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Abstract. We are interested in the branching capacity of the range of a random walk
in Zd. Schapira [28] has recently obtained precise asymptotics in the case d ≥ 6 and has
demonstrated a transition at dimension d = 6. We study the case d = 5 and prove that
the renormalized branching capacity converges in law to the Brownian snake capacity
of the range of a Brownian motion. The main step in the proof relies on studying the
intersection probability between the range of a critical Branching random walk and that
of a random walk, which is of independent interest.

1. Introduction

Let (ξn)n≥0 be a centered, aperiodic and irreducible random walk in Zd with finite
second moment, whose law is denoted by P (ξ). Denote by ξ[0, n] := {ξ0, ..., ξn} the range
of ξ up to time n. Studying the range ξ[0, n] is a classical problem in probability theory.

Concerning the asymptotics of the size of the range #ξ[0, n], it is well-known (Dvoretzky
and Erdős [14]) that there is a transition at dimension d = 2: #ξ[0, n] is of order n when
d ≥ 3 and of order n

logn
when d = 2; we refer to Jain and Orey [19], Jain and Pruitt [17],

and Le Gall [21, 22] for deep studies on the size of the range.
The capacity of the range depends on its geometry and has recently attracted significant

interest. The discrete Newtonian capacity can be defined as follows. Let d ≥ 3 and
K ⊂ Zd be a nonempty finite set. Let S be the range of a simple symmetric random walk
on Zd starting from x whose law is denoted by Px. The discrete Newtonian capacity of
K, Cap(K), can be defined for d ≥ 3 (up to a multiplicative constant) as

(1.1) Cap(K) := lim
x∈Zd, x→∞

|x|d−2Px(S ∩K ̸= ∅),

where |x| denotes the usual Euclidean norm of x and x → ∞ means that |x| → ∞.
Following the works of Jain and Orey [18], Asselah, Schapira and Sousi [4, 5], and Chang
[12], it is known that Cap(ξ[0, n]) is of order n when d ≥ 5, of order n

logn
when d = 4, and of

order
√
n when d = 3. This implies a transition at dimension d = 4. See Asselah, Schapira,

and Sousi [1], Schapira [27] and the references therein for the central limit theorems, and
Dembo and Okada [13] for the laws of the iterated logarithm. Additionally, Asselah and
Schapira [2] investigated the link between the capacity and the folding phenomenon of
a random walk, and Hutchcroft and Sousi [16] explored the capacity of the loop-erased
random walk.

Recently, Zhu [30] introduced the concept of branching capacity. The basic idea is to
replace the range of a simple random walk S in (1.1) by that of a critical branching random
walk. Specifically, let Tc be a critical Galton-Watson tree with offspring distribution µ,
where µ = (µ(i))i≥0 is a probability distribution on N such that

∑∞
i=0 iµ(i) = 1. To avoid

triviality, we assume µ(1) < 1. In other words, Tc is a finite random tree that starts
with one particle ∅, called the root, and each particle independently produces a random
number of offspring according to µ. The critical branching random walk on Zd, denoted by
Vc, is a random walk indexed by the tree Tc constructed as follows. Let θ be a probability
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distribution on Zd, representing the common distribution of the displacements of Vc. For
each edge e of Tc, we assign an independent random variable Xe with distribution θ. We
set Vc(∅) := x ∈ Zd, and for u ∈ Tc\{∅}, Vc(u) = x +

∑
eXe, where the sum is taken

over all edges e belonging to the simple path in Tc connecting u to ∅. The range of Vc is
denoted by

(1.2) Rc := {Vc(u), u ∈ Tc} ⊂ Zd.

Denote by Px the law of Vc and write P = P0. Almost surely the random tree Tc is finite,
so is the range Rc.

For x ∈ Rd, let B(x, r) := {y ∈ Rd : |y − x| < r} be the open ball centered at x with
radius r > 0. We assume that d ≥ 5, and for some q > 4,

µ has mean 1 and variance σ2 ∈ (0,∞),(1.3)
θ is symmetric, irreducible with covariance matrix Mθ and(1.4)

there exists a finite constant c such that for all r > 0: θ
(
B(0, r)c

)
≤ c r−q.

The last condition in (1.4) is in particular satisfied when θ has a finite q-th moment.
Denote by Px the law of a θ-walk (Sn)n≥0 on Zd started from x, meaning that the

random walk S has the step distribution θ. The Green function of (Sn) is given by
g(x, y) := g(x− y) for any x, y ∈ Zd, and

(1.5) g(x) :=
∞∑
n=0

P0(Sn = x) ∼ cg |x|2−d
θ as x→∞,

with

|x|θ := (xTM−1
θ x)1/2 and cg :=

Γ(d−2
2
)

2πd/2
√
detMθ

,

where the equivalence in (1.5) is given by Uchiyama [29, Theorem 2]. Let K ⊂ Zd be a
nonempty finite set. By Zhu [30], when (1.4) holds with q = d, the following limit exists
and is called the branching capacity of K:

(1.6) Bcap(K) := lim
x∈Zd, x→∞

Px(Rc ∩K ̸= ∅)
g(x)

.

Note that Bcap(·) viewed as a set function is non-decreasing, invariant under transla-
tions, and strictly positive. We extend Bcap into a Choquet capacity on Rd by letting
Bcap(A) := Bcap(A ∩ Zd) for any A ⊂ Rd.

The branching capacity, studied in a series of papers by Zhu [30, 31, 32], has also
been the subject of some more recent works. Asselah, Shapira and Sousi [3] have shown
that Bcap(K) can be compared, up to two positive constants, with the discrete Riesz
capacity with index d − 4, and have revealed a deep relationship between the local time
spent in a ball by the branching random walk and the branching capacity of this ball.
Moreover, in another work, Asselah, Okada, Shapira and Sousi [6] have demonstrated the
comparability of Bcap(K) with the average limit of the size of the Minkowski sum of K
and two independent copies of (Sn), as well as with the hitting probability of K by this
Minkowski sum. See also [7] for further references.

In [7] we also proved the vague convergence of the scaling limit of Bcap towards the
capacity related to the Brownian snake, denoted by BScap. More precisely, consider the
excursion measure Nx given by the distribution of a Brownian snake (Wt)t≥0 started from
x ∈ Rd whose lifetime process is an Itô excursion. Denote by R the range of the Brownian
snake, see Le Gall [23, Chapter IV] for the precise definitions. It was shown in [7] that
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when d ≥ 5, for any bounded Borel set A ⊂ Rd, the following limit exists and is finite:

(1.7) BScap(A) := lim
x→∞
|x|d−2Nx(R ∩ A ̸= ∅).

