.1
SEED† [18] R-50 54.2 35.3 37.8 51.1 31.1 33.2
SEED† [18] R-101 54.3 35.3 37.9 51.3 31.3 33.4

Ours × 54.2 35.2 37.9 51.2 31.4 33.5

demonstrate the training, model, and data efficiency of our
method, which improves performance while reducing the
training time, and has greater advantages for small data and
small models (i.e., resource-constrained scenarios).
Model Efficiency. In order to further study the perfor-
mance of small models, we conduct experiments with dif-
ferent small models on ImageNet subsets (including the en-
tire ImageNet) in Table 3. We transfer the learned represen-
tations to CIFAR-100 and conduct linear probing for com-
parison. Our method achieves higher accuracy than Mo-
Cov2 consistently under different lightweight backbones
using training images at different scales, with less training
costs. Moreover, we can see that our method’s advantages
are more obvious when the amount of data is reduced. Take
MobileNetv3-small as an example, the improvement of our
method is 3.9% when trained on ImageNet, and it increases
to 6.9% on IN-100k and 12.2% on IN-10k.

Then, we present ImageNet and transferring results and
we use ResNet-18 and Resnet-50 as the backbone to com-
pare with mainstream methods. We will discuss the results
of linear evaluation on ImageNet later in Sec. 5 and here we
present the results of transferring to detection.

In Table 4, we compare the learned representations of
ResNet-50 on ImageNet by transferring them to other tasks,
including VOC object detection and COCO object detec-
tion and instance segmentation. All methods are based
on 200-epoch pretraining on ImageNet using the reproduc-
tion of SimSiam [11]. Table 4 shows that our method’s
representations are transferable beyond the ImageNet task

and it is competitive among these leading methods. Sim-
Siam [11] conjectures that the common siamese structure
is a core factor for the general success of these methods
while our method achieves comparable results without us-
ing a siamese network. In Table 5, we compare the learned
representations of ResNet-18 on ImageNet by transferring
them to detection and segmentation tasks. Our method
achieves better results than MoCov2 and is even compara-
ble to SEED [18] (which uses extra knowledge distillation).

4.4. Ablation Study

Effect of Feature Calibrate. From Table 6 we can see that
this initialization brings 1.1% gains on Tiny-ImageNet, with
negligible cost (less than a minute).
Effect of SqrtKL. In Fig. 3 we plot the training curve of
our method with and without using SqrtKL. As seen from
Fig. 3b, SqrtKL can greatly speed up the convergence of the
instance classification task and our method achieves much
higher instance discrimination accuracy. Moreover, from
the linear accuracy comparison of each epoch in Fig. 3c
(also Table 6), we can see that our SqrtKL can also improve
the representation ability of self-supervised models.
Effect of Grad Update. From Table 6 we can see that
our corrected rule (6) brings 0.6% and 0.8% accuracy gains
on Tiny-ImageNet without and with SqrtKL, respectively.
Note that all our three strategies are beneficial and combin-
ing the three strategies achieves the best performance.
Effect of Hyper-parameter m. Now we study the effect
of the hyper-parameter m, i.e., the momentum coefficient
of (6). We train on CIFAR-10 for 400 epochs for all set-
tings and the results are shown in Figure 4. We can observe
that m = 0.5 and m = 0.7 achieve the highest accuracy.
Notice that when m = 0.0, (6) is equivalent to directly up-
dating with the results of the current iteration, that is, for-
getting the previous results, so the effect is not good. It is
worth mentioning that m in MoCov2 and BYOL is usually
set to 0.99 or 0.999, which is larger than m = 0.5 in our
paper. It is because they act on the model weights while we
only act on the output features, and the update frequency of



0 50 100 150 200 250 300 350 400
Epochs

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

Tr
ai

ni
ng

 L
os

s

w SqrtKL
w/o SqrtKL

(a) Training Loss

0 50 100 150 200 250 300 350 400
Epochs

0

20

40

60

80

Tr
ai

ni
ng

 A
cc

. (
%

)

w SqrtKL
w/o SqrtKL

(b) Training Accuracy

50 100 150 200 250 300 350 400
Epochs

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Li
ne

ar
 A

cc
. (

%
)

77.0

73.5

81.7

78.9

83.5

81.3

85.1

82.7

87.0
85.3

88.4
86.7

90.3
88.6

91.1
89.4w SqrtKL

w/o SqrtKL

(c) Linear Evaluation

Figure 3: Our method with vs. without SqrtKL on CIFAR-10.

