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Abstract

Existing neural audio codecs usually sacrifice computational
complexity for audio quality. They build the feature transfor-
mation layers mainly on convolutional blocks, which are not in-
herently appropriate for capturing local redundancies of audio
signals. As compensation, either adversarial losses from a dis-
criminator or a large number of model parameters are required
to improve the codec. To that end, we propose Efficient Speech
Codec (ESC)', a lightweight parameter-efficient codec laid on
cross-scale residual vector quantization and transformers. Our
model leverages mirrored hierarchical window-attention trans-
former blocks and performs step-wise decoding from coarse-to-
fine feature representations. To enhance codebook utilization,
we design a learning paradigm that involves a pre-training stage
to assist with codec training. Extensive results show that ESC
can achieve high audio quality with much lower complexity,
which is a prospective alternative in place of existing codecs.
Index Terms: neural speech coding, vector quantization, effi-
cient discrete learning

1. Introduction

Audio codecs are desired to compress audio signals within min-
imal computational bits to remove redundancies, while main-
taining contents and fidelity in a low-latency manner. Recent
advancements in deep learning have demonstrated the superior-
ity of neural codecs over traditional ones, which rely on com-
plex expert design and psycho-acoustic knowledge [1, 2]. Incor-
porating generative models like WaveNet [3] and SampleRNN
[4] into audio codecs has shown promising results. These
models act as powerful decoders, generating audio conditioned
on intermediate representations produced by traditional codecs
[5, 6]. However, their auto-regressive decoding nature typically
introduces greater inference latency. Alternatively, some end-
to-end neural audio codecs adopt the vector quantization (VQ)
framework introduced in [7]. This approach discretizes continu-
ous vectors using a codebook and employs straight-through esti-
mation (STE) [8] to handle the non-differentiable quantization.
Among the recent VQ-based audio codecs, notable examples
include SoundStream [9], EnCodec [10], and Descript’s audio
codec (DAC) [11]. These models typically utilize convolutional
encoder and decoder backbones, supplemented by residual vec-
tor quantization (RVQ) [12], which recursively quantize previ-
ous residuals at the bottleneck representation. They also lever-
age GANSs to discriminate multi-scale waveforms and spectro-
grams during training [13, 14, 15], producing high-fidelity au-
dio reconstructions. SoundStream serves as the very first uni-
versal codec for diverse audio types, while EnCodec enhances
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compression by integrating a lightweight language model at the
bottleneck. DAC, using similar approaches, alleviates quanti-
zation dropout side-effects, a technique enhancing codec scal-
ability, and introduces a periodic inductive bias in its activa-
tion functions [16, 17]. They presents a remarkable neural au-
dio codec that significantly outperforms EnCodec in both qual-
ity and compression ratio. Despite these advancements, we
found that DAC relies heavily on its GAN discriminator to pro-
duce high-fidelity audios, which introduces inherent optimiza-
tion challenges in adversarial learning. Furthermore, Descript’s
audio codec faces computational limitations due to its large pa-
rameter count. To address this, we propose a shift towards a
more parameter-efficient codec by adopting a cross-scale resid-
ual vector quantization (CS-RVQ) approach initially presented
in [18] and replacing conventional convolutional layers with ef-
ficient Swin-Transformer Blocks (STBs) [19] as an architectural
improvement.

Apart from these challenges, a significant issue in train-
ing VQ networks, known as codebook collapse, is documented
[20]. This term refers to scenarios where a fraction of code-
words are rarely utilized to represent the input vectors. A re-
cent study [21] offers a straightforward explanation for this col-
lapse: an internal codebook covariate shift during the training
phase. The frequent adjustments in encoder representations lead
to misalignment with the VQ codebooks, resulting in only a
subset of codebook parameters being updated. Consequently,
VQ layers are prone to divergence, often ending up with a sig-
nificant number of dead vectors. Various strategies have been
proposed in generative modeling to address this, including the
use of stochastic VQs [20, 22], reinitializing codewords with
K-means centroids [23, 24], and bypassing the ramifications of
straight-through estimation (STE) with a finite scalar quantizer
[25]. In the context of audio compression, Descript’s codec at-
tempts to mitigate codebook collapse by reducing vector dimen-
sions [26] and normalizing them within a Euclidean ball [23].
However, their findings suggest that the primary factor in en-
hancing codebook efficiency is the incorporation of adversar-
ial losses. To circumvent the challenges associated with opti-
mizing GANs, we propose a learning paradigm that includes a
pre-training stage to benift codebook learning. Specifically, the
main contributions of this paper are as follows:

