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Abstract

Let U be a connected open subset of Rn, and letX = (X1, X2, . . . , Xm) be a system of Hörmander

vector fields defined on U . This paper addresses sharp embedding results and geometric inequali-

ties in the generalized Sobolev space Wk,p
X,0(Ω), where Ω ⊂⊂ U is a general open bounded subset

of U . By employing Rothschild-Stein’s lifting technique and saturation method, we prove the

representation formula for smooth functions with compact support in Ω. Combining this rep-

resentation formula with weighted weak-Lp estimates, we derive sharp Sobolev inequalities on

Wk,p
X,0(Ω), where the critical Sobolev exponent depends on the generalized Métivier index. As ap-

plications of these sharp Sobolev inequalities, we establish the isoperimetric inequality, logarith-

mic Sobolev inequalities, Rellich-Kondrachov compact embedding theorem, Gagliardo-Nirenberg

inequality, Nash inequality, and Moser-Trudinger inequality in the context of general Hörmander

vector fields.
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1. Introduction and main results

For n ≥ 2, let U be a connected open subset of Rn. Consider a system of real smooth vector

fields X = (X1, X2, . . . , Xm) defined on U , satisfying the following assumption:

(H) There exists a smallest positive integer s0 such that the vector fieldsX1, X2, . . . , Xm together

with their commutators of length at most s0 span Rn at each point in U .

Assumption (H) is known as the Hörmander’s condition, and the positive integer s0 is called the

Hörmander index of X related to U . The smooth vector fields X under Hörmander’s condition

(H) usually refer to Hörmander vector fields.

Then, we recall the generalized Sobolev spaces associated with X . Let 1 ≤ ji ≤ m and

J = (j1, . . . , jl) denotes a multi-index with length |J | = l. We adopt the notation XJ =

∗corresponding author
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Xj1Xj2 · · ·Xjl−1
Xjl for |J | = l, and XJ = id for |J | = 0. For any k ∈ N+ and p ≥ 1, we

define the function space

Wk,p
X (U) =

{
u ∈ Lp(U)

∣∣XJu ∈ Lp(U), ∀J = (j1, . . . , js) with |J | ≤ k
}
,

and set the norm

‖u‖p
Wk,p

X
(U)

=
∑

|J |≤k

‖XJu‖p
Lp(U).

It is well-known (e.g., see [53, Theorem 1]) that Wk,p
X (U) forms a separable Banach space for

1 ≤ p < +∞, and it is reflexive for 1 < p < +∞. In particular, we set Hk
X(U) = Wk,2

X (U), and

it follows that Hk
X(U) is a Hilbert space endowed with the inner product

(u, v)Hk
X
(U) =

k∑

|J |=0

∫

U

XJu ·XJvdx.

Let Ω ⊂⊂ U be a bounded open subset. We define Wk,p
X,0(Ω) as the closure of C∞

0 (Ω) in Wk,p
X (U),

which gives a generalized Sobolev space of functions vanishing at the boundary of Ω. Similarly,

we denote Hk
X,0(Ω) as Wk,2

X,0(Ω).
Since Hörmander’s celebrated work [37] on hypoellipticity, the study of nonlinear degenerate

elliptic equations arising from Hörmander vector fields has developed significantly. These nonlin-

ear degenerate equations, taking the form

m∑

j=1

X∗
j (|Xu|p−2Xju) = f(x, u,Xu) (1.1)

with Xu = (X1u,X2u, . . . , Xmu) and X∗
j = −Xj − divXj , naturally arise in the study of the

geometry of CR manifolds and in the theory of quasi-conformal mappings on stratified, nilpotent

Lie groups, as well as in subelliptic variational problems (see [39–41, 53]). Clearly, the function

space Wk,p
X,0(Ω) is a fundamental space in study the Dirichlet boundary problem of equation (1.1).

In this context, the sharp embedding results and geometric inequalities on the generalized Sobolev

space Wk,p
X,0(Ω) play a pervasive and essential role, similar to their classical counterparts.

When X = (∂x1 , ∂x2 , . . . , ∂xn
), Wk,p

X,0(Ω) reduces to the classical Sobolev space W k,p
0 (Ω). For

k = 1, restricting the Gagliardo-Nirenberg-Sobolev inequality

(∫

Rn

|u|p∗dx
) 1

p∗

≤ C

(∫

Rn

|∇u|pdx
) 1

p

∀u ∈ C∞
0 (Rn) (1.2)

on C∞
0 (Ω) naturally yields the Sobolev embedding

W 1,p
0 (Ω) →֒ Lp∗(Ω), (1.3)

where p∗ = np

n−p
is the critical Sobolev exponent depending only on the dimension n and p.

However, the sharp Sobolev embedding, particularly the critical Sobolev exponent, for the space

Wk,p
X,0(Ω) within the framework of Hörmander vector fields have not been fully understood.
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Previous investigations by Capogna-Danielli-Garofalo [6, 7] (also see [9, Theorem 3.1]) claimed

the following local Sobolev inequality:

(
1

|B(x0, r)|

∫

B(x0,r)

|u|qdx
) 1

q

≤ Cr

(
1

|B(x0, r)|

∫

B(x0,r)

|Xu|pdx
) 1

p

(1.4)

for 1 ≤ p < Q, 1 ≤ q ≤ Qp

Q−p
, and all u ∈ W1,p

X,0(B(x0, r)). Here, Q is the local homogeneous

dimension relative to Ω;B(x0, r) denotes the subunit ball induced by the subunit metric d, centered

at x0 ∈ Ω, with a small radius 0 < r ≤ R0, whereR0 is a positive constant. The precise definitions

of Q, d and B(x, r) will be postponed in Section 2 blow. Based on (1.4) and the standard partition

of unity arguments, Capogna-Danielli-Garofalo derived the following Sobolev embedding:

W1,p
X,0(Ω) →֒ L

Qp
Q−p (Ω) for 1 ≤ p < Q. (1.5)

Comparing with the case of left-invariant vector fields on a nilpotent homogeneous group, they

announced (see [7, p. 205]) that the Sobolev exponent Qp

Q−p
in (1.4) and (1.5), determined by the

local homogeneous dimension Q, is best possible.

Nevertheless, it is important to note that the vector fields satisfying Hörmander’s condition

need not necessarily be the left-invariant vector fields on a nilpotent homogeneous group. There-

fore, the Sobolev exponent Qp

Q−p
in (1.4) and (1.5) may NOT be optimal for the space W1,p

X,0(Ω)
associated with general Hörmander vector fields. Further evidence presented in [54, Corollary 1]

indicates that if Ω ⊂⊂ U is a bounded open subset with smooth boundary ∂Ω, then

‖f‖
L

pν̃
ν̃−p (Ω)

≤ C
(
‖Xf‖Lp(Ω) + ‖f‖Lp(Ω)

)
∀f ∈ C∞(Ω), (1.6)

where 1 ≤ p < ν̃, and ν̃ denotes the non-isotropic dimension of Ω related to X (see (2.2) blow

for precise definition). The non-isotropic dimension ν̃ is also known as the generalized Métivier

index, satisfying ν̃ ≤ Q as shown in (2.6) below. This implies that for any bounded open subset

Ω ⊂⊂ U with smooth boundary ∂Ω, (1.5) can be improved by the following sharper Sobolev

embedding:

W1,p
X,0(Ω) →֒ L

pν̃
ν̃−p (Ω) ⊂ L

Qp
Q−p (Ω) for 1 ≤ p < ν̃. (1.7)

The aim of this paper is to explore the sharp embedding results and fundamental geometric

inequalities on Wk,p
X,0(Ω) for arbitrary bounded open subsets Ω ⊂⊂ U , without requiring smooth-

ness on ∂Ω. Our interest in sharp embedding results of generalized Sobolev space is motivated by

our recent studies [15, 16] on semilinear subelliptic Dirichlet problems, as well as a natural phi-

losophy arising from the classical Sobolev embedding (1.3). In the classical elliptic case, since the

space W k,p
0 (Ω) consists of functions that “vanishing at the boundary”, the classical Sobolev em-

bedding (1.3) does not necessitate any smoothness on the boundary ∂Ω. Following this reasoning,

it is extremely interesting and important to understand whether (1.7) can be extended to arbitrary

bounded open sets. Furthermore, similar to the classic elliptic case, the sharp embedding in the

case where p > ν̃ certainly plays an essential role in the study of degenerate elliptic equations.

For general Hörmander vector fields, one cannot expect the analogous of Gagliardo-Nirenberg-

Sobolev inequality (1.2) to hold in the entire space Rn without further assumptions. Therefore,

3



the representation formula for functions f ∈ C∞
0 (Ω) associated with Hörmander vector fields

serves as a crucial component in establishing the sharp Sobolev embedding in Wk,p
X,0(Ω). In earlier

studies, such as those cited in [6, Proposition 2.4], [7, p. 210, Remark] and [43, Lemma 5.1],

the construction of this representation formula relies entirely on an ambiguous statement in [50,

p. 114, Corollary] regarding the global fundamental solution Γ(x, y) for the subelliptic operator

−△X =
∑m

j=1X
∗
jXj . Specifically, [50, p. 114, Corollary] states that such a fundamental solution

Γ(x, y) has been constructed in [51] and possesses the local size estimate in the form of

Γ(x, y) ≤ C
d(x, y)2

|B(x, d(x, y)| . (1.8)

However, as later pointed out by Nagel [49, Theorem 11] and recently emphasized by Biagi-

Bonfiglioli-Bramanti [2, p. 1882], no fundamental solution is exhibited in [51]; only the parametrix

is provided. In fact, the kernel Γ obtained by locally saturating the lifted variables for the parametrix

Γ̃ associated with the lifting operators −△̃X =
∑m

j=1 X̃
∗
j X̃j is only potentially a local parametrix

for −△X , but NOT necessarily a fundamental solution. This means that (1.8) only provides an

estimate for the parametrix Γ, NOT for the fundamental solution. Additionally, the parametrix Γ
is defined only locally and in a non-unique way. Achieving a genuine local fundamental solution

by saturating a parametrix in the lifted space requires considerable additional effort.

To address these technical issues and to ensure the exposition is reasonably self-contained, we

provide a rigorous proof of the representation formula for functions f ∈ C∞
0 (Ω) in Proposition 3.2

blow. Drawing inspiration from [50, 51], our proof employs Rothschild-Stein’s lifting technique

and saturation method, along with the estimation of type λ operators in the high-dimensional

lifting space, thus eliminating the dependence on the fundamental solution of −△X . Refining the

estimates in [54], we then obtain weighted weak-Lp estimates for the T operators induced by the

representation formula. By combining these results with carefully estimated volumes of subunit

balls and the degenerate Friedrichs-Poincaré inequality, we extend (1.7) to arbitrary bounded open

subsetsΩ ⊂⊂ U , thereby improving upon the previous results (1.5) by Capogna-Danielli-Garofalo

[6, 7]. Specifically, we have

Theorem 1.1 (Sobolev inequalites for kp ≤ ν̃). Let X = (X1, X2, . . . , Xm) satisfy condition (H).

Then, for any bounded open subset Ω ⊂⊂ U and any positive number p ≥ 1, there exists a positive

constant C > 0 such that

(1) If kp < ν̃ and 1
q
= 1

p
− k

ν̃
, we have

‖u‖Lq(Ω) ≤ C
∑

|J |=k

‖XJu‖Lp(Ω) ∀u ∈ Wk,p
X,0(Ω); (1.9)

(2) If kp = ν̃ and 1 ≤ q <∞, we also have

‖u‖Lq(Ω) ≤ C
∑

|J |=k

‖XJu‖Lp(Ω) ∀u ∈ Wk,p
X,0(Ω). (1.10)

Here, ν̃ is the generalized Métivier index defined in (2.2) below.
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Theorem 1.1 yields the following fundamental inequalities:

Theorem 1.2. Suppose X = (X1, X2, . . . , Xm) satisfy condition (H), and Ω ⊂⊂ U is a bounded

open subset of U . Let p ≥ 1 be a positive real numbers, k ∈ N+ with kp < ν̃. Assume further that

the positive real numbers s1, s2, a, b satisfy the following conditions:

1 ≤ s1 < s2 <
pν̃

ν̃ − kp
and

{
b− a = ν̃−kp

ν̃
,

bs2 − as1 = p,
(1.11)

Then, there exists a positive constant C > 0 such that

‖u‖bs2
Ls2(Ω) ≤ C

∑

|J |=k

‖XJu‖p
Lp(Ω)‖u‖

as1
Ls1(Ω), ∀u ∈ Wk,p

X,0(Ω) ∩ Ls1(Ω). (1.12)

As a result of (1.12), we have

(1) (Gagliardo-Nirenberg inequality) If s1 ≥ 1, b = p

θs2
and a = p(1−θ)

s1θ
with θ ∈ (0, 1], then

1
s2

= 1−θ
s1

+ θ
(

1
p
− k

ν̃

)
and

‖u‖Ls2(Ω) ≤ C‖u‖1−θ
Ls1(Ω)

∑

|J |=k

‖XJu‖θLp(Ω) ∀u ∈ Wk,p
X,0(Ω) ∩ Ls1(Ω).

(2) (Nash inequality) If ν̃ > 2, p = 2, k = 1, s1 = 1, s2 = 2, a = 4
ν̃

and b = 1 + 2
ν̃
, then

(∫

Ω

|u|2dx
)1+ 2

ν̃

≤ C

(∫

Ω

|Xu|2dx
)(∫

Ω

|u|dx
) 4

ν̃

∀u ∈ H1
X,0(Ω).

(3) (Moser inequality) If ν̃ > 2, p = 2, k = 1, s1 = 2, s2 = 2 + 4
ν̃
, a = 2

ν̃
and b = 1, then

(∫

Ω

|u|2+ 4
ν̃ dx

)
≤ C

(∫

Ω

|Xu|2dx
)(∫

Ω

|u|2dx
) 2

ν̃

∀u ∈ H1
X,0(Ω).

We next discuss the isoperimetric inequality for Carnot-Carathéodory spaces. For this purpose,

we introduce some notations in [27, 47]. For u ∈ L1(Ω), we define the X-variation of u in Ω as

VarX(u; Ω) = sup
ϕ∈F(Ω;Rm)

∫

Ω

u

m∑

j=1

X∗
jϕjdx, (1.13)

where

F(Ω;Rm) :=



ϕ = (ϕ1, . . . , ϕm) ∈ (C1

0(Ω))
m

∣∣∣∣‖ϕ‖L∞(Ω) = sup
x∈Ω

(
m∑

j=1

|ϕj(x)|2
) 1

2

≤ 1



 ,
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and X∗
j denotes the formal adjoint of Xj . The divergence theorem easily gives that VarX(u; Ω) =

‖Xu‖L1(Ω) for all u ∈ C1(Ω) ∩W1,1
X (Ω). Given a measurable set E ⊂ Rn, we denote by

PX(E; Ω) := VarX(χE ; Ω) = sup
ϕ∈F(Ω;Rm)

∫

E

m∑

j=1

X∗
jϕjdx (1.14)

the X-perimeter of E in Ω, where χE is the indicator function of E. The set E is of finite X-

perimeter (or a X-Caccioppoli set) in Ω if PX(E; Ω) < +∞.