Feature
SqrtKL

Grad
CIFAR-10 Tiny-IN

Calibrate Update
× × × 88.8 35.8
✓ × × 89.4 36.9
✓ × ✓ 90.0 37.5
✓ ✓ × 91.1 38.9
✓ ✓ ✓ 91.1 39.7

Table 6: Ablation study under ResNet-18.

0.0 0.3 0.5 0.7 0.9
m

89.8

90.0

90.2

90.4

90.6

90.8

91.0
Li

ne
ar

 A
cc

. (
%

)

89.8

90.7

91.1 91.1

90.0

Figure 4: Effect of m on CIFAR-
10 under ResNet-18.

0 5 10 20 50 100
λ

89.50

89.75

90.00

90.25

90.50

90.75

91.00

Li
ne

ar
 A

cc
. (

%
)

89.4

90.1

90.5

91.1
91.0 91.0

Figure 5: Effect of λ on CIFAR-10
under ResNet-18.

the model weights is much more frequent than features (the
model weights will update in multiple iterations per epoch
while each instance’s representation only updates once).
Effect of Hyper-parameter λ. Now we study the effect
of the hyper-parameter λ, i.e., the coefficient of LSqrtKL. We
train on CIFAR-10 for 400 epochs and the results are shown
in Figure 5. We can observe that as λ grows, the accuracy
steadily improves and will not continue to improve when it
grows beyond 20. Notice that we directly set λ to 20 for all
our experiments throughout this paper and did not tune it
under different datasets or backbones. It also indicates that
we can get better results with more carefully tuned λ.

5. Conclusions
In this paper, we proposed to improve the efficiency

of self-supervised learning from three aspects: algorithm,
model, and data. As a solution, we proposed an effi-
cient single-branch method based on non-parametric in-
stance discrimination, with enhanced update rule and self-
distillation loss. Various experiments show that our method
obtained a significant edge over baseline counterparts with
much less training cost. Moreover, we achieved impres-
sive results with limited amounts of training data and
lightweight models, which demonstrates the model and data
efficiency of our method. In the future, we will try to
optimize the performance of our method on larger-scale
datasets, which is a limitation of the current method.

Table 7: ImageNet linear evaluation accuracy (%) of differ-
ent methods under ResNet-50.

Method Single Branch Accuracy (%)
Colorization [45]

✓

39.6
JigPuz [36] 45.7

DeepCluster [6] 48.4
NPID [44] 54.0

BigBiGan [15] 56.6
LA [46] 58.8
SeLa [1] 61.5

CPCv2 [26] 63.8
JigClu [8] 66.4

Ours 64.5
MoCo [23]

×

60.6
PIRL [35] 63.6

SimCLR [9] 64.3
PCL [32] 65.9

MoCov2 [10] 67.7

Despite performing well on detection, our metrics on Im-
ageNet linear evaluation are not as good as the current main-
stream dual-branch methods for ResNet-50, as shown in Ta-
ble 7. This is partly because linear evaluation sometimes
does not accurately measure the performance of SSL meth-
ods, as noted in [22]. More importantly, we conjecture the
capacity of our method is not enough to model larger-scale
data, such as ImageNet-21k. Therefore, in this paper, we
mainly focused on the efficiency improvement, especially
on small model and small data. Making our method suit
large-scale data is an interesting future work.



References
[1] Yuki Markus Asano, Christian Rupprecht, and Andrea

Vedaldi. Self-labelling via simultaneous clustering and rep-
resentation learning. In International Conference on Learn-
ing Representations, pages 1–13, 2020. 8

[2] Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng
Zhang, and Han Hu. Parametric instance classification
for unsupervised visual feature learning. arXiv preprint
arXiv:2006.14618, 2020. 2

[3] Yun-Hao Cao, Peiqin Sun, Yechang Huang, Jianxin Wu, and
Shuchang Zhou. Synergistic self-supervised and quantiza-
tion learning. In The European Conference on Computer Vi-
sion, volume 13690 of LNCS, page 587–604. Springer, 2022.
2, 5

[4] Yun-Hao Cao and Jianxin Wu. Rethinking self-
supervised learning: Small is beautiful. arXiv preprint
arXiv:2103.13559, 2021. 2

