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The thermal quasiparticles in a clean type-II superconductor with line nodes give rise to a
quadratic low-temperature change of the penetration depth, ∆λ ∼ T 2, as first shown by Kosztin
and Leggett [I. Kosztin and A. J. Leggett, Phys. Rev. Lett. 79, 135 (1997)]. Here, we generalize
this result to multiple nodes and compare it to numerically exact evaluations of the temperature-
dependent penetration depth in Sr2RuO4 using a high-precision tight-binding model. We compare
the calculations to recent penetration depth measurements in high purity single crystals of Sr2RuO4

[J. F. Landaeta et al., arXiv:2312.05129]. When assuming the order parameter to have B1g sym-
metry, we find that both a simple dx2−y2 -wave and complicated gap structures with contributions
from higher harmonics and accidental nodes can accommodate the experimental data.

I. INTRODUCTION

Obtaining a detailed understanding of the supercon-
ducting state in Sr2RuO4 remains an important out-
standing problem [1–3]. Experimentally, the quest is
complicated due to challenging material properties of
Sr2RuO4 and the low energy scale of the superconduct-
ing phase. Theoretically, Sr2RuO4 provides an important
testbed for modeling of unconventional superconductiv-
ity. More specifically, the well-characterized electronic
properties of the normal state offers a rather unique
opportunity to test various electronic fluctuation-based
mechanisms for pairing against detailed measurements
of the superconducting gap structure [4–23].

The magnetic penetration depth, λ, can elucidate
nodal features of the gap, as revealed through its de-
pendency on temperature and disorder [24–27]. Fully-
gapped superconductors exhibit exponential temperature
dependence at low temperatures, whereas nodal gaps dis-
play power law dependence. In Sr2RuO4, measurements
of the change in penetration depth, ∆λ(T ), via a tunnel
diode oscillator method yielded ∆λ(T ) ∼ T 2, signalling
the existence of nodal quasiparticle excitations [28]. Re-
newed measurements of ∆λ(T ) in Sr2RuO4 high-purity
spherical single crystals by applying scanning SQUID
microscopy [29] and ac-susceptibility measurements [30]
have confirmed this behavior and highlighted the impor-
tance of nonlocal Meissner screening. Indeed, as initially
demonstrated by Kosztin and Leggett, nonlocal effects
may change the low temperature dependence of the pen-
etration depth, e.g., from linear to quadratic in dx2−y2-
wave superconductors, such as the cuprates [31, 32].
The relevance of nonlocal effects in an extended tem-
perature regime is controlled by the zero-temperature
Ginzburg–Landau parameter, i.e., the ratio of the pen-
etration depth to the coherence length. In Sr2RuO4

this ratio is κ0 ≈ 1.92 [30], placing this material un-
usually close to the Pippard limit compared to most
clean, unconventional superconductors. Finally, we note
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that the penetration depth was also recently extracted
from SQUID susceptometry in thin Sr2RuO4 films, again
yielding ∆λ(T ) ∼ T 2 behavior at low T [33]. There, how-
ever, the origin of the T 2 dependence was interpreted in
terms of disorder scattering similar to disordered dx2−y2 -
wave superconductors [34].
Here we perform a theoretical study of the nonlo-

cal electrodynamics specifically relevant for nodal multi-
band superconductors. We perform both an exact nu-
merical evaluation of ∆λ(T ) and compare this to a gen-
eralized nonlocal node-expansion similar to the method
by Kosztin and Leggett [31], but for cases with several
distinct nodes in the Brillouin zone, possibly distributed
across multiple bands. To examine whether the super-
conducting order parameter can be constrained from low-
temperature penetration depth data, we apply the devel-
oped theory to Sr2RuO4. To minimize uncertainties in
the description of the normal state, we use a tight-binding
model that fits both the experimental Fermi surface and
Fermi velocity with unprecedented accuracy. We explore
two nodal superconducting gaps with B1g symmetry, rele-
vant for Sr2RuO4, and compare the node-expansion with
the numerically exact result. The analytical analysis
shows that the low-temperature slope of ∆λ(T ) as a func-
tion of (T/Tc)

2 is controlled by the sum of reciprocal gap
velocities at the order parameter nodes and the corre-
sponding Fermi velocities, the latter are experimentally
known from ARPES measurements [35]. The analysis
implies that the penetration depth in isolation is not sen-
sitive to the details of the gap structure since the effect
of having one shallow node can be compensated for by
instead having two steeper nodes etc. The numerical
simulations reveal that both gap structures explored can
explain the presently available experimental data for the
penetration depth of Sr2RuO4.

