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Abstract

Reward machines inform reinforcement learning agents
about the reward structure of the environment and often
drastically speed up the learning process. However,
reward machines only accept Boolean features such
as robot-reached-gold. Consequently, many
inherently numeric tasks cannot profit from the guidance
offered by reward machines. To address this gap, we
aim to extend reward machines with numeric features
such as distance-to-gold. For this, we present
two types of reward machines: numeric–Boolean
and numeric. In a numeric–Boolean reward machine,
distance-to-gold is emulated by two Boolean
features distance-to-gold-decreased and
robot-reached-gold. In a numeric reward machine,
distance-to-gold is used directly alongside the
Boolean feature robot-reached-gold. We compare our
new approaches to a baseline reward machine in the Craft
domain, where the numeric feature is the agent-to-target
distance. We use cross-product Q-learning, Q-learning with
counter-factual experiences, and the options framework
for learning. Our experimental results show that our new
approaches significantly outperform the baseline approach.
Extending reward machines with numeric features opens
up new possibilities of using reward machines in inherently
numeric tasks.

1 Introduction
Reinforcement learning (RL) is the process of learning an
optimal policy by interacting with an environment (Sutton
and Barto 2018). The agent receives rewards from the
environment based on its actions. The goal is to learn a
policy that maximises the expected accumulated reward over
time. The reward function is crucial for the agent to learn an
optimal policy. However, designing it is often challenging
and time-consuming.

Several methods have been developed to address
this challenge. For example, instead of defining a full
reward function, one can specify requirements for the
agent’s behaviour in logic formulas, called specifications
(Jothimurugan 2023; Krasowski et al. 2023). The literature
describes various specification languages and approaches
for compiling specifications to rewards. Jothimurugan
et al. (2021) designed a compositional learning approach,
called DIRL, for translating the supplied specifications

into an abstract graph on which high-level planning is
then performed for model-based RL. Furthermore, Illanes
et al. (2020) introduced high-level symbolic action models.
Then, they used automated planning for guiding hierarchical
RL (HRL) techniques. Another approach for encoding the
required RL agent behaviour is to use temporal logic, for
example, truncated linear temporal logic (Li, Vasile, and
Belta 2017) and signal temporal logic (STL) (Balakrishnan
and Deshmukh 2019).

In the aforementioned studies, the use of specifications for
guiding the RL agent has shown a remarkable performance
in comparison with entirely manual reward design. In
addition, techniques such as automatic reward shaping
(Ng, Harada, and Russell 1999) are used to reshape the
reward function such that an optimal policy is found faster.
However, these approaches cannot handle non-Markovian
rewards (Skalse and Abate 2023) that naturally arise in
sparse-reward or partially observable environments (Kazemi
et al. 2022).

To handle non-Markovian rewards, automaton-based
approaches have been developed for high-level guidance
of the RL agent. For example, Jothimurugan, Alur, and
Bastani (2019) designed a specification-to-reward compiler,
called SPECRL, with a task monitor, which is an automaton
that keeps track of completed tasks. Later, Icarte et al.
(2022) introduced reward machines (RMs) that are automata
representing the environment on a high level. RMs reflect
sub-goals that the agent is supposed to achieve on the way
to the main goal. RL algorithms with access to an RM
can simulate experiences at all RM states using only a
single interaction with the environment. This can drastically
speed up learning by making it more sample-efficient.
RMs not only handle non-Markovian tasks but are also
advantageous over plain reward functions and STL-specified
reward functions (Unniyankal et al. 2023).

However, RMs accept only Boolean features and thus
cannot be used in inherently numeric tasks. Our work
intends to address this gap by extending RMs with numeric
features. We build upon the work by Icarte et al. (2022)
and use their code for our experiments (Icarte 2021).
We introduce two types of RMs: numeric–Boolean and
numeric. To illustrate them with an example, consider
a numeric feature d that represents the distance to the
target. In a numeric–Boolean RM, d is emulated by two
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Boolean features ↓d and d=0. The former signals whether
d decreases, and the latter signals whether the RL agent
has reached the target. The agent receives a positive reward
when one of these features becomes true. In a numeric RM,
d is used directly together with the Boolean feature d=0, and
the agent is rewarded with−d after each action. We compare
our proposed RMs with the original Boolean RM developed
by Icarte et al. (2022).

