
Exploring Multi-Lingual Bias of Large Code
Models in Code Generation

Chaozheng Wang†, Zongjie Li‡, Cuiyun Gao†∗, Wenxuan Wang†

Ting Peng§, Hailiang Huang§, Yuetang Deng§, Shuai Wang‡, Michael R. Lyu†

† The Chinese University of Hong Kong, Hong Kong, China
‡ Hong Kong University of Science and Technology, Hong Kong, China

§ Tencent Inc., Guangzhou, China
{czwang23, wxwang, lyu}@cse.cuhk.edu.hk,{zligo, shuaiw}@cse.ust.hk, cuiyungao@outlook.com,

Abstract—Code generation aims to synthesize code and fulfill
functional requirements based on natural language (NL) speci-
fications, which can greatly improve development efficiency. In
the era of large language models (LLMs), large code models
(LCMs) have been recently proposed to generate source code.
LCMs can generate highly feasible solutions for programming
problems described in natural language. Despite the effectiveness,
we observe a noticeable multilingual bias in the generation
performance of LCMs. Specifically, LCMs demonstrate profi-
ciency in generating solutions when provided with instructions in
English, yet may falter when faced with semantically equivalent
instructions in other NLs such as Chinese. Moreover, the ability
of LCMs to generate code exhibits variety across different
programming languages (PLs), such as Python and C++. The
observed phenomenon indicates the presence of multi-lingual bias
within the generative capabilities of LCMs, which has remained
unexplored.

In this paper, we aim to investigate the multi-lingual bias
that exists in current LCMs. First, we initiate our investigation
by constructing the first multi-lingual evaluation benchmark X-
HumanEval-X, enabling us to systematically evaluate the extent of
multi-lingual bias that exists in current LCMs. In our large-scale
experiments on nine popular LCMs, we observe a pronounced
multi-lingual bias of LCMs in code generation, including multi-
NL and multi-PL bias. Specifically, when using Chinese instruc-
tions, the code generation capabilities of LCMs decrease by at
least 13% in terms of the Pass@1 metric. Furthermore, LCMs
perform variously across different programming languages, e.g.,
the performance gap between Python and C++ reaches as high
as 20.9%. Then we explore the bias in the prompting phase
and find that prompting LCMs through one-step and multi-step
translation aids in mitigating such bias. We further explore the
impact of instruction tuning based on a self-constructed multi-
lingual dataset Multi-EvolInstruct-Code (MEIC) that contains
two natural languages (i.e., English and Chinese) and more than
twenty programming languages. Experiments on the nine popular
LCMs demonstrate that the instruction tuning substantially
reduces the multi-lingual bias (e.g., decreasing the multi-NL
bias and multi-PL bias by up to 84% and 40%, respectively),
while enhancing the efficacy of LCMs in code generation (e.g.,
increasing the Pass@1 metric by 31%∼46%). We finally provide
insights and implications for researchers and developers aimed
at mitigating the multi-lingual bias and improving the code
generation capabilities of LCMs.

Index Terms—code generation, multi-lingual, large language
models

* Cuiyun Gao is the corresponding author.

I. INTRODUCTION

Code generation is a fundamental task within the domain
of code intelligence, designed to interpret natural language
instructions and produce corresponding code snippets that
fulfill specifications. With the development of large language
models (LLMs), the field of code intelligence has witnessed
the emergence of large code models (LCMs) that are specif-
ically tailored for programming tasks including code gener-
ation [13, 20, 26, 47, 60]. These models, trained on extensive
datasets of source code, have substantially enhanced the effi-
ciency of code generation, thereby considerately reducing the
coding burden for developers. The remarkable capabilities of
LCMs have garnered attention from users globally, spanning
diverse roles within the software development process. This
diversity highlights the wide range of purposes and ways in
which users engage with LCMs, including the use of multiple
natural languages (NLs) and the expectation for LCMs to
produce code snippets across different programming languages
(PLs).

In the domain of code generation, the broad user base of
LCMs introduces a great demand for multi-lingual compe-
tencies, encompassing both multi-NL and multi-PL support.
From the perspective of multi-NL, users expect these models
to understand and generate content across multiple languages.
According to the report [58], a large population of users
(around 80%) are from non-English speaking regions, includ-
ing but not limited to Japan and China, thereby underscoring
the global demand for multi-lingual support. From the multi-
PL perspective, the demand for multi-PL in LCMs arises from
the distinct design principles and exclusive features of each
language, which have contributed to their popularity within
specific communities and development [10]. For instance,
Copilot [5], an LCM-based intelligence programming assis-
tant, receives and processes user requests to generate source
code in a variety of programming languages, including Python,
C++, and JavaScript [12].

Despite the remarkable demands of users in using LLMs
to understand and generate different languages, they are still
faced with multi-lingual bias that undermines their universal
effectiveness [17, 32, 43, 50, 56]. Existing research [32] high-
lights that LLMs tend to exhibit superior performance in

ar
X

iv
:2

40
4.

19
36

8v
1 

 [
cs

.S
E

] 
 3

0 
A

pr
 2

02
4



def below_zero(operations: List[int]) -> bool:
"""给定⼀个以零余额开始的银⾏账户上的存款和取款操作列表。
您的任务是检测账户余额是否在任何时候低于零，并在该点返回True。否则，应返回False。

>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""

return sum(operations) < 0

def below_zero(operations: List[int]) -> bool:
""" You're given a list of deposit and withdrawal operations on a bank 
account that starts with
zero balance. Your task is to detect if at any point the balance of account 
fallls below zero, and
at that point function should return True. Otherwise it should return 
False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""
balance = 0
for operation in operations:

balance += operation
if balance < 0:

 return True
return False

Fail!

Input: [1,2,-4,5]

Expected: True

Output: False

def string_sequence(n: int) -> str:

""" Return a string containing space-delimited numbers 

starting from 0 upto n inclusive.

>>> string_sequence(0)

'0'
>>> string_sequence(5)

'0 1 2 3 4 5'

"""

return ' '.join([str(i) for i in range(n + 1)])

/*
Return a string containing space-delimited numbers 
starting from 0 upto n inclusive.
>>> string_sequence(0)
"0"
>>> string_sequence(5)
"0 1 2 3 4 5"
*/
#include<stdio.h>
#include<string>
using namespace std;
string string_sequence(int n){

string s="";
for(int i=0;i<=n;i++) {

s+=to_string(i);
s+=" ";

}
return s;

}

Pass All Unit Tests!

Fail!

(a) English Instruction

input: 0

Expected: "0"

output: "0 "

(b) Chinese Instruction

(c) Python Solution

Pass All Unit Tests!

(d) C++ Solution

Fig. 1. Motivation example of the bias that exists among multiple natural languages ((a) and (b)) and programming languages ((c) and (d)). The experimented
LCM is DeepSeek-Coder 33B.

English compared to other languages, a discrepancy attributed
primarily to the predominance of English in the training
datasets. Similarly, such a multi-lingual bias is also observed
in current LCMs. As the example shown in Figure 1 (a) and
(b), DeepSeek-Coder 33B [26] generates the correct solutions
in response to the English instructions but fails with the
semantically equivalent Chinese instructions. Additionally, the
performance of LCMs varies across different programming
languages. For instance, when given the same English in-
struction, DeepSeek-Coder 33B effectively addresses the task
in Python (c) but fails to account for a crucial condition
when generating code in C++ (d), demonstrating the model’s
bias in handling various programming languages. However,
the multi-lingual bias in the domain of code generation has
remained under-explored, which necessitates a comprehensive
investigation on systematically assessing and mitigating such
bias.