II. PENETRATION DEPTH

Kosztin and Leggett showed that thermal quasiparti-
cles in a clean, type-II, nodal d-wave superconductor are
responsible for the behavior ∆λ ∼ T 2 for T < T ∗ with
T ∗ = ∆0/κ0, where ∆0 is gap scale and κ0 = λ0/ξ0 (λ0
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FIG. 1. Geometry and magnetic field (along ẑ) penetration
into the Meissner state of the superconductor located in the
half-plane y > 0. The magnetic penetration depth is denoted
by λ. Inset: reciprocal space of a tetragonal crystal with
the Fermi surface of Sr2RuO4 and the nodal line (dashed)
of the B1g irreducible representation indicated. Close to the
nodal point(s), the Cooper pairs are characterized by a long
coherence length and hence acquire nonlocal contributions in
their electromagnetic response.

and ξ0 is the penetration depth and the coherence length,
respectively) the zero-temperature Ginzburg–Landau pa-
rameter [31]. The key ingredient here are the nonlo-
cal effects (diverging coherence length) experienced by
the Cooper pairs formed by momenta near the nodal
points, see Fig. 1. This causes the penetration depth in-
crease to acquire an additional factor of T (on top of the
2kBT ln 2/∆0 local contribution) coming from the inverse
thermal de Broglie wavelength at low temperatures.

In Sr2RuO4 the behaviour ∆λ ∼ T 2 is observed in
a dominant fraction of the temperature window below
Tc ≈ 1.5 K, which is consistent with this material be-
ing a marginal type-II superconductor with κ0 ≈ 1.92 >
1/
√
2 [28–30] and ∆0 ≈ 0.35 meV [29, 36]. Interest-

ingly, Sr2RuO4 is closer to the Pippard limit than most
unconventional type-II superconductors. Owing to its
clean crystals, this points to the importance of nonlo-
cal electrodynamics to understand its superconducting
state, possibly also its response to a weak magnetic field
as posed by muons [37].

A. Nonlocal electrodynamics

In a weak magnetic field, linear response theory for the
Meissner state dictates the decay of the magnetic field
into the superconductor, as per j(y) = −

∫
dy′ K(y −

y′)A(y′). Here, j is the screening supercurrent density
(along x̂) with the boundary between vacuum and the
superconductor at y = 0, and A is the magnetic vec-
tor potential. The geometry is shown in Fig. 1. In di-
mensionless units, K̃ = (4πλ20/c)K, and with the kernel

difference defined as δK̃(q̃;T ) ≡ K̃(q̃;T ) − K̃(q̃; 0), the

penetration depth change can be expressed as

∆λ(T )

λ0
=

2

π

∫ ∞

0

−δK̃(q̃;T ) dq̃(
q̃2 + K̃(q̃; 0)

)(
q̃2 + 1 + δK̃(q̃;T )

) ,
(1)

where q̃ = qλ0. We emphasize that this is an exact ex-
pression that includes a correction responsible for an up-
turn in ∆λ at higher T as compared to Ref. 31. The
dimensionless kernel can be computed by means of stan-
dard Green’s function methods, assuming linear response
in the Meissner state and solving the relevant Maxwell
equation in the superconductor [38]. In the Matsubara
representation the kernel can be expressed as [31, 38]

K̃(q̃;T ) = 2πkBT

∞∑
n=−∞

〈
p̂2∥∆

2
p√

ω2
n +∆2

p(ω
2
n +∆2

p + α2)

〉
FS

,

(2)
where the fermionic Matsubara frequencies are given
by ωn = πkBT (2n + 1), p̂∥ = cos(θ) is the Fermi
surface momentum projected onto the boundary (θ
is the polar angle of p), and the parameter α =
π∆0q̃ sin(θ)/(2κ0) is the projected magnetic field pen-
etration and is responsible for the nonlocal effects. Here,
we employed the BCS expression for the coherence
length, such that λ0 = vFκ0/(π∆0). Finally, ∆p is
the (temperature-dependent) order parameter, and the
(dimensionless) Fermi surface average is evaluated as

⟨h⟩FS ≡ (v̄F /|SF |)
∫
SF

dk̂ h(k̂)/vF (k̂) where vF (k̂) is the

Fermi velocity and |SF | the Fermi surface area. It can

be noted that the zero-temperature kernel, K̃(q̃; 0), has a
simple closed-form expression, as stated in Appendix A.