We call BScap(A) the Brownian snake capacity of A.
The vague convergence in [7, Theorem 1.4] says that for d ≥ 5 and for any compact set

K ⊂ Rd such that

(1.8) BScap(K̊) = BScap(K),

where K̊ denotes the interior of K, we have, under (1.3) and (1.4) with q = d,

(1.9) lim
n→∞

Bcap(
√
nK)

n(d−4)/2
= cθ BScap(M−1/2

θ K),

with

(1.10) cθ :=
2

σ2cg
=

4πd/2
√
detMθ

σ2 Γ(d−2
2
)
·

We choose a renormalization of n1/2 in (1.9) to ensure consistency with the choice of Kn

below. The condition (1.8) is in particular satisfied when K is the closure of a bounded
open set with Lipschitz boundary, see [7, Proposition 1.3]. It is a natural problem to
investigate the branching capacity of (random) compact set K which does not satisfy
(1.8). In this paper we consider the case

√
nKn := ξ[0, n] of the range of the random walk

(ξn)n≥0, which was recently studied by Schapira [28]: when both (Sn) and (ξn) are simple
symmetric random walks, the following asymptotics hold:

(1.11)

lim
n→∞

1

n
Bcap(ξ[0, n]) exists almost surely and is positive when d ≥ 7;

lim
n→∞

log n

n
Bcap(ξ[0, n]) =

2π3

27σ2
in probability when d = 6;

E(ξ)[Bcap(ξ[0, n])] is of order n1/2 when d = 5.

We aim to give a sharp result in dimension d = 5. Assume that

(1.12)
(ξn)n≥0 is aperiodic irreducible and E

(ξ)
0 [|ξ1|3] <∞,

E
(ξ)
0 [ξ1] = 0 and ξ1 has covariance matrix Mξ,

where P (ξ)
x means that the random walk (ξn) starts from x ∈ Zd. Let (βt)t≥0 be a standard

Brownian motion in Rd. For a real d × d matrix M , we define Mβ[0, 1] := {Mβt : 0 ≤
t ≤ 1}. Notice that Kn = n−1/2ξ[0, n] converges in law, for the Hausdorff distance, to
M

1/2
ξ β[0, 1].

Theorem 1.1. Let d = 5. Assume (1.3), (1.4) with q = 5, and (1.12). We have

Bcap(ξ[0, n])√
n

(law)−→
n→∞

8π2
√
detMθ

σ2
BScap(M−1/2

θ M
1/2
ξ β[0, 1]).

Moreover, BScap(M−1/2
θ M

1/2
ξ β[0, 1]) is almost surely positive.

Remark 1.2. (1) In Lemma 2.2, we will show that a.s. BScap(M−1/2
θ M

1/2
ξ β[0, 1]) > 0

when d = 5, whereas it vanishes when d ≥ 6.
(2) In the assumption (1.12), aperiodicity can be easily removed, and the third moment

condition is required in Lemma 3.3.
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(3) In the case when both (Sn) and (ξn) are simple symmetric random walks, the
limiting random variable in Theorem 1.1 becomes

Bcap(ξ[0, n])√
n

(law)−→
n→∞

8π2

σ2dd/2
BScap(β[0, 1]).

The key ingredient in the proof of Theorem 1.1 is the following estimate on the in-
tersection probability between (ξn) and the branching random walk Vc, which may be of
independent interest.

For any A ⊂ Rd and r > 0, let Ar := {x ∈ Rd : d(x,A) ≤ r} be the closed r-
neighborhood, where d(x,A) := miny∈A |x − y|. For any x ∈ Rd, we denote by ⌊x⌋ the
point in Zd whose coordinates are the integer parts of that of x, thus |⌊x⌋ − x| ≤

√
d.

We have the following estimate on the intersection probabilities between Rc and ξ[0, n].

Proposition 1.3. Let d = 5. Assume (1.3), (1.4) with q > 4, and (1.12). For any fixed
x ∈ R5\{0} and any η ∈ (0, 1), we have

(1.13) lim sup
ε→0+

lim sup
n→∞

n I(ε, n) = 0,

where xn := ⌊
√
nx⌋ ∈ Z5 and

(1.14)
I(ε, n) := Pxn ⊗ P

(ξ)
0

(
Rc ∩ (ξ[0, n])ε

√
n ̸= ∅, Rc ∩ ξ[0, n] = ∅, ξ[0, n] ⊂ B(0, η|xn|)

)
.

Remark 1.4. (i) The condition ξ[0, n] ⊂ B(0, η|xn|) in I(ε, n) guarantees that Rc must
have some growth to reach the (ε

√
n)-neighborhood of ξ[0, n]. Without this condition,

Proposition 1.3 is no longer true, see Remark 3.10 for further details.
(ii) We can deduce from (2.1) that at least for small η,

n−3/2Bcap
(
B(0, εn1/2)

)
≲ Pxn ⊗ P

(ξ)
0

(
Rc ∩ (ξ[0, n])ε

√
n ̸= ∅, ξ[0, n] ⊂ B(0, η|xn|)

)
≲ n−3/2Bcap

(
B(0, (η|x|+ ε)

√
n)
)
.

The left and right terms of the above inequalities are, according to (1.9), of order 1
n
. This

explains the factor n in (1.13).
(iii) When d ≥ 6, (1.13) also holds, under the conitions (1.3), (1.4) with q = d, and

(1.12). In this case, the proof is elementary, see Lemma 2.3.

Let us say a few words on the proofs of Theorem 1.1 and Proposition 1.3. Using
Donsker’s invariance principle and the forthcoming (2.1) and (2.4), we can see that the
scaling limit of Bcap(ξ[0, n]εn

1/2

) can be compared with BScap(M−1/2
θ M

1/2
ξ β[0, 1]). There-

fore the proof of Theorem 1.1 reduces to show that

Bcap(ξ[0, n]εn
1/2

) ≈ Bcap(ξ[0, n]),

in the sense, see (1.6), that for large x

Pxn ⊗ P
(ξ)
0

(
Rc ∩ (ξ[0, n])εn

1/2

̸= ∅
)
≈ Pxn ⊗ P

(ξ)
0 (Rc ∩ ξ[0, n] ̸= ∅),

which is the content of Proposition 1.3 (note that the condition ξ[0, n] ⊂ B(0, η|xn|) holds
with high probability as x is large). To prove Proposition 1.3, we will switch the roles of
ξ and Rc in the probability term of Proposition 1.3 and study the probability of the form
P0 ⊗ P

(ξ)
xn

(
ξ[0, n]∩Rc

εn1/2 ̸= ∅, ξ[0, n]∩Rc = ∅
)
. The latter probability can be estimated

by a comparison to P0 ⊗ P
(ξ)
xn

(
ξ[0,∞) ∩ Rn2 = ∅

)
, where Rn2 denotes the range Rc

conditioned on the total population #Tc = n2. This probability has already been studied
in [8]. To achieve such a comparison, we need to introduce some auxiliary trees and their
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associated branching random walks in Section 3, which will be the most technical part.
We refer to Section 3.4 for more detailed explanations on the proof of Proposition 1.3.