In this paper, we aim to investigate the multi-lingual bias of
LCMs in the code generation task. To facilitate this investiga-
tion, we first construct a benchmark X-HumanEval-X, which
contains instructions of two NLs (i.e., English and Chinese due
to their popularity [11]) as well as corresponding solutions
in three PLs (including Python, Java, and C++). Based on
the X-HumanEval-X, we evaluate the code generation perfor-
mance of nine popular LCMs across different NLs and PLs,
aiming to analyze the multi-lingual bias inherent in LCMs.
Then we proceed to investigate the potential for mitigating
this bias via training-free methods (e.g., in the prompting
phase) and training-based methods. Specifically, for training-
free methods, we explore mitigating the bias by translating the
Chinese instructions into English and analyze three prompting

strategies including one-step translation, multi-step translation,
and self-translation. For training-based methods, we explore
the mitigation of bias during the training phase, specifically
focusing on the instruction tuning phase. Instruction tuning,
also called supervised fine-tuning, is a pivotal step in adapting
language models, aiming at refining LCMs with high-quality
examples of instructions paired with their corresponding an-
swers [61]. Therefore, we construct a multi-lingual dataset
named Multi-EvolInstruct-Code (MEIC) based on EvolInstruct
[40]. MEIC comprises 91,766 training instances related to
code generation, encompassing two natural languages (i.e., En-
glish and Chinese) and over twenty programming languages.
By instruction-tuning the LCMs with MEIC, we explore how
the choice of languages and training methods affect the multi-
lingual bias of LCMs in the code generation task.

Through extensive experiments on nine popular LCMs
including StarCoder [33], CodeLlama [48], and DeepSeek-
Coder [26], we achieve the following findings.

1) Current LCMs exhibit substantial multi-lingual bias
in code generation. We uncover two dimensions of the
multi-lingual bias within current LCMs including (a) Multi-
natural language bias. When presented with instructions in
English and Chinese that convey the same intent, we observe
that the average Pass@1 rate on the X-HumanEval-X dataset
experiences a minimum decline of 13% when switching from
English to Chinese instructions. This highlights the presence
of bias in the multi-natural language understanding capabilities
of LCMs. (b) Multi-programming language bias. Given the
same instruction, LCMs may successfully generate accurate
solutions in widely-used programming languages such as
Python and Java but struggle with more intricate languages,



such as C++. Specifically, the average code generation per-
formance gap across different PLs reaches as high as 23.7%
in terms of the average Pass@1, thereby substantiating the
existence of the notable multi-programming language bias.

2) Prompting LCMs through translation mitigates the
multi-NL bias. In addition, our exploration of instruction
translation reveals that translation-based prompting strategies
can mitigate multi-NL bias. Specifically, for one-step and
multi-step translation strategies that employ third-party trans-
lation tools (e.g., Google Translation) to convert instructions
from Chinese into English diminish the multi-NL bias, reduc-
ing the bias from 17.2% to as low as 3.8% in terms of the
averaged Pass@1. However, we observe that the code gen-
eration performance based on the self-translation prompting
experiences a drastic decrease at the ratio of 62.3%, even
enlarging the multi-NL bias.

3) Instruction tuning aids in mitigating the multi-
lingual bias while enhancing the performance of LCMs
in code generation. Experiments on the nine popular LCMs
demonstrate that the instruction tuning substantially reduces
the multi-lingual bias (e.g., decreasing the multi-NL bias
and multi-PL bias by up to 84% and 40%, respectively),
and enhances the efficacy of LCMs in code generation (e.g.,
increasing the Pass@1 metric by 31%∼46%). The results
indicate that increasing the diversity of both NLs and PLs
in the training data is beneficial for boosting the overall
performance of LCMs in code generation and reducing the
multi-lingual bias at the same time.

In summary, this paper makes the following contributions:
• To the best of our knowledge, we are the first to dive

into the multi-lingual bias of LCMs from both the natural
language and programming language perspectives in the
code generation task.

• We construct the first multi-lingual benchmark X-
HumanEval-X and one instruction tuning dataset MEIC
that contains two natural languages and more than twenty
programming languages.

• We conduct extensive experiments on nine popular LCMs
and provide findings for researchers and developers that
aim to mitigate the multi-lingual bias and improve the
code generation capabilities of LCMs.

II. OVERVIEW

A. Research Questions
In this paper, we mainly investigate the following research

questions through experiments.
RQ1: To what extent does the multi-lingual bias exist in

LCMs in the code generation task?
RQ2: Whether the multi-lingual bias can be mitigated in

the prompting phase?
RQ3: Whether the multi-lingual bias can be mitigated in the

instruction tuning phase? Specifically, we explore two
sub-questions, including 1) RQ3.1: How do different
natural languages used in the instruction tuning phase
affect the LCMs’ multi-NL understanding perfor-
mance? 2) RQ3.2: How do different programming

languages affect LCMs’ multi-PL generation perfor-
mance?

In the following part of this section, we introduce the
overview of our exploration in details.

B. Benchmark Construction

To initiate our investigation and answer the first research
question, we construct the first multi-lingual evaluation bench-
mark X-HumnEval-X and study the multi-lingual bias from
two aspects including multi-NL understanding bias and multi-
PL generation bias, respectively.

For assessing multi-programming language (multi-PL) gen-
eration bias, we select three representative PLs including
Python, Java, and C++ by utilizing the HumanEval-X bench-
mark [63]. HumanEval-X serves as a variation of the original
HumanEval benchmark [20], specifically adapted to include
not just Python but also other PLs. This choice is motivated
by the widespread use and popularity of these programming
languages [10]. Our goal is to explore and quantify the
performance gaps when generating solutions across varied
programming languages.

For the bias in multi-natural language understanding, we
choose to employ ChatGPT [2] (GPT-3.5-turbo version) to
translate the benchmark’s original English instructions into
Chinese due to its promising translation performance [30].
This procedure is taken to construct a Chinese version of
the benchmark, given that the initial set of instructions was
exclusively in English. To ensure precision, the first two
authors independently review every translated result and make
corrections when necessary. Then the two authors discuss the
corrections and reach a consensus, confirming the accuracy
of the corrected version. This ensures that the instructions are
correctly represented and can be effectively used for evaluating
the performance of the models with Chinese instructions.

C. Exploration on Mitigating Multi-Lingual Bias in Prompting

Given the observed bias in the understanding capabilities
of LCMs, a straightforward approach to mitigate this bias
involves translating Chinese prompts into English prior to
prompting the LCMs. Thus, to answer RQ2, which explores
the potential for reducing multilingual bias during the prompt-
ing phase, we preceding experiments that involve translating
Chinese instructions into English. Specifically, we explore the
following methods: 1) Employing the LCMs themselves for
self-translating the Chinese instructions [27, 50], denoted as
Self-Translation, and 2) Utilizing external translation tools,
such as Google Translation [7], to convert Chinese instructions
into English. Moreover, we apply translation tools in two
manners which include One-Step Translation and Multi-Step
Translation. One-Step Translation utilizes translation tools to
directly translate all Chinese instructions into English, includ-
ing the example cases. For Multi-Step Translation, individual
statements are translated into English separately, aiming for
potentially greater accuracy or context preservation in each
translation step.



D. Mitigating Multi-Lingual Bias in Instruction Tuning

In RQ3, we explore mitigating the multi-lingual bias of
LCMs in the instruction tuning phase. Specifically, we delve
into how the choices of the data and training methods of
instruction tuning affect the multi-lingual bias, with the ex-
ploration details as below.

1) Instruction Tuning Dataset Construction: To study the
multi-lingual bias from both natural language and program-
ming language perspectives, we first construct an instruction
tuning dataset that contains code generation instructions and
their corresponding output answers named MEIC. Specifically,
we utilize the Evol-Instruct [40, 59] technique to construct the
dataset. Following previous work [40], we start from an open-
source dataset Code-Alpaca [3] that contains 20K instruction-
output pairs as seed instructions, and extend their depth
and width via ChatGPT [2]. The details of how we extend
instructions are shown in our anonymous repository. For the
extended instructions, we also feed them into GPT4 (with the
API version of GPT-4-1106) to obtain output answers. Given
that the generated dataset is purely in English, we remark
the dataset as DEng. In summary, the dataset contains 91,766
training instances (i.e., an input instruction and output answer
pair) in more than 20 programming languages such as Python,
JavaScript, and SQL.