In practice, realistic modelling of ∆λ/λ0 in the entire
temperature window below Tc is achieved by feeding in a
high-precision multiband tight-binding model, as well as
experimental values for κ0, ∆0, and Tc. Since the sum in
Eq. (2) converges rapidly, one can in practice calculate
the Fermi surface average for each frequency and truncate
the Matsubara series at some n ≫ ∆0

2πkBT for any non-

zero T [39]. If one models the T dependence of the gap

by the interpolation formula tanh (1.74
√
T/Tc − 1), the

only remaining degrees of freedom lie in the momentum-
dependent gap structure.

B. The node approximation

Building on the Kosztin–Leggett philosophy at the low-
est T , useful insights can be harvested by first rewriting
Eq. (2) using contour integration techniques, and then
linearizing the gap around its nodes, ∆p ≈

∑
j v∆,j(θ −

θj), where the thermally active quasiparticles are situ-
ated at the lowest T . We will henceforth refer to v∆,j

as the “gap velocity” at node j. The dimensionless ker-
nel difference, with the intermediate steps shown in Ap-



3

pendix A, can in this case be recast as

−δK̃(q̃;T ) ≈ kBT
2π ln 2

|SF |
∑
j

2p̂2∥,j v̄F

vF,jv∆,j

∣∣∣∂kF

∂θ

∣∣∣
j

×

[
1− 1

ln 2

∫ αj/T

0

dx f̃(x)

√
1− (xT/αj)

2

]
,

(3)

where f̃(x) = (1 + exp(x))−1 is the Fermi function and
where the sum runs over distinct nodes in the Brillouin
zone (possibly distributed across multiple bands). The
symbols are otherwise explained earlier. This result is
a multiband generalization of the node approximation
proposed by Kosztin and Leggett. To make evaluation
fast we further approximate K̃(q̃; 0) ≈ 1 = K̃(0; 0) in
Eq. (1) when evaluating the penetration depth from the
node approximation in the next section.

To validate the above expression, we benchmark it in
the simple dx2−y2-wave case (∆p = ∆0 cos(2θ)) using a
circular Fermi surface and isotropic Fermi velocity. The
four distinct nodes all have p̂2∥ = 1/2 and the associ-

ated gap velocities are v∆ = 2∆0. In this case we re-
cover the standard result δK̃(q̃;T ) = δK̃(0;T )F (q̃/t),
where t = T/T ∗, with T ∗ = ∆0/κ0, and F is a uni-
versal function similar to the lower line in Eq. (3),
stated in Appendix A. The prefactor reduces to the well-
known −δK̃(0;T ) = 2kBT ln 2/∆0, i.e., the local re-
sult [32, 34, 40]. The function F ensures that below
the characteristic temperature scale T ∗, the change in
the penetration depth depends quadratically on temper-
ature, ∆λ ∼ T 2.

For the multinode generalization in Eq. (3) the above-
mentioned factorization breaks down, and the kernel dif-
ference instead depends on all of the distinct q̃/tj where

tj ∝ ∆0

κ0
sin(θj) for each distinct gap node j. Thus, each

distinct gap node is associated with a characteristic tem-
perature scale, the minimum of which dictates the regime
in which ∆λ ∼ T 2. Some key insights are gained by
the details added to Eq. (3) caused by having a non-
isotropic Fermi surface and higher-harmonic gap struc-
ture, possibly with multiple distinct nodes. Equation (3)
tells us that limT→Tc ∆λ(T )/(T/Tc)

