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SemanticFormer: Holistic and Semantic Traffic Scene Representation for
Trajectory Prediction using Knowledge Graphs

Zhigang Sun', Zixu Wang?3, Lavdim Halilaj?, Juergen Luettin’

Abstract— Trajectory prediction in autonomous driving relies
on accurate representation of all relevant contexts of the driving
scene including traffic participants, road topology, traffic signs as
well as their semantic relations to each other. Despite increased
attention to this issue, most approaches in trajectory prediction
do not consider all of these factors sufficiently. This paper
describes a method SemanticFormer to predict multimodal tra-
jectories by reasoning over a semantic traffic scene graph using a
hybrid approach. We extract high-level information in the form
of semantic meta-paths from a knowledge graph which is then
processed by a novel pipeline based on multiple attention mecha-
nisms to predict accurate trajectories. The proposed architecture
comprises a hierarchical heterogeneous graph encoder, which
can capture spatio-temporal and relational information across
agents and between agents and road elements, and a predictor
that fuses the different encodings and decodes trajectories with
probabilities. Finally, a refinement module evaluates permitted
meta-paths of trajectories and speed profiles to obtain final
predicted trajectories. Evaluation of the nuScenes benchmark
demonstrates improved performance compared to the state-of-
the-art methods.

I. INTRODUCTION

Autonomous vehicles are recognized as a promising solu-
tion to address critical challenges such as road safety, traffic
congestion, and energy optimization. A crucial task towards
the realization of autonomous driving vision is motion predic-
tion. It involves determining a set of spatial coordinates that
represent the predicted movement of a given agent within a
future time window. However, motion prediction is a challeng-
ing task due to various contextual factors such as the difficulty
of intentions prediction, the complex interactions of traffic
participants, the intricate road topology, comprising lanes, lane
dividers, and pedestrian crossings, as well as adherence to
traffic regulations. Therefore, state-of-the-art approaches try to
use various representations for the traffic scene such as raster-
based [1], [2], or graph-based [3], [4] to capture and utilize
contextual information sufficiently.

Recent work applies a knowledge graph to represent the
heterogeneous context in traffic scenes [5]. So far, this repre-
sentation has not been used for trajectory prediction. Because
knowledge graphs can represent different entities and their
relations as shown in Figure [I] which is important in driving
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Fig. 1: Schematic illustration of the traffic scene. The in-
put information of SemanticFormer includes meta-paths, map
topology, agent-agent, and agent-map. These graphs are in the
form of a heterogeneous graph enriched with semantic relation

types.

scene processing, We propose a novel hybrid approach that
can represent heterogeneous information of static and dynamic
elements of a traffic scene together with their semantic rela-
tionships. In addition, the proposed architecture comprises an
attention mechanism for leveraging the semantic relationships
and dependencies between traffic agents and road elements for
accurate multimodal trajectory prediction. Our main contri-
butions are:

« We propose a symbolic approach that can represent het-
erogeneous information of static and dynamic elements
of a traffic scene with their semantic relationships.

« We propose a hybrid architecture with attention mecha-
nisms that is able to model the semantic relationships and
dependencies between traffic agents and road elements for
accurate multi-modal trajectory prediction.

o We evaluate our method on the nuScenes dataset[6] and
perform extensive ablation studies on different hetero-
geneous graph operators and point out their limitations
when applied to complex knowledge graphs.

II. RELATED WORK

Raster-based representation. Approaches using raster-
based representation of the map and agents are some of the first
neural-network based methods for trajectory prediction. They
encode the whole traffic scene into birds-eye-view images with
a number of channels. The channels are used to represent the
various kinds of road structures and agents in a scene [1], [2],
[7]. On top of the raster-representations, convolutional neural
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Fig. 2: Overview of our approach: Data Representation models the static map information and dynamic agents interaction by a
holistic knowledge graph. Scene Graph Encoder extracts meta-paths and generates holistic latent representation for agents and
lanes. Probability Predictor fuses the encodings and outputs trajectory candidates. Prediction Refinement uses anchor paths
and speed profiles to evaluate trajectories and generates final predictions

networks (CNN) are usually applied to learn a representation
of the map and agents. Drawback of these models is that
they do not have access to high-level information and need
to learn from raw pixels. An alternative approach aims to esti-
mate probability distribution heatmaps representing locations
where agents could be at a fixed time horizon [8], [9], [10].
Meanwhile, raster-based approaches are further extended to
generate multiple possible trajectories while also estimating
their probabilities[1], [2], [8].