After getting the instruction tuning dataset through Evol-
Instruct, we also translate the dataset into Chinese via Chat-
GPT, which we remark as DChi. The first two authors also
randomly sample 1,000 instances of the dataset, achieving a
99% confidence level with a confidence interval of 0.88%.
Upon reviewing the translation results, we concur that 988 in-
stances are accurately translated. Hence, it can be asserted that
the dataset, translated using ChatGPT, maintains an accuracy
rate of 98%, indicating the quality of ChatGPT’s translation.
Totally, DEng and DChi contain 49.0 and 55.8 million tokens,
respectively (obtained by the tokenizer of CodeLlama). The
statistics of the dataset can be accessed in Table I. For the
reasons for choosing Chinese as the studied natural language,
readers can refer to Section V-C.

2) Exploration on Mitigating Multi-NL Understanding
Bias: To study the impact of used data and training methods of
instruction tuning on the multi-NL bias of LCMs, we explore
four instruction tuning methods based on the constructed
instruction tuning dataset.

1) English-Based Tuning. We use the English version of
our MEIC DEng and construct the training instance as
the format “[INS]\n[ANS]” to train LCMs, where [INS]
and [ANS] represent the instruction and corresponding
answer, respectively.

2) Chinese-Based Tuning. We use the translated dataset
DChi to train LCMs in the same way as English-based
tuning.

3) Mixed-NL-Based Tuning. We randomly sample 50%
training instances from DEng and DChi with the same data
construction.

4) Translation-Aware Tuning. We propose to take both the
English and Chinese instructions into account. Specifi-
cally, we construct the training data through a translation-
aware template that provides both English instruction,
translated Chinese instruction, and the corresponding Chi-
nese answer. The details of the template for translation-
aware tuning are shown in our anonymous repository.

3) Exploration on Mitigating Multi-PL Generation Bias:
We further investigate the impact of programming languages
used for instruction tuning on the code generation performance
and multi-PL bias of LCMs.

Specifically, we split the dataset into two parts according
to different PLs including Python and Other-PLs due to the
imbalanced PL distribution in our MEIC. Then we conduct
instruction tuning in three methods including 1) Python-based
Tuning, 2) Other-PLs-based Tuning, and 3) Full data-based
Tuning, respectively. In methods 1) and 2), we utilize the
Python and Other-PLs parts to tune LCMs, respectively. In
the method 3), we conduct instruction tuning with all training
instances in MEIC.

III. EXPERIMENTAL SETUP

A. Selected LCMs
In this paper, we select three kinds of popular and state-of-

the-art LCMs with their versions in different sizes. In specific,
our selected LCMs are:

• StarCoder [33] is a large language model trained on
the mixture of source code and natural language texts.
Its training data incorporate more than 80 different
programming languages as well as text extracted from
GitHub issues and commits and from notebooks. The total
account of training tokens exceeds 1T. We select its 3B,
7B, and 16B versions in our experiments.

• CodeLlama [48] is a family of large language models for
code based on LLama 2 [51] with state-of-the-art code
generation, blank infilling, and long-context processing
capabilities. In this paper, we choose CodeLlama’s base
model (i.e., CodeLlama Base) in three different sizes
including 7B, 13B, and 34B for instruction tuning.

• DeepSeek-Coder [26] is a series of large code mod-
els that have an identical architecture to CodeLlama.
DeepSeek-Coder is trained from 2T tokens from scratch,
which comprises 87% code and 13% natural language
in both English and Chinese. DeepSeek-Coder achieves
state-of-the-art performance in a variety of code intel-
ligence tasks. Specifically, we choose DeepSeek-Coder
Base in sizes of 1.3B, 6.7B, and 33B in this paper.

B. Evaluation Metrics
Following the prior studies [33, 48, 49], we use the Pass@k

metric to evaluate the accuracy of LCMs in solving program-
ming problems, examining whether LCMs can pass all unit
tests within k solutions. The metric can be described as the
following

pass@k =

n
∑

i=1
∏

k
j=1(1(passs j

i
)

n
(1)



TABLE I
STATISTICS AND PROGRAMMING LANGUAGE DISTRIBUTION OF OUR CONSTRUCTED DATASET MEIC.

Version #Tokens Python JavaScript SQL Java C++ HTML CSS PhP Bash Others Total

DEng 49.0M 49,346 10,291 8,105 6,976 3,597 1,879 1,800 1,286 814 7,672 91,766DChi 55.8M

TABLE II
HYPER-PARAMETER SETTINGS.

Hyperparameter Value Hyperparameter Value

Optimizer AdamW [29] Warm-up steps 100
Learning rate 5e-6 Training batch size 512
LR scheduler Cosine Scheduler [38] Validation batch size 32

Sequence Len. 2,048 Adam epsilon 1e-8
Max. gradient norm 1.0 Precision BF16

Max Gen. Tokens 512 Top-P 0.95

where n and k denote the number of problems and the
number of generated solutions, respectively. s j

i indicates the
j-th solution for the i-th problem. The function 1(x) returns 1
if x is True and otherwise returns 0, and pass(s) returns True
if the solution s can pass all unit tests. In this paper, following
previous work [33, 40, 57], we choose Pass@1 as our metric,
i.e., k = 1.

C. Implementation Details

All the experiments are run on a server with 8*A100 GPU
with 80GB graphic memory. Specifically, we utilize Optimizer
State Sharding (ZeRO 3) techniques in DeepSpeed [45, 46] to
save GPU memory and improve training efficacy. For larger
models such as CodeLlama 34B and DeepSeek-Coder 33B,
we additionally offload the optimizer state into CPU memory
to further avoid out-of-CUDA memory issues. The training
hyper-parameters are listed in Table II following previous work
[33, 40, 57]. We randomly select 5% of the training samples
as a validation set and use the checkpoint with the lowest
validation loss for inference.

For fast inference, we utilize vLLM [31] based on PagedAt-
tention to improve efficiency. The inference hyper-parameter
is also listed in Table II. After generation, we conduct post-
processing (e.g., truncating the content beyond the solution
function) to ensure the generated code can be correctly eval-
uated following previous work [14, 33].

IV. EXPERIMENT ANALYSIS

In this section, we elaborate on the answers to the proposed
research questions based on the experimental results.

A. RQ1: Existence of Multi-Lingual Bias in LCMs

Given a programming problem, we expect LCMs to generate
correct solutions no matter the language that instructions are
described in such as English and Chinese. In addition, we
also expect LCMs to be able to solve programming problems
in different PLs. Therefore, in RQ1, we evaluate the code
generation capabilities of LCMs and the potential multi-lingual
bias across different PLs including Python, C++, and Java

in different NLs, including English and Chinese. To answer
RQ1, we utilize our constructed X-HumanEval-X to evaluate
the performance of the selected nine LCMs and compare
their performance across different NLs and PLs. Besides base
models (i.e., versions after pre-training), their corresponding
instruction-tuned models (i.e., versions after instruction tun-
ing) are also evaluated. The results are shown in Table III.
From the results, we can achieve the following observations.

1) LCMs exhibit bias in multi-NL understanding. All
the experimented LCMs exhibit a notable multi-NL bias, i.e.,
the performance gap of LCMs when generating code with
instructions in English and Chinese, across all programming
languages. More precisely, when instructions are presented in
Chinese, the average Pass@1 rate for the LCMs under study
drops by 17.2% and 14.3% for the base and instruction-tuned
model versions in Python, respectively. In the case of the base
model version of CodeLlama 34B, its capability to generate
code in Java experiences an even more pronounced decrease,
with a performance reduction of 37.8%. The results reveal a
pronounced bias in LCMs regarding their ability to understand
different natural languages when tasked with code generation.

2) LCMs have biased abilities in the multi-PL gen-
eration. From the multi-PL perspective, we observe that
LCMs perform variously in generating solutions in different
programming languages. For instance, the base model versions
of LCMs achieve the best Pass@1 rate in the Python language,
which is 5.7% and 11.3% higher than that in C++ and Java,
respectively. The code generation performance in the Java
language is the lowest among the three experimented program-
ming languages with both English and Chinese instructions.
Compared to Python, the average Pass@1 rates for Java pro-
gramming problems, when instructions are provided in English
and Chinese, are lower by 11.5% and 23.7%, respectively.
We attribute the bias of different PLs on base models to the
training objective of base models, which is focused on auto-
aggressive decoding. Without instruction tuning, base models
present unsatisfactory capabilities to follow instructions and
lead to a scenario where base models struggle with determin-
ing “when to stop” during code generation. This problem is
specifically severe when generating solutions in Java, primarily
because solutions in Java are typically organized as classes
rather than functions. Thus, base models achieve the worst
performance in Java on average.