In summary, our main contribution is the introduction
of numeric features into RMs. We show empirically
using the Craft domain (Andreas, Klein, and Levine
2017) that numeric–Boolean-RM and numeric-RM-based
methods outperform Boolean-RM-based methods in terms
of learning speed. RL agents can now leverage RMs in
inherently numeric tasks, such as energy optimisation (Gao
et al. 2022). This expansion of the RM applicability can
further promote research in RMs.

2 Background
We begin by providing background information on RL and
RMs. For more details on the topics, please refer to Sutton
and Barto (2018) and Icarte et al. (2022), respectively.

2.1 Reinforcement Learning
Single-agent RL tasks are generally formalised via Markov
decision processes (MDPs) (Sutton and Barto 2018). An
MDP is a tuple M = ⟨S, s0, A, p, r, γ⟩, where S is a finite
set of environment states, s0 ∈ S is an initial state, A is a
finite set of actions available to the agent, p : S × A → S
is a transition function, r : S × A × S → R is a reward
function, and γ ∈ (0, 1] is a discount factor. A policy
π(a|s) is a mapping from the state space S to the action
space A, that is, π : S → A. A trajectory τ is a sequence
of states, actions, and rewards ⟨s0, a0, r1, s1, a1, ..., rT , sT ⟩
that describes the agent’s interaction with the environment
up to a given time step T (Skalse and Abate 2023). The
trajectory return function is

g(τ) =

T−1∑
t=0

γtrt+1. (1)

At state st, the agent executes action at according to
the probability distribution π(at|st). The result of action at
is the transition to state st+1 according to the probability
distribution p(st+1|st, at). After transitioning to st+1, the
agent receives reward rt+1. The process repeats either
until episode termination or until reaching a terminal state.
The objective is to choose a trajectory τ such that the
trajectory return g(τ) is maximised. For this, the agent
needs to discover an optimal policy π∗ from interactions
with the environment. The optimal policy π∗(a|st = s)
for all s ∈ S corresponds to the maximum expected return
Eπ∗ [

∑T−1
k=0 γkrt+k+1|st = s].

The Q-function qπ(s, a) in RL quantifies the expected
return the agent can achieve by taking a specific action a in
a given state s and following a policy π thereafter. Formally,

qπ(s, a) = Eπ[

T−1∑
k=0

γkrt+k+1|st = s, at = a]. (2)

For an optimal policy π∗, q∗ = qπ
∗
. Every optimal policy

π∗ satisfies the Bellman optimality equation

q∗(s, a) =
∑
s′∈S

p(s′|s, a)(r(s, a, s′) + γmax
a′∈A

q∗(s′, a′))

(3)
for all a ∈ A and s ∈ S. The policy is optimal if the
agent selects an action a greedily with respect to q∗(s, a).
Therefore, the RL task could be solved via solving Eq. 3 if
we knew the transition probability p for every state of the
environment.

Tabular Q-learning is an algorithm that does not need
knowledge of the transition probability p for estimating
optimal q∗(s, a) for all a ∈ A and s ∈ S (Watkins
and Dayan 1992). The algorithm estimates Q-values from
interacting with the environment. The estimated values
Q(s, a) are guaranteed to converge to q∗(s, a) if the agent
visits all environment states s ∈ S infinitely often and takes
all possible actions from s infinitely many times.

First, a Q-table is initialised randomly for each s ∈ S and
a ∈ A. The Q(s, a) values are then updated at each iteration
i:

Qi+1(s, a)
α←− r(s, a, s′) + γmax

a′
Qi(s

′, a′), (4)

where α is a learning rate. The notation x
α←− y is expanded

as x α←− x+ α(y − x).
Tabular Q-learning is a classic RL algorithm known

for its simplicity and effectiveness in solving problems
with discrete state and action spaces with relatively low
dimensionality. This is also the case for the problem used in
this work (see Sect. 3). To handle more complex problems
with continuous or high-dimensional state spaces, deep-
learning-based variants have been developed (Sutton and
Barto 2018).