By means of the Sobolev inequality (1.4), Capogna-Danielli-Garofalo [7, 8] initially con-

structed the isoperimetric inequality in subunit balls. Specifically, they proved that for any subunit

ball B(x0, r) centered at x0 ∈ Ω, with a small radius 0 < r ≤ R0, there exists a positive constant

C > 0 such that

|E|
Q−1
Q ≤ Cr|B(x0, r)|−

1
QPX(E;B(x0, r)) (1.15)

holds for every C1 open set E ⊂ E ⊂ B(x0, r), where R0 is a positive constant as mentioned

above. Later, Garofalo-Nhieu [27, Theorem 1.18] extended (1.15) to general X-PS domains, which

shows that for any X-PS domain Ω ⊂ Rn,

min(|E ∩ Ω|, |Ec ∩ Ω|)
Q−1
Q ≤ Cdiam(Ω)|Ω|− 1

QPX(E; Ω) (1.16)

holds for any X-Caccioppoli set E ⊂ Rn. It is worth mentioning that the isoperimetric exponent
Q−1
Q

in both (1.15) and (1.16) depend on the local homogeneous dimensionQ. However, according

to Theorem 1.1, we can derive a new type of isoperimetric inequality equipped with isoperimetric

exponent ν̃−1
ν̃

, depending only on the generalized Métivier index ν̃, rather than being dependent

on the local homogeneous dimension Q. For more results related to the isoperimetric inequality,

one can refer to [3, 8, 10, 12, 19, 46] and the references therein.

Theorem 1.3 (Isoperimetric inequality). Assume X = (X1, X2, . . . , Xm) satisfy condition (H),

and Ω ⊂⊂ U is a bounded open subset of U . Then, there exists a positive constant C > 0 such

that for any bounded open set E ⊂⊂ Ω with C1 boundary ∂E, we have

|E| ν̃−1
ν̃ ≤ CPX(E; Ω). (1.17)

The logarithmic Sobolev inequality, originally introduced by Gross [32] in Euclidean space

with the Gaussian measure, is closely related to many important properties of the corresponding

Markov semigroup. According to Theorem 1.1 and [21], we can construct the following logarith-

mic Sobolev inequalities in the context of Hörmander vector fields. More results on logarithmic

Sobolev inequalities can be found in [11, 29, 33].

Theorem 1.4 (Logarithmic Sobolev inequalities). Suppose that X = (X1, X2, . . . , Xm) and Ω
satisfy the assumptions of Theorem 1.1. Then

(1) For any ε > 0 and u ∈ H1
X,0(Ω) ∩ L∞(Ω), we have

∫

Ω

|u|2 ln |u|dx ≤ ε‖Xu‖2L2(Ω) +M(ε)‖u‖2L2(Ω) + ‖u‖2L2(Ω) ln ‖u‖L2(Ω), (1.18)

where M(ε) = lnC0 − ν̃
4
ln ε, and C0 > 0 is a positive constant defined in (4.21) blow.
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(2) Suppose that p ≥ 1, k ∈ N+ with kp ≤ ν̃, then for any u ∈ Wk,p
X,0(Ω) with ‖u‖Lp(Ω) = 1, we

have

C

e

∑

|J |=k

‖XJu‖Lp(Ω) ≥ ln


C

∑

|J |=k

‖XJu‖Lp(Ω)


 ≥ k

ν̃

∫

Ω

|u|p ln |u|pdx, (1.19)

where C > 0 is the positive constant in Theorem 1.1.

Additionally, we are concerned with the Sobolev inequality in the case of p > ν̃
k
. To proceed,

we introduce the generalized Hölder spaces associated with the subunit metric d. For any 0 < α <
1 and u ∈ C(Ω), we define

[u]α := sup
x 6=y, x,y∈Ω

|u(x)− u(y)|
d(x, y)α

.

Then, the generalized Hölder spaces are given by

S0,α(Ω) := {u ∈ C(Ω)|[u]α < +∞},

and

Sk,α(Ω) := {u ∈ C(Ω)|XJu ∈ S0,α(Ω), ∀|J | ≤ k} for k ∈ N.

Note that Sk,α(Ω) is a Banach space equipped with the norm

‖u‖Sk,α(Ω) :=
∑

|J |≤k

(
sup
x∈Ω

|XJu(x)|+ [XJu]α

)
.

In particular, if X = (∂x1 , ∂x2, . . . , ∂xn
), Sk,α(Ω) reduces to the classical Hölder space Ck,α(Ω).

In fact, Sk,α(Ω) and Ck,α(Ω) has the following relationship (see [5, Theorem 1.53]):

C0,α(Ω) ⊂ S0,α(Ω) ⊂ C
0, α

s0 (Ω). (1.20)

Besides, for every k ∈ N+ we have

Ck,α(Ω) ⊂ Sk,α(Ω), and Sks0,α(Ω) ⊂ C
k, α

s0 (Ω). (1.21)

Here, s0 denotes the Hörmander index of U .

An earlier study by Garofallo-Nhieu [28, Theorem 1.10] yields that, for any (ε, δ) domain

Ω ⊂⊂ U , the Sobolev embedding

W1,p
X (Ω) →֒ S0,1−Q

p (Ω) (1.22)

holds for p > Q. Our next result indicates that, if we consider the Sobolev embedding for the

space W1,p
X,0(Ω), the assumption of (ε, δ) domain can be removed, and the Sobolev exponent can

be improved to 1− ν̃
p
.
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Theorem 1.5 (Sobolev inequality for kp > ν̃). Assume that X = (X1, X2, . . . , Xm) and Ω satisfy

the assumptions of Theorem 1.1. Let k ∈ N+ and p ≥ 1 be a positive number such that p > ν̃
k
.

Then there exists a positive constant C > 0 such that

‖u‖
S
k−[ ν̃p ]−1,α

(Ω)
≤ C

∑

|J |=k

‖XJu‖Lp(Ω) ∀u ∈ Wk,p
X,0(Ω), (1.23)

where

α =

{ [
ν̃
p

]
+ 1− ν̃

p
, if ν̃

p
/∈ N;

any real number in (0, 1), if ν̃
p
∈ N,

Remark 1.1. According to Theorem 1.1 and Theorem 1.6, we conclude that for k ≥ 1,

Wk,p
X,0(Ω) →֒





Lq(Ω), if 1 ≤ p < ν̃
k

and 1 ≤ q ≤ ν̃p

ν̃−pk
;

Lq(Ω), if p = ν̃
k

and 1 ≤ q <∞;

Sk−[ ν̃p ]−1,α(Ω), if p ≥ 1 and p > ν̃
k
.

(1.24)

In particular, for k = 1 we have

W1,p
X,0(Ω) →֒





Lq(Ω), if 1 ≤ p < ν̃ and 1 ≤ q ≤ ν̃p

ν̃−p
;

Lq(Ω), if p = ν̃ and 1 ≤ q <∞;

S0,α(Ω), if p ≥ 1 and p > ν̃.

(1.25)

As a consequence of (1.25), we see that the Sobolev embedding (1.7) indeed holds for any

bounded open set Ω ⊂⊂ U . According to (2.6) and Example 2.1 below, we find that ν̃ ≤ Q,

and ν̃ < Q occurs in some degenerate cases. Therefore, our embedding result (1.25) genuinely

improves upon (1.5), as established by Capogna-Danielli-Garofalo [6, 7].

Meanwhile, we can obtain the following degenerate Rellich-Kondrachov compact embedding

theorem, which generalizes our previous result [16, Proposition 2.7] and may shed light on the

study of degenerate equations and subelliptic variational problems.

Theorem 1.6 (Rellich-Kondrachov compact embedding theorem). Let X = (X1, X2, . . . , Xm)
satisfy condition (H). Suppose that Ω ⊂⊂ U is a bounded open subset of U . Then, for p ≥ 1,

k ∈ N+ with kp < ν̃, the embedding

Wk,p
X,0(Ω) →֒ Ls(Ω) (1.26)

is compact for 1 ≤ s < ν̃p

ν̃−kp
.

Finally, we can also present the Moser-Trudinger inequality for W1,ν̃
X,0(Ω). It is noteworthy that

the corresponding Moser-Trudinger inequality for the Sobolev space W1,Q
X (Ω) associated with the

X-PS domain Ω ⊂⊂ U was established in [27]. Additionally, the Moser-Trudinger inequality on

Carnot groups has been explored in [1, 18, 42], among others.
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Theorem 1.7 (Moser-Trudinger inequality). Suppose X = (X1, X2, . . . , Xm) and Ω satisfy the

assumptions of Theorem 1.1. Moreover, assume that for every x ∈ U and r > 0, the subunit ball

B(x, r) admits finite volume, i.e.,

|B(x, r)| < +∞ ∀x ∈ U, r > 0. (A)

Then for any

0 < σ <
ν̃ − 1

eν̃
C

− ν̃+1
ν̃−1

3

(
C1

4C0(C1 + C2)

) ν̃
ν̃−1

·
(
λ1(ν̃)CC1

λ1(ν̃) + 1

) 1
ν̃−1

,

there exists C̃ > 0 such that for any u ∈ W1,ν̃
X,0(Ω) with ‖Xu‖Lν̃(Ω) ≤ 1, we have

∫

Ω

eσ|u|
ν̃

ν̃−1
dx ≤ C̃|Ω|. (1.27)

Here, C0 > 0 is a positive constant given by (4.33), C,C1, C2, C3 are the positive constants

appeared in Proposition 2.2-Proposition 2.4, and

λ1(ν̃) := inf
u∈W1,ν̃

X,0(Ω), u 6=0

∫
Ω
|Xu|ν̃dx∫
Ω
|u|ν̃dx > 0.

Remark 1.2. From [28, Remark 2.5], we see that for every compact subset K ⊂ U , there exists

R0 > 0 such that the subunit balls B(x, r), with x ∈ K and 0 < r ≤ R0, are compact. However,

this property does not generally hold for large radius. The assumption (A) serves as a necessary

condition for the upper bound volume estimates of subunit balls with large radius (see Proposition

2.3 and Proposition 2.4 below). We point out that the class of Hörmander vector fields under

assumption (A) is quite large.

For instance, considering U = Rn and X = (X1, X2, . . . , Xm) satisfying (H) along with the

following homogeneity assumption:

(H.1) There exists a family of non-isotropic dilations {δt}t>0 of the form

δt : R
n → Rn, δt(x) = (tσ1x1, t

σ2x2, . . . , t
σnxn),

where 1 = σ1 ≤ σ2 ≤ · · · ≤ σn are positive integers, such that X1, X2, . . . , Xm are δt-
homogeneous of degree 1. That is, for all t > 0, f ∈ C∞(Rn), and j = 1, . . . , m,

Xj(f ◦ δt) = t(Xjf) ◦ δt.

In this case, X are the so-called homogeneous Hörmander vector fields, and the assumption (A)

is derived from the global version ball-box theorem in [2, Theorem B].

Moreover, if every vector field Xi =
∑n

k=1 bik(x)∂xk
satisfies bik ∈ L∞(U), then according to

[5, Proposition 1.37] we have d(x, y) ≥ C|x− y| for all x, y ∈ U , and consequently,

B(x, r) ⊂ BE

(
x,
r

C

)
∩ U for any x ∈ U, r > 0,

where BE(x, r) = {y ∈ Rn||x − y| < r} denotes the classical Euclidean ball in Rn. Hence,

assumption (A) holds true in this case as well.
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The rest of the paper is organized as follows. In Section 2, we present some necessary prelimi-

naries, including the comparison of local homogeneous dimension and generalized Métivier index,

the subunit metric and volume estimates of subunit balls, the degenerate Friedrichs-Poincaré type

inequality, and the chain rules in general Sobolev spaces. In Section 3, we then provide two dif-

ferent types of the representation formulas and construct the weighted weak-Lp estimates of the T
operators induced by the representation formula. Finally, we prove Theorem 1.1-Theorem 1.7 in

Section 4.

Notations. For the sake of simplicity, different positive constants are usually denoted by C
sometimes without indices.

2. Preliminaries

We begin with the some basic objects and notations in Carnot-Carathéodory space.

2.1. Basic objects and notations in Carnot-Carathéodory space

Let Lie(X) be the Lie algebra generated by vector fields X1, X2, . . . , Xm over R. For l ∈ N+,

we define

Liel(X) := span{[Xi1, . . . , [Xij−1
, Xij ]]|1 ≤ ij ≤ m, j ≤ l}.

The Hörmander’s condition (H) gives that Lie(X)(x) = {Z(x)|Z ∈ Lie(X)} = Tx(U) for all

x ∈ U . This means, for each point x ∈ U , there exists a minimal integer s(x) ≤ s0 such that

Lies(x)(X)(x) := {Z(x)|Z ∈ Lies(x)(X)} = Tx(U).

The integer s(x) is known as the degree of nonholonomy at x.

For x ∈ U and 1 ≤ j ≤ s(x), we set Vj(x) := Liej(X)(x). It follows that

{0} = V0(x) ⊂ V1(x) ⊂ · · · ⊂ Vs(x)−1(x) ( Vs(x)(x) = Tx(U).

Then, we define

ν(x) :=

s(x)∑

j=1

j(νj(x)− νj−1(x)) (2.1)

as the pointwise homogeneous dimension at x (see [48]), where νj(x) := dimVj(x) with ν0(x) :=
0. Note that (2.1) implies n ≤ n + s(x)− 1 ≤ ν(x) ≤ ns(x).

We say a point x ∈ U is regular if, for every 1 ≤ j ≤ s(x), the dimension νj(y) is a constant

as y varies in an open neighbourhood of x. Otherwise, x is said to be singular. Moreover, for

any subset Ω ⊂⊂ U , we say Ω is equiregular if every point of Ω is regular, while Ω is said to be

non-equiregular if it contains some singular points. The equiregular assumption is also known as

the Métivier’s condition in PDEs (see [45]). For the equiregular connected subset Ω, the pointwise

homogeneous dimension ν(x) is a constant ν consistent with the Hausdorff dimension of Ω with

respect to X , and this constant ν is also called the Métivier index. Additionally, if the subset

Ω ⊂ U is non-equiregular, we can introduce the generalized Métivier index by

ν̃ := max
x∈Ω

ν(x). (2.2)
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The generalized Métivier index is also called the non-isotropic dimension (see [13, 14, 54]), which

plays an important role in the geometry and functional settings associated with vector fields X .

Then, we introduce some notations in [50] to present the precise definition of local homoge-

neous dimension. Let J = (j1, . . . , jk) be a multi-index with length |J | = k, where 1 ≤ ji ≤ m
and 1 ≤ k ≤ r. We assign a commutator XJ of length k such that

XJ := [Xj1, [Xj2, . . . [Xjk−1
, Xjk ] . . .]],

and set

X(k) := {XJ |J = (j1, . . . , jk), 1 ≤ ji ≤ m, |J | = k}
the collection of all commutators of length k. Let Y1, . . . , Yl be an enumeration of the components

of X(1), . . . , X(s0). We say Yi has formal degree d(Yi) = k if Yi is an element of X(k). If I =
(i1, i2, . . . , in) is a n-tuple of integers with 1 ≤ ik ≤ l, we define

d(I) := d(Yi1) + d(Yi2) + · · ·+ d(Yin),

and the so-called Nagel-Stein-Wainger polynomial

Λ(x, r) :=
∑

I

|λI(x)|rd(I), (2.3)

where λI(x) := det(Yi1, Yi2, . . . , Yin)(x), and I = (i1, i2, . . . , in) ranges in the set of n-tuples

satisfying 1 ≤ ik ≤ l.
We now recall the local homogeneous dimension introduced by Capogna-Danielli-Garofalo in

[6, 7, 9]. Let Ω ⊂⊂ U be a bounded open set. According to [9, (3.4), p. 1166] and [26, (3.1),

p. 105], the local homogeneous dimension Q relative to the bounded set Ω is precisely defined as

follows:

Q := max{d(I)|λI(x) 6= 0 and x ∈ Ω} = sup
x∈Ω

(
lim

r→+∞

ln Λ(x, r)

ln r

)
. (2.4)

To compare the local homogeneous dimension and generalized Métivier index, we employ the

following proposition.