Graph-based representation. The next generation of tra-
jectory prediction techniques represent scenes as vectors,
polylines and graphs [4], [11], [12], [13], [14], [15], [16].
State-of-the-art approaches in this category leverage graphs
as a means of data representation, operating thus in a higher
level of abstraction. By eliminating the need for networks to
learn from low-level pixels, these methods are anticipated to
exhibit greater resilience in handling variances.

Methods like VectorNet [4] encode both map features and
agent trajectories as polylines and then merge them with a
global interaction graph. TNT [17] extends VectorNet and
combines it with multiple target reference trajectory proposals
sampled from the lanes to diversify the prediction points.
A limitation of these approaches is that they usually only
consider homogeneous graphs with one entity type and one
relation type. Additional information like pedestrian crossings
is often included with a flag.

Heterogeneous Graph representation. Methods for het-
erogeneous graphs, i.e. graphs with different entity types such
as vehicles, bicycles or pedestrians and relation types such as
agent-to-lane or agent-to-agent, are recently proposed in [18],
[19], [20], [21]. On the other hand [15], [22] use high-level
representations, where single nodes represent whole entities,
like vehicles or lanes. For such high-level representations,
heterogeneous graphs are employed to capture different types
of nodes and edges that arise. Our approach extends these

heterogeneous graph-based representation methods by using
formal ontologies to represent the rich semantics of the do-
main. These enable the establishment of expressive knowledge
graphs which can comprise prior knowledge, and contextual
information from diverse sources such as weather, traffic, etc.

Attention mechanisms [23] are widely used to learn to
which data to pay attention to in the trajectory prediction task.
This mechanism is used in raster-based approaches [24], [25],
[26], [27], [28], in vector- or graph-based approaches [29],
[30], [31], [32], [33], [34] and in map-free approaches [35].
A hierarchical vector transformer based approach is presented
in [36] that consists of a local context feature encoding
followed by global message passing among agent-centric local
regions.

Goal- or intention conditioned systems sample goal
candidates and predict trajectories conditioned on them [37],
[38], [34], [17], [39]. Authors in [40] use grid based policy
learning via maximum entropy inverse reinforcement learning
to condition trajectory forecasts.

Anchor trajectories. Approaches that leverage a fixed set
of anchors corresponding to permitted and possible trajectories
are presented in [41], [2]. [13] presents a method to learn latent
representations of anchor trajectories. Our approach takes up
the idea of anchor trajectories and develops them further into
meta paths as described below.

Interaction Modelling. A number of trajectory prediction
approaches that consider the interaction between the agents
are presented in [34], [42]. We model these interaction more
explicitly by defining specific relationships, e.g. if the vehicle
might intersect or drive on the same lane, and attributes like
the distance between two vehicles along the lane.

IIT. METHODOLOGY

We represent the map and agent information with a knowl-
edge graph. This enables us to explicitly model the various
map elements like lanes, lane dividers, etc, and their semantic



hasNextScene

inNextScene
Animal

hasFirstScene-
hasLastScene
hasScene:

hasEgoVehicle hasPreviousScene|
[

switchViaDoubleDashe...

hasLaneSiippy, .
hasNextlanesnippet hasLeftLaneDivider

switchVia =

Hf/ subClassOf

arpa-
isConnectorOnRoadSe...
Roads-
cgment SubClassOf-

switchViaDouble Solid...