However, the models after instruction tuning (the lower
part of the table) exhibit their poorest performance in C++
(average 46.77% in English instructions), which presents the
maximum performance gap at 13.04%. This discrepancy can
be ascribed to the enhanced capability of LCMs to learn to



TABLE III
CODE GENERATION RESULTS (PASS@1) OF THE MULTI-NL AND MULTI-PL BENCHMARKS ON X-HumanEval-X, WHERE SC, CL, AND DSC INDICATE

STARCODER, CODELLAMA, AND DEEPSEEK-CODER, RESPECTIVELY. THE COLUMN NL-BIAS AND PL-BIAS DENOTE THE MAXIMUM PERFORMANCE
GAP OF THE AVERAGE PASS@1 AMONG DIFFERENT NLS AND PLS. “-” DENOTES THAT THE INSTRUCTION TUNING VERSION OF THE MODELS IS NOT

RELEASED.

Benchmark-PL Benchmark-NL SC-3B SC-7B SC-15B CL-7B CL-13B CL-34B DSC-1.3B DSC-6.7B DSC-33B Avg NL-Bias PL-Bias

Base Model

Python English 22.56 26.82 31.70 31.09 35.36 54.87 28.65 49.39 55.48 37.32
∆17.25%

∆23.70%

Chinese 18.29 23.78 26.21 29.26 28.04 41.46 25.61 46.34 47.56 31.84

C++ English 19.51 24.39 29.87 28.04 34.75 50.60 31.70 43.90 51.21 34.88
∆13.65%Chinese 18.29 22.56 26.21 21.95 30.49 40.24 31.09 39.02 46.34 30.69

Java English 20.73 22.56 24.39 25.00 30.49 50.00 30.49 46.95 50.60 33.47
∆30.03%Chinese 15.85 20.12 19.51 18.90 23.78 31.09 22.56 36.58 43.29 25.74

Instruction Tuned Model

Python English - - 34.15 35.97 42.68 53.04 59.14 71.95 73.17 52.87
∆14.31%

∆13.04%

Chinese - - 29.26 31.09 37.19 45.12 54.87 62.19 64.02 46.25

C++ English - - 28.66 32.92 42.07 47.56 48.17 62.80 65.24 46.77
∆13.05%Chinese - - 25.61 30.49 30.49 44.51 45.12 55.48 57.92 41.37

Java English - - 29.26 39.63 37.19 52.49 56.70 71.34 73.17 51.40
∆16.39%Chinese - - 25.00 31.09 28.04 39.63 50.60 65.85 68.90 44.16

follow instructions and generate solutions with the proper
format, obtaining larger improvements in Java (achieving the
average Pass@1 at 51.4% in English). We suppose that the
inherent complexities associated with C++ programming result
in LCMs exhibiting inferior performance when compared to
their counterparts in Java and Python.

Finding 1: Current LCMs exhibit pronounced bias in
both multi-natural language understanding and multi-
programming language generation. Specifically, when tran-
sitioning from English to Chinese instructions, the average
Pass@1 rate experiences a minimum decrease of 13%.
When generating source code across different programming
languages, multi-PL bias reaches as high as 23.7%.

B. RQ2: Mitigating Multi-Lingual Bias in Prompting

To answer the second RQ, we investigate the effectiveness
of three prompting strategies including self-translation, one-
step translation, and multi-step translation in mitigating multi-
NL bias. The experiment results are shown in Table IV.

From the table, we can find that in the case of self-
translation, a notable decline in the performance is observed.
Specifically, the average Pass@1 of code generation through
self-translation stands at merely 12.0%, marking a pronounced
decrease of 62.3% compared to performance with original
Chinese instructions. These unfavorable outcomes indicate that
current LCMs, primarily trained on source code, exhibit in-
adequate translation capabilities, making self-translation even
enlarge the multi-NL bias.

For one-step and multi-step translation, these strategies
achieve a substantial improvement in mitigating the multi-
NL bias. Specifically, the average Pass@1 rate increases by
5.9% and 13.0% compared to the original Chinese instruc-
tions, reducing the multi-NL bias from the original 17.2% to
10.6% and 3.8%, respectively. Such results demonstrate that
effectively translating Chinese instructions into English helps
mitigate the bias in multi-NL understanding. Furthermore, our
observations indicate that multi-step translation substantially

outperforms one-step translation, effectively narrowing the
performance gap and approximating the performance in the
original English instructions. This disparity can be attributed to
the limitations of current translation tools in handling content
that intertwines textual and symbolic elements, leading to a
compromise in both the fidelity of translation and the efficacy
of mitigating multi-NL bias.

Finding 2: Prompting LCMs through one-step and multi-
step translation can mitigate the multi-NL bias, reducing
the bias from 17.2% to as low as 3.8%. However, for self-
translation, due to the unsatisfactory translation capabilities
of LCMs, the average Pass@1 drops by 62.3%.

C. RQ3: Mitigating Multi-Lingual Bias in Instruction Tuning

In RQ3, we opt to focus on the base model versions of
the LCMs because the specifics of their instruction tuning
phase, including the data and training strategies employed,
are not accessible to us. Using base models allows us to
concentrate solely on understanding how the choice of data
and training methods used for instruction tuning influences
the model performance.

1) RQ3.1: Multi-NL Understanding Bias: We conduct in-
struction tuning on the selected LCMs through the proposed
four training methods in Section II and the results are shown
in Table V.

For English-based Tuning, we can observe that instruc-
tion tuning with pure English training instances can notably
improve the code generation performance with both English
and Chinese instructions. Specifically, compared to the original
base models, instruction tuning by English data achieves an
average of 28.2% and 34.5% improvement on the Pass@1
metric with English and Chinese instructions, respectively.
The results reveal inter-dependencies within the knowledge
representations of various natural languages embedded in
LCMs. The inter-dependencies render that instruction tuning
LCMs in one natural language can concurrently enhance their
performance across different languages.



TABLE IV
CODE GENERATION RESULTS (PASS@1) OF DIFFERENT PROMPTING STRATEGIES FOR MITIGATING MULTI-NL BIAS.

Methods SC-3B SC-7B SC-15B CL-7B CL-13B CL-34B DSC-1.3B DSC-6.7B DSC-33B Avg

Chinese (w/o Trans.) 18.29 23.78 26.21 29.26 28.04 41.46 25.61 46.34 47.56 31.84

Self Trans. 1.83 2.44 8.54 7.32 11.59 29.26 7.32 13.41 26.21 11.99
One-Step Trans. 20.12 25.61 26.82 28.04 32.31 48.17 28.62 45.73 48.17 33.73

Multi-Step Trans. 21.95 25.61 28.66 29.26 32.92 52.44 30.49 47.56 54.87 35.97

Original English 22.56 26.82 31.70 31.09 35.36 54.87 28.65 49.39 55.48 37.32

However, despite the noticeable performance improvement,
an obvious disparity persists between the models’ treatment of
English and Chinese instructions. After English-based tuning,
the average Pass@1 rate of Chinese instructions is 11.75%
lower than that of English, implying that relying solely on
English data cannot well address the underlying bias towards
non-English languages.

Finding 3: Instruction tuning LCMs with English dataset
can bring substantial performance improvement on code
generation in both English and Chinese instructions, i.e.,
the Pass@1 rate improves 28.2% and 34.5%, respectively.
However, the bias between English and Chinese benchmarks
is still severe, indicated by the obvious performance gap at
11.75%.

For Chinese-based Tuning, similar to purely English tun-
ing, we also observe a considerable improvement in the perfor-
mance of the LCMs, i.e., the Pass@1 rates obtain an average
relative improvement of 26.6% and 44.3% in English and
Chinese instructions, respectively. This observation aligns well
with the English-based tuning. The difference is that by utiliz-
ing Chinese data, LCMs register a 7.3% larger improvement
on the Chinese benchmark while suffering a decrease of 1.3%
on the English benchmark compared to English-based tuning.
For the overall performance of the two languages, Chinese-
based tuning outperforms English-based tuning by 2.8% in
terms of the average Pass@1 rates of the two benchmarks.
The results indicate that compared with English-based tuning,
Chinese-based tuning can achieve competitive performance on
the English benchmark while performing substantially better
on the Chinese benchmark.