2 is proportional to
a weighted sum over the distinct gap nodes, where the
weight contains a product of the reciprocal gap velocity
and the reciprocal Fermi velocity. The primer is strain-
tunable and implies an enhanced sensitivity to gap struc-
tures with nodes at strain-induced van Hove points. In
the context of Sr2RuO4, no substantial variations in the
penetration depth slope change are detected as uniax-
ial strain is applied [29], which argues against both B2g

(dxy) and A2g (gxy(x2−y2)) type orders, which is also con-
sistent with elastocaloric measurements [41]. Generally,
however, the dependency on the reciprocal gap velocities
implies that penetration depth data alone do not impose
any crisp constraints on the momentum structure of the
gap, since the effect of having one shallow node can be
compensated for by having two steeper nodes.

There are at least two reasons why there are few can-

didate materials for observing ∆λ ∼ T 2 from the above
mechanism. First, disorder is known to cause a satura-
tion of ∆λ below a characteristic temperature set by the
scattering rate [34], which will effectively blur the obser-
vation of a quadratic temperature dependence. Second,
the most well-characterized d-wave superconductors are
strong type-II, κ0 ≫ 1, suppressing T ∗ to a tiny fraction
of the gap. In both of these respects Sr2RuO4 poses
as a counterexample, since it has accumulated strong
evidence of being both nodal [42, 43], marginal type-
II [30], and is known to produce clean and disorder-
sensitive crystals [44]. Other candidate superconduc-
tors possibly relevant to a low-T penetration depth of
∆λ ∼ T 2 caused by nonlocal electrodynamics include
cuprates [31], KFe2As2 [45], and the heavy-fermion ma-
terial CeCoIn5 [24, 46]. Below we focus on the case of
Sr2RuO4.

III. THE CASE OF STRONTIUM RUTHENATE

A. Tight-binding model

We depart from a standard three-band tight-binding
model ansatz for Sr2RuO4,

H0 =
∑
k,σ

ψ⃗†
σ(k)Hσ(k)ψ⃗σ(k), (4)

where ψ⃗s(k) = [cxz,s(k), cyz,s(k), cxy,−s(k)]
T, σ = ±

denotes spin, and a ∈ {xz, yz, xy} labels the Ru d-
orbitals (the t2g triplet), which are the only relevant or-
bitals close to the Fermi energy [47]. The form of Hσ

is

Hσ(k) =

 ξxz(k) ξxz,yz(k)− iση iη
ξxz,yz(k) + iση ξyz(k) −ση

−iη −ση ξxy(k)

 ,

(5)
where spin-orbit coupling is parametrized by η and orig-

inates from the (dominant) onsite term 2η
∑

i L⃗i · S⃗i as
projected onto the t2g Ru triplet. Explicit forms of the
inter- and intraband energies are listed in Appendix B.
To obtain a quantitatively accurate parametrization,

we consider as a starting point the tight-binding pa-
rameters from Ref. 23 as derived from relativistic DFT
calculations. While these parameters provide a realistic
energy scale and Fermi surface, they still do not quan-
titatively match the Fermi velocities as extracted from
high-resolution ARPES measurements for bands β and
γ in Ref. 35. To correct for this discrepancy, which is
also present in another tight-binding model widely em-
ployed in the literature [48], we manually tune tight-
binding parameters until a reasonable match with both
the experimental Fermi surface and Fermi velocity vF is
obtained. The result is shown in Fig. 2. The effective
model, with the set of parameters listed in Appendix B,
provides a high-precision effective normal state descrip-
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FIG. 2. Fermi surface and Fermi velocities of Sr2RuO4.
Model (kz = 0): solid lines (labelled “TB”) show the model
Fermi surface (top panel) and the Fermi velocities (bottom
panel). The second quadrant in the top panel shows the Ru
dxy orbital content of the bands. The average model Fermi
velocity is v̄F = 0.498 eVÅ. Data: high-resolution ARPES
Fermi surface (dark blue, top panel) and the Fermi velocities
(circles with error bars, bottom panel) extracted from Ref. 35.

tion of Sr2RuO4. We stress that a model that is quali-
tatively and quantitatively accurate in the above respect
could be crucial to accurately perform calculations sen-
sitive to vF .

B. Numerical evaluation of the penetration depth

Equipped with an accurate description of the normal
state, we now turn to the evaluation of the penetration
depth difference, ∆λ(T )/λ0, for some illustrative order
parameters.