Proposition 2.1 ([14, Proposition 2.2]). For each x ∈ U , the pointwise homogeneous dimension

ν(x) can be characterized by

ν(x) =

s(x)∑

j=1

j(νj(x)− νj−1(x)) = lim
r→0+

lnΛ(x, r)

ln r
= min{d(I)|λI(x) 6= 0}. (2.5)

Obviously, by (2.2), (2.4) and (2.5) we get

ν̃ = max
x∈Ω

ν(x) = max
x∈Ω

(min{d(I)|λI(x) 6= 0}) ≤ max
x∈Ω

(max{d(I)|λI(x) 6= 0}) = Q. (2.6)

It is worth mentioning that ν̃ is strictly less than Q in some degenerate cases. For example,
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Example 2.1. Let X = (X1, X2, X3) = (ex2∂x1 , e
2x2∂x1 , x1∂x2) be the smooth vector fields de-

fined in R2. Assume that Ω = {x ∈ R2||x| < 1} is the unit ball in R2. A direct calculation yields

that

[X1, X2] = 0, [X1, X3] = ex2∂x2 − x1e
x2∂x1 , and [X2, X3] = e2x2∂x2 − 2x1e

2x2∂x1 .

Observing that

det(X1, X3)(x) = x1e
x2, det(X2, X3)(x) = x1e

2x2 ,

det(X1, [X1, X3])(x) = e2x2 , det([X1, X3], [X2, X3])(x) = x1e
3x2 ,

we obtain ν(x) = 2 if x1 6= 0, and ν(x) = 3 for x1 = 0. Thus, the generalized Métivier index

ν̃ = max
x∈Ω

ν(x) = 3.

However, since det([X1, X3], [X2, X3])(x) 6= 0 for x1 6= 0, the local homogeneous dimension

Q = max
x∈Ω

(max{d(I)|λI(x) 6= 0}) = 4,

which clearly indicates that Q > ν̃ in this degenerate case.

Remark 2.1. If the Hörmander vector fieldsX satisfy Métivier’s condition on Ω (i.e. Ω is equireg-

ular), then we have Q = ν̃.

2.2. Subunit metric and subunit balls

Then, we introduce the subunit metric associated with the Hörmander vector fields X .

Definition 2.1 (Subunit metric, see [48, 50]). For any x, y ∈ U and δ > 0, let C(x, y, δ) be the

collection of absolutely continuous mapping ϕ : [0, 1] → U , such that ϕ(0) = x, ϕ(1) = y and

ϕ′(t) =
m∑

i=1

ai(t)XiI(ϕ(t))

with
∑m

k=1 |ak(t)|2 ≤ δ2 for a.e. t ∈ [0, 1]. Here, XiI(x) = (bi1(x), bi2(x), . . . , bin(x))
T denotes

the corresponding vector value function of Xi =
∑n

k=1 bik(x)∂xk
. The subunit metric d(x, y) is

defined by

d(x, y) := inf{δ > 0 | ∃ϕ ∈ C(x, y, δ) with ϕ(0) = x, ϕ(1) = y}. (2.7)

The subunit metric d, often referred to as the control distance, is ensured to be well-defined by

the Chow-Rashevskii theorem (see [4, Theorem 57]). Given any x ∈ U and r > 0, we denote by

B(x, r) := {y ∈ U | d(x, y) < r}

the subunit ball associated with the subunit metric d(x, y). This notation for the subunit ball will

be consistently employed throughout the paper. To provided precise estimates of the volume of

the subunit ball, we construct the following lower bound of Nagel-Stein-Wainger polynomial.
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Proposition 2.2. For any compact subset K ⊂ U and any δ > 0, there exists a positive constant

C > 0 such that

Λ(x, r) ≥ Crν̃(K) ∀x ∈ K, 0 < r ≤ δ, (2.8)

where ν̃(K) := maxx∈K ν(x) denotes the generalized Métivier index of K, and ν(x) is the point-

wise homogeneous dimension defined in (2.1).

Proof. For each fixed x ∈ K, according to (2.5), there exists an n-tuple Ix such that d(Ix) =
ν(x) and λIx(x) 6= 0. The continuity of the function y 7→ |λIx(y)| allows us to select an open

neighborhood Ux ⊂ U of x such that |λIx(y)| ≥ 1
2
|λIx(x)| > 0 for all y ∈ Ux. Since K is a

compact subset of U , we can find a finite collection of pairs (xi, Ii, Ui, Ci) (1 ≤ i ≤ q) satisfying

• xi ∈ K and Ui ⊂ U is an open neighborhood of xi;

• K ⊂ ⋃q
i=1 Ui;

• d(Ii) = ν(xi) and |λIi(y)| ≥ Ci > 0 for any y ∈ Ui.

Thus, for any x ∈ K,

Λ(x, r) =

q∑

i=1

Λ(x, r)χUi∩K(x) ≥
q∑

i=1

|λIi(x)|χUi∩K(x)r
d(Ii) ≥ C0

q∑

i=1

χUi∩K(x)r
ν(xi), (2.9)

where C0 = min{Ci|1 ≤ i ≤ q}, and χE denotes the indicator function of E. Observing that

rν(xi) ≥
(
min1≤i≤q δ

ν(xi)−ν̃(K)
)
rν̃(K) for 0 < r ≤ δ and 1 ≤ i ≤ q, (2.9) derives that

Λ(x, r) ≥ Crν̃(K) ∀x ∈ K, 0 < r ≤ δ,

where C = C0

(
min1≤i≤q δ

ν(xi)−ν̃(K)
)
> 0.

Proposition 2.2 provides us with the following volume estimates for the subunit ball, which

refine [50, Theorem 1].

Proposition 2.3 (Ball-Box theorem). For any compact set K ⊂ U , there exist positive constants

0 < C1 ≤ C2 and ρK > 0 such that

|B(x, r)| ≥ C1Λ(x, r) ∀x ∈ K, 0 < r ≤ max{δK , ρK}, (2.10)

and

|B(x, r)| ≤ C2Λ(x, r) ∀x ∈ K, 0 < r ≤ ρK , (2.11)

where |B(x, r)| is the n-dimensional Lebesgue measure of B(x, r), and δK := supx,y∈K d(x, y)
denotes the diameter of K with respect to the subunit metric d. Furthermore, if the assumption

(A) is satisfied (i.e. |B(x, r)| < +∞ for all x ∈ U and r > 0), we have

C1Λ(x, r) ≤ |B(x, r)| ≤ C2Λ(x, r) ∀x ∈ K, 0 < r ≤ max{δK , ρK}. (2.12)
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Proof. A well-known result by Nagel-Stein-Wainger [50] gives that, for any compact set K ⊂ U ,

there exist positive constants C > 0 and ρK > 0 such that for any x ∈ K and any 0 < r ≤ ρK ,

C−1Λ(x, r) ≤ |B(x, r)| ≤ CΛ(x, r). (2.13)

This yields (2.11), and also gives (2.10) and (2.12) provided δK ≤ ρK .

Assume that ρK < δK and ρK ≤ r ≤ δK . Since d(I) ≤ ns0, we deduce from (2.3) and (2.13)

that for any x ∈ K and ρK ≤ r ≤ δK ,

|B(x, r)| ≥ |B(x, ρK)| ≥ C−1
∑

I

|λI(x)|ρd(I)K = C−1
∑

I

|λI(x)|rd(I) ·
(ρK
r

)d(I)

≥ C−1
∑

I

|λI(x)|rd(I) ·
(
ρK
δK

)d(I)

≥ C−1

(
ρK
δK

)ns0∑

I

|λI(x)|rd(I) ≥ C1Λ(x, r),

where C1 = C−1
(

ρK
δK

)ns0
> 0 is a positive constant. This proves (2.10) as well as the first

inequality in (2.12).

Moreover, if the assumption (A) is satisfied, we can choose a point x0 ∈ K such that

{x ∈ U |d(x,K) := inf
y∈K

d(x, y) ≤ δK} ⊂ B(x0, 3δK).

Note that B(x, δK) ⊂ {x ∈ U |d(x,K) := infy∈K d(x, y) ≤ δK} for all x ∈ K. Thus, Proposition

2.2 implies that for any x ∈ K and ρK ≤ r ≤ δK ,

|B(x, r)| ≤ |B(x, δK)| ≤ |B(x0, 3δK)| ≤ C2Λ(x, r),

where C2 > 0 is a positive constant. This completes the proof of (2.12).

By Proposition 2.2 and Proposition 2.3, we can deduce that

Proposition 2.4. For any compact subset K ⊂ U , there exist C3 > 1 and ρK > 0 such that

|B(x, 2r)| ≤ C3|B(x, r)| ∀x ∈ K, 0 < r ≤ ρK
2
. (2.14)

Additionally,

C−1
3 |B(y, d(x, y))| ≤ |B(x, d(x, y))| ≤ C3|B(y, d(x, y))| ∀x, y ∈ K with d(x, y) ≤ ρK

2
.

(2.15)

Here, ρK is the same positive constant appeared in Proposition 2.3. Furthermore, if the assump-

tion (A) is satisfied (i.e. |B(x, r)| < +∞ for all x ∈ U and r > 0), (2.14) holds for all x ∈ K
and 0 < r ≤ δK = supx,y∈K d(x, y), and the restriction d(x, y) ≤ ρK

2
in (2.15) can be removed.

Next, we give the following estimates concerning the volume of subunit ball.
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Proposition 2.5. Let W ⊂⊂ U be a bounded open subset, µ = ξ + (η − 1)ν̃(W ) with η ≥ 1 and

ξ > 0. Then, there exists positive constant ρW > 0 such that for all x ∈ W and 0 < r ≤ ρW , we

have ∫

B(x,r)

d(x, y)µ

|B(x, d(x, y))|ηdy ≤ (C1C)
1−ηC3

2ξ

2ξ − 1
rξ, (2.16)

where ν̃(W ) = maxx∈W ν(x). Moreover, if nη > µ and the assumption (A) is satisfied, there

exists a positive constant C > 0 such that

∫

W

d(x, y)µ

|B(x, d(x, y))|ηdy ≤
[(

C2

C1

)η

+ 1

]
C3

(CC1)
µ
ν̃

2ξ

2ξ − 1
|W |

ξ

ν̃(W ) ∀x ∈ W. (2.17)

Here, C,C1, C2, C3 are the positive constants appeared in Proposition 2.2-Proposition 2.4.

Proof. For any x ∈ W , y ∈ B(x, r) and 0 < r ≤ ρW , we have d(x, y) < ρW . Proposition 2.2 and

(2.10) imply that d(x, y)µ ≤ (C1C)
1−ηd(x, y)ξ|B(x, d(x, y))|η−1. Then, using (2.14) we get

∫

B(x,r)

d(x, y)µ

|B(x, d(x, y))|ηdy ≤ (C1C)
1−η

∫

B(x,r)

d(x, y)ξ

|B(x, d(x, y))|dy

= (C1C)
1−η

∞∑

k=0

∫

{y∈U | r

2k+1 ≤d(x,y)< r

2k
}

d(x, y)ξ

|B(x, d(x, y))|dy

≤ (C1C)
1−η

∞∑

k=0

∫

{y∈U | r

2k+1≤d(x,y)< r

2k
}

1

|B
(
x, r

2k+1

)
|
( r
2k

)ξ
dy

≤ (C1C)
1−η

∞∑

k=0

|B
(
x, r

2k

)
|

|B
(
x, r

2k+1

)
|
( r
2k

)ξ
≤ (C1C)

1−ηC3

∞∑

k=0

( r
2k

)ξ

= (C1C)
1−ηC3

2ξ

2ξ − 1
rξ,

which yields (2.16). Additionally, if the assumption (A) is satisfied, we can derive from Proposi-

tion 2.4 that (2.16) holds for all x ∈ W and 0 < r ≤ max{ρW , δW}, where δW = supx,y∈W d(x, y)

denotes the diameter of W with respect to the subunit metric d.

Next, we construct the estimate (2.17) under assumption (A) and nη > µ. For any x ∈ W , we

can choose a suitable radius r0 > 0 such that |B(x, r0)| = |W |. Then, we have

|W \B(x, r0)| = |W \ (W ∩ B(x, r0))| = |W | − |W ∩ B(x, r0)|
= |B(x, r0)| − |W ∩ B(x, r0)| = |B(x, r0) \W |. (2.18)

We claim that r0 ≤ δW = supx,y∈W d(x, y). Indeed, if r0 > δW , then for any y ∈ W , we have

d(x, y) ≤ δW < r0, which implies that W ⊂ B(x, r0) and |W | < |B(x, r0)|. This contradicts the

fact that |B(x, r0)| = |W |.

15



If nη > µ, by (2.3) we see that t 7→ tµ

Λ(x,t)η
is a decreasing function on R+. It follows from

Proposition 2.3 and (2.18) that, for any x ∈ W ,

∫

W\B(x,r0)

d(x, y)µ

|B(x, d(x, y))|η dy ≤ C−η
1

∫

W\B(x,r0)

d(x, y)µ

Λ(x, d(x, y))η
dy ≤ C−η

1 |W \B(x, r0)|
rµ0

Λ(x, r0)η

= C−η
1 |B(x, r0) \W | rµ0

Λ(x, r0)η
≤ C−η

1

∫

B(x,r0)\W

d(x, y)µ

Λ(x, d(x, y))η
dy

≤
(
C2

C1

)η ∫

B(x,r0)\W

d(x, y)µ

|B(x, d(x, y))|ηdy.
(2.19)

Therefore, we conclude from Proposition 2.2 and Proposition 2.3, (2.16), and (2.19) that

∫

W

d(x, y)µ

|B(x, d(x, y))|ηdy =

∫

W\B(x,r0)

d(x, y)µ

|B(x, d(x, y))|ηdy +
∫

W∩B(x,r0)

d(x, y)µ

|B(x, d(x, y))|ηdy

≤
[(

C2

C1

)η

+ 1

] ∫

B(x,r0)

d(x, y)µ

|B(x, d(x, y))|ηdy

≤
[(

C2

C1

)η

+ 1

]
C3

(CC1)η−1

2ξ

2ξ − 1
rξ0

≤
[(

C2

C1

)η

+ 1

]
C3

(CC1)
µ
ν̃

2ξ

2ξ − 1
|W |

ξ

ν̃(W ) ,

which gives (2.17).

2.3. Degenerate Friedrichs-Poincaré type inequality

For Hörmander vector fields, the Poincaré-Wirtinger type inequality has attracted considerable

attention in the literature since Jerison’s work [38]. Further investigations have been carried out

by Saloff-Coste [52], Garofalo-Nhieu [27], and Hajłasz-Koskela [35], among others. However,

when addressing the Dirichlet problems of degenerate elliptic equations, we require the following

Friedrichs-Poincaré type inequality, which is entirely different from the Poincaré-Wirtinger type

inequality and much less known.

Proposition 2.6 (Degenerate Friedrichs-Poincaré Inequality). Let X = (X1, X2, . . . , Xm) be the

smooth vector fields defined on U , satisfying the Hörmander’s condition (H). For any open

bounded subset W ⊂⊂ U and positive number p ≥ 1, there exists a positive constant C > 0
such that ∫

W

|u|pdx ≤ C

∫

W

|Xu|pdx, ∀u ∈ W1,p
X,0(W ). (2.20)

The statement of (2.20) originated from [53, Lemma 5] assumes the smoothness of the bound-

ary ∂W and the existence of at least one vector field Xj (1 ≤ j ≤ m) that can be globally

straightened in W . Moreover, for the case when p = 2, (2.20) was also discussed in [41, Lemma

3.2] and [13, Proposition 2.1], provided there exists an additional non-characteristic condition

on the smooth boundary of W . However, it’s worth noting that for general Hörmander vector
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fields, the characteristic set in the boundary may not be empty, even for a smooth domain (e.g.,

a unit ball in the Heisenberg group). Therefore, the smoothness and non-characteristic assump-

tions might be too restrictive in many degenerate situations. To eliminate these limitations, we

propose a generalization of (2.20) to the arbitrary open bounded subsets U1, without imposing

any additional assumptions on its boundary. This generalization extends the applicability of the

Friedrichs-Poincaré inequality encompass a wider range of scenarios.

Proof of Proposition 2.6. We prove (2.20) by contradiction. Suppose that

inf
‖ϕ‖Lp(W )=1, ϕ∈W1,p

X,0(W )
‖Xϕ‖p

Lp(W ) = 0.