* We propose a lightweight speech codec, ESC, which achieves
efficient compression through the integration of cross-scale
residual vector quantization (CS-RVQ) and mirrored non-
linear hierarchical Swin Transformer layers.

e ESC attains double the compression ratio of the original
TFNet-CSVQ described in [18], while maintaining compa-
rable reconstruction quality to DAC, which is currently rec-
ognized as the state-of-the-art in high-fidelity audio codecs.



Linear Patchify

Shift-Window
Transformer Block]
Shift-Window
Transformer Block
Pixel Un-shuffle

I
ISTFT
&>

Linear De-patchify|
Shift-Window
Transformer Block]
Pixel Shuffle
Shift-Window
- (Transformer Block]

Shift-Window
Transformer Block]
Pixel Un-shuffle
Shift-Window
Transformer Block]
Pixel Un-shuffle

Pixel Shuffle
Shift-Window
Transformer Block]
Pixel Shuffle

Shift-Window
- \Transformer Block/ -

Figure 1: The framework of ESC: Input audio is transformed to a complex STFT X and linearly embedded into patches. Encoder STBs
iteratively halve the frequency resolution and produce hierarchical feature representations. Mirrored decoder STBs iteratively recover
the frequency resolution by leveraging coarse-to-fine encoded features. The intermediate residuals between encoder and decoder
hidden states are progressively quantized to refine decoding. The entire network is solely composed of efficient transformer blocks. The
figure displays a scenario when the deepest 3 of n + 1 total bitstreams (solid lines) are transmitted, with others left inactive.

* We introduce a learning paradigm that incorporates a pre-
training stage designed to mitigate codebook collapse and
enhance codeword utilization. Empirical studies confirm the
effectiveness of this approach.

2. Method
2.1. Architecture formulation

Demonstrated in Figure 1, our proposed ESC takes the com-
plex spectrogram X € R?*F*T of audio from Short-Time
Fourier Transform (STFT). The real and imaginary parts are
treated as separate channels. ESC comprises mirrored encoder
and decoder layers E(-; ¢1, ..., ¢n), D(-; 91, ...¢0n), in addition
to multi-scale vector quantizers Qo, Q1, ..., @». Each encoder
and decoder layer performs downscaling and upscaling to cre-
ate coarse and fine representations. We denote the hidden states
of the t-th frame x; € R**¥ after all encoder layers as

Zeyy s Ren :E(mt;¢1a'"7¢n)7 (1)

where each z. is flattened into a vector prior to quantization.
Each VQ is parameterized with a codebook collection of code-
words C = {eu, ..., ¢k }, allowing for a log, K bit budget. It
quantizes a vector 2, € R? in the euclidean space with

Q(ze;C) IaTgH(ljinHze = ¢jll2, @

cj; €

where the quantized latent of z. is the nearest code vector ci
in C. The index k € Z is the discretized code. The decoder
consists of mirrored blocks. Starting from the quantized latents
at the bottom layer VQ, it progressively maps the latents back
to the original spectrum. This process is further elaborated in
Section 2.3. Finally, the reconstructed spectrum is converted
back to the one-dimensional audio domain via inverse STFT.

2.2. Window transformer encoder and decoder

As convolutional layers often fall short in effectively captur-
ing redundancies within audio signals, we propose replacing

them with Swin Transformer blocks (STBs) and their associ-
ated extended decoding blocks. As illustrated in Figure 1, the
complex spectrogram X is initially split into patches and lin-
early projected into the space RE*#>W with a patch size of
(%7 %) across frequency and temporal dimensions. As in [19],
each STB consists of a cascade of two interleaved window-
attention transformer layers, with the outputs of the prior layer
being shifted. This configuration allows STBs to learn both lo-
cal and global feature dependencies effectively. It also enables
efficient computation of attention by partitioning the spectrum
into smaller windows.