The paper is organized as follows. In Section 2.1, we recall some known results on the
branching capacity and the Brownian snake capacity. In Section 2.2, we prove Theorem
1.1 by assuming Proposition 1.3. In Section 3, we introduce auxiliary branching random
walks V+, V−, and V̂− in Section 3.1, then recall several known results on V+ and V̂− in
Section 3.2. After establishing some estimates on the increments of V+ in Section 3.3,
we present the key step in the proof of Proposition 1.3 in Section 3.4, involving a study
of intersection probabilities between V± and the random walk ξ. Finally, we provide the
proof of Proposition 1.3 in Section 3.5.

For notational convenience, we use the notations C,C ′, C ′′, eventually with some sub-
scripts, to denote some positive constants whose values may vary from one paragraph to
another.

2. Brownian snake capacity and Proof of Theorem 1.1 by assuming
Proposition 1.3

2.1. Branching capacity and Brownian snake capacity. We collect some facts on
the Branching and the Brownian snake capacities in this subsection. At first the following
result (see [7, Theorem 1.1]) provides a rate of convergence in (1.6) that will also be useful
in our proof of Theorem 1.1. Let d ≥ 5. Assume (1.3), (1.4) with q = d. For any λ > 0,
there exist some positive constants α and C such that for any r ≥ 1, K ⊂ B(0, r) ∩ Zd,
x ∈ Zd with |x| ≥ (1 + λ)r, we have

(2.1)
∣∣∣Bcap(K)− Px(Rc ∩K ̸= ∅)

g(x)

∣∣∣ ≤ C

(
r

|x|

)α

Bcap(K),

where diam(K) := supx,y∈K |x − y| is the diameter of K. Moreover, there are constants
c1, c2 > 0, such that for any Borel set A ⊂ Rd,

(2.2) c1Capd−4(A) ≤ BScap(A) ≤ c2Capd−4(A),

where for any γ ∈ (0, d),

(2.3) Capγ(A) :=

(
inf
ν

∫∫
|x− y|−γ ν(dx)ν(dy)

)−1

,

with the infimum taken over all the probability measures with support in A.

Lemma 2.1. Let d ≥ 5. Assume (1.3), (1.4) with q = d. For any compact set K ⊂ Rd,
we have

(2.4) lim sup
ε→0

lim sup
n→∞

∣∣Bcap(nKε)

nd−4
− cθBScap(M−1/2

θ K)
∣∣ = 0,

with cθ given in (1.10).

Proof. First BScap(·) is a Choquet capacity relative to the set of compact sets on Rd. In
particular, for every compact set K ⊂ Rd, we have

(2.5) lim
ε→0+

BScap(Kε) = BScap(K).

We check that the condition [7, (1.7)] is satisfied for Kε: for any y ∈ ∂Kε and n large
enough, Kε ∩ B(y, 2−n) contains a ball of radius 2−n−1 so Capd−2(K

ε ∩ B(y, 2−n)) ≥
Capd−2(B(0, 2

−n−1)) = 2−(d−2)(n+1)Capd−2(B(0, 1)). Consequently for any ε > 0, we
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have BScap(Kε) = BScap(Kε−), where Kε− = {x ∈ Rd : d(x,K) < ε} the open ε-
neighborhood of K. Notice that these results also hold when K is replaced by M

−1/2
θ K

and Kε by M
−1/2
θ Kε. This and [7, Theorem 1.4] yield that

(2.6) lim
n→∞

Bcap(nKε)

nd−4
= cθBScap(M−1/2

θ Kε).

Finally, (2.4) follows from (2.6) and (2.5). □

We end this subsection by the following result on the positivity of the Brownian snake
capacity of the range of a Brownian motion. Recall that for a real d × d matrix M ,
Mβ[0, 1] = {Mβt : 0 ≤ t ≤ 1}.

Lemma 2.2. Let (βt)t≥0 be a Brownian motion in Rd and M be a symmetric positive
definite matrix d× d. Then almost surely,

BScap(Mβ[0, 1])

{
> 0, if d = 5,

= 0, if d ≥ 6.

Proof. By [25, Theorem 1.1 and formula (9)], a.s., Capγ(β[0, 1]) > 0 if and only if γ <
min(2, d). In particular, Capd−4(β[0, 1]) is positive when d = 5 and zero when d ≥ 6.
By (2.3), the same result holds when β[0, 1] is replaced by Mβ[0, 1], because |Mx−My|

|x−y| is
uniformly bounded in (0,∞) for all x ̸= y. We conclude by using (2.2). □

2.2. Proof of Theorem 1.1 by assuming Proposition 1.3. By Donsker’s invari-
ance principle and Skorokhod’s representation theorem, on a common probability space
(Ω,F ,P) we may find a version of the random walk (ξn) starting from 0 and a standard
Brownian motion (βt)t≥0 in Rd such that for Θ := {M1/2

ξ βt : 0 ≤ t ≤ 1}, almost surely for
every ε > 0, there exists some n0 ≥ 1 such that for every n ≥ n0,

(2.7) n1/2 ·Θε/2 ⊂ ξ[0, n]εn
1/2

⊂ n1/2 ·Θ2ε.

Applying (2.4) to n1/2 ·Θε/2 and n1/2 ·Θ2ε, we deduce that for d = 5, P-almost surely,

lim sup
ε→0+

lim sup
n→∞

∣∣∣∣∣Bcap(ξ[0, n]εn
1/2

)

n1/2
− cθBScap(M−1/2

θ Θ)

∣∣∣∣∣ = 0.(2.8)

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 by assuming Proposition 1.3. Let d = 5. By (2.8), it suffices to
show that

lim sup
δ→0+

lim sup
ε→0+

lim sup
n→∞

P
(
Bcap(ξ[0, n]εn

1/2

)− Bcap(ξ[0, n]) > δn1/2
)
= 0.(2.9)

Let x ∈ Rd\{0} and let xn = ⌊n1/2x⌋. Let η > 0 be small whose value will be determined
later. For n large enough, on the event

En = En(x, η) :=
{
ξ[0, n] ⊂ B(0, η|xn|)

}
,
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by applying twice (2.1) to obtain the following first and third inequalities, we have

Bcap(ξ[0, n]) ≥ Pxn(Rc ∩ ξ[0, n] ̸= ∅)
(1 + Cηα)g(xn)

=
Pxn

(
Rc ∩ ξ[0, n]εn

1/2

̸= ∅
)

(1 + Cηα)g(xn)
− en(ε)

1 + Cηα

≥ 1− C(η + 2ε|x|−1)α

1 + Cηα
Bcap

(
ξ[0, n]εn

1/2
)
− en(ε),

where
en(ε) :=

1

g(xn)
Pxn

(
Rc ∩ ξ[0, n] = ∅,Rc ∩ ξ[0, n]εn

1/2

̸= ∅
)
.

For any δ > 0, we may find and then fix sufficiently small η = η(δ) > 0 and ε0 :=

ε0(δ, |x|) > 0 such that for all ε ≤ ε0, we have 1−C(η+2ε|x|−1)α

1+Cηα
≥ 1− δ2. It follows that

(2.10)

P
(
Bcap(ξ[0, n]εn

1/2

)− Bcap(ξ[0, n]) > δn1/2
)

≤P
(
δ2 Bcap

(
ξ[0, n]εn

1/2
)
+ en(ε) > δn1/2, En

)
+ P(Ec

n)

≤P
(
n−1/2Bcap

(
ξ[0, n]εn

1/2
)
>

1

2δ

)
+ P

(
en(ε) >

δ

2
n1/2, En

)
+ P(Ec

n)

= : (2.10)1 + (2.10)2 + (2.10)3.