[5] Yun-Hao Cao, Hao Yu, and Jianxin Wu. Training vision
transformers with only 2040 images. In The European Con-
ference on Computer Vision, volume 13685 of LNCS, pages
220–237. Springer, 2022. 1, 2, 5

[6] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In The European Conference on Computer
Vision, volume 11218 of LNCS, pages 132–149. Springer,
2018. 1, 2, 8

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
Advances in neural information processing systems, pages
9912–9924, 2020. 1, 7

[8] Pengguang Chen, Shu Liu, and Jiaya Jia. Jigsaw cluster-
ing for unsupervised visual representation learning. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 11526–11535, 2021. 2, 5, 8

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In The International Conference
on Machine Learning, pages 1597–1607, 2020. 1, 2, 5, 7, 8

[10] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 1, 3, 5, 6, 7, 8

[11] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In The IEEE Conference on Computer
Vision and Pattern Recognition, pages 15750–15758, 2021.
2, 5, 6, 7

[12] Yuanzheng Ci, Chen Lin, Lei Bai, and Wanli Ouyang. Fast-
MoCo: Boost momentum-based contrastive learning with
combinatorial patches. In The European Conference on
Computer Vision, volume 13686 of LNCS, pages 290–306.
Springer, 2022. 2

[13] Elijah Cole, Xuan Yang, Kimberly Wilber, Oisin
Mac Aodha, and Serge Belongie. When does con-
trastive visual representation learning work? In The IEEE
Conference on Computer Vision and Pattern Recognition,
pages 14755–14764, 2022. 2

[14] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsu-
pervised visual representations learning by context predic-
tion. In The IEEE International Conference on Computer
Vision, pages 1422–1430, 2015. 2

[15] Jeff Donahue and Karen Simonyan. Large scale adversarial
representation learning. In Advances in Neural Information
Processing Systems, page 10542–10552, 2019. 8

[16] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-
miller, and Thomas Brox. Discriminative unsupervised fea-
ture learning with convolutional neural networks. In Ad-
vances in Neural Information Processing Systems, pages
766–774, 2014. 1, 2, 5

[17] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (VOC) challenge. International Journal of Computer
Vision, 88(2):303–338, 2010. 4, 6

[18] Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang,
Yezhou Yang, and Zicheng Liu. SEED: Self-supervised dis-
tillation for visual representation. In The International Con-
ference on Learning Representations, pages 1–12, 2021. 2,
5, 7

[19] Yuting Gao, Jia-Xin Zhuang, Shaohui Lin, Hao Cheng, Xing
Sun, Ke Li, and Chunhua Shen. Disco: Remedying self-
supervised learning on lightweight models with distilled con-
trastive learning. In The European Conference on Computer
Vision, volume 13686 of LNCS, pages 237–253. Springer,
2022. 2

[20] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In The International Conference on Learning Repre-
sentations, pages 1–14, 2015. 1, 2

[21] Jean-Bastien Grill, Florian Strub, Florent Altche, Corentin
Tallec, Pierre H.Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mand Gheshlaghi Azar, Bial Piot, Koray Kavukcuoglu, Remi
Munos, and Michal Valko. Boostrap your own latent: A new
approach to self-supervised learning. In Advances in neural
information processing systems, pages 21271–21284, 2020.
1, 2, 5, 7

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In The IEEE Conference on Computer Vision
and Pattern Recognition, pages 16000–16009, 2022. 8

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In The IEEE Conference on Computer
Vision and Pattern Recognition, pages 9729–9738, 2020. 1,
2, 3, 8

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In The IEEE International Conference
on Computer Vision, pages 2961–2969, 2017. 6

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016. 4

[26] Olivier Henaff. Data-efficient image recognition with con-
trastive predictive coding. In The International Conference
on Machine Learning, pages 4182–4192, 2020. 8



[27] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 4

[28] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for MobileNetV3. In The IEEE Inter-
national Conference on Computer Vision, pages 1314–1324,
2019. 4

[29] Edwin T Jaynes. Information theory and statistical mechan-
ics. Physical review, 106(4):620, 1957. 4

[30] Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009. 1, 4

[31] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-
Hsuan Yang. Unsupervised representation learning by sort-
ing sequences. In The IEEE International Conference on
Computer Vision, pages 667–676, 2017. 2

[32] Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Pro-
totypical contrastive learning of unsupervised representa-
tions. In International Conference on Learning Represen-
tations, pages 1–12, 2021. 8