First, we calculate the kernel difference −δK̃(q̃;T ) at
two temperatures using both the node approximation of
Eq. (3) and the full Matsubara sum of Eq. (2). For illus-
tration we employ the simplest gap structure consistent
with B1g symmetry, i.e., ∆0 cos(2θ) on all bands with
∆0 = 0.35 meV on bands α and β, and half the mag-
nitude on band γ. These values are motivated by STM
experiments [29, 36], and the gap magnitude on γ was re-
duced to match the experimental penetration depth slope
at low T . We otherwise fixed κ0 = 1.92 and Tc = 1.5 K,
in agreement with experiments [30]. The resulting kernel
differences are shown in Fig. 3, and the order parameter

FIG. 3. Dimensionless kernel differences, −δK̃(q̃;T ), calcu-
lated at T = 0.15Tc and T = 0.6Tc for both the node approxi-
mation of Eq. (3) (“node approx.”) and in the Matsubara rep-
resentation (“model”). We use the three-band tight-binding
model of Sec. IIIA and order parameters of Fig. 4(a). Due to
the curvature of ∆(θ), the node approximation overestimates
the gap and underestimates the penetration depth at higher
temperatures.

and penetration depth are shown in Fig. 4(a) and (c).
Comparing the penetration depth calculations with the

experimental data reveals that the temperature window
in which the node approximation matches with the realis-
tic modelling is roughly T/Tc ≲ 0.2. The primary reason
for this is the overestimated slope of |∆(θ)| when lin-
earizing the gap, causing the node approximation to, in
this case, monotonically underestimate the penetration
depth. Additionally, the T dependence of the gap and
the correction posed by the denominator of Eq. (1) both
contribute with an upturn in ∆λ(T ) close to the transi-
tion temperature Tc, approximately consistent with the
experimental data. The realistic modelling shows that
a simple dx2−y2 -wave gap is sufficient to explain the ex-
perimental data, albeit with a slight discrepancy at the
highest T .
In Fig. 4(b) and (d) we show the results of calculating

the penetration depth for a more involved order param-
eter, still within the B1g irreducible representation, but
with an angular dependence inspired by weak-coupling
and RPA spin-fluctuation calculations [6, 11, 49, 50]. In
this case, the node approximation performs better when
comparing to the realistic modelling. Since the order pa-
rameter is more involved by having contributions from
multiple harmonics, the error introduced by linearizing
the gap is non-monotonic, i.e., the gap is both over-
and underestimated on the various bands. As the realis-
tic modelling shows, an equally convincing T -dependent
penetration depth is obtained for this order parameter.
Therefore, not surprisingly, the change in the penetration
depth is not capable of resolving subtle differences in the
the nodal structure of the order parameter. As the nodal
expansion reveals, the slope of ∆λ(T ) as a function of
(T/Tc)

2 at the lowest temperatures is a weighted sum of
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FIG. 4. Representative B1g order parameters [(a) and (b)], and associated penetration depths [(c) associated with (a), and
(d) associated with (b)] using both the node approximation (“node approx.”) and the Mastubara representation (“model”) to
calculate the kernel. We use the three-band tight-binding model of Sec. IIIA. Experimental data points from Refs. 28 and 30
are plotted as gray triangles and orange disks for comparison. In (a) and (b) linearizations around the gap nodes are shown
with dashed lines.

reciprocal gap velocities at the nodes, so the increase in
slope gained by an additional node can be compensated
for by increasing the gap velocity of one or more nodes.

IV. CONCLUSIONS

In summary, we have calculated the temperature-
dependent change of the penetration depth ∆λ including
nonlocal effects from line nodes. We have provided both
a multi-band multi-node generalization of the Kosztin-
Leggett result [31], and demonstrated a straightforward
numerical procedure to evaluate ∆λ numerically exact,
given a multi-band tight-binding description. Focusing
on the case of Sr2RuO4, posing as a prime candidate ma-
terial owing to its clean crystals and evidence of nodal
order, we investigated two d-wave gap structures with
different nodal properties. The analysis reveals that the
low-temperature penetration depth is sensitive to the
sum of reciprocal gap velocities at the nodes, and that
both orders investigated have nodal properties compati-
ble with the presently available data.
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Appendix A: Generalized Kosztin–Leggett theory