To maintain temporal resolution, we have adapted the patch
merging layer subsequent to the encoder STB by integrating a
pixel unshuffle module along only the frequency dimension.
For example, the first downscaled resolution of a patch em-
bedding might be 2Cy x g x W. This downscaled embed-
ding is then subject to a linear transformation using a matrix
W, € R2¢0%C1 which enlarges the hidden size to facilitate
the extraction of more abstract information at deeper layers. In
the decoder, we employ a mirrored upscaling approach in the
STBs. Similar to the encoder layers, each layer is preceded by
a pixel shuffle that doubles the frequency resolution, followed
by a mirrored linear transformation. At the end of the decod-
ing process, the decoded patch embeddings are reshaped and
linearly projected back to produce a recovered spectrum X.

2.3. Cross-scale residual vector quantization

For efficient learning of audio features, ESC utilizes multi-scale
features through a coarse-to-fine decoding process to generate
coded bitstreams at different levels. Laid on the cross-scale vec-
tor quantization (CSVQ) [18] paradigm, our codec incorporates
a more intuitive cross-scale residual VQ (CS-RVQ) structure
without the need for additional networks to fuse encoder and
decoder features. As depicted in Algorithm 1 and Figure 1, the
decoder is conditioned on encoded features from various scales
of resolution, distinguishing it from the commonly used resid-
ual VQs (RVQ) that operate only at the lowest scale and tend to
overlook high-level information [12]. At the lowest bitstream,



Algorithm 1 Cross-Scale Residual Vector Quantization

1: Input: multi-scale encoder hidden states 2., , ..., Ze,,, Vec-
tor quantizers Qo, Q1, ..., @r, and mirrored decoder D

2: Initialization:  zq, < Qo(z.,)

3: fort =0,....,n—1do

4: Zq; < Qi+1(Zen—i - Z(Ii,) + Zq;
5 Zqipq1 Dit1(24;5%i+1)

6: end for

7

: return zg,,, ko, k1, ..., kn > k; is discrete code from Q);

Ze, is directly quantized by the bottleneck quantizer (Jo. For
higher bitstreams, the residual between each encoded feature
and current quantized latent, z.,, _, —2q;, is quantized by Qs+ 1.
This quantized residual is then added back to z,,, and decoded
by the following decoder layer function D;11 (+; %;+1), produc-
ing the next quantized latent z,;  ,. Subsequently, the resid-
uals at higher resolutions are progressively quantized, form-
ing additional bitstreams conditioned on the preceding ones.
This framework enables multi-scale learning and allows the de-
coder’s to incrementally mitigate quantization errors starting
from the bottleneck Qo.

During inference, compressing with s > 1 bitstreams in-
volves additional forward pass by a subset of the decoder lay-
ers, which produces coarse-to-fine residuals quantized by Qo,
Q1, ..., Qs—1. When s is set to 1, the model simplifies to a
fixed-scale VQ codec operating at the bottleneck. To recon-
struct audio, the compressed discrete codes ki, ..., ks—1 are de-
quantized using their corresponding codewords. These are then
progressively added back to recover the original input frame a+.

2.4. Vector quantization module

The proposed Cross-Scale Residual VQ (CS-RVQ) encodes
representations at variable scales, which results in large latent
dimensions and a propensity for codebook collapse. To effec-
tively optimize the codebook embeddings, we adopt a combina-
tion of Product Quantization [27] and vector dimension reduc-
tion [26] at each bitstream. Concretely, the vector z € R? to
be quantized is split into a set of [ sub-vectors. Each sub-vector
is quantized independently by a VQ and subsequently concate-
nated as follows:

z={zZm | zm € Rd/l,m =1,..,1},
Q(2m; Cm) = Woys arg min |[Wipzim — ¢jll2,  (3)

c]'GC-m,
ile 7L><¢
where Wi, € RT7Y Wy € R 1T 4 < d/I.

Following [11], the projected vector W, z; and codebook C are
both L2 normalized before searching for the nearest codewords.
This equalizes the scales of encoded vectors and codewords,
which improves codebook learning because a larger subset of
codewords can receive gradients updates.