Then there is a sequence {ϕj}∞j=1 in W1,p
X,0(W ) such that ‖Xϕj‖Lp(W ) → 0 with ‖ϕj‖Lp(W ) = 1.

[20, Corollary 3.3] indicates that W1,p
X,0(W ) is compactly embedded into Lp(W ) for p ≥ 1. This

allows us to select a subsequence {ϕji}∞i=1 ⊂ {ϕj}∞j=1 ⊂ W1,p
X,0(W ) such that ϕji → ϕ0 in Lp(W )

and ϕ0 ∈ Lp(W ) with ‖ϕ0‖Lp(W ) = 1. Now, for any 1 ≤ l ≤ m and u ∈ C∞
0 (W ), we have

∫

W

ϕ0X
∗
l udx = lim

i→∞

∫

W

ϕjiX
∗
l udx = lim

i→∞

∫

W

uXlϕjidx = 0. (2.21)

Hence, Xϕ0 = 0, ϕji → ϕ0 in W1,p
X,0(W ), and ϕ0 ∈ W1,p

X,0(W ). Denote by △X := −
∑m

j=1X
∗
jXj

the formal self-adjoint Hörmander operator associated with X = (X1, X2, . . . , Xm). Substituting

u with Xlu in (2.21) yields:

(ϕ0,△Xu)L2(W ) = −
m∑

l=1

∫

W

ϕ0X
∗
l Xludx = 0,

which implies △Xϕ0 = 0 in D′(W ). The hypoellipticity of △X yields that ϕ0 ∈ C∞(W ).
Moreover, since Xjϕ0 = 0 on W for 1 ≤ j ≤ m and ‖ϕ0‖Lp(W ) = 1, the Hörmander’s condition

implies that ∂xj
ϕ0 = 0 on W for 1 ≤ j ≤ n. That means ϕ0 must be a non-zero constant on W .

Next, we choose the sequence {uk}∞k=1 ⊂ C∞
0 (W ) such that uk → ϕ0 in W1,p

X,0(W ), and we

denote by

uk :=

{
uk, on W ,

0, on U \W ;
and ϕ0 :=

{
ϕ0, on W ,

0, on U \W .

It follows that {uk}∞k=1 ⊂ C∞
0 (U) is a Cauchy sequence in W1,p

X,0(U) with uk → ϕ0 in Lp(U). As

a result, we have ϕ0 ∈ W1,p
X,0(U), ‖uk − ϕ0‖W1,p

X,0(U) = ‖uk − ϕ0‖W1,p
X,0(W ) → 0 and

∫

U

|Xϕ0|pdx =

∫

W

|Xϕ0|pdx = 0.

Let q = p

p−1
for p > 1 and q = ∞ for p = 1. For any v ∈ C∞

0 (U), we have

|(ϕ0,△Xv)L2(U)| ≤
m∑

j=1

|(Xjϕ0, Xjv)L2(U)| ≤
m∑

j=1

‖Xjϕ0‖Lp(U) · ‖Xjv‖Lq(U) = 0,

and therefore △Xϕ0 = 0 in D′(U). The hypoellipticity of △X also gives ϕ0 ∈ C∞(U), which

leads a contradiction since ϕ0 is not smooth across ∂W .
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2.4. Chain rules in generalized Sobolev spaces

Before delving into the chain rules in the generalized Sobolev spaces, we give the following

useful proposition.

Proposition 2.7. Let Ω ⊂⊂ U be a bounded open subset. For p ≥ 1 and any u ∈ W1,p
X (U), if

supp u is a compact subset of Ω, then u ∈ W1,p
X,0(Ω).

Proof. Clearly, u ∈ W1,p
X (U) implies u ∈ W1,p

X (Ω). Since supp u is a compact subset in Ω, there

exists a function f ∈ C∞
0 (Ω) such that f ≡ 1 on supp u and supp f ⊂ Ω. Owing to the Meyers-

Serrin’s theorem (see [27, Theorem 1.13]), we can find a sequence {ψi}∞i=1 ⊂ C∞(Ω) ∩W1,p
X (Ω)

such that ψi → u in W1,p
X (Ω). Observing that fψi ∈ C∞

0 (Ω) and

‖fψi − u‖p
W1,p

X
(Ω)

= ‖fψi − fu‖p
W1,p

X
(Ω)

= ‖X(f(ψi − u))‖p
Lp(Ω) + ‖f(ψi − u)‖p

Lp(Ω)

≤ C(‖X(ψi − u)‖p
Lp(Ω) + ‖ψi − u‖p

Lp(Ω)) → 0

as i→ ∞, we conclude that u ∈ W1,p
X,0(Ω).

Then, we have

Proposition 2.8 (Chain rules). Let U1 be an open subset of U . Suppose that F ∈ C1(R) with

F ′ ∈ L∞(R). Then for any u ∈ W1,p
X (U1) with p ≥ 1, we have

Xj(F (u)) = F ′(u)Xju in D′(U1) for j = 1, . . . , m. (2.22)

Moreover,

(1) if F (0) = 0, then F (u) ∈ W1,p
X (U1);

(2) if F (0) = 0 and u ∈ W1,p
X,0(U1), then F (u) ∈ W1,p

X,0(Ω).

Proof. The Meyers-Serrin theorem (see [27, Theoerm 1.13]) tells us that for any u ∈ W1,p
X (U1),

there exists {uk}∞k=1 ⊂ C∞(U1) ∩W1,p
X (U1) such that uk → u in W1,p

X (U1). Since for any x ∈ R

|F (x)| ≤ |F (x)− F (0)|+ |F (0)| ≤ ‖F ′‖L∞(R)|x|+ |F (0)|,

it follows that F (u), F (uk) ∈ Lp
loc(U1) ⊂ D′(U1). Additionally,

∫

U1

|F (uk)− F (u)|pdx ≤ ‖F ′‖p
L∞(R)

∫

U1

|uk − u|pdx→ 0, (2.23)

which implies F (uk) → F (u) in Lp(U1). Recalling that uk → u in Lp(U1), there is a subsequence

{uki}∞i=1 that converges to u almost everywhere on U1. Thus, F ′(uki) → F ′(u) almost everywhere

on U1. For each 1 ≤ j ≤ m, applying the dominated convergence theorem, we obtain
∫

U1

|Xj(F (uki))− F ′(u)Xju|pdx =

∫

U1

|F ′(uki)Xjuki − F ′(u)Xju|pdx

≤ C

∫

U1

|F ′(uki)Xjuki − F ′(uki)Xju|pdx+ C

∫

U1

|F ′(uki)Xju− F ′(u)Xju|pdx

≤ C‖F ′‖p
L∞(R)

∫

U1

|Xjuki −Xju|pdx+ C

∫

U1

|F ′(uki)− F ′(u)|p|Xju|pdx→ 0,

(2.24)
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which implies that Xj(F (uki)) = F ′(uki)Xjuki ∈ Lp(U1) converges to F ′(u)Xju in Lp(U1).
Therefore, F ′(uki)Xjuki → F ′(u)Xju in D′(U1). Observing that for any ϕ ∈ C∞

0 (U1), we have

∫

U1

F ′(uki)Xjukiϕdx =

∫

U1

Xj(F (uki))ϕdx =

∫

U1

F (uki)X
∗
jϕdx. (2.25)

Letting i→ ∞ in (2.25) and using F (uki) → F (u) in D′(U1), we obtain

∫

U1

F ′(u)Xjuϕdx =

∫

U1

F (u)X∗
jϕdx ∀ϕ ∈ C∞

0 (U1).

Hence, (2.22) is proved.

If F (0) = 0, then F (u) ∈ Lp(U1). It derives from (2.22) that

‖XF (u)‖Lp(U1) ≤ ‖F ′‖L∞(Rn)‖Xu‖Lp(U1) <∞.

Thus, F (u) ∈ W1,p
X (U1). Suppose further that u ∈ W1,p

X,0(U1), then we can choose an approximat-

ing sequence {uk}∞k=1 ⊂ C∞
0 (U1) such that ‖uk−u‖W1,p

X
(U1)

→ 0 and F (uk) ∈ C1
0(U1). It follows

from (2.23) and (2.24) that ‖F (uki)− F (u)‖W1,p
X

(U1)
→ 0, which yields F (u) ∈ W1,p

X,0(U1).

As a result of Proposition 2.8, we have

Proposition 2.9. Let U1 be an open subset of U . For any u ∈ W1,p
X (U1) and any c ∈ R, we have

Xj(u− c)+ = H(u− c)Xju and Xj(u− c)− = −H(c− u)Xju in D′(U1), (2.26)

where H(x) = χ{x∈R|x>0}(x) and χE denotes the indicator function of E. Furthermore,

(1) if c ≥ 0, we have (u− c)+, (u+ c)− ∈ W1,p
X (U1);

(2) if c ≥ 0 and u ∈ W1,p
X,0(U1), then (u− c)+, (u+ c)− ∈ W1,p

X,0(U1).

Proof. Suppose first that c ∈ R. For any ε > 0, we define

Fc,ε(x) =

{
[(x− c)2 + ε2]

1
2 − ε, x > c;

0, x ≤ c.

It follows that Fc,ε ∈ C1(R), |F ′
c,ε(x)| ≤ 1 and

F ′
c,ε(x) =

{
x−c√

(x−c)2+ε2
, x > c;

0, x ≤ c.

Moreover, we have limε→0 Fc,ε(x) = (x − c)+ and limε→0 F
′
c,ε(x) = χ{x|x>c}(x) for all x ∈ R.

For any u ∈ W1,p
X (U1) and j = 1, . . . , m, Proposition 2.8 yields that

∫

U1

Fc,ε(u)X
∗
jϕdx =

∫

U1

ϕF ′
c,ε(u)Xjudx ∀ϕ ∈ C∞

0 (U1). (2.27)
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Letting ε → 0+ in (2.27), by dominated convergence theorem we obtain
∫

U1

(u− c)+X
∗
jϕdx =

∫

{x∈U1|u(x)>c}

ϕXjudx, ∀ϕ ∈ C∞
0 (U1).

Therefore, Xj(u − c)+ = H(u − c)Xju in D′(U1). Similarly, we can deduce that Xj(u − c)− =
−H(c − u)Xju in D′(U1) by replacing Fc,ε(x) to Gc,ε(x) := F−c,ε(−x) in the arguments above.

Thus, (2.26) is achieved.

Assuming that c ≥ 0, by (x − c)+ ≤ |x| and (2.26) we obtain (u − c)+ ∈ W1,p
X (U1). If we

further suppose that u ∈ W1,p
X,0(U1), Proposition 2.8 gives that Fc,ε(u) ∈ W1,p

X,0(U1). Note that
∫

U1

|Fc,ε(u)− (u− c)+|pdx ≤
∫

U1

|(u− c)+|pdx ≤
∫

U1

|u|pdx

and∫

U1

|XjFc,ε(u)−Xj(u− c)+|pdx =

∫

U1

|F ′
c,ε(u)−H(u− c)|p|Xju|pdx ≤ 2p

∫

U1

|Xju|pdx.

Using the dominated convergence theorem we obtain Fc,ε(u) → (u− c)+ in W1,p
X,0(U1), and there-

fore (u− c)+ ∈ W1,p
X,0(U1). The proof for the situation (u+ c)− is similar and we omit here.

3. Representation formulas and weak-Lp estimates of T operators

In this section, we provide the key tools for constructing Sobolev inequalities on Wk,p
X,0(Ω),

including two different types of representation formulas and weighted weak-Lp estimates.

3.1. Two types of Representation formulas

Proposition 3.1 (Type I representation formula, see [23, Proposition 2.12] and [44]). Suppose

X = (X1, X2, . . . , Xm) satisfy the condition (H), and W ⊂⊂ U is a bounded open subset. Then,

there exist positive constantsC > 0, α1 ≥ 1 and r0 > 0 such that for any x0 ∈ W and 0 < r < r0,
we have

|f(x)− fB| ≤ C

∫

B(x0,α1r)

d(x, y)

|B(x, d(x, y))| |Xf(y)|dy (3.1)

holds for all x ∈ B(x0, r) and any f ∈ C∞(B(x0, α1r)). Here α1 is a positive constant indepen-

dent of f and B(x0, r), and fB = |B(x0, r)|−1
∫
B(x0,r)

f(y)dy.

The original proof of (3.1) in [23, Proposition 2.12] consists of an elaborate argument relying

directly on the lifting technique introduced by Rothschild-Stein [51], which also improved the pre-

vious results in [43, pp. 384-388]. As is well-known, the type I representation formula (3.1) plays

a crucial role in establishing the Poincaré-Wirtinger type inequality and subelliptic Sobolev em-

bedding in the space W1,p
X (Ω) associated with certain special domains (e.g. X-PS domain), as well

as the relative isoperimetric inequality (see [24, 27, 43]). In Section 4 below, this representation

formula will be utilized in proving the Sobolev inequality in the supercritical case kp > ν̃.

We must mention that, to construct the Sobolev inequalities on Wk,p
X,0(Ω) in the subcritical case

kp < ν̃ and critical case kp = ν̃, a different type of representation formula is required, which is

entirely distinct from (3.1).
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Proposition 3.2 (Type II representation formula). Assume X = (X1, X2, . . . , Xm) satisfy the

condition (H), and W ⊂⊂ U is a bounded open subset. Then, there exists a positive constant

C > 0 such that for any f ∈ C∞
0 (W ), we have

|f(x)| ≤ C

∫

W

d(x, y)

|B(x, d(x, y))|(|Xf(y)|+ |f(y)|)dy, ∀x ∈ W. (3.2)

The type II representation formula (3.2) without the term f in the right-hand side has been pre-

viously presented in [6, Proposition 2.4], [7, p. 210, Remark] and [43, Lemma 5.1]. As indicated

in those references, it was obtained from the identity

u(x) =

∫

W

XΓ(x, y) ·Xu(y)dy (3.3)

and the associated estimate

|XΓ(x, y)| ≤ C
d(x, y)

|B(x, d(x, y))| (3.4)

mentioned in [50, p. 114, Corollary], where Γ(x, y) denotes the global fundamental solution of the

Hörmander operator −△X =
∑m

j=1X
∗
jXj in Rn. However, as pointed out by Nagel [49, Theorem

11] and Biagi-Bonfiglioli-Bramanti [2, p. 1882], the kernel function Γ(x, y) in (3.3) and (3.4),

derived by locally saturating the lifted variables for the parametrix Γ̃ associated with the lifting

operators −△̃X =
∑m

j=1 X̃
∗
j X̃j , should only be expected to be a local parametrix for −△X , but

not a genuine global fundamental solution in Rn. Therefore, the identity (3.3) is invalid, and in

our opinion, there exist gaps in the proofs provided in the aforementioned references.

To provide a rigorous proof of Proposition 3.2, we invoke the celebrated lifting-approximating

theory by Rothschild-Stein [51, Part II]. In precisely, we have

Proposition 3.3 ([5, Theorem 10.6, Theorem 10.7, Proposition 10.39, Corollary 10.37]). For any

x0 ∈ U , suppose that the vector fields X = (X1, X2, . . . , Xm) satisfying Hörmander’s condition

of step s(x0) at x0. Then we have:

(1) There exists an integer l and vector fields X̃1, X̃2, . . . , X̃m defined in an open neighborhood

W0 of (x0, 0) ∈ Rn+l, of the form

X̃j = Xj +
l∑

i=1

bji(x, t1, t2, . . . , ti−1)∂ti ,

where bji are polynomials such that the vector fields X̃1, X̃2, . . . , X̃m are free up to step s(x0)
and satisfying Hörmander’s condition of step s(x0) in W0.

(2) There exists a structure of stratified homogeneous group G in RN = Rn+l, with canonical

generators Y1, Y2, . . . , Ym, and for any η in a neighborhood of (x0, 0), there exists a smooth

diffeomorphism ξ 7→ Θη(ξ) from a neighborhood of η onto a neighborhood of the origin in G,

smoothly depending on η, such that for any smooth function f : G → R,

X̃j(f(Θη(·)))(ξ) = (Yjf +Rη,jf)(Θη(ξ)), j = 1, . . . , m.