By (2.8),

lim sup
ε→0+

lim sup
n→∞

(2.10)1 ≤ P
(

BScap(Θ) >
1

4cθδ

)
is arbitrarily small as we take δ → 0+.

By Markov’s inequality, (2.10)2 ≤ anI(ε, n) where I(ε, n) was defined in (1.14) and
an := 2δ−1n−1/2(g(xn))

−1 is of order of n by (1.5), as n → ∞ (recalling that d = 5). By
Proposition 1.3,

lim sup
ε→0+

lim sup
n→∞

(2.10)2 ≤ C ′ lim sup
ε→0+

lim sup
n→∞

n I(ε, n) = 0.(2.11)

Finally for (2.10)3, we deduce from the standard random walk fluctuations that (η is
fixed)

lim sup
x→∞

lim sup
n→∞

P(Ec
n) = 0.

Combining the terms above and letting first n → ∞, then ε → 0, |x| → ∞ and lastly
δ → 0, we obtain (2.9) and complete the proof of Theorem 1.1. □

Recall I(ε, n), defined in (1.14), depends also on x and η. We give an elementary proof
of (1.13) when d ≥ 6.

Lemma 2.3. Let d ≥ 6. Assume (1.3), (1.4) with q = d. For any fixed x ∈ Rd\{0} and
any η ∈ (0, 1), we have

lim sup
ε→0

lim sup
n→∞

n I(ε, n) = 0.

Proof. Let Ξn := n(4−d)/2Bcap((ξ[0, n])ε
√
n) 1{ξ[0,n]⊂B(0,η|xn|)}. By (2.1), there exists some

positive constant C = C(η, |x|) such that for all n,
n I(ε, n) ≤ C E(Ξn).

By [30], there exists some positive constant C ′ such that for all n, Bcap(B(0, η|xn|)) ≤
C ′|xn|d−4. We have Ξn ≤ C ′′ for some positive constant C ′′ independent of n.
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Now we use (2.7) and (2.6) to see that P-a.s.

lim sup
n→∞

Ξn ≤ lim sup
n→∞

n(4−d)/2Bcap(n1/2Θ2ε) = cθBScap(M−1/2
θ Θ2ε).

Applying Fatou’s lemma to C ′′ − Ξn, we get that

lim sup
n→∞

E(Ξn) ≤ cθE(BScap(M−1/2
θ Θ2ε)).

Finally we remark that limε→0 E(BScap(M−1/2
θ Θ2ε)) = E(BScap(M−1/2

θ Θ)) = 0 for d ≥ 6,
by Lemma 2.2. This ends the proof. □

3. Intersection probabilities: Proof of Proposition 1.3

In this section, we shall consider planar tree using the lexicographic order in Ulam-
Harris setting. We set U∗ = ∪n∈N∗(N∗)n and U = U∗ ∪ {∅}, where ∅ is called the
root. For u = u1 · · ·un ∈ U∗, the set of ancestors anc(u) ⊂ U of u is given by anc(u) =
{u1 · · ·uk : k ∈ {1, . . . , n}} ∪ {∅}. We see a rooted planar tree t as a subset of U such
that: ∅ ∈ t; if u ∈ t ∩ U∗ then anc(u) ⊂ t; if u ∈ t, then there exists k ∈ N such that
ui ∈ t for all i ∈ {1, . . . , k} (with the convention that ∅i = i). The tree t is endowed
with the usual lexicographic order ≺ with the convention that ∅ ≺ u for all u ∈ U∗.

We set U ′ = U ∪ U∗
−, with U∗

− = {−u : u ∈ U∗}, where for the word u = u1 · · ·un ∈ U∗,
we define the word −u := (−u1) · · · (−un). We extend the lexicographic order ≺ on U to
U ′ as follows. For u ∈ U∗

−, we have u ≺ v if: either v ∈ U ; or v ∈ U∗
− and −u ∈ anc(−v);

or v ∈ U∗
− and −u ̸∈ anc(−v) and −v ≺ −u (in U∗). For example, we have:

(−5) ≺ (−1) ≺ (−1)(−1)(−1) ≺ ∅ ≺ 1 ≺ 111 ≺ 5.

3.1. On the discrete tree models. We will introduce the adjoint tree Tadj and invariant
tree T∞, as well as the associated branching random walks.

The random planer tree Tadj is derived from the Galton-Watson tree Tc, with the only
modification being made at the root. In the adjoint tree, the root has an offspring distri-
bution

µ̃(k) =
∞∑

j=k+1

µ(j), k ≥ 0,

instead of µ, while all other vertices retain the original offspring distribution µ.
We then construct the invariant tree T∞ as follows. Start with an infinite spine from

the root ∅:
X = {∅0 := ∅,∅1, ...,∅n, ...}.

To ∅, we graft on the right a planar random tree T d
0 distributed as the critical Galton-

Watson tree Tc (identifying the root of Tc with ∅ = ∅0). Then, for any n ≥ 1, the vertex
∅n has i children on the left and j on the right with probability µ(i+ j+1), and we graft
independent copies of Tc to each child (identifying the root of the grafted tree with the
child). As a remark, the two planar subtrees grafted to the left, T g

n , and to the right, T d
n ,

of ∅n (with their root identified with ∅n) are dependent random trees and, for n ≥ 1,
distributed as Tadj. For n = 0, the tree T g

0 is simply reduced to its root.
An element u ̸= ∅ of the planar tree T d

n ⊂ U is coded by the word nu in T∞, and an
element u ̸= ∅ of the planar tree T g

n ⊂ U is coded by the word (−n)(−u) in T∞, and ∅n

is coded by (−n) for n ≥ 1. One can see the tree T∞ as a subset of U ′. Then, we order
the vertices of T∞ by the lexicographic order ≺ on U ′:

· · · ≺ T∞(−2) ≺ T∞(−1) ≺ T∞(0) ≺ T∞(1) ≺ · · · ,
with T∞(0) = ∅0 = ∅. Moreover, we denote by T+ := T∞(N) = T∞ ∩ U (and T− :=
T∞(Z−) = T∞ ∩ U− where U− = U∗

− ∪ {∅}) the subgraph of T∞ with non-negative (and
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Figure 1. On the left: a sample of T− = T∞(Z−) in black and T+ = T∞(N) in blue (except
for the root which is black but belongs also to T+) so that T∞ = T− ∪ T+; notice T∞(−1) is
coded by (−1)(−1)(−1), T∞(−3) by (−1)(−1) and T∞(−5) by (−1). On the right: the tree T̂−
which is a different ordering than T− of the same graph.

non-positive) labels. Notice T− is a tree and that the spine X is a subset of T−, but T+ is
disconnected and thus no longer a tree, see Fig. 1.