2.5. Training

As transformer layers are intrinsically difficult to converge,
joint training with VQs often results in sub-optimal parame-
ters. Therefore, we propose a learning paradigm that includes a
warm-start to enhance the learning in ESC, as detailed in Algo-
rithm 2. Initially, all VQ layers are deactivated, so no quantiza-
tion occurs. Only the encoder and decoder are trained using the
same CS-RVQ framework, allowing encoded representations to
bypass the quantizers and flow directly into the decoder layers,

Algorithm 2 Efficient Optimization of Vector Quantizers

1: repeat

2 a?t:D(E(mt7¢177¢n)a¢1771/]")

3 L= ["rccon (mt, ait)

4: Take gradient descent stepon VEL, VpL

5: until converged

6: activate all codebooks C and continue learning as usual

in what we term a “pre-training” stage. After encoder and de-
coder have converged by minimizing reconstruction losses, we
proceed to train the entire vector-quantized network as usual.
This helps alleviate the distribution shift of encoded vectors as
the encoder is optimized in advance. Through a pre-training
stage, we aim to stabilize subsequent codebook learning and
improve codebook usage. Moreover, pre-training encoders and
decoders is simpler, as it avoids the quantization errors typically
associated with VQs.

To enable bitrate scalability, we sample the number of trans-
mitted bitstreams s ~ Uniform{1,...,n} at a rate p during
training. p is a hyperparameter that balances the reconstruc-
tion quality at different bitrates, as proposed by [11]. The re-
construction 10ss Lrecon consists of an Lo distance on X and
a multi-scale mel-spectrogram loss same as that in [11], de-
noted by L and L. To optimize cross-scale codebooks,
we use the standard combination of commitment and codebook
loss L¢: and L. with straight through estimators in [7], each
is averaged across ! groups and summed across transmitted s
bitstreams to form L£,4. Exponential moving average (EMA)
is not adopted as [11] points out that it fails to mitigate code-
book collapse. The overall training objective is the summation
of Lrecon and Lo,q, as follows:

Crecon = Alﬁmel + )\2£stft7 (4)
[’vq - >\3[fcb + )\4£ct~ (5)

3. Experiments
3.1. Experimental setup

We extract 150 hours 3-second multilingual speech audio clips
from DNS Challenge dataset [28] for training. For evaluation,
we use 1158 10-second speech clips from the LibriSpeech [29],
Multilingual LibriSpeech [30], and AIShell [31] datasets. We
use AdamW optimizer with a learning rate of 0.0001. Final
models are trained for 400k steps with a batch size of 36, where
the pre-training stage comprises 75k steps. After pre-training,
we decay the learning rate by 0.999996 at each step and set p
to 0.75. The weighted parameters A1, A2, A3, A4 are configured
as 0.25, 1.0, 1.0 and 0.25 respectively.

3.2. Performance evaluation on reconstruction quality

We experimented two versions of our codec:

1. ESC: Our final codec has a patch size of (3,2) and encodes
two overlapped STFT frames together. The STFT window
and hop lengths are set at 20 ms and 5 ms. Each bitstream is
composed of three 10-bit codebooks in product quantization,
yielding a bitrate of 1.5kbps. The ESC codec is scalable up
to a maximum of 6 bitstreams from 6 STBs in both encoder
and decoder layers. It uses GELU activation and LayerNorm
in the attention modules with a window size of 4. The hi-
erarchical dimensions of our STBs range from Cy = 72 to
C's = 384, with a total of 8.4M parameters.
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Figure 2: Evaluation results of codecs on our test dataset:
dashed lines represent DAC models and solid lines represent
ESC models, with x-axis being transmission bit per second and
y-axis being PESQ (1), Mel-Distance (|.) and SI-SDR(?).

2. ESC + adversarial: This variant integrates adversarial
losses, using the same multi-scale waveform and spectrogram
discriminator as described in [11]. In this setup, Ls 5 is re-
placed with the L, feature matching loss [14], following the
approach in [11]. The discriminator has ~ 45M parameters.

For comparison, we selected Descript’s audio codec as a base-
line and reproduced it in three variants on our training set:

1. Base-DAC + adversarial: This is Descript’s original codec.
We expanded the number of codebooks in its RVQs from 12
to 18 to match the bitrate levels of ESC. It is trained with the
released configuration and has 74M parameters.