Here, the remainder Rη,j , depends smoothly on η, is a smooth vector field with local degree

≤ 0.
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(3) The function Θ(η, ξ) := Θη(ξ) satisfies Θ(η, ξ)−1 = −Θ(ξ, η). Moreover, the change of

coordinates from RN to G is given by ξ → u = Θ(η, ξ), which admits a Jacobian determinant

such that dξ = c(η)(1 +O(‖u‖G))du. Here, c(η) is a smooth function, bounded and bounded

away from zero, and ‖ · ‖G is a homogeneous norm on G.

(4) Let d̃ be the subunit metric induced by the vector fields X̃1, X̃2, . . . , X̃m on W0. For any

homogeneous norm ‖ · ‖G on G, the function ρ(ξ, η) = ‖Θ(ξ, η)‖G is a quasidistance, locally

equivalent to the subunit metric d̃.

(5) For any points ξ = (x, s) and η = (y, t) in W0, we have

d̃(ξ, η) = d̃((x, s), (y, t)) ≥ d(x, y). (3.5)

(6) Let Q0 be the homogeneous dimension of G, then for any compact subset K ⊂ W0, there exist

C > 1 and δ0 > 0 such that

C−1rQ0 ≤ |B̃(ξ, r)| ≤ CrQ0 (3.6)

holds for ξ ∈ K and 0 < r ≤ δ0. Here, B̃(ξ, r) = {η ∈ W0|d̃(ξ, η) < r} denotes the subunit

ball induced by the subunit metric d̃.

(7) For any ξ = (x, s) ∈ Rn+l, we denote by π1(ξ) := π1(x, s) = x the projection from Rn+l to

Rn. Then, π1(B̃(ξ, r)) = B(x, r).

(8) For any compact set K ⊂W0, there exist positive constants C > 0 and δ0 > 0 such that

|{t ∈ Rl|(y, t) ∈ B̃((x, 0), r)}| ≤ C
|B̃((x, 0), r)|
|B(x, r)| (3.7)

holds for any (x, 0) ∈ K, y ∈ π1(W0) and 0 < r ≤ δ0. Here, |E| denotes the Lebesgue

measure of the set E in Rk for the suitable dimension k.

Thanks to Proposition 3.3 and the estimates of type λ operators, we obtain

Lemma 3.1. For any x0 ∈ U , let X = (X1, X2, . . . , Xm) be vector fields satisfying Hörmander’s

condition of step s(x0) at x0, and let W0 be an open neighborhood of (x0, 0) ∈ Rn+l as given by

Proposition 3.3. Then, for any bounded open subset W1 ⊂⊂ W0 and any function a ∈ C∞
0 (W1),

there exists a positive constant C > 0 such that for any u ∈ C∞
0 (W1), we have

|a(ξ)u(ξ)| ≤ C

∫

W1

(|X̃u(η)|+ |u(η)|) dη

d̃(ξ, η)Q0−1
∀ξ ∈ W1, (3.8)

where X̃ = (X̃1, X̃2, . . . , X̃m) denotes the lifting vector fields of X = (X1, X2, . . . , Xm), Q0 is

the homogeneous dimension of G, and d̃ is the subunit metric induced by X̃ in W0.

Proof. Using [51, (15.5), p. 298] (also see [5, Theorem 11.19, Theorem 11.25]), we deduce that

for any a ∈ C∞
0 (W1), there exists linear operators T0, T1, . . . , Tm of type 1 such that

au =
m∑

j=1

TjX̃ju+ T0u ∀u ∈ C∞
0 (W1). (3.9)
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Here, the operators T0, T1, . . . , Tm are defined in terms of some type 1 kernels K0, K1, . . . , Km as

follows:

(Tjf)(ξ) :=

∫

W1

Kj(ξ, η)f(η)dη ∀f ∈ C∞
0 (W1), 0 ≤ j ≤ m. (3.10)

For precise definitions of operators and kernels of type λ, one can refer to [5, Defintion 11.11,

Defintion 11.7] and [51, (13.3), (13,4), pp. 288-289]. By means of [51, (13.4), p. 289] and [5,

Theorem 11.10], we obtain the following growth estimate for kernels of type 1:

|Kj(ξ, η)| ≤ C(ρ(ξ, η))1−Q0, (3.11)

where ρ(ξ, η) = ‖Θ(ξ, η)‖G is the quasidistance and Q0 is the homogeneous dimension of G

given by Proposition 3.3 (see [51, (13.3), (13.6)]). Then, it follows from Proposition 3.3 (3) that

dη = c(ξ)(1 + O(‖u‖G))du, where c(ξ) is a smooth function, bounded and bounded away from

zero. Therefore, for any small ε > 0 and any fixed ξ ∈ W1, (3.11) derives that

∫

ρ(ξ,η)<ε

|Kj(ξ, η)|dη ≤ C

∫

‖u‖G<ε

‖u‖1−Q0

G du <∞,

which confirms the well-definedness of T0, T1, . . . , Tm. Since ρ is equivalent to the subunit metric

d̃ in W1, (3.9)-(3.11) imply that

|a(ξ)u(ξ)| ≤ C

∫

W1

(
m∑

j=1

|X̃ju(η)|+ |u(η)|
)
d̃(ξ, η)1−Q0dη ∀ξ ∈ W1.

Owing to Proposition 3.3 and Lemma 3.1, we can derive the local version of Proposition 3.2.

Lemma 3.2. Let X = (X1, X2, . . . , Xm) satisfy condition (H). For any fixed point x0 ∈ U , there

exists a open neighborhood U(x0) of x0 such that for any u ∈ C∞
0 (U(x0)), we have

|u(x)| ≤ C

∫

U(x0)

d(x, y)

|B(x, d(x, y))|(|Xu(y)|+ |u(y)|)dy, ∀x ∈ U(x0). (3.12)

Proof. According to Proposition 3.3, for any fixed point x0 ∈ U , there exist lifting vector fields

X̃1, X̃2, . . . , X̃m defined in an open neighborhood W0 of (x0, 0) ∈ Rn+l for some l ∈ N. Let d̃

be the subunit metric induced by X̃1, X̃2, . . . , X̃m in W0, and denote by B̃((x0, 0), r) = {(y, t) ∈
W0|d̃((x0, 0), (y, t)) < r} the subunit ball in W0 associated with d̃. We first choose a bounded

open neighborhood W3 of (x0, 0) such that (x0, 0) ∈ W3 ⊂⊂ W0 and π1(W3) is a compact subset

of U , where π1(ξ) = π1(x, s) = x denotes the projection from Rn+l to Rn. From properties

(6) and (8) in Proposition 3.3, there exists a positive constant δ0 associated with the compact set

W3 such that (3.6) and (3.7) hold for K = W3. Besides, by Proposition 2.3, there exist positive

constants C > 1 and ρπ1(W3)
> 0 such that

C−1Λ(x, r) ≤ |B(x, r)| ≤ CΛ(x, r) ∀x ∈ π1(W3), 0 < r ≤ ρπ1(W3)
. (3.13)
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Then, we choose some positive constants 0 < δ2 < δ1 ≤ min{1
2
δ0,

1
3
ρπ1(W3)

} and T > 0 such that

W2 := B(x0, δ2)× (−T, T )l ⊂⊂ W1 := B̃((x0, 0), δ1) ⊂ B̃((x0, 0), 3δ1) ⊂W3 ⊂⊂ W0. (3.14)

Let U(x0) := B(x0, δ2) be the open neighborhood of x0. We next show that (3.12) holds on U(x0).
Set the cut-off functions a ∈ C∞

0 (W1) with a(ξ) = 1 on W2, and b ∈ C∞
0 ((−T, T )l) with

b(s) = 1 on (−1
2
T, 1

2
T )l. For any u ∈ C∞

0 (U(x0)), by (3.14) we have u(x)b(s) ∈ C∞
0 (W1).

Additionally, W1 ⊂ B̃((x, 0), 2δ1) for all ξ = (x, 0) ∈ W2. Note that X̃ju = Xju. Owing to

Lemma 3.1, for any x ∈ U(x0) such that ξ = (x, 0) ∈ W2, we obtain

|u(x)| = |a(x, 0)u(x)b(0)| ≤ C

∫

W1

(
m∑

j=1

|X̃j(ub)(η)|+ |(ub)(η)|
)
d̃(ξ, η)1−Q0dη

= C

∫

π1(W1)

(|Xu(y)|+ |u(y)|)
(∫

{t∈Rl|(y,t)∈W1}

dt

d̃((x, 0), (y, t))Q0−1

)
dy

≤ C

∫

π1(W1)

(|Xu(y)|+ |u(y)|)
(∫

{t∈Rl|(y,t)∈B̃((x,0),2δ1)}

dt

d̃((x, 0), (y, t))Q0−1

)
dy

= C

∫

B(x0,δ1)

(|Xu(y)|+ |u(y)|)
(∫

{t∈Rl|(y,t)∈B̃((x,0),2δ1)}

dt

d̃((x, 0), (y, t))Q0−1

)
dy,

(3.15)

where Q0 is the homogeneous dimension of G.

Let us examine the integral

I(x, y) :=

∫

{t∈Rl|(y,t)∈B̃((x,0),2δ1)}

dt

d̃((x, 0), (y, t))Q0−1
(3.16)

for fixed (x, 0) ∈ W2 and y ∈ B(x0, δ1) ⊂ π1(W0). It follows from (3.14) that B̃((x, 0), 2δ1) ⊂
B̃((x0, 0), 3δ1) ⊂⊂ W0. Thus, Proposition 3.3 (5) indicates that for any t ∈ Rl satisfying (y, t) ∈
B̃((x, 0), 2δ1), we have

d(x, y) ≤ d̃((x, 0), (y, t)) < 2δ1. (3.17)

According to (3.17), the estimates of (3.16) can be divided into the following two cases:

Case 1: δ1 ≤ d(x, y). Using (3.6), (3.7) and (3.17), we have

I(x, y) =

∫

{t∈Rl|(y,t)∈B̃((x,0),2δ1)}

dt

d̃((x, 0), (y, t))Q0−1

≤ 1

d(x, y)Q0−1
|{t ∈ Rl|(y, t) ∈ B̃((x, 0), 2δ1)}|

≤ C

d(x, y)Q0−1
· |B̃((x, 0), 2δ1)|

|B(x, 2δ1)|

≤ C

d(x, y)Q0−1
· (2δ1)

Q0

|B(x, 2δ1)|
≤ C

d(x, y)

|B(x, d(x, y))| ,

(3.18)

where C > 0 is a positive constant independent of x and y.
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Case 2: δ1 > d(x, y). In this case, we can choose an integer k0 ≥ 1 (depends on x, y and δ1), such

that 2k0d(x, y) < 2δ1 ≤ 2k0+1d(x, y). Then we have

I(x, y) =

∫

{t∈Rl|(y,t)∈B̃((x,0),2δ1)}

dt

d̃((x, 0), (y, t))Q0−1

=

k0−1∑

k=0

∫

{t∈Rl|(y,t)∈B̃((x,0),2k+1d(x,y))\B̃((x,0),2kd(x,y))}

dt

d̃((x, 0), (y, t))Q0−1

+

∫

{t∈Rl|(y,t)∈B̃((x,0),2δ1)\B̃((x,0),2k0d(x,y))}

dt

d̃((x, 0), (y, t))Q0−1
:= I1(x, y) + I2(x, y).

(3.19)

By (3.6), (3.7) and (3.13), we obtain

I1(x, y) =

k0−1∑

k=0

∫

{t∈Rl|(y,t)∈B̃((x,0),2k+1d(x,y))\B̃((x,0),2kd(x,y))}

dt

d̃((x, 0), (y, t))Q0−1

≤
k0−1∑

k=0

|{t ∈ Rl|(y, t) ∈ B̃((x, 0), 2k+1d(x, y))}|
(2kd(x, y))Q0−1

≤ C

k0−1∑

k=0

|B̃((x, 0), 2k+1d(x, y))|
(2kd(x, y))Q0−1|B(x, 2k+1d(x, y))|

≤ C

k0−1∑

k=0

2Q0+kd(x, y)

|B(x, 2k+1d(x, y))| ≤ C

k0−1∑

k=0

2Q0+kd(x, y)∑
I |λI(x)|(2k+1d(x, y))d(I)

≤ C

k0−1∑

k=0

2Q0+kd(x, y)

2(k+1)n
∑

I |λI(x)|(d(x, y))d(I)
≤ C2Q0−nd(x, y)

(1− 21−n)|B(x, d(x, y))| ,

(3.20)

where C > 0 is a positive constant independent of x, y and k0. Similarly, using 2k0d(x, y) ≤
2δ1 ≤ 2k0+1d(x, y), we deduce from (3.6), (3.7) and (3.13) that

I2(x, y) =

∫

{t∈Rl|(y,t)∈B̃((x,0),2δ1)\B̃((x,0),2k0d(x,y))}

dt

d̃((x, 0), (y, t))Q0−1

≤ |{t ∈ Rl|(y, t) ∈ B̃((x, 0), 2δ1)}|
(2k0d(x, y))Q0−1

≤ 1

(2k0d(x, y))Q0−1

|B̃((x, 0), 2δ1)|
|B(x, 2δ1)|

≤ C

(2k0d(x, y))Q0−1

(2δ1)
Q0

|B(x, 2k0d(x, y))| ≤
C

(2k0d(x, y))Q0−1

(2k0+1d(x, y))Q0

∑
I |λI(x)|(2k0d(x, y))d(I)

≤ C

(2k0d(x, y))Q0−1

(2k0+1d(x, y))Q0

2k0n
∑

I |λI(x)|d(x, y)d(I)
≤ C2Q0d(x, y)

|B(x, d(x, y))| ,
(3.21)

where C > 0 is a positive constant independent of x, y and k0.

Hence, we conclude from (3.15)-(3.21) that

|u(x)| ≤ C

∫

U(x0)

d(x, y)

|B(x, d(x, y))|(|Xu(y)|+ |u(y)|)dy ∀x ∈ U(x0),
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where U(x0) = B(x0, δ2) ⊂ B(x0, δ1), and C > 0 is a positive constant independent of x.

Now, we can complete the proof of Proposition 3.2.

Proof of Proposition 3.2. Since W is a compact subset of U , Lemma 3.2 allows us to choose a

finite open cover {U(xi)}l0i=1 of W and corresponding positive constants {C(xi)}l0i=1 such that for

any u ∈ C∞
0 (U(xi)),

|u(x)| ≤ C(xi)

∫

U(xi)

d(x, y)

|B(x, d(x, y))|(|Xu(y)|+ |u(y)|)dy, ∀x ∈ U(xi). (3.22)

By partition of unity, there exists a collection of cut-off functions {ψi}l0i=1 such that ψi ∈ C∞
0 (U(xi)),

0 ≤ ψi ≤ 1, and
∑l0

i=1 ψi(x) = 1 for all x ∈ W . As a result of (3.22), for any f ∈ C∞
0 (W ),

|f(x)| ≤
l0∑

i=1

|ψi(x)f(x)| ≤
l0∑

i=1

C(xi)

∫

U(xi)

d(x, y)

|B(x, d(x, y))|(|X(ψif)|+ |ψif |)dy

≤ C

∫

W

d(x, y)

|B(x, d(x, y))|(|Xf(y)|+ |f(y)|)dy ∀x ∈ W,

where C > 0 is a positive independent of x.

Remark 3.1. In general, the f term on the right-hand side of (3.2) cannot be eliminated due to

the locality of Lemma 3.2 and the partition of unity arguments.