2.2 Reward Machines
An RM is a finite-state machine that encapsulates an abstract
description of the environment. An RM specifies the reward
the agent gets when it transitions between two abstract states
in the RM (possibly via a self-loop). Owing to their state-
based design, RMs allow to encode non-Markovian rewards.

Formally, an RM is a tuple RPSA = ⟨U, u0, F, δu, δr⟩
given a set of propositional symbols P , a set of environment
states S, and a set of actions A. In the tuple, U is a finite set
of states, u0 is an initial state, F is a finite set of terminal
states, δu is a state-transition function such that δu : U ×
2P → U ∪ F , and δr is a state-reward function such that
δr : U → [S ×A× S → R].

At each time step t, given an environment experience
⟨s, a, s′⟩, a labeling function L : S × A × S → 2P

assigns truth values to propositions. At each step, the set
of propositions that are true in the current environment
state is sent to the RM. The state-transition function then
decides which abstract successor state is reached. The
reward function to be used for the underlying MDP is chosen
by the state-reward function.

If it is sufficient to return a real-valued reward rather than
a reward function, the RM definition can be simplified. A
simple RM is a tuple RP = ⟨U, u0, F, δu, δr⟩ given a set



of propositional symbols P . In the tuple, U , u0, F , and δu
are defined similarly as in RPSA. However, the state-reward
function is now δr : U ×2P → R. In this work, we focus on
simple RMs.

Intuitively, an MDP with an RM (MDPRM) is an
MDP defined over the cross-product S × U . That is,
an MDPRM is a tuple MR = ⟨S̃, s̃0, Ã, p̃, r̃, γ̃⟩, where
S̃ is a set of states S × U , s̃0 ∈ S̃ is an initial
state, Ã = A is a set of actions available to the
agent, p̃(⟨s′, u′⟩|⟨s, u⟩, a) is a state-transition function that
now depends on both u and s, r̃(⟨s, u⟩, a, ⟨s′, u′⟩) =
δr(u, L(s, a, s

′)) is a state-reward function, and γ̃ = γ
is a discount factor. The task formulation with respect to
MDPRM is Markovian. Consequently, tabular Q-learning
(among other RL methods) can be used to solve it. Optimal-
solution guarantees of an RL algorithm for MDPRMs are
the same as for regular MDPs (Icarte et al. 2022).

In their work, Icarte et al. (2022) provided three
algorithms for Q-learning for an MDPRM. The first
algorithm is a baseline for solving MDPRM using tabular
Q-learning (QRM). It keeps track of the current RM state
u and learns Q-values Q(⟨s, u⟩, a) over the cross-product
of the environment and RM states. As this algorithm does
not use the reward structure encoded in an RM, Icarte et al.
also proposed Q-learning with counterfactual experiences
(CRM) and hierarchical RL for RMs (HRM).

In CRM, learning happens in the same way as in the
baseline algorithm, but counterfactual reasoning is used
to generate multiple experiences for a single environment
interaction. Specifically, the reward acquisition at any
abstract state u ∈ U for a fixed environment state s is
decoupled from the direct interactions with the environment.
Therefore, the agent with experience ⟨s, a, s′⟩ can simulate
synthetic experiences for each RM state without visiting
it. These synthetic experiences are called counterfactual
experiences. Their use in learning makes the algorithms
more sample-efficient.

In HRM, the problem is decomposed into sub-problems
called options, each representing transitions between RM
states. Each option Y (u, ut) corresponds to the transition
in the RM between states u and ut. The agent learns two
policies. A high-level policy learns to select among the
available options to collect the highest reward. It does so
by learning Q-values QH(s, u, ut) that select a state ut

to reach from a given state u. A low-level policy based
on Qu,ut

(s, a) learns to act within an option Y (u, ut).
Noteworthy, synthetic experiences are used for learning
Qu,ut

(s, a) for each option.