2. Tiny-DAC + adversarial: To ensure a fair comparison with
ESC, we produced a smaller version of the DAC by reducing
its decoder dimension from 1536 to 288. This version has
~ 10M parameters, comparable in scale to ESC. All other
configurations are maintained as in the original one.

3. Tiny-DAC: We also reproduced a smaller and non-
adversarial version of Descript’s codec to assess the impact
of GAN discriminators on improving audio fidelity.

We use the PESQ [32], the L, distance between log mel spec-
trograms of reference and decoded waveforms (mel distance)
[11], and scale-invariant source-to-distortion ratio (SI-SDR)
[33] as objective metrics to comprehensively assess the audio
reconstruction quality. As shown in Figure 2, although ESC
does not outperform Base-DAC trained with the same discrimi-
nator among all metrics, it consistently achieves superior recon-
structions across all bandwidths compared to Tiny-DAC. This
superiority is evident in experiments conducted both with and
without GANs (i.e., ESC & Tiny-DAC versus ESC+adversarial
& Tiny-DAC+adversarial). Furthermore, the DAC models ex-
hibit a significant dependency on the discriminator, as evi-
denced by a substantial quality drop when Tiny-DAC is trained
without adversarial losses. These results demonstrate that trans-
formers combined with cross-scale residual VQs are more ef-
fective than CNNs paired with single-scale residual VQs in cur-
rent neural audio codecs.

3.3. Performance evaluation on complexity

As noted earlier, Descript’s top-performing codec is hindered
by computational bottlenecks. We detail the complexity results
in Table 1. Latency experiments were conducted using an Intel

Table 1: A comparison of codec complexity in terms of
CPU/GPU inference speed and model sizes.

CPU (s) GPU (s)
Model Params.(M) Memory (MB) Enc. Dec. Enc. Dec.
ESC 8.4 30.5 0.78 0.59 0.10 0.06
Tiny-DAC 10 38.2 0.63 0.69 0.08 0.03
Base-DAC 74 282 142  6.02 0.08 0.03

Xeon E5-2660 CPU @ 2.60GHz and an NVIDIA RTX TITAN
GPU. The encoding and decoding times were averaged across
fifty 10-second, 16kHz speech signals at a bitrate of 9kbps. No-
tably, the ESC codec is smaller and faster on CPUs compared
to Base-DAC, with x9 smaller model size, X2 encoding speed,
and x11 decoding speed. While the GPU performance of ESC
does not outperform DAC, the difference is minimal, with only
an additional 0.03 seconds required for a 10-second input au-
dio. Additionally, the encoding speed of ESC can be improved
at lower bitrates—a capability not present in DAC.

3.4. Ablation study on a pre-training stage

We evaluate the efficacy of the proposed pre-training stage by
monitoring both the bitrate utilization ratio and PESQ scores on
a held-out validation set throughout the training process. The
utilization rate is calculated as the sum of entropy (in bits) di-
vided by the maximum number of bits from all transmitted bit-
streams. We conducted an ablation experiment ESC-scratch,
which involves training from scratch without freezing the code-
books. We compare its learning trajectory to that of ESC-
pretrain in a non-adversarial setting. The results, depicted in
Figure 3, show a significant incremental gap between the two
trajectories. This gap confirms that a pre-training stage can en-
hance codebook learning (as evidenced by utilization rates ap-
proaching 1.0) and simultaneously improve audio quality.
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Figure 3: Learning trajectories of ESC model with and without
a pre-training stage in the first 250k steps: vertical dashed gray
lines denote the cutoff point when the pre-training stage ends.

4. Conclusions

In this paper, we propose an Efficient Speech Codec (ESC) sur-
passing existing baselines in coding efficiency for multi-lingual
speech compression. Extensive evaluations demonstrate that
our vector-quantized codec, which utilizes cross-scale learned
transformers, outperforms traditional single-scale convolutional
models in both reconstruction quality and complexity. As a fu-
ture work, we anticipate that our codec can be effectively scaled
up to accommodate larger, universal audio datasets.
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