3.2. Weighted weak-Lp estimates of T operators

Let W ⊂⊂ U be a bounded open subset, and Λ(x, r) denotes the Nagel-Stein-Wainger poly-

nomial mentioned in (2.3) above. Next, we are devoted to the weighted weak-Lp estimates of the

following linear operators:

Tf(x) :=

∫

W

d(x, y)

Λ(x, d(x, y))
f(y)dy. (3.23)

For this purpose, we employ an abstract lemma from harmonic analysis. Consider a measure

space (X ,A, µ), where X is a set, A is a σ-algebra on X , and µ is a positive measure defined on

(X ,A). Then, we have

Lemma 3.3. Let K(x, y) be a measurable function on X × X such that for some r > 1, K(·, y)
is weak-Lr uniformly in y and

sup
y∈X

‖K(·, y)‖Lr
w(X ,dµ) <∞.

Then the operator

Tf =

∫

X

K(·, y)f(y)dµ(y)
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is bounded from L1(X , dµ) to Lr
w(X , dµ). Moreover,

‖Tf‖Lr
w(X ,dµ) ≤

22−
1
r

(r − 1)
1
r

‖f‖L1(X ,dµ) sup
y∈X

‖K(·, y)‖Lr
w(X ,dµ).

Here, Lr
w(X , dµ) is the weak-Lr space on X with respect to the measure µ, and ‖f‖Lr

w(X ,dµ)

denotes the weak-Lr norm in Lr
w(X , dµ).

Lemma 3.3 is a refinement of [22, Lemma 15.3]. We present the proof as follows:

Proof of Lemma 3.3. Without loss of generality, we can suppose that ‖f‖L1(X ,dµ) = 1. For any

s > 0, we let K(x, y) = K1(x, y) +K2(x, y), where

K1(x, y) =

{
K(x, y), |K(x, y)| ≥ s

2
;

0, |K(x, y)| < s
2
,

and K2(x, y) =

{
0, |K(x, y)| ≥ s

2
;

K(x, y), |K(x, y)| < s
2
.

We then define T1f :=
∫
X
K1(·, y)f(y)dµ(y), T2f :=

∫
X
K2(·, y)f(y)dµ(y), and adopt the nota-

tion

βTf(s) := µ({x ∈ X ||Tf(x)| > s}) ∀s > 0.

It follows that βTf(2s) ≤ βT1f(s) + βT2f(s). Since

|T2f(x)| ≤
∫

X

|K2(x, y)||f(y)|dµ(y)≤
s

2
,

we have {x ∈ X ||T2f(x)| > s} = ∅ and βT2f(s) = 0 for any s > 0.

Next, for any fixed y ∈ X , we have

∫

X

|K1(x, y)|dµ(x) =
∫ +∞

s
2

βK(·,y)(t)dt ≤
∫ +∞

s
2

‖K(·, y)‖rLr
w(X ,dµ)

tr
dt

=
1

r − 1

(s
2

)1−r

‖K(·, y)‖rLr
w(X ,dµ).

Hence,

‖T1f‖L1(X ,dµ) =

∫

X

|T1f(x)|dµ(x) ≤
∫

X

|f(y)|
(∫

X

|K1(x, y)|dµ(x)
)
dµ(y)

≤
[
sup
y∈X

∫

X

|K1(x, y)|dµ(x)
]
·
∫

X

|f(y)|dµ(y)

≤ 1

r − 1

(s
2

)1−r

sup
y∈X

‖K(·, y)‖rLr
w(X ,dµ).

As a result, we have for any s > 0,

βTf (2s) ≤ βT1f(s) ≤
‖T1f‖L1(X ,dµ)

s
≤ 1

(r − 1)21−r
s−r

(
sup
y∈X

‖K(·, y)‖Lr
w(X ,dµ)

)r

,

27



which yields that

‖Tf‖Lr
w(X ,dµ) = sup

s>0

(
(2s)[βTf(2s)]

1
r

)
≤ 22−

1
r

(r − 1)
1
r

sup
y∈X

‖K(·, y)‖Lr
w(X ,dµ).

According to Lemma 3.3, we have

Proposition 3.4. Let X = (X1, X2, . . . , Xm) satisfy condition (H). Suppose that W ⊂⊂ U is a

bounded open subset. Then, for every n-tuple I = (i1, i2, . . . , in) with 1 ≤ ij ≤ l, the linear

operator

Tf =

∫

W

d(·, y)
Λ(·, d(x, y))f(y)dy

is bounded from L1(W ) to L
d(I)

d(I)−1
w (W, |λI |

1
d(I)−1dx), that is,

∫

{x∈W ||Tf(x)|>t}

|λI(x)|
1

d(I)−1dx ≤ Ct
− d(I)

d(I)−1‖f‖
d(I)

d(I)−1

L1(W ) ∀f ∈ L1(W ), t > 0, (3.24)

where C > 0 is a positive constant.

Proof. Let r := d(I)
d(I)−1

> 1 and K(x, y) := d(x,y)
Λ(x,d(x,y))

be a measurable function on W ×W . We

first show that there exists a positive constant C > 0 such that for all y ∈ W and t > 0,

∫

At(y)

|λI(x)|
r

d(I)dx ≤ Ct−r, (3.25)

where At(y) :=
{
x ∈ W

∣∣∣K(x, y) > t
}

. Clearly, (3.25) is equivalent to

sup
y∈W

‖K(·, y)‖Lr
w(W,dµI ) <∞ (3.26)

with dµI = |λI(x)|
1

d(I)−1dx.

Applying Proposition 2.3 and Proposition 2.4 for the compact subset W , there exist ρW > 0
and C∗ ≥ 1 such that for any x, y ∈ W with d(x, y) ≤ ρ

W

2
, we have

1

C∗
Λ(y, d(x, y)) ≤ Λ(x, d(x, y)) ≤ C∗Λ(y, d(x, y)). (3.27)

If δW := supx,y∈W d(x, y) ≤ ρ
W

2
, the restriction d(x, y) ≤ ρ

W

2
can be removed, and (3.27) holds

for all x, y ∈ W . Now, let us consider the case where δW >
ρ
W

2
and

ρ
W

2
≤ d(x, y) ≤ δW . Due to

Proposition 2.2, we have

Λ(x, d(x, y)) ≤ max
x∈W

Λ(x, δW ) ≤ Cmin
x∈W

Λ
(
y,
ρW
2

)
≤ CΛ(x, d(x, y)).
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This implies (3.27) holds for all x, y ∈ W .

It follows (3.27) from that for any y ∈ W and t > 0,

At(y) =

{
x ∈ W

∣∣∣∣K(x, y) > t

}
⊂
{
x ∈ W

∣∣∣∣
d(x, y)

Λ(y, d(x, y))
>

t

C∗

}
:= Bt(y). (3.28)

Then, we have

Case 1: 0 < t ≤ C∗
ρ
W
2

Λ(y,
ρ
W
2

)
. By Proposition 2.3, we obtain for any y ∈ W ,

tr
∫

At(y)

|λI(x)|
r

d(I)dx ≤
(

C∗ ρW
2

Λ(y,
ρ
W

2
)

)r

|W | ·max
x∈W

|λI(x)|
r

d(I)

≤ C(C∗)
d(I)

d(I)−1 |W |
ρ
r(ν̃(W )−1)

W

·max
x∈W

|λI(x)|
1

d(I)−1 ,

(3.29)

which yields (3.25).

Case 2: t >
C∗

ρ
W
2

Λ(y,
ρ
W
2

)
. For any y ∈ W , since g(s) := s

Λ(y,s)
is a strict decreasing function on R+

with lims→+∞ g(s) = 0, there exists a unique 0 < st <
ρ
W

2
such that

st
Λ(y, st)

=
t

C∗
>

ρ
W

2

Λ(y,
ρ
W

2
)
, (3.30)

and

Bt(y) =

{
x ∈ W

∣∣∣∣
d(x, y)

Λ(y, d(x, y))
>

t

C∗

}
⊂ {x ∈ W |d(x, y) < st} ⊂ B(y, st). (3.31)

According to (2.11) and (3.30),

|B(y, st)|
st

≤ C2Λ(y, st)

st
=
C2C

∗

t
, (3.32)

where C2 > 0 is the positive constant in (2.11). Furthermore, for any x ∈ B(y, st), we have

B(x, st) ⊂ B(y, 2st). Therefore, Proposition 2.3, Proposition 2.4, (3.28) and (3.31) imply that

|λI(x)| ≤ s
−d(I)
t Λ(x, st) ≤ C−1

1 s
−d(I)
t |B(x, st)| ≤ C−1

1 s
−d(I)
t |B(y, 2st)|

≤ C−1
1 C3s

−d(I)
t |B(y, st)|

(3.33)

holds for any y ∈ W , x ∈ At(y) and t >
C∗

ρ
W
2

Λ(y,
ρ
W
2

)
, where C1and C3 are the positive constants in

(2.10) and (2.14), respectively. Using (3.28), (3.32), (3.33) and Proposition 2.4, we conclude that

for any y ∈ W ,
∫

At(y)

|λI(x)|
r

d(I)dx ≤ (C−1
1 C3)

1
d(I)−1

( |B(y, st)|
st

)r

≤ (C−1
1 C3)

1
d(I)−1 (C2C

∗)
d(I)

d(I)−1

tr
∀t > C∗ ρW

2

Λ(y,
ρ
W

2
)
,
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which also yields (3.25).

Now, employing Lemma 3.3 for dµI = |λI(x)|
1

d(I)−1dx and X = W , it follows that

‖Tf‖Lr
w(W,dµI ) ≤ C‖f‖L1(W,dµI ) ≤ Cmax

x∈W
|λI(x)|

r
d(I)

∫

W

|f(x)|dx

for all f ∈ L1(W ), which proves (3.24).

4. Proofs of main results

4.1. Proof of Theorem 1.1

By means of Proposition 3.2, Proposition 3.4 and Lemma 3.3, we have

Lemma 4.1. Let X = (X1, X2, . . . , Xm) satisfy assumption (H). Suppose that Ω ⊂⊂ U is a

bounded open subset. Then, there exists a positive constant C > 0 such that for every n-tuple

I = (i1, i2, . . . , in) with 1 ≤ ij ≤ l,

∫

{x∈Ω||u(x)|>t}

|λI(x)|
1

d(I)−1dx ≤ Ct
− d(I)

d(I)−1‖Xu‖
d(I)

d(I)−1

L1(Ω) ∀u ∈ W1,1
X,0(Ω), t > 0. (4.1)

Proof. For any u ∈ C∞
0 (Ω), we have (|Xu|+ |u|) ∈ L1(Ω). Let

Tf(x) :=

∫

Ω

d(x, y)

Λ(x, d(x, y))
f(y)dy.

By Proposition 3.2 and (2.10) we have

|u(x)| ≤ C

∫

Ω

d(x, y)

|B(x, d(x, y))|(|Xu(y)|+ |u(y)|)dy ≤ CT (|Xu|+ |u|)(x) ∀x ∈ Ω. (4.2)

This means

{x ∈ Ω||u(x)| > t} ⊂ {x ∈ Ω||T (|Xu|+ |u|)(x)| > C−1t} ∀t > 0. (4.3)

Since the number of n-tuples I = (i1, i2, . . . , in) with 1 ≤ ij ≤ l is finite, by Proposition 3.4 and

(4.2) we can find a positive constant C > 0 such that for all n-tuple I ,

∫

{x∈Ω||u(x)|>t}

|λI(x)|
1

d(I)−1dx ≤
∫

{x∈Ω||T (|Xu|+|u|)(x)|>C−1t}

|λI(x)|
1

d(I)−1dx

≤ Ct
− d(I)

d(I)−1‖Xu‖
d(I)

d(I)−1

L1(Ω) ∀u ∈ C∞
0 (Ω).

(4.4)

It remains to extend (4.4) to all u ∈ W1,1
X,0(Ω). Clearly, for each n-tuple I and any measurable

subset E of Ω, we have

µI(E) :=

∫

E

|λI(x)|
1

d(I)−1dx ≤ max
x∈Ω

|λI(x)|
1

d(I)−1 |E|.
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For any u ∈ W1,1
X,0(Ω), there exists a sequence {uk}∞k=1 ⊂ C∞

0 (Ω) such that uk → u in W1,1
X,0(Ω).

Then, we can select a subsequence {ukj}∞j=1 ⊂ {uk}∞k=1 such that for any ε > 0,

lim
j→∞

|{x ∈ Ω||ukj(x)− u(x)| ≥ ε}| = 0. (4.5)

Now, for any t > 0, by (4.5) we have

∫

{x∈Ω||u(x)|>t}

|λI(x)|
1

d(I)−1dx = µI ({x ∈ Ω||u(x)| > t})

≤ µI

({
x ∈ Ω

∣∣∣|u(x)− ukj(x)| >
t

2

})
+ µI

({
x ∈ Ω

∣∣∣|ukj(x)| >
t

2

})

≤ max
x∈Ω

|λI(x)|
1

d(I)−1

∣∣∣∣
{
x ∈ Ω

∣∣∣|u(x)− ukj(x)| >
t

2

}∣∣∣∣+ Ct−
d(I)

d(I)−1‖Xukj‖
d(I)

d(I)−1

L1(Ω) .

(4.6)

Letting j → ∞ in (4.6) and using (4.4), the conclusion follows.

Thanks to Lemma 4.1, we can obtain that

Lemma 4.2. Let X = (X1, X2, . . . , Xm) satisfy assumption (H). Suppose that Ω ⊂⊂ U is a

bounded open subset. Then, there exists a positive constant C > 0 such that for any n-tuple I ,

∫

Ω

|u(x)|
d(I)

d(I)−1 |λI(x)|
1

d(I)−1dx ≤ C‖Xu‖
d(I)

d(I)−1

L1(Ω) ∀u ∈ C∞
0 (Ω). (4.7)

Proof. Let φ(t) = max{0,min{t, 1}} = t+ − (t − 1)+ ≥ 0 be the auxiliary function on R. For

any u ∈ C∞
0 (Ω) and i ∈ Z, we define

ui(x) := φ(21−i|u(x)| − 1) =





0, if |u(x)| ≤ 2i−1;

21−i|u(x)| − 1, if 2i−1 < |u(x)| ≤ 2i;

1, if |u(x)| > 2i.

(4.8)

From Proposition 2.9, we see that ui ∈ W1,1
X,0(Ω). Besides,

Xui =

{
21−isgn(u)Xu if 2i−1 < |u(x)| ≤ 2i,

0 otherwise.

Applying Lemma 4.1 to ui and using (2.26) we have

∫

{x∈Ω|ui(x)>t}

|λI(x)|
1

d(I)−1dx ≤ Ct−
d(I)

d(I)−1‖Xui‖
d(I)

d(I)−1

L1(Ω)

≤ Ct−
d(I)

d(I)−12(1−i)
d(I)

d(I)−1

(∫

{x∈Ω|2i−1<|u(x)|≤2i}

|Xu|dx
) d(I)

d(I)−1

.

(4.9)
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According to (4.8) and (4.9), we deduce that

∫

Ω

|u(x)|
d(I)

d(I)−1 |λI(x)|
1

d(I)−1dx =
∞∑

i=−∞

∫

{x∈Ω|2i<|u(x)|≤2i+1}

|u(x)|
d(I)

d(I)−1 |λI(x)|
1

d(I)−1dx

≤
∞∑

i=−∞

2(i+1)
d(I)

d(I)−1

∫

{x∈Ω|2i<|u(x)|≤2i+1}

|λI(x)|
1

d(I)−1dx

≤
∞∑

i=−∞

2(i+1) d(I)
d(I)−1

∫

{x∈Ω|ui(x)=1}

|λI(x)|
1

d(I)−1dx

≤
∞∑

i=−∞

2(i+1)
d(I)

d(I)−1

∫

{x∈Ω|ui(x)>
1
2
}

|λI(x)|
1

d(I)−1dx

≤ C
∞∑

i=−∞

2(i+1)
d(I)

d(I)−12
d(I)

d(I)−12(1−i)
d(I)

d(I)−1

(∫

{x∈Ω|2i−1<|u(x)|<2i}

|Xu|dx
) d(I)

d(I)−1

≤ C‖Xu‖
d(I)

d(I)−1

L1(Ω)

for any u ∈ C∞
0 (Ω), where C > 0 is a positive constant independent of I .