3 Numeric Reward Machines
In this section, we present three RMs that progress
from Boolean features to numeric features. The first RM,
Boolean, is the original RM that uses Boolean features. The
second RM, numeric–Boolean, emulates numeric features
using Boolean features. The third RM, numeric, uses
numeric features directly. Finally, we analyse and compare
the theoretical guarantees of Q-learning-based methods with
the three introduced RMs with regards to the path lengths

a

c

b

Figure 1: Example grid map inspired by the Craft domain
(Andreas, Klein, and Levine 2017). It contains objects a, b,
and c.

ua ub uc u
⟨a; 0⟩

⟨¬ a; 0⟩

⟨b; 0⟩

⟨¬ b; 0⟩

⟨c; 1⟩

⟨¬ c; 0⟩

Figure 2: Boolean reward machine with Boolean features a,
b, and c for a sequential task a-b-c.

they find in the Craft domain. We begin by describing the
Craft domain (Andreas, Klein, and Levine 2017), which
serves as a running example and is the basis for our
experimental comparisons.

3.1 Environment
We use environments inspired by the Craft domain
(Andreas, Klein, and Levine 2017). It is a finite-grid world
with objects of different types. The RL agent is instructed to
visit some objects. The world contains no obstacles besides
the surrounding walls, and its dimensions are fixed. We show
an example environment with three objects in Fig. 1.

3.2 Boolean Reward Machines
The concept of Boolean RMs was introduced by Icarte
et al. (2022). In Boolean RMs, the features are propositions
p ∈ P that can become true in the environment given
experience ⟨s, a, s′⟩. Figure 2 shows an example of such a
Boolean RM for a sequential task a-b-c, where the agent
has to visit three objects of types a, b, and c, in order. The
agent receives reward r after taking a transition labeled with
⟨{P}; r⟩ in the depicted RM, where a set of propositions
P ⊆ P is currently true in the environment.

To address the common problem of reward sparsity,
one typically uses potential-based reward shaping. Ng,
Harada, and Russell (1999) proved that, for any given MDP
⟨S, s0, A, r, p, γ⟩ and a potential function Φ : S → R,
the reward function r can be changed to r′(s, a, s′) =
r(s, a, s′) + γΦ(s′) − Φ(s) without changing the set of
optimal policies. Like Icarte et al. (2022), we compute the
potential function Φ using value iteration over RM states,
treating the RM as an MDP.

The idea of automatic reward shaping is to change the
reward function such that the policy is easier to learn.
To this end, intermediate rewards are given to the agent
as it approaches the target. However, these intermediate
rewards do not carry any interpretable meaning. They are



u0 u1

u2u3

⟨da=0; r⟩

⟨↓da, da ̸=0; r⟩

⟨db=0; r⟩

⟨↓db, db ̸=0; r⟩

⟨dc=0; R⟩
⟨↓dc, dc ̸=0; r⟩

Figure 3: Numeric–Boolean reward machine with Boolean
features ↓da, ↓db, ↓dc, da=0, db=0, and dc=0 for a sequential
task a-b-c.

only tweaked for finding the optimal policy fast. To obtain a
method that preserves the meaning of rewards, we propose
to use numeric features to shape the reward function.

3.3 Numeric–Boolean Reward Machines
The first type of RM that we introduce in this paper is
a numeric–Boolean RM. This concept builds directly on
Boolean RMs. Instead of automatic reward shaping, we
introduce a numeric feature da—distance between agent A
and target a. We translate da to two Boolean features ↓da
and da=0. Feature ↓da becomes true if the distance between
the agent and object a decreases. Feature da=0 becomes
true when the agent reaches object a. The agent is rewarded
with a fixed reward r > 0 when ↓da becomes true. When
da=0 becomes true, the agent is rewarded with R > 0. An
example RM is shown in Fig. 3.