The sequence T∞(0), T∞(−1), T∞(−2), . . . is not a depth-first sequence for T−. We shall
reorganize T− in depth-first order by considering the planar rooted tree T̂− ⊂ U built as
the union of the spine X and the trees (T g

n )n≥0, where ∅n+1 is identified as an extra oldest
child of the root of T g

n (which is still identified with ∅n). We then order the vertices of
T̂− using the lexicographic order ≺ on U :

∅ = T̂−(0) ≺ ∅1 = T̂−(1) ≺ T̂−(2) ≺ · · · .
See an illustration in Fig. 1.

For each α ∈ {c, adj,∞,+,−}, we construct Vα, the branching random walk indexed
by Tα with displacement distribution θ, in the same way as we did for Vc and Tc. For
notational brevity, for any i ∈ Z, we write V∞(i) := V∞(T∞(i)) the spatial position of the
ith vertex of T∞. For a, b ∈ Z, we denote

V∞[a, b] = {V∞(i), a ≤ i ≤ b},
and abbreviate R∞ for the range V∞(−∞,∞). For α ∈ {c, adj,+}, we use similar no-
tations Tα(i), Vα(i) for 0 ≤ i ≤ #Tα, i finite, with Tα(0) the root of Tα. In particular,
Rc = Vc[0,#Tc] is in agreement with (1.2). Finally, the law of a branching random walk
started from x is always denoted by Px.

Since for all i ∈ N, there exists a unique j ∈ N such that T̂−(i) = T∞(−j), we can
define V̂−(i) = V∞(−j). It is immediate that

R̂− := V̂−[0,∞) = V∞(−∞, 0] =: R−.

The distribution of the random tree T∞ is invariant by rerooting at vertex T∞(n) for
all n ∈ Z, see [9, Section 2.2]. Since the distribution θ of the increments of the branching
random walk is symmetric, we directly deduce that V∞ is invariant by translation ([9,
Section 2.2] and [24]):

(V∞(n+ i)− V∞(n))i∈Z
(law)
= (V∞(i)− V∞(0))i∈Z, ∀n ∈ Z.(3.1)

Denote by (Yn)n∈N the Lukasiewicz walk associated to Tc, that is, (Yn) is a centered
random walk on Z starting from 0 whose step distribution is P(Y1 = i) = µ(i+1), i ≥ −1,
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and such that Yn+1− Yn +1 is the number of children of Tc(n) for all n < #Tc. Similarly,
denote by (Ln) the Lukasiewicz walk of T̂−, then its law is as follows: L0 = 0, L1 = −1; for
n ≥ 1, conditioning on σ{Li, i ≤ n}, Ln+1−Ln+1 is distributed as µ if Ln ̸= min0≤i≤n Li,
and as µ̃ if Ln = min0≤i≤n Li. (To be precise the the Lukasiewicz walk (Ln) is associated
to the forest in T̂−, where the edges of the infinite spine (∅n)n≥0 are removed. In this
setting, ∅n+1 is not seen as child of ∅n.) By [32, Section 5], V̂− can be compared to Vc in
terms of (Yn) and (Ln): for any 0 ≤ k < m and nonnegative measurable function F ,

(3.2) Ex

(
F (Vc[0, k])

∣∣#Tc = m
)
= Ex

(
F (V̂−[0, k]) Φm,k(Lk)

)
,

where

Φm,k(ℓ) :=
mP(Ym−k = −(ℓ+ 1))

(m− k)P(Ym = −1)
·

By the local central limit theorem for the random walk Y , for any a ∈ (0, 1), there
exists some Ca > 0 such that, for any m ≥ 1 and k ≤ am, we have Φm,k(ℓ) ≤ Ca for all
ℓ ∈ Z. Consequently for any nonnegative measurable function F , we have

(3.3) Ex

(
F (Vc[0, ⌊am⌋])

∣∣#Tc = m
)
≤ CaEx

(
F (V̂−[0, ⌊am⌋])

)
.

Finally, we denote the spatial positions of the spine X by

(3.4) RX = {VX (0), VX (1), ...},

where for any i ≥ 0, VX (i) := V∞(∅i) ∈ Zd is the position of ith point in the spine (recall
that ∅0 := ∅ is the root). As a matter of fact, the sequence (VX (i))i≥0, forms a θ-walk on
Zd. We denote by Y the set of points in T̂− that are not in the spine, with the exception
of the root, see Fig. 2. Let

(3.5)
Y := {Y0,Y1,Y2, ....} = T̂−\{∅1,∅2, ...},

RY := {VY(0), VY(1), VY(2), ....},

listed in depth-search order, Y0 := ∅ and VY(0) := V∞(∅), and for any i ≥ 0, VY(i) =

V∞(Yi) denotes the spatial position of the ith vertex of Y . Then we have T̂− = X ∪ Y
and X ∩ Y = {∅}.

Let R+ := V+[0,∞) denote the range of V+. By construction, the random sets (RX ,RY)
and (RX ,R+) conditionally on {T d

0 = {∅}} have the same distribution. We deduce that

R̂− = RX ∪RY
(law)
=
(
RX ∪R+

∣∣ T d
0 = {∅}

)
,

and that for any nonnegative measurable function F ,

(3.6) Ex

(
F (RY ,Y)

)
= Ex

(
F (R+, T+)

∣∣ T d
0 = {∅}

)
≤ 1

µ(0)
Ex

(
F (R+, T+)

)
.

This property will be used to compare rare events for V̂− and V+. As for Vα[a, b] we use
the notation: for any 0 ≤ i ≤ j,

(3.7) VY [i, j] := {VY(i), VY(i+ 1), ..., VY(j)},

and define for any m ≥ 1,

(3.8) R(m)

X ,V̂−
:= RX ∩ (V̂−[0,m]) and R(m)

Y,V̂−
:= RY ∩ (V̂−[0,m]).

We end this section by a simple estimate on the number of spine points in T̂−.
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Figure 2. An illustration of T̂− = X ∪ Y, and its comparison to T+ when T d
0 = {∅}. We

have here that X (0) = 0,X (1) = 1,X (2) = 6 and Y(0) = 0,Y(1) = T̂−(2), Y(2) = T̂−(3),
Y(3) = T̂−(4), Y(4) = T̂−(5) and Y(5) = T̂−(7).

Lemma 3.1. Assume (1.3). For any r ∈ (0, 1), there exist some positive constants
C = Cr and c = cr such that for all n ≥ 1

P
(
#(T̂−[0, n] ∩ X ) > r n

)
≤ C e−c n.

Proof. By construction, T̂− consists of i.i.d. adjoint trees in a sequence, and we need to
show that it is very unlikely for T̂− to cover ⌈rn⌉ such subtrees. Denote by (Zi) i.i.d.
random variables distributed as the total population of #Tadj. Then it suffices to show
that

P
(
Z1 + · · ·+ Z⌈rn⌉−1 ≤ n

)
≤ C e−c n,

where this probability is equal to 1 if ⌈rn⌉ = 1. Let for s ≥ 0,

f(s) := es/rE
(
e−sZ1

)
.