‘switchViaRoadDivider

switchViaSingleSolidY...

hasPosition

cene ip:
as Sequience @
hasRigh subClassOf
haslLeftLane
SswitchViasingleZigzag...
AN subClassOfy ang
switchViaSingle SolidW... \

isSceneParticipantOr @ SubClassOf-

» Barrier

14
Bicycle

SubClassor subClassof CEETD
SubClassOf
Car
subClassOf
CarparkArea
Staticobject
subClassO o
subClassO subClassOf —
subCiassOr
subClassOr :
et EgoVehicle
subClassor
SuDClassO Seomstry
Human
Intersection
Pushable- Lane
Pullable
SUBCIassOT pClass(subClassOfsubClassOf LaneDivider

LaneSnippet
Motorcycle
MovableObject

Fig. 3: Illustration of traffic scene ontologies[5]: Agent Ontology defines agent attributes like category, speed, position, and
trajectory, and relationships to map like distance to lane, and path distance. Map Ontology defines map elements like lane
snippet, lane slice, traffic light, etc., and relations within map elements like left/right lane, switch via double dashed line.

relations. It also allows for the modeling of diverse traffic agent
types like cars, bicycles, etc., and their relations in driving
situations such as whether two agents might interact, drive
behind one another, or next to each other.

In the following, we describe a comprehensive architecture
depicted in Figure [2] which uses a knowledge graph for
predicting multimodal trajectories. The architecture begins by
taking the scene graph g; as input and outputs multimodal
trajectories for the target agent. Finally, the refinement module
filters the predicted trajectories considering anchor paths and
speed profiles to avoid failure cases. Each module of the
architecture is explained in detail below.

A. Ontology and Heterogeneous Scene Graph

We utilize ontologies to explicitly represent the abundance
of information from traffic scenes[5]. Thus, based on the
domain knowledge we model relationships between entities
considered important for the task of trajectory prediction.
Figure [3] illustrates the developed ontologies, encompassing
various entity and relation types. The entity types are cat-
egorized into two groups: the first one, contains static map
entities like lane types, boundaries, center lines and stop areas;
whereas the second group contains dynamic agent entities
like agent types, states, and bounding boxes. As for relation
types, they fall into three groups: 1) between agents, which
construct the semantic model through associations such as
lateral, longitudinal, and intersecting, shown in figure fb] akin
to the concepts presented in [22]; 2) between map elements,
establishing lane connectivity and relationships between lanes
and road infrastructure elements like stop areas, traffic lights,
pedestrian crossings; and 3) relations between map elements
and agents, utilizing probability projection to map agents onto
road infrastructure.

Based on the designed ontology, we represent the scene by
a directed heterogeneous scene graph G = (V,E, t,¢). This
scene graph has nodes v € V, with node types 7(v), and edges
(u,v) € E, with edge types ¢(u,v). The edges are directed
since they are based on properties of the knowledge graph.

B. Problem Formulation for Trajectory Prediction

We assume that the perception part can provide detailed
information about agent positions, and past motion as well
as the HD map, we build the scene graph described in the
previous section. Then, a sample of the dataset can be formed
as (g;,yi) where g; is a sample scene graph with trajectory
information, local map, and target identifier and y; is the
ground truth future trajectory of the target. Both agent past
trajectories and map information are represented hierarchi-
cally,. And g; € G covers the information within a given
time horizon {—#;+1,---,0,1,---,t7}. We use Pi—t,,+1:0 =
{spi_ 120Dy e ,spf)} to represent the participant node.
Each scene participant node sp! is represented as spi =
[dt’ o d,’ e,ai] , where d,’?s and dt’ . stands for previous and current
time stamps scene participant locations, and @' represent other
attributes related to current scene participant like velocity,
acceleration, heading change rate and object type. For map
information, we use S}y = {s},s5,...,s) } to represent a lane
snippet, where each s!, represents a lane slice and N represents
the length of the given lane snippet. Each lane slice vector
S = |dy, s>y, o a1,y | adds d}, .. to indicate the predecessor
of the start point. To build the connection between lane
snippets, we use C"I:N = {c"l,cgw..,c}'\,} representing a lane
connector, where each ¢, encodes an ordered pose inside the
lane connector and N represents the length of lane connector.

Coordinates in the knowledge graph are initially in a global
coordinate system. These are transformed separately into local,
scene graph-specific coordinates, with the origin at the location
of the target agent and the positive y-axis pointing along the
facing direction of the target.