In a Boolean RM with automatic reward shaping, the
agent is rewarded for each experience ⟨s, a, s′⟩ by an
automatically generated positive reward (Icarte et al. 2022).
In contrast, in a numeric–Boolean RM, the agent is rewarded
by a constant reward r or R for a part of experiences
⟨s, a, s′⟩ when ↓da or da=0 becomes true, respectively. In
all other cases, the agent receives a reward of 0. In this
way, the agent is positively reinforced to approach the target.
Exposing the numeric–Boolean-RM structure to the agent in
CRM and HRM has the potential to boost learning similar to
the original approach.

Ideally, the agent should receive a reward that depends
on da. In this way, the agent will be meaningfully guided
by each experience ⟨s, a, s′⟩. To realise this, we introduce
numeric RMs.

3.4 Numeric Reward Machines
The second new type of RM is a numeric RM. Here, we
use the numeric feature da along with the Boolean feature
da=0 directly in the RM. In this RM, the Boolean feature
da=0 governs the transition between the RM states, and the
numeric feature da is used for rewarding the agent with−da.
In this way, the agent is rewarded for each experience by
the negative distance to the target. The reward becomes 0
upon arrival at the target. Rewarding the agent is therefore

u0 u1

u2u3

⟨da=0; 0⟩

⟨da, da ̸=0; −da⟩

⟨db=0; 0⟩

⟨db, db ̸=0; −db⟩

⟨dc=0; 0⟩
⟨dc, dc ̸=0; −dc⟩

Figure 4: Numeric reward machine with numeric features
da, db, and dc and Boolean features da=0, db=0, and dc=0
for a sequential task a-b-c.

A

a1

a2

Figure 5: Agent A can choose to approach either a1 or a2.

controlled by the real conditions in the environment. An
example numeric RM is shown in Fig. 4.

Noteworthy, as the RM structure is still exposed to the
agent via the Boolean feature da=0, learning can be boosted
by CRM or HRM.

3.5 Shortest-Path Guarantees
Next, we investigate whether the discovered policies by a
Q-learning-based method correspond to the shortest paths
between the agent and the targets for the proposed RMs.
Ideally, we would like our RMs to have this property to
avoid tweaking the reward values in the RM for each new
task. For this analysis, we use an example map, shown in
Fig. 5, with two targets a1 and a2, both of type a. The agent
is instructed to visit one of the targets and can freely choose
whether to approach a1 or a2. We choose this example as
an extreme case, where the agent approaches exactly one of
the targets with every move. This can “confuse” the agent,
as it receives a positive reward for any move, and thus might
lead to finding sub-optimal paths. In addition, we consider
a simplified scenario with only one target a on the map (at
any location).

Since the agent performs one move action at each time
step, the path that it takes to either target is optimal if the
number of episode steps T is minimum. To check whether
this is the case, we dissect the trajectory return functions
(Eq. 1) with respect to T for the introduced RMs. In all our
calculations, we assume γ < 1.

Boolean Reward Machines The agent receives reward R
when it arrives at a terminal state and zero otherwise, i.e.,

rt =

{
R, t = T

0, t ̸= T.
(5)



Therefore, the return for any trajectory is

g(T ) = γT−1R. (6)
As the agent seeks to maximise the accumulated reward, the
lower the episode length T , the higher the return g(T ). Thus,
Boolean RMs guarantee to find shortest paths. This holds for
both the example map with two targets and the simplified
scenario with one target.

Numeric–Boolean Reward Machines A reward r > 0
is given for decreasing the distance towards any target.
Consequently, for the example map in Fig. 5, where the
targets are in the corners of the map, the agent receives a
positive reward for any move, i.e.,

rt =

{
R, t = T

r, t ̸= T.
(7)

The return for any trajectory is g(T ) = γT−1R +

r
∑T−2

t=0 γt. The geometric-series solution (Zorich and
Paniagua 2016) yields

g(T ) = γT−1R+ r
1− γT−1

1− γ
. (8)

The second term in this equation increases with the number
of steps T . Therefore, the resulting path length might not be
minimum.