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1. We first establish (1.9) for k = 1, which asserts for 1 ≤ p < ν̃,

‖u‖
L

ν̃p
ν̃−p (Ω)

≤ C‖Xu‖Lp(Ω) ∀u ∈ W1,p
X,0(Ω). (4.10)

Since Ω is a compact subset of U , by Proposition 2.1 and condition (H) we can choose a finite

collection {(xi, Ii, λIi, Ui)|i = 1, . . . , l1} such that

• x1, . . . , xl1 are some points in Ω;

• Ui is a bounded open neighborhood of xi, and Ω ⊂
⋃l1

i=1 Ui;

• For each 1 ≤ i ≤ l1, Ii is a n-tuple satisfying d(Ii) = ν(xi) ≤ ν̃;

• C−1 ≤ |λIi(y)| ≤ C holds for all 1 ≤ i ≤ l1 and y ∈ Ui, where C > 1 is a positive constant

independent of Ii.

Therefore, using Hölder’s inequality and Lemma 4.2, we have for any u ∈ C∞
0 (Ω),

(∫

Ω

|u(x)| ν̃
ν̃−1dx

) ν̃−1
ν̃

≤ C
l1∑

i=1

(∫

Ui∩Ω

|u(x)| ν̃
ν̃−1dx

) ν̃−1
ν̃

≤ C
l1∑

i=1

(∫

Ui∩Ω

|u(x)|
d(Ii)

d(Ii)−1dx

) d(Ii)−1

d(Ii)

≤ C

l1∑

i=1

(∫

Ui∩Ω

|u(x)|
d(Ii)

d(Ii)−1 |λIi(x)|
1

d(Ii)−1dx

) d(Ii)−1

d(Ii)

≤ C

l1∑

i=1

(∫

Ω

|u(x)|
d(Ii)

d(Ii)−1 |λIi(x)|
1

d(Ii)−1dx

) d(Ii)−1

d(Ii)

≤ C‖Xu‖L1(Ω).

(4.11)
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Observing that for any u ∈ W1,1
X,0(Ω), there exists a sequence {uk}∞k=1 ⊂ C∞

0 (Ω) such that uk → u

in W1,1
X,0(Ω). From (4.11) we have

‖uk‖
L

ν̃
ν̃−1 (Ω)

≤ C‖Xuk‖L1(Ω) ∀k ≥ 1, (4.12)

and {uk}∞k=1 forms a Cauchy sequence in L
ν̃

ν̃−1 (Ω). Assume that uk → ũ ∈ L
ν̃

ν̃−1 (Ω). Note that

L
ν̃

ν̃−1 (Ω) ⊂ L1(Ω) and W1,1
X,0(Ω) ⊂ L1(Ω), we obtain that ũ = u a.e. on Ω. Thus, taking k → ∞

in (4.12), we get

‖u‖
L

ν̃
ν̃−1 (Ω)

≤ C‖Xu‖L1(Ω) ∀u ∈ W1,1
X,0(Ω), (4.13)

which gives the case p = 1 of (4.10).

We next address (4.10) for the case 1 < p < ν̃. For any u ∈ C∞
0 (Ω) and r > 1, |u|r ∈

C1
0(Ω) ⊂ W1,1

X,0(Ω). Setting r = p(ν̃−1)
ν̃−p

> 1, (4.13) and Hölder’s inequality yield that for any

u ∈ C∞
0 (Ω),

‖u‖r
L

ν̃p
ν̃−p (Ω)

= ‖|u|r‖
L

ν̃
ν̃−1 (Ω)

≤ C

∫

Ω

|X|u|r|dx ≤ C

∫

Ω

|u|r−1|Xu|dx ≤ C‖u‖
ν̃(p−1)
ν̃−p

L
ν̃p
ν̃−p (Ω)

‖Xu‖Lp(Ω),

which implies that ‖u‖
L

ν̃p
ν̃−p (Ω)

≤ C‖Xu‖Lp(Ω) holds for any u ∈ C∞
0 (Ω) and 1 < p < ν̃. Using

the similar approximation arguments as above, we obtain (4.10) for 1 < p < ν̃.

If k ≥ 2, kp < ν̃ and 1
q
= 1

p
− k

ν̃
, we denote by qj = ν̃p

ν̃−jp
for j = 1, . . . , k. Note that

1 ≤ p < qj < ν̃ for j = 1, . . . , k − 1 and qk = q. According to (4.10), we have

∑

|J |=k

‖XJu‖Lp(Ω) =

m∑

j=1

∑

|J |=k−1

‖Xj(X
Ju)‖Lp(Ω) ≥ C

∑

|J |=k−1

‖XJu‖Lq1(Ω)

≥ C
∑

|J |=k−2

‖XJu‖Lq2 (Ω) ≥ · · · ≥ C‖u‖Lqk (Ω) = C‖u‖Lq(Ω)

holds for any u ∈ C∞
0 (Ω), which implies (1.9).

We next prove (1.10), in which the case kp = ν̃ and 1 ≤ q < ∞. If k = 1, then p = ν̃ ≥ 2.

For any q ∈ [1,+∞), there exists a positive number r such that 1 < r < ν̃ = p and q ≤ r∗ := ν̃r
ν̃−r

.

Then, (1.9) derives that for any u ∈ C∞
0 (Ω), we have

‖u‖Lq(Ω) ≤ C‖u‖Lr∗(Ω) ≤ C‖Xu‖Lr(Ω) ≤ C‖Xu‖Lp(Ω) ≤ C
∑

|α|=1

‖Xαu‖Lp(Ω). (4.14)

Assume that k ≥ 2 and kp = ν̃ ≥ 2. For any q ∈ [1,+∞), there exists a positive number r such

that 1 ≤ r < ν̃ and q ≤ r∗ := ν̃r
ν̃−r

. Note that 1
ν̃
= 1

p
− k−1

ν̃
and p(k− 1) < ν̃. It follows from (1.9)

that for any u ∈ C∞
0 (Ω), we have

‖u‖Lq(Ω) ≤ C‖u‖Lr∗(Ω) ≤ C‖Xu‖Lr(Ω) ≤ C‖Xu‖Lν̃(Ω) ≤ C
∑

|β|=k−1

m∑

j=1

‖XβXju‖Lp(Ω)

≤ C
∑

|α|=k

‖Xαu‖Lp(Ω).

(4.15)

Consequently, (1.10) follows from (4.14) and (4.15).
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4.2. Proof of Theorem 1.2

Proof of Theorem 1.2. For the positive parameters p, k, α, β, s1, s2 satisfying (1.11), we have

p

bs2
pν̃

ν̃−pk

+
as1
bs2

s1
=
b− a

bs2
+

a

bs2
=

1

s2
and

as1
bs2

+
p

bs2
= 1.

Denoting by w =
pν̃

ν̃−pk
p

bs2

and r = s1
as1
bs2

, it follows that 1
w
+ 1

r
= 1

s2
. By (1.9) and Hölder’s inequality,

we have for all f ∈ Wk,p
X,0(Ω) ∩ Ls1(Ω),

‖f‖bs2
Ls2(Ω) ≤

(
‖|f |

p
bs2 ‖Lw(Ω)‖|f |

as1
bs2 ‖Lr(Ω)

)bs2

=

(
‖f‖

p
bs2

L
pν̃

ν̃−pk (Ω)

‖f‖
as1
bs2

Ls1(Ω)

)bs2

= ‖f‖p
L

pν̃
ν̃−pk (Ω)

‖f‖as1
Ls1(Ω)

≤


C

∑

|J |=k

‖XJf‖Lp(Ω)




p

‖f‖as1
Ls1(Ω) ≤ C

∑

|J |=k

‖XJf‖p
Lp(Ω)‖f‖

as1
Ls1(Ω),

where C > 0 is a positive constant.

4.3. Proof of Theorem 1.3

Proof of Theorem 1.3. For any bounded open set E ⊂⊂ Ω with C1 boundary ∂E, we let

r(x) := inf
y∈E

|x− y| ∀x ∈ Ω,

and set δ0 := dist(E, ∂Ω) = infx∈E,y∈∂Ω |x−y|. Then, for any 0 < δ < δ0
2

, we define the function

uδ(x) :=

(
1− r(x)

δ

)

+

∀x ∈ Ω.

Clearly, uδ is a Lipschitz function with compact support supp uδ ⊂ Ω, and uδ ≡ 1 on E. Thus,

[36, Theorem 4.1] indicates that uδ ∈ W 1,∞(Ω) ⊂ W1,1
X (Ω). According to Proposition 2.7, we

further have uδ ∈ W1,1
X,0(Ω). Then, for any 0 < λ < 1, using (1.9) we have

|E| ν̃−1
ν̃ ≤ |{x ∈ Ω|uδ(x) > λ}| ν̃−1

ν̃ ≤ 1

λ
‖uδ‖

L
ν̃

ν̃−1 (Ω)

≤ C

λ
‖Xuδ‖L1(Ω) =

C

λδ

∫

{x∈Ω|0<r(x)<δ}

|Xr|dx.
(4.16)

Letting λ→ 1− in (4.16) and employing the co-area formula, we get

|E| ν̃−1
ν̃ ≤ C

δ

∫ δ

0

∫

{x∈Ω|r(x)=t}

|Xr||∇r|−1dHn−1dt

=
C

δ

∫ δ

0

∫

{x∈Ω|r̃(x)=t}

(
m∑

j=1

〈
XjI,

∇r̃
|∇r̃|

〉2
) 1

2

dHn−1dt,

(4.17)
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where r̃(x) := infy∈∂E |x − y|, 〈·, ·〉 denotes the inner product in Rn, and Hn−1 is the (n − 1)-
dimensional Hausdorff measure. Letting δ → 0+ in (4.17), we deduce from [47, Theorem 5.1.3]

and (1.14) that

|E| ν̃−1
ν̃ ≤ C

∫

∂E

(
m∑

j=1

〈XjI, η〉2
) 1

2

dHn−1 = CVarX(χE ; Ω) = CPX(E; Ω), (4.18)

where η = (η1, η2, . . . , ηn) denotes the outward unit normal to the ∂E.

4.4. Proof of Theorem 1.4

Proof of Theorem 1.4. Consider the bilinear form

Q(u, v) :=

∫

Ω

Xu ·Xvdx, ∀u, v ∈ H1
X,0(Ω). (4.19)

Clearly, H1
X,0(Ω) is a dense subspace in L2(Ω), and Q(·, ·) is a bilinear, symmetric, non-negative

definite, closed functional on H1
X,0(Ω) × H1

X,0(Ω). For any u ∈ H1
X,0(Ω), we denote by ũ :=

max{min{u, 1}, 0}. It follows from Proposition 2.9 that ũ ∈ H1
X,0(Ω) and

Q(ũ, ũ) =

∫

Ω

|Xũ|2dx =

∫

{x∈Ω|0≤u(x)≤1}

|Xu|2dx ≤
∫

Ω

|Xu|2dx = Q(u, u).

Thus, (Q,H1
X,0(Ω)) is a Dirichlet form. According to [25, Theorem 1.3.1, Corollary 1.3.1] and

Proposition 2.6, we know that (Q,H1
X,0(Ω)) admits a unique generator LΩ, which is a positive

defined self-adjoint operator in L2(Ω) with dom(LΩ) ⊂ H1
X,0(Ω) such that

Q(u, v) = (LΩu, v)L2(Ω) (4.20)

for all u ∈ dom(LΩ) and v ∈ H1
X,0(Ω). The operator LΩ is the unique self-adjoint extension of

−△X |D(Ω) with the domain

dom(LΩ) = {u ∈ H1
X,0(Ω)|∃c ≥ 0 such that |Q(u, v)| ≤ c‖v‖L2(Ω) ∀v ∈ H1

X,0(Ω)}
= {u ∈ H1

X,0(Ω)|△Xu ∈ L2(Ω)},

where △X = −
∑m

i=1X
∗
iXi is the Hörmander operator generated by X = (X1, X2, . . . , Xm).

The spectral theorem (see [30, Appendix A.5.4]) allows us to define the corresponding heat

semigroup {PΩ
t }t≥0 of LΩ such that

PΩ
t := e−tLΩ =

∫ +∞

0

e−tλdEλ,

where Eλ denotes the spectral resolution of LΩ in L2(Ω). It follows from [31, Section 2, p. 509]

that {PΩ
t }t≥0 is a symmetric Markov semigroup. Moreover, by utilizing [21, Theorem 2.4.2] and

the Sobolev inequality (1.9) with p = 2 and k = 1, we obtain that

‖PΩ
t f‖L∞(Ω) ≤ C0t

− ν̃
4 ‖f‖L2(Ω) ∀t > 0, f ∈ L2(Ω), (4.21)
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which yields the ultracontractivity of {PΩ
t }t≥0. Here, C0 > 0 is a positive constant. According to

[21, Theorem 2.2.3] and (4.21), we obtain for any ε > 0 and u ∈ H1
X,0(Ω) ∩ L∞(Ω)

∫

Ω

|u|2 ln |u|dx ≤ ε‖Xu‖2L2(Ω) +M(ε)‖u‖2L2(Ω) + ‖u‖2L2(Ω) ln ‖u‖L2(Ω), (4.22)

where M(ε) = lnC0 − ν̃
4
ln ε with C0 in (4.21).

Assuming that p ≥ 1, k ∈ N+ with kp ≤ ν̃, we set

q =

{
pν̃

ν̃−pk
, if kp < ν̃;

γp, if kp = ν̃;

for some γ > 1. For any u ∈ Wk,p
X,0(Ω) with ‖u‖Lp(Ω) = 1, using Theorem 1.1 and Jensen’s

inequality, we obtain

ln


C

∑

|J |=k

‖XJu‖Lp(Ω)


 ≥ ln ‖u‖Lq(Ω) =

1

q
ln

(∫

Ω

|u|q−p|u|pdx
)

≥
(
1

p
− 1

q

)∫

Ω

|u|p ln |u|pdx

=





k
ν̃

∫
Ω
|u|p ln |u|pdx, if kp < ν̃;

k
ν̃

(
1− 1

γ

) ∫
Ω
|u|p ln |u|pdx, if kp = ν̃.

(4.23)

Taking γ → ∞ in (4.23), we derive the second inequality in (1.19), while the first inequality in

(1.19) is due to lnCx ≤ C
e
x for C > 0 and x > 0.

4.5. Proof of Theorem 1.5

Next, we devote to Theorem 1.5. The proof of Theorem 1.5 is based on the following lemma.

Lemma 4.3. Let X = (X1, X2, . . . , Xm) satisfy condition (H). Suppose that Ω ⊂⊂ U is a

bounded open subset of U , and p > ν̃ is a positive real number. Then, there exists a positive

constant C > 0 such that for any u ∈ C∞
0 (Ω),

|u(x)| ≤ C‖Xu‖Lp(Ω) ∀x ∈ Ω, (4.24)

and

|u(x)− u(y)| ≤ Cd1−
ν̃
p (x, y)‖Xu‖Lp(Ω) ∀x, y ∈ Ω, (4.25)

where C > 0 is a positive constant.