From the perspective of the performance gap between
English and Chinese, even though the average performance
in English is still better than that in Chinese, we observe
that tuning with Chinese leads to a gap of 2.79%, which
is 76% lower than that of English-based tuning. Specifically,
for DeepSeek-Coder after Chinese-based tuning, the average
Pass@1 rates of the Chinese benchmark even outperform that
of the English benchmark (e.g., 37.19 v.s. 34.14 in DeepSeek-
Coder 1.3B). We attribute this superior performance under
Chinese instructions to the deliberate inclusion of a non-
trivial amount of Chinese corpora during the pre-training
phase of DeepSeek-Coder [26] for improving the models’
comprehension of Chinese.

Finding 4: Compared to English-based tuning, Chinese-
based tuning improves the Pass@1 rate by 7.3% in Chinese
instructions while sacrificing 1.3% in English instructions,
achieving a lower multi-NL bias at 2.79%.

For Mixed-NL-based Tuning, we construct a mixed-NL
dataset by randomly selecting 50% training instances from
Deng and Dchi, respectively. From the table, we observe that
in the English benchmark, mixed-NL-based tuning performs
better than both English and Chinese-based tuning, obtaining
an average of 1.0% and 2.2% improvement on overall Pass@1,
respectively. Such improvements indicate that the capabilities
of LCMs in English can be further boosted by involving
Chinese data. For the Chinese benchmark, the average Pass@1
of mixed-NL-based tuning is slightly lower than that of purely
Chinese tuning (0.9%), which still outperforms English-based
tuning by 6.4%. The results demonstrate that mixing English
and Chinese can further boost LCMs in English instructions
and obtain promising capability in Chinese instruction under-
standing, leading to a multi-NL bias at 6.11%. This dual-
language training method yields superior overall performance
compared to training exclusively in a single language.

Through Translation-Aware Tuning, the average multi-
NL bias achieves 6.09%, which is close to that of mixed-
NL-based tuning. In addition, LCMs achieve the best perfor-
mance in both English and Chinese benchmarks. Specifically,
translation-aware tuning improves the average Pass@1 by
2.38% and 2.95% over mixed-NL tuning in the English and
Chinese benchmarks, respectively. The notable performance
improvement can be ascribed to the LCMs’ ability to discern
and learn the intricate triplet relationships among English
instructions, Chinese instructions, and their corresponding
responses during the instruction tuning phase.

Finding 5: For mixed-NL-based tuning and translation-
aware tuning, LCMs present similar multi-NL bias at 6.1%.
From the perspective of code generation capabilities, LCMs
achieve better performance over tuning with exclusively
English or Chinese data.

2) RQ3.2: Multi-PL Generation Bias: In this research
question, we conduct a quantitative analysis to explore the
influence of instruction tuning with various programming
languages on the performance of LCMs. We split the train-
ing dataset based on the associated programming languages
and their training instances, specifically categorizing it into



TABLE V
COMPARISON OF CODE GENERATION RESULTS (PASS@1) OF ENGLISH AND CHINESE BENCHMARKS ON THE X-HumanEval-X. SC, CL, AND DSC
INDICATE STARCODER, CODELLAMA, AND DEEPSEEK-CODER, RESPECTIVELY. ALL EXPERIMENTS ARE CONDUCTED IN PYTHON. THE COLUMN
NL-BIAS DENOTES THE MAXIMUM PERFORMANCE GAP OF THE AVERAGE PASS@1 AMONG DIFFERENT NLS. BOLD AND UNDERLINE RESULTS

REPRESENT THE BEST PERFORMANCE IN ENGLISH AND CHINESE BENCHMARKS, RESPECTIVELY.

Training Method Benchmark-NL SC-3B SC-7B SC-15B CL-7B CL-13B CL-34B DSC-1.3B DSC-6.7B DSC-33B Avg NL-Bias

Base Models English 22.56 26.82 31.70 31.09 35.36 54.87 28.65 49.39 55.48 37.32
∆17.25%Chinese 18.29 23.78 26.21 29.26 28.04 41.46 25.61 46.34 47.56 31.83

English-based English 30.49 34.14 44.51 44.51 52.49 62.80 38.41 59.14 64.02 47.83
∆11.75%Chinese 28.65 30.49 35.36 39.02 46.34 56.70 34.14 54.78 59.75 42.80

Chinese-based English 30.49 36.58 45.12 43.29 54.26 62.80 34.14 55.48 62.80 47.22
∆2.79%Chinese 32.31 33.63 38.41 41.46 49.35 59.14 37.19 57.92 64.02 45.94

Mixed-NL-based English 32.31 36.58 43.29 46.34 54.26 63.41 35.36 59.14 64.02 48.30
∆6.11%Chinese 31.70 34.14 39.63 41.46 47.56 58.53 35.97 57.31 63.41 45.52

Translation-aware English 34.13 38.41 45.12 45.12 55.48 64.02 39.02 58.53 65.24 49.45
∆6.09%Chinese 32.31 34.14 39.63 42.07 51.21 60.97 36.58 57.31 65.24 46.61

TABLE VI
COMPARISON OF CODE GENERATION RESULTS (PASS@1) IN PYTHON, C++, AND JAVA BENCHMARKS. SC, CL, AND DSC INDICATE STARCODER,
CODELLAMA, AND DEEPSEEK-CODER, RESPECTIVELY. ALL EXPERIMENTS ARE CONDUCTED IN ENGLISH. THE COLUMN PL-BIAS DENOTES THE
MAXIMUM PERFORMANCE GAP OF THE AVERAGE PASS@1 AMONG DIFFERENT PLS. BOLD, italic AND UNDERLINE RESULTS REPRESENT THE BEST

PERFORMANCE IN PYTHON, C++, AND JAVA BENCHMARKS, RESPECTIVELY.

Training Method Benchmark-PL SC-3B SC-7B SC-15B CL-7B CL-13B CL-34B DSC-1.3B DSC-6.7B DSC-33B Avg PL-Bias

Base Models
Python 22.56 26.82 31.70 31.09 35.36 54.87 28.65 49.39 55.48 37.32

∆11.50%C++ 19.51 24.39 29.87 28.04 34.75 50.60 31.70 43.90 51.21 34.88
Java 20.73 22.56 24.39 25.00 30.49 50.00 30.49 46.95 50.60 33.47

Python
Python 30.49 33.53 43.29 44.51 51.21 62.80 38.41 59.75 63.41 47.49

∆10.05%C++ 21.95 31.70 39.02 37.80 46.95 57.92 37.80 57.31 57.92 43.15
Java 28.04 31.70 39.63 39.63 52.43 57.92 37.80 54.26 58.53 44.44

Other-PLs
Python 29.26 32.92 37.80 34.75 47.56 60.97 37.80 57.92 61.58 44.51

∆6.73%C++ 23.78 33.53 39.02 37.80 50.00 56.70 35.36 54.87 57.92 43.22
Java 29.87 33.53 41.46 40.24 49.35 58.53 40.85 57.92 63.41 46.13

Full data
Python 30.49 34.14 44.51 44.51 52.49 62.80 38.41 59.14 64.02 47.83

∆5.97%C++ 26.21 34.14 41.46 41.46 51.52 59.14 37.80 56.70 59.14 45.29
Java 32.31 35.36 43.29 44.51 55.48 60.97 41.46 57.31 62.80 48.17

Python and Other-Programming Languages (Other-PLs) fol-
lowing previous work [57], comprising 49,346 and 42,420
instances respectively. Subsequently, these segmented datasets
are employed to train LCMs. Then we assess the LCMs’
code generation performance across various programming
languages, including Python, Java, and C++. We present our
results in Table VI.