C. Semantic Scene Graph Hierarchical Modelling

1) Meta-Path Generation: We extract meta-paths that de-
scribe permitted and possible driving directions to navigate the
target participant. Different meta-paths that model permitted
lane changes and turns can be divided into three groups,
which are the lane-changing, the entering lane connector,



(a) Meta-path Generation (b) Agent-Agent Interaction

Fig. 4: (a) Illustration of the meta-path generation. (b) Illustra-
tion of the participant interaction graph: Characterized by edge
types: Longitudinal(green), Intersecting(gray), Lateral(red),
and Pedestrian(yellow).

and the leaving lane connector situations. Figure {a) gives a
qualitative analysis of generated meta-paths. Specifically, we
illustrate sample meta-paths below, such as lane changing [T}
leaving connector 2] and entering connector cases [3} where ®
represents the meta-path.

(I)O —-P isOn S switchViaX S switchViaX S (1)
q)l P isOn C CconnectS S switchViaX S (2)
o, =P isOn S switchViaX S SconnectC C (3)

2) Agent Motion and Lane Encoder: This section intro-
duces a spatio-temporal encoder. We process participants P,
lane snippets S;.,, and lane connectors Ci., in a sequential
manner using both a Graph Neural Network (GNN) and a
Gated Recurrent Unit (GRU) layer. p;, s; and c; are used
to represent the encodings respectively. Further, inspired by
LaneGCN[11], we merge the outcomes as shown in Figure @
Equation ] introduces lane information to the related agents
while equation [5] and equation [6] add participant information
to the related lanes and lane connectors.

pi = pi+CrossAtt{ p;, [s;,c] } 4)
s; =5+ CrossAtt{s;,p;} )
¢, = ¢, + CrossAtt{c,, p;} (6)

where i € {1,....Np},j € {1,....Nis},z € {1,...,N.c }.
These encodings are assigned to node attributes in g;.

3) Semantic Scene Graph Encoder: A heterogeneous graph
operator is used to reason over the given scene graph g;. To
better incorporate the generated meta-paths, we follow the
principle from HAN [43] which has a hierarchical attention
structure from node-level attention to semantic-level attention.
Applying HAN to learn relational information is shown in
Algorithm [T} Three distinct node types are used for the
probability predictor to encode participants, lane snippets, and
lane connectors. We use p;, s;, ¢; to represent these three types
respectively, where p; € Z, s; € Z, ¢c; € Z.
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Algorithm 1: Semantic Graph Learning via HAN

input : Heterogeneous scene graph G = (V,E,7,9)
Node feature {h;,Vi e V,h € {p,s,c}}
Meta-path set {®Pgy,Py,...,DPp}
Number of attention head K

output: Heterogeneous graph node embedding Z

1 for @; € {P(,Dy,...,Dp} do

2 for k=1...K do
3 Type-specific transformation h} < MLP{h;}
4 for icV do
5 Find the meta-path based neighbors Ni‘b
6 for j € N? do
7 ‘ Calculate the weight coefficient (xg?
8 end
9 Calculate the semantic-specific node embedding
o (ZjGN’_@ ocg’ h;)
10 end
11 Concatenate the learned embeddings from all
attention head z? « ||X_ o <ZjeNf" ai‘}’ h’]>
12 end
13 Calculate the weight of meta-path B, Fuse the
semantic-specific embedding Z + Zf: 1 Ba, - Za,

14 end
15 return Z

4) Probability Predictor: As a result of the scene graph
encoder, nodes of lane snippets s; and lane connectors c¢; are
projected to the same dimension Z. We treat these two types of
nodes as the same type and use /; to represent them. Inspired
by LAformer [16], we align the target agent motion and lane
information at each future time step # € {1,...,#;}. To achieve
this, we use a lane score head and an attention mechanism
to predict lane encoding probabilities. In the attention mecha-
nism, key (K) and value (V) vectors are MLP(p;), query (Q) is
ok )y,

VA

Then the predicted score of the jth lane encodings at ¢ is shown
in equation [7} where ¢ denotes MLP layers. We select top-k
lane encodings to maintain the uncertainty and concatenate the
candidate lane segments and associated scores over the future

MLP(l;). Then attention encodings A; j = softmax



time steps to obtain L = ConCat{ll:k,sAl:k}?'zl.
o exp(¢ {plvlijl]})
S‘ht B Nlaneeb/-
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We use a binary cross-entropy loss Za,e to optimize the
probability estimation as shown in equation [§] Ground truth
lane segment s; relies on the isOn relationship in the knowl-
edge graph. Then, cross-attention is performed to further fuse
agent and lane information. Key and value vectors are L, query
vector is p;. The updated lane output is /; .