Note that E(Z1) =∞. Then f ′(s) = E[(1
r
−Z1)e

( 1
r
−Z1)s] is continuous on s ∈ (0,∞) with

lims→0+ f ′(s) = −∞. Combined with f(0) = 1, we know that f(s0) < 1 for some s0 > 0.
Therefore,

P
(
Z1 + · · ·+ Z⌈rn⌉−1 ≤ n

)
≤ es0n

(
E
(
e−s0Z1

))⌈rn⌉−1 ≤ E
(
e−s0Z1

)−1
(f(s0))

rn,

and we conclude by taking c = −r log f(s0) > 0 and C large enough. □

3.2. Some known results. We collect here some preliminary estimates on the random
walk and the branching random walk.

Lemma 3.2. [20, Proposition 2.1.2, Theorem 2.3.9] Let (ξn)n≥0 be a centered, aperiodic
and irreducible random walk in Zd with finite variance. There exists some C > 0 such
that for every s > 0 and n ≥ 1,

P
(ξ)
0

(
max
0≤i≤n

|ξi| ≥ s
√
n

)
≤ C s−2,(3.9)

sup
x∈Zd

P
(ξ)
0 (ξn = x) ≤ C n−d/2.(3.10)

Indeed, [20, Proposition 2.1.2 (a)], with k = 1, gives (3.9), and (3.10) follows from [20,
Theorem 2.3.9].

Recall V+ is the branching random walk in Zd indexed by T+ defined in Section 3.1.
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Lemma 3.3. ([8, Lemma 4.13]) Let d = 5. Assume (1.3), (1.4) with q > 4, and (1.12).
For any M > 0, there exist some υ, C > 0 such that for all ε ∈ (0, 1),

(3.11) lim sup
n→∞

P0

(
max

|x|≤εn1/2,x∈Z5
P (ξ)
x (ξ[0,∞) ∩ V+[0, n

2] = ∅) ≥ ευ
)
≤ C εM .

Proof. Though [8] only considered simple random walks, a general random walk ξ that is
centered with finite variance, aperiodic and irreducible will validate every argument except
for [8, Lemma 4.6], which relies on the asymptotics of the Green’s function, g(ξ)(x) =∑

n≥0 P
(ξ)
0 (ξn = x). Given the existence of finite third moment of ξ, we can apply [29,

Theorem 2] (with N = 5,m = 0) to get g(ξ)(x) = (C + o(1))|x|−3. Thus we still get [8,
Lemma 4.6] for ξ satisfying (1.12) instead of a simple random walk. □

We end this subsection by some estimates on the branching random walks V+ and Vc

and on the graph distance on T+. We consider T+ as a subgraph of T∞ and, for all
0 ≤ i < j, we denote by dgr(T+(i), T+(j)) the graph distance in T∞ between the two
vertices T+(i) and T+(j), which is the number of edges in the geodesic path connecting
T+(i) to T+(j) in T∞.

Lemma 3.4. Assume (1.3) and (1.4) with some q > 4.
(i) For any 0 < ζ < 1

4
− 1

q
, there exists some positive constants a′ and C = Ca′ such

that all n ≥ 1 and 0 < η < 1, we have

(3.12) P0

(
max

0≤i<j≤n, 0≤j−i≤ηn
|V+(j)− V+(i)| ≥ ηζn1/4

)
≤ C ηa

′
.

(ii) There exists some C = Cq > 0 such that for any n ≥ 1,

(3.13) E0

(
max
z∈Rc

|z|q
∣∣∣∣#Tc = n

)
≤ C nq/4.

(iii) For any r ≥ 1, there is some positive constant C such that for any 0 ≤ i < j,

(3.14) E
(
dgr(T+(i), T+(j))r

)
≤ C (j − i)r/2.

Proof. The statements (i) and (ii) come from [8, (4.11), (4.24)].
For (iii), we deduce from the invariance T∞ by rerooting that for any j > i, dgr(T+(i), T+(j))

is distributed as dgr(T+(j− i),∅). By using [8, (4.7), (4.9), (4.10)], and we note that (4.9)
and (4.10) hold for any exponent r ≥ 1 instead of q/2 there, we get (3.14). □

3.3. Increments of V+. We first present a general result to estimate the increments of
a discrete-time process:

Lemma 3.5. Let α ∈ (0, 1], b > 0, p > max( 1
α
, b
α
) and H,K ≥ 0 and n ≥ 1. Let Υ0, ...,Υn

be real-valued random variables such that for any 0 ≤ i ≤ j ≤ n,

(3.15) E(|Υj −Υi|p) ≤ H(j − i)αp +K(j − i)b.

For any max(1, b) < γ < αp, there exists some positive constant c = c(α, γ, p, b) only
depending on α, γ, p, b such that

(3.16) E
(

max
0≤i≤j≤n

|Υj −Υi|p
)
≤ c

(
Hnαp +Knγ

)
.

In particular, if Υ0 = 0, then

(3.17) E
(
max
0≤i≤n

|Υi|p
)
≤ c

(
Hnαp +Knγ

)
.
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When K = 0, the above lemma is the discrete-time version of the Garsia-Rodemich-
Rumsey lemma. We shall apply Lemma 3.5 to estimate the increments of V+ and the
term K(j− i)b will appear when we consider a truncated version of V+, with K depending
on n.

Proof. Consider (Υ
(n)
t )0≤t≤1 the linear interpolation of the process (n−αΥ⌊nt⌋)0≤t≤1. We

are going to apply the Garsia-Rodemich-Rumsey lemma for Υ(n). We claim that there
exists some cp > 0 such that for all 0 ≤ s < t ≤ 1,

(3.18) E
(
|Υ(n)

t −Υ(n)
s |p

)
≤ cp(t− s)γ

(
H +Knγ−αp

)
.

In fact, if for some 0 ≤ i ≤ n, i
n
≤ s < t ≤ i+1

n
, then Υ

(n)
t −Υ

(n)
s = n1−α(t−s)(Υi+1−Υi),

hence

E
(
|Υ(n)

t −Υ(n)
s |p

)
≤ np(1−α)(t− s)p(H +K) ≤ (H +K)nγ−αp (t− s)γ,

proving (3.18) (with cp ≥ 1) in this case as γ < αp. If for some 0 ≤ i < j < n, i
n
≤ s < i+1

n

and j
n
≤ t < j+1

n
, we distinguish two subcases: either j = i + 1, then we use twice the

above estimate to the couples (s, i+1
n
) and ( i+1

n
, t) and get that

E
(
|Υ(n)

t −Υ(n)
s |p

)
≤ 2p(H +K)nγ−αp (t− s)γ;

or j ≥ i+ 2, then t− s ≥ 1
n

and

E
(
|Υ(n)

t −Υ(n)
s |p

)
≤ 3p−1E

(
|Υ(n)

t −Υ
(n)
j/n|

p
)
+ 3p−1E

(
|Υ(n)

i/n −Υ(n)
s |p

)
+ 3p−1E

(
|Υ(n)

j/n −Υ
(n)
i/n|

p
)

≤ 2 3p−1n−αp(H +K) + 3p−1n−αpE(|Υj −Υi|p)
≤ cpH(t− s)αp + cpK(t− s)bnb−αp

≤ cp(t− s)γ
(
H +Knγ−αp

)
,

where in the last inequality we have used the facts that b < γ < αp and (t− s)b−γ ≤ nγ−b

in this case. Then the proof of (3.18) is complete.
Now in view of (3.18), we are entitled to apply [10, (3a.3)] and get that for any (arbi-

trarily) fixed 0 < δ < γ − 1,

E

(
sup

0≤s<t≤1

|Υ(n)
t −Υ

(n)
s |p

|t− s|δ

)
≤ C

(
H +Knγ−αp

)
.