For Python-based Tuning, from the table, we can observe
that training on the data of a single Python language brings
remarkable performance improvement among the benchmarks.
Specifically, the average Pass@1 of LCMs increases by 27.3%,
23.7%, and 32.8% in Python, C++, and Java, respectively. This
observation about programming languages aligns with the nat-
ural languages, indicating an implicit relationship among the
knowledge about programming languages embedded in LCMs.
Through instruction tuning LCMs with even a single language,
the capabilities in other languages will also be exploited (no
matter a natural language or programming language). This
improvement suggests that the instruction tuning process, even
when it is concentrated on a specific language, can enhance
the multi-lingual generalization, boosting the models’ overall
ability to understand instructions and generate code.

From the perspective of multi-PL bias, despite the substan-
tial improvement, multi-PL bias is still obvious, i.e., a 10.05%
performance gap between Python and C++ benchmarks is
observed.

After Other-PLs-based Tuning, LCMs enhance their code
generation capabilities across multiple programming lan-
guages, although the degree of improvement varies when com-
pared to training exclusively on the Python language dataset.
Specifically, when the training is conducted on programming
languages other than Python (Other-PLs), there is an observed
increase in the Pass@1 metric by 19.3%, 23.9%, and 37.8% for
the three benchmarks, respectively. Compared to Python-based
tuning, training on other PLs improves the performance in
Java by 3.8% while suffering a 6.5% reduction for Python. In
addition, the method utilizes more PLs for instruction tuning,
mitigating the multi-PL bias compared to original base models
and Python-based tuning by at least 30% (i.e., the performance
gap between C++ and Java is 6.7%). These outcomes suggest
that the selection of PLs can bring greater improvement in
LCMs’ capabilities to generate the corresponding PL, thus,
the limited diversity of PLs used for instruction tuning tends
to be insufficient to mitigate multi-PL bias.



Finding 6: The code generation performance in multi-
programming languages can be improved by instruction tun-
ing, regardless of the specific programming language used
for training. Notably, more substantial improvements are
observed when LCMs are tuned with datasets corresponding
to the target programming language, resulting in a multi-PL
bias larger than 6.7%.

For Full Data-based Tuning with the mixture of the above-
mentioned PLs, LCMs achieve the best average Pass@1 in
all PLs including Python, C++, and Java among experimented
methods. Compared to the base models, full data-based tuning
increases the overall Pass@1 by 27.5%, 25.7%, and 39.1%
in the three experimented benchmarks, respectively. Such
superior performance of full data-based training demonstrates
that increasing the diversity from the aspect of programming
languages can further bring enhancement in the code genera-
tion capabilities of multiple programming languages.

In terms of the bias among experimented PLs, we observe
that increasing the diversity of PLs for instruction tuning
aids in mitigating bias in multi-PL generation. For instance,
when training is conducted exclusively with Python, the widest
performance gap observed is 10.05% (between Python and
C++). However, when tuning is performed using a full dataset
that encompasses multiple programming languages, this gap
narrows by 40% (i.e., a bias of 5.97% between Java and C++).

Finding 7: Full data-based tuning that further enhances the
diversity of PLs mitigates the average multi-PL bias by 40%
compared to Python-based tuning. In addition, the average
Pass@1 rate obtains the largest improvement at 27.5%,
25.7%, and 39.1% in Python, C++, and Java, respectively.

V. DISCUSSION

A. Implication of Findings

In this section, we discuss the implications of our work for
researchers and developers.

For researchers. Our research demonstrates that current
large code models present obvious multi-lingual bias in the
code generation task. With well-designed training methods and
dataset construction, instruction tuning substantially improves
LCMs’ performance of code generation and mitigates the
multi-lingual bias. However, as shown in the results of RQ3,
the multi-lingual bias still persists in current LCMs. Our
results also reveal the potential research directions in the era
of LCM for the community. Specifically:

• Exploring to collect high-quality multi-lingual data.
The users in current software communities such as
StackOverflow mainly concentrate on certain NLs (i.e.,
English) or PLs (e.g., Python and JavaScript) [1], which
potentially leads to a degraded diversity when collecting
data from these communities. Therefore, exploring ef-
fective methods for gathering, evaluating, and integrating
diverse language data for training LCMs is crucial.

• Exploring to amplify underrepresented languages.
In addition, the highly imbalanced multi-lingual data

used for training, e.g., the imbalanced distribution of
programming languages as reported in [39], result in
the under-representation of some languages. Thus, de-
veloping strategies that can effectively amplify the pres-
ence and influence of underrepresented languages in the
training data (e.g., weighted training [53] and language-
agnostic representations [64]) needs to be further inves-
tigated.

• Exploring more sophisticated training methods. This
paper aims to mitigate the multi-lingual bias from the
angle of instruction tuning. Besides instruction tuning,
the exploration of more sophisticated fine-tuning method-
ologies (e.g., multi-lingual preference learning [21, 44])
presents a promising avenue for future research.

For developers. Instruction tuning enables the pre-trained
LCMs to follow human instructions and better exploit the
knowledge embedded in the model. Our findings indicate that
the multi-lingual data and training methods have a substantial
impact on the performance of LCMs. Based on our findings,
we conclude the following insights and takeaways for develop-
ers to conduct instruction tuning and adapt LCMs into practice
in their work.

• The presence of multi-lingual bias in current LCMs can
affect their performance in generating source code from
instructions given in languages other than English. This
bias may lead developers, facing unsatisfactory outcomes
with their native or preferred languages, to resort to using
English when interacting with LCMs.

• Instruction tuning LCMs with a single language (no
matter NL and PL) improves the performance of LCMs
in code generation across other languages.

• Instruction tuning helps to mitigate the multi-lingual bias.
However, tuning with a purely English dataset still results
in a notable degree of bias, specifically measured at
11.75%.

• Enhancing the diversity from both NL and PL perspec-
tives of the instruction tuning dataset further improves
the generation capabilities of LCMs and mitigates multi-
lingual bias, making LCMs more accessible and useful
to global developers.

B. Prompting or Instruction Tuning

In our experiments in RQ2 and RQ3, we demonstrate that
the multi-NL bias can be potentially mitigated in both the
prompting and instruction tuning phases. In this section, we
discuss the advantages and limitations of the two methods.

For prompting, we observe that one-step translation and
multi-step translation aid in mitigating the multi-NL bias
by 40% and 76%, respectively. Despite the contribution to
mitigating multi-NL bias, these methods have the following
limitations: 1) The benefits come with auxiliary translation
tools and non-trivial costs. For example, in the multi-step
translation process, we averagely translate 3.9 statements for
each programming problem. 2) Translation helps to mitigate
the bias by narrowing the performance gap between Chinese



and English instructions; however, the essential code genera-
tion capabilities of LCMs are not improved. 3) LCMs typically
generate responses such as code comments and explanations
in the same language as the input. Consequently, when users
who are not proficient in English opt to translate their queries
into English, they may find the English responses difficult to
comprehend, resulting in additional costs to translate back.

For instruction tuning, as noted in RQ3, we observe that
instruction tuning not only effectively mitigates the multi-NL
bias by as high as 84% but also substantially improves the code
generation capabilities of LCMs, as evidenced by an overall
39% increase in the Pass@1 rate. However, instruction tuning
involves the creation of a multi-lingual dataset and demands
computational resources for training the LCMs. This require-
ment could pose practical challenges and resource constraints
in implementation.

Drawing upon our empirical findings, developers can choose
proper methods to mitigate the multi-lingual bias according to
their resources and expectations in practice.

C. Threats to Validity

We have identified the following major threats to validity:
Limited LCMs. The experiments are based on open-source

popular LCMs, which may bring bias in the results. The
reason we refrain from utilizing close-source models such
as ChatGPT [2] and Gemini [6] stems from the fact despite
their superior capabilities, closed-source models are prohibited
within certain companies due to privacy concerns [54]. Con-
sequently, instruction tuning open-source LCMs as an internal
programming assistant presents a viable solution, which is the
point that this paper focuses on. To mitigate this issue, we
select three types of popular LCMs of varying sizes, ranging
from 1.3 billion to 34 billion parameters to control the threat.