) (7

It
ﬁane = Z ZCE (staft) (8)
=1

Then we employ a predictor for generating multimodal tra-
jectories. We sample a latent vector z from a multivariate
normal distribution and add it to the fusion encodings. Then a
Laplacian mixture density network (MDN) decoder is used to
output a set of trajectories Z%:l #n Laplace(u,b). ft,, denotes
the probability of each mode and Zf‘,le fm=1. u and b
represent the location and scale parameters of each Laplace
component. We use an MLP to predict 7,,, a GRU to recover
the time dimension # of the predictions, and two MLPs
to predict 4 and b. We train the predictor by minimizing
a regression loss and a classification loss. Regression loss
is computed using Winner-Takes-All strategy as shown in
equation [9]

tf
L= =Y —t0gP (x| " ") ©)
Iy i3
where Y is the ground truth position and m™* represents the best
mode which has minimum L, error among the M predictions.
Cross-entropy loss is used to optimize the mode classification
as shown in equation

M

o%ls = Z _nml()g(ﬁ:m) .

m=1

(10)

Several metrics are used to evaluate the deviation to the ground
truth, like velocity loss and angle loss, and investigate the
influence of different measurements to the predictions. For the
velocity loss, we calculate the ground truth velocity traces V; =

|¥; —Y;_1]|» and prediction velocity traces V; = ||t — 1|2,
then velocity loss is shown in equation [IT]
1 & -
AMm *
ﬁ/elooityzgz_k)gp(vt |Vt )b;n ) (11)
J t=1

For the angle loss, Xy is used to denote the initial position
and we calculate ground truth angle 6, = arctan2 (¥, — Xp) and
prediction angle 6, = arctan2 (4, — Xp). We can calculate the
loss as shown in equation

1 & A
gangle = sz_cos (9,—9;) (12)
=1
The total loss for the motion prediction is given by [I3]
2L = Alﬂane + A«2-=gvelocity + l3$angle + zeg + ﬂls (13)

D. Prediction Refinement

To filter out the unreasonable predictions, we analyze the
predicted trajectories by anchor paths [44]. Anchor paths
provide possible and permitted trajectories for an agent at
a given position in the road network. We use these to filter
out trajectory candidates far from these anchor paths. Then
we cluster the remaining trajectory candidates w.r.t. their
speed profiles and keep the top candidates closest to the
cluster centers. For an unfair comparison, we also perform
experiments using the ground truth speed profile in order to
get an idea about the relevance of the speed component in the
prediction results. Details are shown in Algorithm

Algorithm 2: Prediction Refinement

input : Predictions {”11::/»”12::/»7-~~7“{{:zf}
Predicted Probabilities {7, 7,..., 7 }
Anchor Paths {P,P,,...Ps}

output: Filtered Predictions{f/ll:tf D GARIN }

1 if Ground Truth speed profile sq available then

2 Calculate the speed profiles sq, 52, ..., Sk
3 Calculate similarity to sg using Dynamic Time Warping
(DTW)
4 Select 5 most similar predictions {)711:[/.,)7123/, .. ,f’lsztf}
5 end
6 else
7 for P, c {P,P>,...P5} do
J 1 2 k
8 for 'ulztf € {#lzrf7#1:tf7"'7#1:z,} do )
9 ‘ Calculate the distance d;; between P; and /“1]:zf
10 end
11 For each i, select the minsd;; and calculate the speed
profiles s;1, Si2, $i3, Sid, Sis-
12 Cluster speed profiles s;; using K-means and output
the prediction f’f:tf closest to the cluster centers.
13 end '
14 end

pl P2 VS 1 2 k
15 return {Ylitf’Ylil‘/""’Ylil‘f} g {ulitf7'u'1:tf"""u'l:tf}

IV. EXPERIMENTS
A. Dataset & nuScenes Knowledge Graph

The nuScenes dataset [6] is a dataset for self-driving cars
that is gathered in Boston and Singapore. It encompasses 1000
scenes, each lasting 20 seconds, and includes meticulously
annotated ground truth details along with high-definition (HD)
maps. The vehicles within this dataset have 3D bounding
boxes that are manually annotated and published at a rate of 2
Hz. For the prediction task, the objective involves leveraging
the preceding 2 seconds of object history and the map data to
forecast the subsequent 6 seconds. We adhere to the standard
split provided by the nuScenes benchmark description. We
apply our proposed ontology to the nuScenes dataset and
generate the scene graph based on all available knowledge
of the scene as described in [5]. Features are provided by the
upstream perception components and the HD map from the
nuScenes dataset. Table [l] and list the used feature sets
for each node type and each relation type. All features that
express a category type are one-hot encoded.