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
The European Conference on Computer Vision, volume 8693
of LNCS, pages 740–755. Springer, 2014. 4, 6

[34] Yu Liu, Lianghua Huang, Pan Pan, Bin Wang, Yinghui Xu,
and Rong Jin. Train a one-million-way instance classifier for
unsupervised visual representation learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(10):8706–
8714, 2021. 1, 2

[35] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. In The IEEE
Conference on Computer Vision and Pattern Recognition,
pages 6707–6717, 2020. 8

[36] Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles. In The
European Conference on Computer Vision, volume 9910 of
LNCS, pages 69–84. Springer, 2016. 1, 2, 8

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015. 6

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet large scale visual recogni-
tion challenge. International Journal of Computer Vision,
115(3):211–252, 2015. 4

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In The IEEE Conference
on Computer Vision and Pattern Recognition, pages 4510–
4520, 2018. 4

[40] Haizhou Shi, Youcai Zhang, Siliang Tang, Wenjie Zhu,
Yaqian Li, Yandong Guo, and Yueting Zhuang. On the ef-
ficacy of small self-supervised contrastive models without

distillation signals. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(2):2225–2234, 2022. 2, 6, 13

[41] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In The Interna-
tional Conference on Machine Learning, pages 6105–6114,
2019. 4

[42] Aarin van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 1, 2

[43] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research,
9(86):2579–2605, 2008. 11, 12

[44] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In The IEEE Conference on Computer Vision
and Pattern Recognition, pages 3733–3742, 2018. 1, 2, 3, 4,
5, 8

[45] Richard Zhang, Phillip Isola, and Alexei A. Efros. Col-
orful image colorization. In The European Conference on
Computer Vision, volume 9907 of LNCS, pages 649–666.
Springer, 2016. 8

[46] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In The IEEE Conference on Computer Vision and Pattern
Recognition, pages 6002–6012, 2019. 8



A. More Discussions about LSqrtKL

A.1. Detailed Derivations

First, we present the derivation of (8) as below:

∂KL(p,u)

∂pk
=

∂
∑

s ps log
ps

us

∂pk
(14)

=
∂
∑

s ps log ps
∂pk

−
∂
∑

s ps log us

∂pk
(15)

= 1 + log pk − log uk (16)

= 1 + log pk − log
√
pk + log

(∑
s

√
ps

)
(17)

= 0.5 log pk + (1 + log c) , (18)

where we define c =
∑

s

√
ps and use the fact that u is

not involved in gradient computation from (15) to (16). It
is obvious that c ≥ 1 because c2 ≥

∑
k pk = 1. Equally

obvious is that c ≤
√
N — hence 1 ≤ c ≤

√
N .

Then, we denote Ok = ∂KL(p,u)
∂pk

for simplicity and cal-
culate the gradient of LSqrtKL with respect to wj (j ̸= i):

∂KL(p,u)

∂wj
=
∑
k

∂KL(p,u)

∂pk
· ∂pk
∂wj

(19)

=
∑
k ̸=j

Ok ·
∂pk
∂wj

+Oj ·
∂pj
∂wj

(20)

=

−∑
k ̸=j

Okpkpj +Oj(pj − p2j )

 zi ,

(21)

where we use the equation below from (20) to (21)

∂pk
∂wj

= pk(δ{k=j} − pj)zi . (22)

Then we continue to use the example in the paper, i.e.,
N = 10 and p = {0.91, 0.01, . . . , 0.01}. For LCE, from (4)
we can get:

∂LCE

∂wj
= pjzi = 0.01zi . (23)

For LSqrtKL, we can also calculate the gradient w.r.t. wj

from (21) after numerical substitution:

∂LSqrtKL

∂wj
=≈ −0.021zi , (24)

where the update range of wj has been expanded by over
two times. Hence, we can see how LSqrtKL alleviate the in-
frequent updating problem by giving more gradients to wj

(j ̸= i) and it will be further alleviated as we increase the
coefficient λ.

Table 8: Ablation study on LSqrtKL.