Limited natural languages. In this paper, we specifically
focus on English and Chinese for conducting experiments
on multi-NL understanding. This choice is grounded in the
fact that English and Chinese are recognized as the two most
prevalent languages globally [11]. Additionally, according to
existing studies [56], Chinese and English present a high
imbalance from the perspective of training data. In addition,
despite the prevalence of Chinese, a substantial performance
disparity with English is still observed. Thus, we believe the
findings obtained by investigating the multi-NL bias in Chi-
nese and English can also be generalized to other languages.

VI. RELATED WORK

A. Large Code Models

The use of large language models in natural language pro-
cessing inspires researchers and companies to develop LCMs
for programming tasks. Generally, LCMs can be obtained
through two approaches: continuing the training of founda-
tion LLMs or pre-training from scratch [4, 14, 26, 33, 48, 63].
CodeLlama [48] is an example of the former, which is based
on the LLaMA2 foundation model [52]. On the other hand,
Starcoder2 [39] is an example of the latter, trained from
scratch with over 600 programming languages. In addition to

these open-source models, big companies also develop their
coding products with LCMs, such as GitHub Copilot [5] and
Tabnine [9]. LCMs show promising results in various code
tasks, including code completion and summarization [41].
However, they face challenges similar to LLMs, such as safety
output [35] and intellectual property concerns [36, 37].

Apart from source-level code, LCMs have also been de-
signed for low-level code, such as decompilation and LLVM
IR code [34]. For instance, Cummins et al. [22] proposed a
7B LCM to optimize LLVM assembly code, while 01.AI [8]
developed a “machine language model” to analyze executable
programs and binary code.

B. Multi-Lingual Inconsistency in Large Language Models

The performance gap of LLMs between high-resourced
languages and underrepresented languages has been stud-
ied recently in various natural language processing tasks
[17, 32, 43, 50, 56], such as logical reasoning [24], nature
language understanding [28], and nature language genera-
tion [23]. Specifically, [50] revealed that GPT-3 [18] and PaLM
[16] perform worse when answering the math questions in
underrepresented languages, compared with the performance
of answering the same questions in English. The work [56]
found that LLMs produce significantly more unsafe responses
for non-English queries than English ones, indicating the
unsatisfied safety alignment for non-English languages. These
performance gaps can be attributed to the language-imbalanced
nature of training data and alignment data: The majority
of training and alignment data of current LLMs, such as
GPT-4, are in English [15, 17, 42, 62]. Meanwhile, previous
works have proposed several methods to transfer knowledge
from high-resource languages to underrepresented languages.
Additionally, the work [24] proposes an attention mechanism
that uses a dedicated set of parameters to encourage cross-
lingual attention in code-switched sequences. Another thread
of work adopts prompting strategies. [28] design a generic
template prompt that stimulates cross-lingual and logical rea-
soning skills to enhance task performance across languages.
In addition, [23] utilizes the LLM to generate multilingual
training data, which is then used for fine-tuning the LLM,
to alleviate the performance gap without any human labeling
effort.

Different from previous works, this paper focuses on code
generation tasks, which have yet to be explored, and investi-
gates the two aspects of multi-lingual bias, including multi-NL
understanding and multi-PL generation. Existing work in the
code intelligence field only reports the performance in different
PLs [19, 25, 55], ignoring the bias among PLs. Contrarily, our
work conducts extensive experiments to investigate how to
improve the code generation performance and multi-lingual
bias of LCMs.

VII. CONCLUSION

In this paper, we have identified the multi-NL and multi-
PL bias of LCMs in the code generation task. In addition,
we have explored to mitigate the bias in the prompting and



instruction tuning phase. Extensive experiments demonstrate
that both prompting and instruction tuning aid in mitigating
the multi-lingual bias, and instruction tuning can further boost
the code generation capabilities of LCMs. Moreover, we pro-
vide insights and implications for researchers and developers
aimed at mitigating the multi-lingual bias and improving the
performance of LCMs.

REFERENCES

[1] 2023 Developer Survey. https://survey.stackoverflow.co/2023/#most-po
pular-technologies-language-other.

[2] ChatGPT. https://chat.openai.com/.
[3] CodeAlpaca. https://github.com/sahil280114/codealpaca.
[4] CodeX. https://openai.com/blog/openai-codex/.
[5] Copilot. https://github.com/features/copilot.
[6] Gemini. https://deepmind.google/technologies/gemini/#introduction.
[7] Google Translation. https://translate.google.com/.
[8] mlmproject. https://mlm.lingyiwanwu.com/.
[9] tabnine. https://www.tabnine.com/.

[10] The top programming languages. https://octoverse.github.com/2022/to
p-programming-languages.

[11] Top 10 most spoken languages in the world in 2024. https://www.forb
esindia.com/article/explainers/most-spoken-languages-world/91687/1.

[12] I. Akvelon, “Github copilot efficiency explored: Key takeaways from
akvelon’s survey,” https://medium.com/@akvelonsocialmedia/github-c
opilot-efficiency-explored-key-takeaways-from-akvelons-survey-1b46
e2391f0e, 2023.

[13] Z. Ali, H. Darwis, L. B. Ilmawan, S. R. Jabir, A. R. Manga et al.,
“Memory efficient with parameter efficient fine-tuning for code gen-
eration using quantization,” in 2024 18th International Conference on
Ubiquitous Information Management and Communication (IMCOM).
IEEE, 2024, pp. 1–6.

[14] L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis,
N. Muennighoff, M. Mishra, A. Gu, M. Dey et al., “Santacoder: don’t
reach for the stars!” in Deep Learning for Code (DL4C) Workshop, 2023.

[15] D. M. Alves, J. Pombal, N. M. Guerreiro, P. H. Martins, J. Alves,
A. Farajian, B. Peters, R. Rei, P. Fernandes, S. Agrawal et al., “Tower:
An open multilingual large language model for translation-related tasks,”
arXiv preprint arXiv:2402.17733, 2024.

[16] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos,
S. Shakeri, E. Taropa, P. Bailey, Z. Chen et al., “Palm 2 technical report,”
arXiv preprint arXiv:2305.10403, 2023.

[17] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung, Q. V. Do, Y. Xu, and P. Fung, “A multitask, mul-
tilingual, multimodal evaluation of chatgpt on reasoning, hallucination,
and interactivity,” IJCNLP, 2023.

[18] T. B. Brown and et al., “Language models are few-shot learners,”
ArXiv, vol. abs/2005.14165, 2020. [Online]. Available: https://api.sema
nticscholar.org/CorpusID:218971783

[19] W. Chaozheng, Y. Yuanhang, G. Cuiyun, P. Yun, Z. Hongyu, and M. R.
Lyu, “Prompt tuning in code intelligence: An experimental evaluation,”
IEEE Transactions on Software Engineering, 2023.

[20] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[21] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
“Deep reinforcement learning from human preferences,” Advances in
neural information processing systems, vol. 30, 2017.

[22] C. Cummins, V. Seeker, D. Grubisic, M. Elhoushi, Y. Liang,
B. Roziere, J. Gehring, F. Gloeckle, K. Hazelwood, G. Synnaeve et al.,
“Large language models for compiler optimization,” arXiv preprint
arXiv:2309.07062, 2023.

[23] Y. Deng, W. Zhang, S. J. Pan, and L. Bing, “Multilingual jailbreak
challenges in large language models,” ICLR, 2023.

[24] N. Foroutan, M. Banaei, K. Aberer, and A. Bosselut, “Breaking the
language barrier: Improving cross-lingual reasoning with structured
self-attention,” in Conference on Empirical Methods in Natural
Language Processing, 2023. [Online]. Available: https://api.semanticsc
holar.org/CorpusID:264439333

[25] S. Gao, C. Gao, C. Wang, J. Sun, D. Lo, and Y. Yu, “Two sides
of the same coin: Exploiting the impact of identifiers in neural code
comprehension,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 2023, pp. 1933–1945.

[26] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming–the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

[27] J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson,
“Xtreme: A massively multilingual multi-task benchmark for evaluating
cross-lingual generalisation,” in International Conference on Machine
Learning. PMLR, 2020, pp. 4411–4421.