TABLE I: Node Type Features

View Node type Features
Orientation, State, Position,
SceneParticipant Velocity, Acceleration,
Agent Heading Change,
Distance to Centerline
Participant Type, Size
Sequence Timestamp
Scene -
LaneSnippet Length
LaneSlice Width, Center Pose
LaneConnector -
OrderedPose Center Pose
Lane -
CarparkArea -
Map Walkway -
Intersection -
PedCrossingStopArea -
StopSignArea -
TrafficLightStopArea -
TurnStopArea -
YieldStopAre -
TABLE II: Relation Type Features

View Relation type Features
hasSceneParticipant -
inNextScene Time Elapsed

Agent hasNextScene Time Elapsed
hasPreviousScene Time Elapsed
isSceneParticipant -
switchViaDoubleDashedWhite -
switchViaRoadDivider -
switchViaSingleZigzagWhite -
switchViaDoubleSolidWhite -

Map switchViaSingleSolid Yellow -
switchViaSingleSolidWhite -
isSlice/PoseOnStopArea -
connectsIncoming/Outgoing -
hasNextLane/Snippet/Slice -
isOnMapElement Probability
relatedLongitudinal Path/Distance

Interaction  relatedLateral Path/Distance
relatedIntersecting Path/Distance
relatedPedestrian Distance

B. Metrics

We utilize standard evaluation metrics to assess prediction
performance, specifically employing ADEg (Average Dis-
placement Error for K modes) and FDEg (Final Displacement
Error for K modes). These metrics gauge L, errors, both at
the final step and averaged across each step for predicting
K modes. The reported minimum error among the K modes
is considered. Both ADE and FDE are measured in meters.
Additionally, the miss rate MRk calculates the percentage of
scenarios where the final-step error exceeds 2 meters.

C. Model Implementation

The hidden dimension of vectors in the pipeline is set to
64. The layer of heterogeneous graph neural network is set to
2 and the aggregation method uses sum. The attention head in
HAN is set 8 whereas the respective values for parameters of
equation A, Ay and Az are set to 0.9, 1 and 1.

We use all agent and map elements within the four closest
roadblocks. The coordinate system in our model is the BEV
centered at the agent location at + = 0. We use the orientation
from the agent location at r =1 to the agent location at r =0

as the positive x-axis. We train the model on a single TESLA-
A100 GPU using a batch size of 32 and the Adam optimizer
with an initial learning rate of 1 x 1073, which is decayed by
0.7 per 5 epochs.

D. Quantitative Results

We compare our results on the nuScenes online benchmark
as Table [Tl shows. The SemanticFormer method means di-
rectly predicting 5 trajectories without prediction refinement.
The SemanticFormerR means using SemanticFormer methods
to predict 25 trajectories and then refine those predictions.
From the comparison, the SemanticFormerR achieves com-
petitive performance which shows that the knowledge graph
can represent complex and heterogeneous information well
in traffic scenes. Also, it suggests that the speed has a huge
impact on future trajectories. This means that by unfair com-
parison, utilizing ground truth speed followed by Algorithm [2]
SemanticFormerR demonstrates a significant superiority over
contemporary state-of-the-art methods.