Loss Formulation CIFAR-10
- 88.8

L1 =
∑

k pk log pk 90.7
L2 = −

∑
k pk log uk 89.8

LSqrtKL = L1 + L2 91.1

A.2. Ablation Study on LSqrtKL

In Sec. 3.3.2 we analyzed that our proposed LSqrtKL can
be decomposed into two components:

LSqrtKL =
∑
k

pk log pk︸ ︷︷ ︸
L1

−
∑
k

pk log uk︸ ︷︷ ︸
L2

, (25)

where L2 makes the distribution sharper while L1 makes the
distribution flatter. To further demonstrate the effectiveness
of our method, we experiment with only L1 or L2, noting
that all these variants use LCE. As shown in Table 8, we
can find that only using L1 (i.e., maximizing entropy) can
achieve good results. Note that L1 can also alleviate the in-
frequent updating problem and make the distribution flatter.
We can see that combining L1 and L2 can get better results,
and L1 plays a more important role in LSqrtKL.

B. t-SNE Visualization
To demonstrate the effectiveness of the proposed method

in a more intuitive way, we visualize the feature spaces
learned by different methods in Fig. 6. First, three mod-
els are trained on the CIFAR-10 dataset by using SimCLR,
SimSiam and our method, respectively. After that, 5,000
samples in CIFAR-10 are represented accordingly and then
are reduced to a two-dimensional space by t-SNE [43]. As
seen, the samples are more separable in the feature space
learned by our method than both MoCov2 and SimSiam (es-
pecially under MobileNetv2).

C. ImageNet Subsets Experiments
As a supplement to Table 3 in Sec. 4.3, we transfer the

learned representations on ImageNet subsets to CIFAR-10
and we report the linear probing accuracy on CIFAR-10 for
comparison in Table 9. For better illustration, we also visu-
alize these results in Fig. 7. We can reach similar conclu-
sions as in the paper:
• Our method outperforms baseline counterpart MoCov2

consistently using different backbones and different
scales of training images, with less training cost.

• Our method’s advantages are more obvious when the
amount of data is reduced. Take MobileNetv3-small as an
example, the improvement of our method is 0.7% when



(c) Ours

M
ob

ile
N

et
v2

R
es

N
et

-1
8

(b) MoCov2(a) SimSiam

Figure 6: t-SNE [43] visualization of CIFAR-10 using ResNet-18. The column (a), (b) and (c) show the results of SimSiam,
MoCov2 and our method, respectively. This figure is best viewed in color.

trained on ImageNet, and it increases to 2.4% on IN-100k
and 13.3% on IN-10k.

• The amount of data required is positively correlated with
the capacity of the model. Take Mobv3-small and Mobv3-
large as an example, we can see that Mobv3-small even
achieves better performance than Mobv3-large on IN-
10k and IN-100k. It indicates that when the capac-
ity of the model is small (i.e., has fewer parameters), a
small amount of training data is enough, and the bene-
fits brought by increasing the amount of data will become
smaller and smaller. On the contrary, when the capacity
of the model is large, the benefit of increasing the amount
of data will be greater than that of the small model.



(a) MobileNetv3-Small (b) MobileNetv3-Large (c) EfficientNet-b0 (d) ResNet-18

C
IF

A
R

-1
0

C
IF

A
R

-1
00

Figure 7: Comparison of our method and MoCov2 when pretrained on ImageNet subsets and then transferred to downstream
recognition datasets. Upper row: Transferring to CIFAR-100. Bottom row: Transferring to CIFAR-10.

Table 9: ImageNet (subsets) pretraining results on small architectures. All pretrained for 200 epochs and we report the linear
evaluation accuracy (%) when transferring to CIFAR-10 and the pretraining hours using 8 3090 cards. †: Results from [40].

Backbone # Images 10,000 100,000 1,281,167
Method Linear (%) ↑ Cost (h) ↓ Linear (%) ↑ Cost (h) ↓ Linear (%) ↑ Cost (h) ↓

Mobv3-small (2.5M) MoCov2 50.2 0.42 64.7 4.18 70.0† 53.55
Ours 63.5 0.34 67.1 3.43 70.7 43.94

Mobv3-large (5.4M) MoCov2 54.7 0.42 62.5 4.23 72.9† 54.19
Ours 59.9 0.38 64.5 3.79 74.8 48.56

EfficientNet-b0 (5.3M) MoCov2 51.7 0.43 66.4 4.31 72.0† 55.22
Ours 65.6 0.39 69.1 3.87 73.1 49.56

ResNet-18 (11.7M) MoCov2 64.8 0.43 73.7 4.33 81.5† 55.47
Ours 73.8 0.28 78.0 2.81 82.9 36.05