Hence, we get

E
(

max
0≤i<j≤n

|Υj −Υi|p
)

= nαpE
(

sup
0≤s<t≤1

|Υ(n)
t −Υ(n)

s |p
)
≤ C

(
Hnαp +Knγ

)
,

proving (3.16). □

We then apply this lemma to get a control on the increments of V+.

Lemma 3.6. Assume (1.3) and (1.4) with some q > 4. For any p ≥ 4
1
4
− 1

q

, there exists

some C > 0 such that for any η ∈ (0, 1) and r > 0, we have 1

(3.19) lim sup
n→∞

P0

(
max
0≤k≤ 1

η

max
0≤i≤ηn

|V+(i+ kηn)− V+(kηn)| ≥ r n1/4
)
≤ C r−p η

p
4
−1.

1The term kηn is understood as its integer part. Similar remark applies elsewhere without further
explanations.
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Consequently,

(3.20) lim sup
n→∞

P0

(
max
0≤k≤ 1

η

max
0≤i≤ηn

|VY(i+ kηn)− VY(kηn)| ≥ r n1/4
)
≤ C

µ(0)
r−p η

p
4
−1.

Typically we will choose r = ηζ for some ζ ∈ (0, 1
4
) and p large enough so that the

right-hand-side of (3.19) goes to 0 as η → 0. Comparing such a choice of r in Lemma 3.6
with (3.12), we remark that the condition ζ < 1

4
− 1

q
is relaxed to ζ < 1/4 at the expense

of the limit as n → ∞ in (3.19). This relaxation is crucial for the forthcoming Lemma
3.7, where we must select ζ sufficiently close to 1

4
(in fact we need ζ > 1

d
) to control the

size of a neighborhood of V+ or of V̂−.

Proof. It is enough to show (3.19), as (3.20) follows from (3.19) by (3.6). To this end, we
first use a truncation argument (Step 1) to remove the big jumps in V+, then Lemma 3.5
(Step 2) to estimate the increments of the truncated version of V+.

Step 1: Set
bn := n

1
8
+ 1

2q .

Recall that on a branching random walk, Xe denotes the displacement on an edge e; we
denote

X(n)
e := Xe 1{|Xe|<bn},

and we write V+,n for the corresponding branching random walk where displacements on
edges are (X

(n)
e ) instead of (Xe). Our first step is to show that we may replace V+[0, n]

by V+,n[0, n], i.e.

lim sup
n→∞

P(V+,n[0, n] = V+[0, n]) = 1.(3.21)

Denote by tn the subtree of T∞ spanned by T+[0, n] and ∆n := #(tn ∩X ) the number
of intersections of tn with the spine X . Note that the subtree of T∞ spanned by T+\T d

0

and the root ∅, in depth-first order, has the same distribution as T̂−. Since T+\T d
0 is

independent of T d
0 , we get that for any 1 ≤ j ≤ n + 1 and k ≥ 1, P(∆n = k|#T d

0 =

j) = P(#(T̂−[0, n + k − j] ∩ X ) = k) ≤ P(#(T̂−[0, n + k] ∩ X ) ≥ k). It follows that
P(∆n = k) =

∑n+1
j=1 P(∆n = k, #T d

0 = j) ≤ P(#T̂−[0, n+ k] ∩ X ) ≥ k), hence

P(∆n ≥ n) ≤
∞∑
k=n

P(#(T̂−[0, n+ k] ∩ X ) ≥ k)

≤
∞∑
k=n

P
(
#(T̂−[0, n+ k] ∩ X ) ≥ n+ k

2

)
≤

∞∑
k=n

e−c(n+k) ≤ C e−c n,

where the third inequality is due to Lemma 3.1 (with r = 1/2 there). Note that there are
n+∆n edges in tn. By union bounds and (1.4), we get

P
(
max
e∈tn
|Xe| ≥ bn

)
≤ 2nP(|X| ≥ bn) + C e−cn ≤ Cnb−q

n + C e−cn ≤ C ′ n
1
2
− q

8

for all large n, where X denotes a random variable with distribution θ. In other words,
with probability larger than 1 − C ′ n

1
2
− q

8 , there is no edge e ∈ tn such that Xe ̸= X
(n)
e ,

hence V+,n[0, n] = V+[0, n] and we get (3.21). Then it suffices to prove (3.19) for V+,n[0, n]
instead of V+[0, n].
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Step 2: For n ≥ j > i ≥ 0, recall that dgr(T+(i), T+(j)) denotes the graph distance in
T∞ between the two vertices T+(i) and T+(j). Conditioning on {dgr(T+(i), T+(j)) = k},
V+,n(j)− V+,n(i) is the sum of k iid copies of X(n) := X1{|X|≤bn}, where X is distributed
as θ. As X(n) is centered (by the symmetry of θ), we use the Rosenthal inequality [26,
Theorem 2.9], and get that for any p > 1, there exists some cp > 0 such that

E
(
|V+,n(j)− V+,n(i)|p

∣∣ dgr(T+(i), T+(j)) = k
)
≤ cp

(
kE(|X(n)|p) + kp/2E(|X(n)|2)p/2

)
.

Note that E(|X(n)|p) ≤ bpn and E(|X(n)|2) ≤ E(|X|2) <∞. Then by (3.14), there is some
positive constant C such that for any 0 ≤ i < j ≤ n and p > 4,

E
(
|V+,n(j)− V+,n(i)|p

)
≤ C

(
bpn(j − i)1/2 + (j − i)p/4

)
.

Applying (3.17) to Υ· = V+,n(i + ·), α = 1
4
, b = 1

2
and any γ ∈ (1, p/4), we get some

positive constant C ′ such that for any 0 ≤ i < ℓ ≤ n,

(3.22) E
(
max
i≤j≤ℓ

|V+,n(j)− V+,n(i)|p
)
≤ C ′ ((ℓ− i)p/4 + bpn(ℓ− i)γ

)
.

This, in view of the union bound and the Markov inequality, yields that

P0

(
max
0≤k≤ 1

η

max
0≤i≤ηn

|V+,n(i+ kηn)− V+,n(kηn)| ≥ r n1/4
)

≤ C ′ η−1 r−p n−p/4
(
ηp/4np/4 + bpnη

γnγ
)

= C ′ r−p ηp/4−1 + C ′ r−p ηγ−1 bpnn
−p/4+γ.