[28] H. Huang, T. Tang, D. Zhang, W. X. Zhao, T. Song, Y. Xia, and F. Wei,
“Not all languages are created equal in llms: Improving multilingual
capability by cross-lingual-thought prompting,” EMNLP, 2023.

[29] L. Ilya and H. Frank, “Decoupled weight decay regularization,” Inter-
national Conference on Learning Representations, ICLR, 2018.

[30] W. Jiao, W. Wang, J.-t. Huang, X. Wang, S. Shi, and Z. Tu, “Is
chatgpt a good translator? yes with gpt-4 as the engine,” arXiv preprint
arXiv:2301.08745, 2023.

[31] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611–626.

[32] V. D. Lai, N. T. Ngo, A. P. B. Veyseh, H. Man, F. Dernoncourt, T. Bui,
and T. H. Nguyen, “Chatgpt beyond english: Towards a comprehensive
evaluation of large language models in multilingual learning,” Findings
of EMNLP, 2023.

[33] R. Li, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone,
C. Akiki, L. Jia, J. Chim, Q. Liu et al., “Starcoder: may the source
be with you!” Transactions on Machine Learning Research, 2023.

[34] Z. Li, P. Ma, H. Wang, S. Wang, Q. Tang, S. Nie, and S. Wu, “Un-
leashing the power of compiler intermediate representation to enhance
neural program embeddings,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 2253–2265.

[35] Z. Li, C. Wang, Z. Liu, H. Wang, D. Chen, S. Wang, and C. Gao, “Cctest:
Testing and repairing code completion systems,” in Proceedings of the
45th International Conference on Software Engineering, ser. ICSE ’23,
2023, p. 1238–1250.

[36] Z. Li, C. Wang, P. Ma, C. Liu, S. Wang, D. Wu, and C. Gao, “On the
feasibility of specialized ability stealing for large language code models,”
2023.

[37] Z. Li, C. Wang, S. Wang, and G. Cuiyun, “Protecting intellectual
property of large language model-based code generation apis via
watermarks,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2023, Copenhagen,
Denmark, November 26-30, 2023. ACM, 2023.

[38] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” in International Conference on Learning Representa-
tions, 2016.

[39] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei et al., “Starcoder 2 and the stack
v2: The next generation,” arXiv preprint arXiv:2402.19173, 2024.

[40] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin,
and D. Jiang, “Wizardcoder: Empowering code large language models
with evol-instruct,” in The Twelfth International Conference on Learning
Representations, 2023.

[41] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[42] OpenAI, “Gpt-4 technical report,” 2023. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:257532815

[43] K. Peng, L. Ding, Q. Zhong, L. Shen, X. Liu, M. Zhang, Y. Ouyang, and
D. Tao, “Towards making the most of chatgpt for machine translation,”
in Conference on Empirical Methods in Natural Language Processing,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
257704711

[44] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and
C. Finn, “Direct preference optimization: Your language model is
secretly a reward model,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[45] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC20:

https://survey.stackoverflow.co/2023/#most-popular-technologies-language-other
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-other
https://chat.openai.com/
https://github.com/sahil280114/codealpaca
https://openai.com/blog/openai-codex/
https://github.com/features/copilot
https://deepmind.google/technologies/gemini/#introduction
https://translate.google.com/
https://mlm.lingyiwanwu.com/
https://www.tabnine.com/
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://www.forbesindia.com/article/explainers/most-spoken-languages-world/91687/1
https://www.forbesindia.com/article/explainers/most-spoken-languages-world/91687/1
https://medium.com/@akvelonsocialmedia/github-copilot-efficiency-explored-key-takeaways-from-akvelons-survey-1b46e2391f0e
https://medium.com/@akvelonsocialmedia/github-copilot-efficiency-explored-key-takeaways-from-akvelons-survey-1b46e2391f0e
https://medium.com/@akvelonsocialmedia/github-copilot-efficiency-explored-key-takeaways-from-akvelons-survey-1b46e2391f0e
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:264439333
https://api.semanticscholar.org/CorpusID:264439333
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257704711
https://api.semanticscholar.org/CorpusID:257704711


International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–16.

[46] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “{Zero-offload}: Democratizing {billion-scale} model
training,” in 2021 USENIX Annual Technical Conference (USENIX ATC
21), 2021, pp. 551–564.

[47] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[48] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[49] B. Shen, J. Zhang, T. Chen, D. Zan, B. Geng, A. Fu, M. Zeng, A. Yu,
J. Ji, J. Zhao et al., “Pangu-coder2: Boosting large language models for
code with ranking feedback,” arXiv preprint arXiv:2307.14936, 2023.

[50] F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W.
Chung, Y. Tay, S. Ruder, D. Zhou, D. Das, and J. Wei, “Language
models are multilingual chain-of-thought reasoners,” ICLR, 2022.

[51] H. Touvron and et al., “Llama 2: Open foundation and fine-tuned
chat models,” ArXiv, vol. abs/2307.09288, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259950998

[52] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[53] C. Wang, S. Gao, P. Wang, C. Gao, W. Pei, L. Pan, and Z. Xu,
“Label-aware distribution calibration for long-tailed classification,” IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[54] C. Wang, J. Hu, C. Gao, Y. Jin, T. Xie, H. Huang, Z. Lei, and Y. Deng,
“How practitioners expect code completion?” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1294–1306.

[55] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu, “No
more fine-tuning? an experimental evaluation of prompt tuning in code
intelligence,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 382–394.

[56] W. Wang, Z. Tu, C. Chen, Y. Yuan, J. tse Huang, W. Jiao, and M. R.
Lyu, “All languages matter: On the multilingual safety of large language
models,” ArXiv, 2023.

[57] Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang, “Magicoder: Source
code is all you need,” arXiv preprint arXiv:2312.02120, 2023.

[58] B. Wodecki, “Chatgpt passes 1 billion page views,” https://aibusiness.c
om/nlp/chatgpt-passes-1b-page-views, 2023, accessed: 2024-03-01.

[59] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and
D. Jiang, “Wizardlm: Empowering large language models to follow
complex instructions,” arXiv preprint arXiv:2304.12244, 2023.

[60] Z. Yang, Z. Zhao, C. Wang, J. Shi, D. Kim, D. Han, and D. Lo,
“Unveiling memorization in code models,” in 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2024, pp. 856–856.

[61] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu,
T. Zhang, F. Wu et al., “Instruction tuning for large language models:
A survey,” arXiv preprint arXiv:2308.10792, 2023.

[62] J. Zhao, Z. Zhang, Q. Zhang, T. Gui, and X. Huang, “Llama beyond
english: An empirical study on language capability transfer,” arXiv
preprint arXiv:2401.01055, 2024.

[63] Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, L. Shen,
Z. Wang, A. Wang, Y. Li et al., “Codegeex: A pre-trained model
for code generation with multilingual benchmarking on humaneval-x,”
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5673–5684.

[64] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and S. Günnemann,
“Language-agnostic representation learning of source code from struc-
ture and context,” in International Conference on Learning Representa-
tions, 2020.

https://api.semanticscholar.org/CorpusID:259950998
https://aibusiness.com/nlp/chatgpt-passes-1b-page-views
https://aibusiness.com/nlp/chatgpt-passes-1b-page-views

	Introduction
	Overview
	Research Questions
	Benchmark Construction
	Exploration on Mitigating Multi-Lingual Bias in Prompting
	Mitigating Multi-Lingual Bias in Instruction Tuning
	Instruction Tuning Dataset Construction
	Exploration on Mitigating Multi-NL Understanding Bias
	Exploration on Mitigating Multi-PL Generation Bias


	Experimental Setup
	Selected LCMs
	Evaluation Metrics
	Implementation Details

	Experiment Analysis
	RQ1: Existence of Multi-Lingual Bias in LCMs
	RQ2: Mitigating Multi-Lingual Bias in Prompting
	RQ3: Mitigating Multi-Lingual Bias in Instruction Tuning
	RQ3.1: Multi-NL Understanding Bias
	RQ3.2: Multi-PL Generation Bias


	Discussion
	Implication of Findings
	Prompting or Instruction Tuning
	Threats to Validity

	Related Work
	Large Code Models
	Multi-Lingual Inconsistency in Large Language Models

	Conclusion
	References