Here, we re-derive and generalize the central result of
Kosztin and Leggett [31] for the penetration depth of a
nodal type-II superconductor.
In a weak magnetic field, the Meissner state of a su-

perconductor responds linearly to the perturbation,

j(y) = −
∫

dy′K(y − y′)A(y′). (A1)

Here, j is the screening supercurrent density (pointing
along x̂, y = 0 is the position of the superconductor
boundary), K is the electromagnetic response kernel,
and A is the magnetic vector potential. With a spec-
ular boundary, the magnetic penetration depth is given
by

λ(T )

λ0
=

2

π

∫ ∞

0

dq̃

q̃2 + K̃(q̃;T )
, (A2)

where q̃ = λ0q with λ0 ≡ λ(0), and K̃ = (4πλ20/c)K.

The dimensionless kernel satisfies K̃(q̃ → 0; 0) = 1 in

the local limit. Writing K̃(q̃;T ) = 1 + δK̃(q̃;T ), with
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δK̃(q̃;T ) ≡ K̃(q̃;T ) − K̃(q̃; 0) leads to the exact expres-
sion for ∆λ(T ) ≡ λ(T )−λ0 given in the main text Eq. (1).
The zero temperature kernel can be evaluated analyti-
cally [31], with

K̃(q̃; 0) = 1−

〈
2p̂2∥

[
1− arcsinh(α/∆p)

α/∆p

√
1 + (α/∆p)2

]〉
FS

.

(A3)
Using contour integration techniques [38], the response

kernel correction can be evaluated as

−δK̃(q̃;T ) = 2

∫ ∞

0

dω f(ω)

×

〈
2p̂2∥Re

∆2
p√

ω2 −∆2
p(∆

2
p − ω2 + α2)

〉
FS

,

(A4)
where f(ω) = (1 + exp(βω))−1 is the Fermi function,
∆p is the order parameter, p̂∥ = cos(θ) is the projec-
tion of the Fermi surface momentum on the x̂-axis, and
α = qvF sin θ/2. Setting α = 0 reproduces the local re-
sult [34].

To evaluate the Fermi surface average, we first recast

momentum sums as integrals over (ξ, k̂), where k̂ lies on

the Fermi surface defined by SF (ξ) ≡ {k̂ : ξk̂ = ξ} in the
following manner (introducing also the electronic cutoff
ωc):

∑
k: |ξk|<ωc

hk =

∫ ωc

−ωc

dξ ρξ

∫
SF (ξ)

dk̂

|SF |
v̄F

vF (k̂)
h(k̂), (A5)

where the Fermi velocity, the average Fermi velocity, and
the density of states are given by

vF (k̂) = |∇ξk̂|, (A6)

v̄F =
[ ∫

SF (ξ)

dk̂

|SF |
1

vF (k̂)

]−1

, (A7)

ρξ =

∫
SF (ξ)

dk̂

(2π)d
1

vF (k̂)
, (A8)

respectively, and where |SF | is the Fermi surface area.
From the above we define the (dimensionless) Fermi sur-
face average as

⟨A⟩FS ≡
∫
SF (ξ)

dk̂

|SF |
v̄F

vF (k̂)
A, (A9)

such that ⟨1⟩FS = 1.

We next expand the order parameter around its nodes,
situated at angles θj , ∆p ≈

∑
j v∆,j(θ−θj), where v∆,j is

the “gap velocity” of node j. Close to the nodes (at low
temperatures), we can safely ignore the angular depen-
dence of α and p̂∥. Since Eq. (A4) picks up contributions
around each node, we then get

−δK̃(q̃;T ) = 2

∫ ∞

0

dω f(ω)

〈
2p̂2∥Re

∆2
p√

ω2 −∆2
p(∆

2
p − ω2 + α2)

〉
FS

≈ 2

|SF |

∫ ∞

0

dω f(ω)
∑
j

2p̂2∥,j v̄F

vF,jv∆,j

∣∣∣∂kF

∂θ

∣∣∣
j

∫ ω

−ω

Re
du u2√

ω2 − u2(u2 − ω2 + α2
j )