Proof. By Proposition 2.5, we deduce that for any x ∈ Ω and 0 < ε ≤ ρΩ, we have

∫

B(x,ε)

d(x, y)
p

p−1

|B(x, d(x, y))|
p

p−1

dy ≤ Cε
p−ν̃
p−1 , (4.26)
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whereC > 0 is a positive constant independent of ε. Taking ε =
ρΩ
2

in (4.26) and using Proposition

2.2 and Proposition 2.3, we obtain that for any x ∈ Ω,

∫

Ω

d(x, y)
p

p−1

|B(x, d(x, y))|
p

p−1

dy ≤
∫

Ω\B(x,
ρ
Ω
2
)

d(x, y)
p

p−1

|B(x, d(x, y))|
p

p−1

dy +

∫

B(x,
ρ
Ω
2
)

d(x, y)
p

p−1

|B(x, d(x, y))|
p

p−1

dy

≤ C



(ρΩ
2

) p−ν̃
p−1

+
|Ω|δ

p
p−1

Ω(ρΩ
2

) pν̃
p−1


 ,

(4.27)

where δΩ = supx,y∈Ω d(x, y). Then, by Proposition 2.6, Proposition 3.2 and (4.27), we get

|u(x)| ≤ C

∫

Ω

d(x, y)

|B(x, d(x, y))|(|Xu(y)|+ |u(y)|)dy

≤ C
(
‖Xu‖Lp(Ω) + ‖u‖Lp(Ω)

)
(∫

Ω

d(x, y)
p

p−1

|B(x, d(x, y))|
p

p−1

dy

)p−1
p

≤ C‖Xu‖Lp(Ω) ∀x ∈ Ω,

which yields (4.24).

We next prove (4.25). By Proposition 3.1, there exist positive constants C > 0, α1 ≥ 1 and

r0 > 0 such that for any x0 ∈ Ω and 0 < r < r0, we have

|f(x)− fB| ≤ C

∫

B(x0,α1r)

d(x, y)

|B(x, d(x, y))| |Xf(y)|dy ∀x ∈ B(x0, r), (4.28)

and any f ∈ C∞(B(x0, α1r)), where α1 ≥ 1 is a positive constant independent of f and B(x0, r),
and fB = |B(x0, r)|−1

∫
B(x0,r)

f(y)dy. Then, for any u ∈ C∞
0 (Ω) and any x, y ∈ Ω, we denote by

δ := d(x, y). The proof of (4.25) will be divided into the following two cases:

Case 1: 0 < δ < min
{

ρΩ
α1+1

, r0

}
with ρΩ being the positive constant determined by Proposition

2.3. Let x0 ∈ B(x, δ) ∩ B(y, δ) ∩ Ω such that x, y ∈ B(x0, δ). It follows that

B(x0, α1δ) ⊂ B(x, (α1 + 1)δ) ∩ B(y, (α1 + 1)δ).

For simplification, we setBx0 := B(x0, δ) and T (y, z) := d(y,z)
|B(y,d(y,z))|

. Therefore, (2.16) and (4.28)

give that

|u(x)− u(y)| ≤ |u(x)− uBx0
|+ |u(y)− uBx0

|

≤ C

∫

B(x0,α1δ)

T (x, z)|Xu(z)|dz + C

∫

B(x0,α1δ)

T (y, z)|Xu(z)|dz

≤ C

∫

B(x,(α1+1)δ)

T (x, z)|Xu(z)|dz + C

∫

B(y,(α1+1)δ)

T (y, z)|Xu(z)|dz

≤ C

[(∫

B(x,(α1+1)δ)

T (x, z)
p

p−1dz

) p−1
p

+

(∫

B(y,(α1+1)δ)

T (y, z)
p

p−1dz

) p−1
p

]
‖Xu‖Lp(Ω)

≤ C(α1 + 1)1−
ν̃
p δ1−

ν̃
p ‖Xu‖Lp(Ω),

(4.29)
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where C > 0 is a positive constant independent of x, y and x0.

Case 2: δ ≥ min
{

ρΩ
α1+1

, r0

}
. Employing (4.24), we obtain

|u(x)− u(y)| ≤ 2C‖Xu‖Lp(Ω) ≤
2C

(
min

{
ρΩ

α1+1
, r0

})1− ν̃
p

δ1−
ν̃
p ‖Xu‖Lp(Ω), (4.30)

where C > 0 is a positive constant independent of x and y.

As a result of (4.29) and (4.30), we have for any u ∈ C∞
0 (Ω),

|u(x)− u(y)| ≤ Cd(x, y)1−
ν̃
p ‖Xu‖Lp(Ω) ∀x, y ∈ Ω,

which gives (4.25).

Now, we prove Theorem 1.5.

Proof of Theorem 1.5. Obviously, Lemma 4.3 implies that for p > ν̃,

‖u‖
S
0,1− ν̃

p (Ω)
≤ C‖Xu‖Lp(Ω) (4.31)

holds for any u ∈ W1,p
X,0(Ω), which yields (1.23) for k = 1 since ν̃

p
/∈ N+.

Let us consider the case k ≥ 2. If ν̃
p
/∈ N+, we set l =

[
ν̃
p

]
. It follows that lp < ν̃ < kp

and k ≥ l + 1. Denote by r = pν̃

ν̃−lp
> ν̃. According to Theorem 1.1 and (4.31) we have for any

u ∈ C∞
0 (Ω),
∑

l+1≤|J |≤k

‖XJu‖Lp(Ω) ≥ C
∑

1≤|J |≤k−l

‖XJu‖Lr(Ω) ≥ C
∑

0≤|J |≤k−l−1

‖XJu‖
S0,1− ν̃

r (Ω)
.

(4.32)

Combining (4.32) and Proposition 2.6, we get

‖u‖
S
k−[ ν̃p ]−1,[ ν̃p ]+1− ν̃

p (Ω)
≤ C

∑

|J |=k

‖XJu‖Lp(Ω) ∀u ∈ C∞
0 (Ω).

When ν̃
p
∈ N+, we let l = ν̃

p
− 1 ≥ 0. As a result, k − l − 1 = k − ν̃

p
≥ 1. Denote by

r := pν̃

ν̃−lp
= ν̃ and choose a positive number q > ν̃. By Theorem 1.1 and (4.31) we have for any

u ∈ C∞
0 (Ω),

∑

l+2≤|J |≤k

‖XJu‖Lp(Ω) ≥ C
∑

2≤|J |≤k−l

‖XJu‖Lr(Ω) ≥ C
∑

1≤|J |≤k−l−1

‖XJu‖Lq(Ω)

≥ C
∑

0≤|J |≤k−l−2

‖XJu‖
S
0,1− ν̃

q (Ω)
,

which, combining with the Proposition 2.6, derives that

‖u‖
S
k− ν̃

p−1,ǫ
(Ω)

≤ C
∑

|α|=k

‖Xαu‖Lp(Ω) ∀u ∈ C∞
0 (Ω),

where ǫ = 1− ν̃
q
∈ (0, 1).
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4.6. Proof of Theorem 1.6

We next introduce the following abstract version of the Rellich-Kondrachov compactness the-

orem, which will be used in constructing the compact embedding result.

Proposition 4.1 ([34, Theorem 4]). Let Y be a set equipped with a finite measure µ. Assume that

a linear normed space G of measurable functions on Y has the following two properties:

(1) There exists a constant q > 1 such that the embedding G →֒ Lq(Y, µ) is bounded;

(2) Every bounded sequence in G contains a subsequence that converges almost everywhere.

Then the embedding G →֒ Ls(Y, µ) is compact for every 1 ≤ s < q.

Proof of Theorem 1.6. By Theorem 1.1, for p ≥ 1, k ∈ N+ with kp < ν̃, the embedding

Wk,p
X,0(Ω) →֒ Lq(Ω) is continuous for q = ν̃p

ν̃−kp
> 1. According to [20, Corollary 3.3], W1,p

X,0(Ω)

is compactly embedded into Lp(Ω) for p ≥ 1. Thus, for any bounded sequence {uk}∞k=1 in

Wk,p
X,0(Ω) ⊂ W1,p

X,0(Ω), there exists a subsequence {ukj}∞j=1 ⊂ {uk}∞k=1 such that ukj → u in

Lp(Ω). The Riesz theorem allows us to find a subsequence {vj}∞j=1 ⊂ {ukj}∞j=1 such that vj → u
almost everywhere on Ω as j → +∞. Hence, we conclude from Proposition 4.1 that the embed-

ding Wk,p
X,0(Ω) →֒ Ls(Ω) is compact for s ∈ [1, ν̃p

ν̃−kp
).

4.7. Proof of Theorem 1.7

Proof of Theorem 1.7. Assuming that u ∈ W1,ν̃
X,0(Ω) with ‖Xu‖Lν̃(Ω) ≤ 1, we choose an approx-

imating sequence {uk}∞k=1 ⊂ C∞
0 (Ω) such that uk → u in W1,ν̃

X,0(Ω) as k → +∞. For p > 1,

q = p

p−1
, and v ∈ Lq(Ω) with ‖v‖Lq(Ω) ≤ 1, by Proposition 3.2 and Hölder’s inequality we have

∫

Ω

|uk(x)v(x)|dx ≤ C0

∫

Ω

∫

Ω

T (x, y)|v(x)|(|Xuk(y)|+ |uk(y)|)dydx

= C0

∫

Ω

∫

Ω

(T (x, y)
1
ν̃p (|Xuk(y)|+ |uk(y)|)|v(x)|

1
ν̃ )(T (x, y)1−

1
ν̃p |v(x)| ν̃−1

ν̃ )dydx

≤ C0

(∫

Ω

∫

Ω

T (x, y)
1
p (|Xuk(y)|+ |uk(y)|)ν̃|v(x)|dydx

) 1
ν̃
(∫

Ω

∫

Ω

T (x, y)
ν̃p−1
ν̃p−p |v(x)|dydx

) ν̃−1
ν̃

,

(4.33)

where T (x, y) = d(x,y)
|B(x,d(x,y))|

andC0 > 0 is a positive constant independent of uk. From Proposition

2.4 and Proposition 2.5, we have
∫

Ω

∫

Ω

T (x, y)
1
p (|Xuk(y)|+ |uk(y)|)ν̃|v(x)|dydx

≤
∫

Ω

(|Xuk(y)|+ |uk(y)|)ν̃
(∫

Ω

d(x, y)

|B(x, d(x, y))|dx
) 1

p
(∫

Ω

|v|qdx
) 1

q

dy

≤ 2ν̃−1‖uk‖ν̃W1,ν̃
X,0(Ω)

C
1
p

3

(∫

Ω

d(y, x)

|B(y, d(y, x))|dx
) 1

p

≤
(
C1 + C2

C1

) 1
p

· 2
ν̃−1+ 1

pC
2
p

3

(CC1)
1
ν̃p

|Ω| 1
pν̃ ‖uk‖ν̃W1,ν̃

X,0(Ω)
,

(4.34)
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where C,C1, C2, C3 are the positive constants appeared in Proposition 2.2-Proposition 2.4. More-

over, applying Proposition 2.5 for µ = η = ν̃p−1
ν̃p−p

and ξ = 1
p
∈ (0, 1), we have

∫

Ω

∫

Ω

T (x, y)
ν̃p−1
ν̃p−p |v(x)|dydx =

∫

Ω

|v(x)|
(∫

Ω

d(x, y)
ν̃p−1
ν̃p−p

|B(x, d(x, y))|
ν̃p−1
ν̃p−p

dy

)
dx

≤
[(

C2

C1

) ν̃p−1
p(ν̃−1)

+ 1

]
C3

(CC1)
ν̃p−1

pν̃(ν̃−1)

2
1
p

2
1
p − 1

|Ω| 1
ν̃p

∫

Ω

|v(x)|dx

≤
[(

C2

C1

) ν̃p−1
p(ν̃−1)

+ 1

]
C3

(CC1)
ν̃p−1

pν̃(ν̃−1)

2
1
p

2
1
p − 1

|Ω| 1
ν̃p

(∫

Ω

|v(x)|qdx
) 1

q

|Ω|1− 1
q

≤
[(

C2

C1

) ν̃p−1
p(ν̃−1)

+ 1

]
C3

(CC1)
ν̃p−1

pν̃(ν̃−1)

2
1
p

2
1
p − 1

|Ω| 1
pν̃

+ 1
p .

(4.35)

Hence, (4.33)-(4.35) derive that for any p > 1 and k ≥ 1,

‖uk‖Lp(Ω) = sup
v∈Lq(Ω), ‖v‖Lq (Ω)≤1

∫

Ω

|uk(x)v(x)|dx

≤ C0

(
1 +

C2

C1

) 1
ν̃p

(
1 +

(
C2

C1

) ν̃p−1
p(ν̃−1)

) ν̃−1
ν̃

21+
1
p
− 1

ν̃

(2
1
p − 1)1−

1
ν̃

C
1− 1

ν̃
+ 2

ν̃p

3

(CC1)
1
ν̃

‖uk‖W1,ν̃
X,0(Ω)|Ω|

1
p .

(4.36)

Observing that uk → u in W1,ν̃
X,0(Ω), by (1.10) we have

|‖uk‖Lp(Ω) − ‖u‖Lp(Ω)| ≤ ‖u− uk‖Lp(Ω) ≤ C‖Xu−Xuk‖W1,ν̃
X,0(Ω) → 0 as k → ∞.

Thus, taking k → ∞ in (4.36), we obtain from inequality 2
1
p − 1 ≥ 1

p
2

1
p
−1

that

‖u‖Lp(Ω) ≤ C0

(
1 +

C2

C1

) 1
ν̃p

(
1 +

(
C2

C1

) ν̃p−1
p(ν̃−1)

) ν̃−1
ν̃

21+
1
p
− 1

ν̃

(2
1
p − 1)1−

1
ν̃

C
1− 1

ν̃
+ 2

ν̃p

3

(CC1)
1
ν̃

‖u‖W1,ν̃
X,0(Ω)|Ω|

1
p

≤ C0

(
1 +

C2

C1

)
21+

1
p
− 1

ν̃

(2
1
p − 1)1−

1
ν̃

C
1− 1

ν̃
+ 2

ν̃p

3

(CC1)
1
ν̃

(
1 + λ1(ν̃)

−1
) 1

ν̃ |Ω| 1p

≤ C0

(
1 +

C2

C1

)
22+

1
ν̃
( 1
p
−2)C

1− 1
ν̃
+ 2

ν̃p

3

(CC1)
1
ν̃

(
1 + λ1(ν̃)

−1
) 1

ν̃ p1−
1
ν̃ |Ω| 1p

≤ 4C0

(
1 +

C2

C1

)
C

1+ 1
ν̃

3

(CC1)
1
ν̃

(
1 + λ1(ν̃)

−1
) 1

ν̃ p1−
1
ν̃ |Ω| 1p ,

(4.37)

where

λ1(ν̃) := inf
u∈W1,ν̃

X,0(Ω), u 6=0

∫
Ω
|Xu|ν̃dx∫
Ω
|u|ν̃dx > 0. (4.38)
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Denote by

C4 := 4C0

(
1 +

C2

C1

)
C

1+ 1
ν̃

3

(CC1)
1
ν̃

(
1 + λ1(ν̃)

−1
) 1

ν̃ .

It follows that

‖u‖p
Lp(Ω) ≤ Cp

4p
p− p

ν̃ |Ω| ∀p > 1,

Consequently, we get

∫

Ω

(
eσ|u|

ν̃
ν̃−1 − 1

)
dx =

∞∑

j=1

σj

j!
‖u‖

jν̃
ν̃−1

L
jν̃

ν̃−1 (Ω)
≤

∞∑

j=1

σj

j!
C

jν̃
ν̃−1

4

(
jν̃

ν̃ − 1

)j

|Ω| < +∞,

provided

0 < σ <
ν̃ − 1

eν̃C
ν̃

ν̃−1

4

=
ν̃ − 1

eν̃
C

− ν̃+1
ν̃−1

3

(
C1

4C0(C1 + C2)

) ν̃
ν̃−1

·
(
λ1(ν̃)CC1

λ1(ν̃) + 1

) 1
ν̃−1

.
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applications, Rev. Mat. Iberoamericana 8 (1992), no. 3, 367–439.

[44] G. Lu, R.L. Wheeden, An optimal representation formula for Carnot–Carathéodory vector fields, Bull. London

Math. Soc. 30 (1998), no. 6, 578–584.

[45] G. Métivier, Fonction spectrale et valeurs propres d’une classe d’opérateurs non elliptiques, Comm. Partial
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