Assume that a shortest path uses T ∗ steps, resulting in the
trajectory return

g(T ∗) = γT∗−1R+ r
1− γT∗−1

1− γ
. (9)

If the agent takes two additional back-and-forth steps n
times, the corresponding return is

g(T ∗ + 2n) = γT∗−1+2nR+ r
1− γT∗−1+2n

1− γ
. (10)

If g(T ∗) is larger than g(T ∗ + 2n), the resulting path is
guaranteed to have the shortest length. The comparison
yields

γT∗−1R+ r
1− γT∗−1

1− γ
> γT∗−1+2nR+ r

1− γT∗−1+2n

1− γ
;

γT∗−1R(1− γ2n) >
rγT∗−1

1− γ
(1− γ2n);

r < R(1− γ).
(11)

Therefore, we find a shortest path if r is lower than R(1−
γ). For example, if R = 1 and γ = 0.9, then r needs to be
lower than 0.1.

Next, we consider the simplified scenario with one target
a. The agent gets a positive reward r if the distance to a
decreases. The distance from the agent to the target at step
t is written as dt, and the change in distance from step t to
t + 1 is captured by ∆d = dt+1 − dt. If ∆d < 0, then the
agent approaches the target and receives reward r, i.e.,

rt =


R, ∆d = 0,

r, ∆d < 0,

0, ∆d > 0.

(12)

Now, if the agent takes 2n additional back-and-forth steps,
the trajectory return is

go(T
∗ + 2n) = γT∗−1+2nR+ r

1− γT∗−1

1− γ
+

+rγT∗−1(γ + γ3 + ...+ γ2n−1),

(13)

where the subscript o denotes that only one a is on the
map. The final trajectory return is then rewritten using the
geometric-series solution as follows:

go(T
∗ + 2n) = γT∗−1+2nR+ r

1− γT∗−1

1− γ
+

+rγT∗−1 γ − γ2n+1

1− γ2
.

(14)

The comparison between go(T
∗) and go(T

∗ + 2n) yields

γT∗−1R > γT∗−1+2nR+ rγT∗−1 γ − γ2n+1

1− γ2
;

r < R
1− γ2

γ
.

(15)

Here, r needs to be smaller than R 1−γ2

γ to guarantee that
we find a shortest path. For example, if R = 1 and γ = 0.9,
then r needs to be smaller than 0.21.

We showed that rewards in numeric–Boolean RMs should
be selected carefully. This solution dependence on the
reward values is problematic and could be addressed in
future work.

Numeric Reward Machines For several targets on the
map, the reward scheme of numeric RMs can be as follows:
The agent is rewarded with −d, where d is the lowest
distance to any target of the same type. We hypothesise that
this modification preserves the guarantee to find shortest
paths. However, we leave the proof of this conjecture for
future work.

For the case with a single target a, numeric RMs reward
the agent with

rt = −d, (16)
where d is the number of steps to the closest target. The
shortest-trajectory return is then

go(T
∗) =

T∗−1∑
t=0

γt(t− T ∗). (17)

If the agent takes 2n additional back-and-forth steps just
before reaching the target, the trajectory return is

go(T
∗ + 2n) =

T∗−1∑
t=0

γt(t− T ∗)−

−2γT∗−1
n∑

k=0

γ2k−2 − 1γT∗−1
n−1∑
k=0

γ2k+1,

(18)

where the last two series correspond to the rewards received
at step “back” and “forth”, respectively. The difference
between go(T

∗) and go(T
∗ + 2n) will always be positive



because the last two terms in go(T
∗ + 2n) will always be

negative. Therefore, numeric RMs guarantee shortest-path
solutions regardless of the selected parameters for a map
with one target. In future work, we plan to extend these
proofs to sequential tasks, where the agent needs to visit
multiple targets.