=
2π

|SF |

∫ ∞

0

dω f(ω)
∑
j

2p̂2∥,j v̄F

vF,jv∆,j

∣∣∣∂kF

∂θ

∣∣∣
j
Re

[
1−

√
1− ω2/α2

j

]

= kBT
2π ln 2

|SF |
∑
j

2p̂2∥,j v̄F

vF,jv∆,j

∣∣∣∂kF

∂θ

∣∣∣
j

[
1− 1

ln 2

∫ αj/T

0

dx f̃(x)

√
1− (xT/αj)

2

]
,

(A10)

where αj = q̃vF,j sin(θj)/(2λ0), f̃(x) ≡ (1 + exp(x))−1

is the Fermi function with dimensionless argument, and
where the sum runs over distinct nodes in the Brillouin
zone (possibly distributed across multiple bands). This
result is a multiband generalization of the node approxi-
mation proposed by Kosztin and Leggett, which is a low-
temperature approximation that is valid in the temper-
ature window in which the order parameter can be rea-
sonably approximated by a linear function of the angle
deviation from the node.

To validate the generalized (multiband) expression of
Eq. (A10), we evaluate it for the simple d-wave order
parameter ∆p = ∆0 cos(2θ) and a circular Fermi surface
with isotropic Fermi velocity [31]. The four distinct nodes
all have p̂2∥ = 1/2 and gap velocity v∆ = 2∆0. Further

writing λ0 = κ0ξ0, and using the BCS expression for the
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TABLE I. Tight-binding parameters for Eqs. (5), (B1), (B2) consistent with high-resolution ARPES measurements [35].

Parameter t1 t2 t3 t4 t5 t6 t7 µ1 η

Value [meV] 562.7 99.9 −47.3 −174.3 −51.8 −11.0 102.0 209.9 81.0

TABLE II. Tight-binding parameters for Eqs. (B3) and (B4) consistent with high-resolution ARPES measurements [35].

Parameter t8 t9 t10 t11 t12 t13 t14 t15 µ2 t16

Value [meV] 458.2 −7.5 330.0 25.3 32.8 8.8 3.5 −12.3 284.2 72.4

coherence length, ξ0 = vF /(π∆0), leads to

−δK̃(q̃;T ) =
2kBT ln 2

∆0

×

[
1− 1

ln 2

∫ π
√

2z
4

0

dx f̃(x)

√
1− 8x2

π2z2

]
,

(A11)

where z ≡ q̃
T/T∗ , and T ∗ ≡ ∆0

κ0
, where κ0 is the zero-

temperature Ginzburg–Landau parameter, and the pref-
actor is recognized as −δK̃(0;T ) = 2kBT ln 2/∆0.

Appendix B: Details of the tight-binding model

The inter- and intra-orbital energies in Eqs. (4) and
(5) take the form

ξxz(k) = −t1 cos kx − t2 cos ky − t3 cos kx cos ky − t4 cos(2kx)− t5 cos(2kx) cos ky

− t6 cos(3kx)− t7 cos(kx/2) cos(ky/2) cos(kz/2)− µ1, (B1)

ξyz(kx, ky, kz) = ξxz(ky, kx, kz), (B2)

ξxy(k) = −t8 [cos kx + cos ky]− t9 [cos(2kx) + cos(2ky)]− t10 cos kx cos ky

− t11 [cos kx cos(2ky) + cos(2kx) cos ky]− t12 cos(2kx) cos(2ky)

− t13 [cos kx cos(3ky) + cos(3kx) cos ky]− t14 [cos(3kx) + cos(3ky)]

− t15 cos(kx/2) cos(ky/2) cos(kz/2)− µ2, (B3)

ξxz,yz(k) = −t16 sin(kx/2) sin(ky/2) cos(kz/2). (B4)

Tight-binding parameters providing a fit to both the Fermi surface and the Fermi velocity of the data in Ref. 35
are listed in Tab. I and II. These parameters are largely taken from the relativistic DFT calculation of Ref. 23. In
particular, the kz dependent terms, responsible for the out-of-plane warping, are identical. The calculations presented
in the main text were done with the effective 2D model obtained by fixing kz = 0.
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