TABLE III: Performance Table on nuScenes Benchmark

GT K=5 K=10

Method Speed ADE MR ADE MR
CoverNet [2] X 1.96 0.67 1.48 -

Trajectron++ [45] X 1.88 0.70 1.51 0.57
AgentFormer [27] X 1.86 - 1.45 -

LaPred [46] X 1.53 - 1.12 -

P2T [40] X 145  0.64 1.16 046
LaneGCN [11] X - 049 095 036
GOHOME [9] X 142 0.57 1.15 047
Autobot [28] X 1.37  0.62 1.03 044
THOMAS [10] X 1.33 055 1.04 -

PGP [47] X 1.30  0.61 1.00  0.37
LAformer [16] X 1.19 048 093 0.33
Socialea [48] X 1.18 048 1.02 044
FRM [49] X 1.18 048 088 0.30
SemanticFormer (Ours) X 1.19  0.51 0.95 0.45
SemanticFormerR (Ours) X 1.18 0.50 0.90 0.43
DMAP [44] v 1.09  0.19 1.07  0.18
SemanticFormerR (Ours) v 08 026 0.78 0.13

E. Ablation study

1) Effect of Heterogeneous Graph Operators: We analyze
the different heterogeneous graph operators like HGT and
HAN. As shown in Table when reasoning on complex
traffic scene graphs that contain thousands of nodes, overfitting
can happen to HGT. To prevent that, we merge sub-classes
like single solid, double solid, etc, to switchViaPermitted
and switchViaNonPermitted relationships to represent lane-
changing situations. However, for operators like HGT, the
model still overfits in 25 epochs. To better incorporate the
meta-path and reduce overfitting, we switch to the HAN
operator and HAN converges very stable which may indicate
the drawbacks of some HGNN operators.

2) Effect of Different Traffic Scenarios: We use the knowl-
edge graph to identify different traffic scenarios and compare
the results. To enhance the prediction of spatio-temporal
information, we utilize both speed and anchor paths. While
speed enables us to track the temporal location changes,
the anchor path serves as a reference for determining the
direction. We observe that the lane-following scenario has



TABLE IV: Ablation Study for HGNN Operators

Interaction Oper- Self Meta Overfit K=5
Graph ators Loop Path ADE FDE
Original HGT*2 v X v 1.24 249
Compact HGT*2 v X v 124 246
Compact HGT*2 X X v 122 238
Compact HAN*2 X v X 1.19 2.34

the best predictions as the model only needs to predict the
different speed profiles while the centerline of lanes can
provide accurate direction. For the intersection scenario, the
model needs to capture the uncertainty of not following anchor
paths while for the stop area, vehicles may not follow the
lane direction which can lead anchor path providing wrong
information. From the ablation study as shown in Table
we conclude that our approach is very good in easy cases
like lane following, and a bit worse in difficult situations like
intersections and stops. Also, our approach can work on non-
map scenarios.

TABLE V: Ablation Study for Different Scenario Analysis

Scenarios K=5 K=1 Samples
ADE FDE ADE FDE Number
Lane 1.14 2.22 2.88 6.77 4812
Intersection 1.25 2.50 2.94 6.79 4070
Stop 1.30 242 3.57 7.97 122
Non-Map 1.21 2.46 3.82 9.52 37

FE. Qualitative results

We provide qualitative visualizations of our predictions in
Figurd6lIn row 1, the refinement works perfectly as it consid-
ers all three turning possibilities while SemanticFormer only
focuses on go straight situation. In rows 2 and 4, refinement
captures the lane-changing situation successfully. In row 3,
refinement prevents the predictions outside the road.

V. CONCLUSIONS

This paper proposes a novel approach to reason over a
semantic traffic scene graph that leverages past trajectories and
an HD map as input and outputs a set of multimodal predicted
trajectories. A scene graph encoder module aims to capture
the interactions in a traffic scene from four aspects, agent-
agent interaction, agent-map interaction, map-map interaction,
and meta-paths interaction. Further, the refinement module
considers the typical speed profiles and anchor paths for the
refinement of trajectory candidates

Our approach achieves excellent performance which is on
par with the contemporary state-of-the-art models, and several
ablation studies demonstrating superior generalized perfor-
mance. Moreover, extensive ablation and sensitivity studies
also point out the limitations of current heterogeneous graph
operators when applied to complex knowledge graphs. Future
work will focus on a more complete knowledge graph if more
information is included like traffic rules, traffic signs, and other
common sense.

Fig. 6: Illustration of the qualitative result. Column 1 is
SemanticFormer 5 predictions. Column 2 is SemanticFormer
25 predictions. Column 3 is the Results of SemanticFormerR,
predictions refinement
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