4 Experimental Evaluation
For our experimental evaluation, we choose a 41 × 41
grid, matching the grid size in the Craft domain tested by
Icarte et al. (2022). We use two different object setups: (1)
1a1b1c and (2) 2a2b2c. Letters (a, b, and c) encode the
object type, and the numeral in front of each letter (1 and 2)
encodes how often the object type appears on the map. That
is, in setup 1a1b1c, three objects, a, b, and c, are randomly
placed on the grid. Likewise, in setup 2a2b2c, two pairs
of objects a, b, and c are randomly placed on the grid.
In the latter setup, the agent is expected to discover which
objects of the same type are closest to its initial location.
We use Manhattan distance as the distance metric in this
work, i.e., the grid cells are four-connected. The initial agent
position is fixed throughout the experiments. For each setup,
we generate 10 random maps to check the variability of the
results.

For a given map, the agent is instructed to visit objects
sequentially in three different tasks: a, a-b, and a-b-c.
In task a, the agent needs to visit only an object of type
a. In task a-b, the agent needs to visit object types a and
then b. Finally, in task a-b-c, the agent needs to visit
object types a, b, and c, in order. We show results only for
two maps (stemming from setups 1a1b1c and 2a2b2c)
because the relative algorithm performance is similar on
all generated maps of one setup. One of these maps, with
setup 2a2b2c, is provided in the appendix in Fig. A.1 for
discussion purposes. The median results for all 10 maps are
shown in the appendix in Fig. A.2.

For each map, we run each algorithm six times and
measure the average reward per step. All rewards are
normalised to be between 0 and 1. A reward of 1 corresponds
to the optimal policy found via value iteration (Icarte et al.
2022). We report the median performance over the six runs
and the 25th and 75th percentiles in Fig. 6 (barely visible for
most algorithms).

We compare the following combinations of methods.
First, the best-performing methods for Boolean features and
tabular domains are CRM with reward shaping (crm-rs-
bool) and HRM (hrm-bool) according to Icarte et al. (2022).
Despite being faster than crm-rs-bool, hrm-bool tends to
converge to sub-optimal policies. We use both methods
as baselines in our experiments. For numeric–Boolean
and numeric RMs, we use CRM, HRM, and Q-learning,
abbreviated as crm-num-bool, hrm-num-bool, qrm-num-
bool, crm-num, hrm-num, and qrm-num. The reason for
including Q-learning together with numeric–Boolean and
numeric RMs is to explore whether the knowledge of the
RM structure boosts the agent’s learning in CRM and HRM.
The parameters in the Q-learning, CRM, and HRM methods
are taken from Icarte et al. (2022).

Figure 6: Median performance for map 1a1b1c (left
column) and map 2a2b2c (right column). The 25th and
75th percentiles are shown in the shadowed regions. ARpS
stands for average reward per step.



5 Results and Discussion
Using Boolean RMs, the agent receives a reward of 1 after
transitioning to the terminal state and a reward of 0 for all
other RM transitions. Regardless of the number of targets,
the agent solves all evaluated tasks with the shortest path.

In numeric–Boolean RMs, we choose r = 0.1 and R =
1000 to guarantee that the agent finds shortest paths (see
Sect. 3.5). Indeed, the agent finds shortest paths in all tasks.

With numeric RMs, the agent finds a shortest path
only for task a, for which we proved that the optimal
policy corresponds to the shortest-path solution in Sect. 3.5.
However, for tasks a-b and a-b-c, the agent converges
to non-optimal solutions. It is only able to find a shortest
path once we change the terminal rewards from 0 to values
of 10 000 and 100 000, respectively. We will investigate this
outcome in future work.

We visualise the results in Fig. 6. The shadowed regions
depicting the 25th and 75th percentiles are narrow. This is
because randomisation in our experiments comes only from
tie-breaking in the case of equal Q-values and from using
ϵ-greedy for exploration. The methods using Boolean RMs
converge slower than other methods.

In tasks a-b and a-b-c, all HRM-based methods
converge to sub-optimal policies on map 2a2b2c. This
can be explained as follows. As shown in Fig. A.1, the
Manhattan distances to the top-positioned a and bottom-
positioned a from the initial position of agent A are 20
and 21, respectively. The HRM-based agent chooses the
top-positioned a because it is always greedy towards the
current transition in the RM. The total distances to the top-
positioned a-b and bottom-positioned a-b are 27 and 26,
respectively. Consequently, after choosing the top route, the
HRM-based algorithms converge to a sub-optimal policy. In
task a-b-c, the performance of the HRM-based algorithms
deteriorates further. This is explained by the total distances
to the top-positioned a-b-c and bottom-positioned a-b-c
being 40 and 32, respectively.

Furthermore, the results show that the CRM-based
methods always converge at least as fast as pure-Q-learning-
based methods. Indeed, the knowledge of the RM structure
speeds up learning.

Another observation is that all CRM- and pure-Q-
learning-based methods converge faster on map type
2a2b2c than on map type 1a1b1c. This is because placing
more objects of the same kind on the map makes it more
likely that the total distance to the final object is shorter from
the initial position of the agent.

On map type 1a1b1c, the numeric–Boolean-RM-
based methods outperform the corresponding numeric-RM-
based methods. In contrast, on map type 2a2b2c, the
numeric-RM-based methods perform at least as well as
the corresponding numeric–Boolean-RM-based methods.
We believe that this result is related to the numeric
reward scheme. Furthermore, the numeric–Boolean-RM-
based methods converge to a value slightly below 1.0 in task
a on map type 2a2b2c. We will investigate both of these
phenomena in the future.

The performance difference between the methods
increases with difficulty from task a to task a-b-c. In

task a, all methods from the same feature category perform
similarly. That is, crm-rs-bool and hrm-bool perform
similar; qrm-num-bool, crm-num-bool and hrm-num-bool
perform similar; and finally, qrm-num, qrm-num-bool, and
hrm-num perform similar. The explanation is the task
simplicity. Only once the task becomes challenging enough,
performance differences start to appear.

Overall, the results show that numeric–Boolean and
numeric RMs speed up learning in comparison with Boolean
RMs with automatic reward shaping.

6 Conclusions
In this study, we extend RMs with numeric features
by introducing numeric–Boolean and numeric RMs. We
compare them with the original Boolean RMs introduced by
Icarte et al. (2022).

For our experimental evaluation, we use the Craft domain.
This is a simple grid world without obstacles, allowing
the use of tabular RL methods. We test the developed
methods in two directions. First, the results confirm that the
developed reward acquisition schemes in numeric–Boolean
and numeric RMs outperform automatic reward shaping
used in Boolean RMs. Second, the results confirm that
the exposure of the numeric–Boolean- and numeric-RM
structures to the agent speeds up learning in CRM and HRM.
The advantage of numeric RMs over numeric–Boolean
RMs is not yet clear. Additional experiments with more
complicated tasks should be performed to make meaningful
conclusions.

Furthermore, we prove the shortest-path guarantees for
the task with one target type. We show that Boolean RMs
guarantee finding shortest paths regardless of the reward
values in the RM. In contrast, in numeric–Boolean RMs, the
terminal reward R should be higher than the intermediate
reward r, and the difference between R and r will depend
on the task. For numeric RMs, we prove that shortest paths
are guaranteed for tasks with one target type. However, for
sequential tasks with several targets, the experimental results
show that this is not the case.

In future work, it will be interesting to test the
numeric–Boolean and numeric RMs in tabular domains
with obstacles, continuous-space domains, and continuous-
control tasks. In addition, we will perform experiments for
unordered tasks, where the agent can visit the assigned
targets in any order. Furthermore, we will extend the
proofs of the shortest-path guarantees for sequential tasks
with several targets. Ideally, the problem of the solution
dependence on the reward values in the RM should be
resolved.
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Appendix

Figure A.1: Analysed map with setup 2a2b2c, agent A, and
walls X.



Figure A.2: Median performance for all 10 1a1b1c and
2a2b2c maps (left and right columns, respectively). The
25th and 75th percentiles are shown in the shadowed
regions. ARpS stands for average reward per step.