Now for any p ≥ 4
1
4
− 1

q

, we fix an arbitrary γ ∈ (1, 2) so that (1
8
+ 1

2q
)p − p

4
+ γ < 0, then

bpnn
−p/4+γ → 0 as n→∞, and we get (3.19) for V+,n, hence for V+ by Step 1. □

The following lemma says that with high probability the number of points in the neigh-
bor of V̂−[0,m] is not too big, such an estimate will be important in estimating the
forthcoming probability term p′m,n defined in (3.28).

Lemma 3.7. Let d ≥ 5. Assume (1.3) and (1.4) with q > 4. For any M > 0 and
γ ∈ (0, d − 4), there exist some positive constants C = Cd and C ′ = CM,γ such that for
any η ∈ (0, 1),

(3.23) lim sup
m→∞

P0

(
#
((

V̂−[0,m]
)ηm1/4

∩ Zd
)
> C ηγmd/4

)
≤ C ′ ηM .

Proof. Let ζ := 1
d−γ
∈ (1

d
, 1
4
). Applying (3.20) (with η replaced by η1/ζ and r by η) to a

sufficiently large p, we get that for any M > 1, there is some positive constant C such
that for all η ∈ (0, 1),

(3.24) lim sup
m→∞

P0

(
max

0≤k≤η−1/ζ
max

0≤j≤η1/ζm
|VY(j + kη1/ζm)− VY(kη

1/ζm)| ≥ ηm1/4
)
≤ C ηM .

Recall the notations R(m)

X ,V̂−
= RX ∩ V̂−[0,m], R(m)

Y,V̂−
= RY ∩ V̂−[0,m] and VY [i, j] :=

{VY(i), VY(i+ 1), ..., VY(j)}. Since R(m)

Y,V̂−
⊂ VY [0,m], we deduce from (3.24) that

1−P0

(
R(m)

Y,V̂−
can be covered by η−1/ζ balls of radius ηm1/4

)
≤ C ηM + om(1),(3.25)

where om(1)→ 0 as m→∞ and om(1) may depend on η.
Let j ≥ 1. Consider the event {d(x,R(m)

Y,V̂−
) ≥ j} with x ∈ R(m)

X ,V̂−
. There is some i such

that x = V∞(∅i). Let Ki := dgr(∅i,Y ∩ T̂−[0,m]), where we recall that dgr is the graph
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distance in T∞. Then d(x,R(m)

Y,V̂−
) is less than the displacement of a θ-walk at time Ki.

Since each spine point has no attached tree with probability µ̃(0) = 1− µ(0), we deduce
from the union bound that for any j, ℓ ≥ 1,

P0

(
max

x∈R
(m)

X ,V̂−

d(x,R(m)

Y,V̂−
) ≥ j

)
≤ P0

(
max

0≤i≤m−1
Ki ≥ ℓ

)
+mP0(|Sℓ| ≥ j)

≤ m(1− µ(0))ℓ +mj−q′E0(|Sℓ|q
′
),(3.26)

where we choose (and then fix) an arbitrary constant q′ ∈ (4, q). By [26, Theorem 2.10],

E0(|Sℓ|q
′
) ≤ C ℓq

′/2.

Take ℓ = ⌊ q′

µ(0)
logm⌋ and j = ηm1/4. There exists some m0 = m0(q

′, µ(0)) ≥ 1 such that
for all m ≥ m0,

(3.27) P0

(
max

x∈R
(m)

X ,V̂−

d(x,R(m)

Y,V̂−
) ≥ ηm1/4

)
≤ C ′η−q′ m1−q′/4(logm)q

′/2.

Note that on {max
x∈R

(m)

X ,V̂−

d(x,R(m)

Y,V̂−
) < ηm1/4}, if R(m)

Y,V̂−
can be covered by η−1/ζ balls

of radius ηm1/4, then V̂−[0,m] = R(m)

X ,V̂−
∪R(m)

Y,V̂−
can be covered by η−1/ζ balls of radius

2ηm1/4. It follows from (3.25) and (3.27) that

1−P0

(
V̂−[0,m] can be covered by η−1/ζ balls of radius 2ηm1/4

)
≤ C ηM + C ′η−q′ m1−q′/4(logm)q

′/2 + om(1)

= C ηM + om(1).

Finally, when V̂−[0,m] is covered by η−1/ζ balls of radius 2ηm1/4, its (ηm1/4)-neighborhood
is covered by η−1/ζ balls of radius 3ηm1/4, hence

#
((

V̂−[0,m]
)ηm1/4

∩ Zd
)
≤ η−1/ζ cd η

d md/4 = cd η
γ md/4,

for some positive constant cd only depending on d. This proves (3.23). □

3.4. Intersection probabilities between V± and ξ. The proof of Proposition 1.3 can
be outlined as follows. By ordering the vertices of Tc using the depth first search and
its reversed sense (see (3.45)), we may reduce the problem of studying I(ε, n), defined in
(1.14), to that of the non-intersection probability

P0 ⊗ P (ξ)
xn

(
Vc

[
0,

3

5
m

]
∩ (ξ[0, n])εn

1/2 ̸= ∅, Vc

[
0,

4

5
m

]
∩ ξ[0, n] = ∅

∣∣∣#Tc = m

)
,

where the choice (3
5
, 4
5
) can be replaced by any (c, c + λ) with c ∈ (1

2
, 1) and λ ∈ (0, 1 −

c). Furthermore, the main contribution to I(ε, n) comes from those m of order n2, say
m ∈ [δn2, 1

δ
n2] for small δ > 0. By (3.3), the above probability is dominated, up to a

multiplicative constant, by the corresponding probability for V̂− instead of Vc conditioned
on {#Tc = m}. This latter probability is estimated in the following result.

Proposition 3.8. Let d = 5. Assume (1.3), (1.4) with q > 4 and (1.12). Fix λ > 0. For
each ε > 0, x ∈ R5 and xn = [x

√
n] ∈ Z5, we define

pm,n := P0 ⊗ P (ξ)
xn

(
V̂−[0,m] ∩ (ξ[0, n])εn

1/2 ̸= ∅, V̂−[0, (1 + λ)m] ∩ ξ[0, n] = ∅
)
.
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There is some c > 0 such that for any δ ∈ (0, 1
9
), there is C = Cδ,x,λ > 0 such that for

any ε ∈ (0, 1),
lim sup
n→∞

max
m∈[δn2, 1

δ
n2]

pm,n ≤ C εc.

This subsection is devoted to the proof of Proposition 3.8. Consider ε ∈ (0, 1). Let
r > 0 be some small constant whose value will be determined later. We have

pm,n ≤ p′m,n + p′′m,n,

with

p′m,n := P0 ⊗ P (ξ)
xn

(
V̂−[0,m] ∩ ξ[(1− εr)n, n]εn

1/2 ̸= ∅
)
,(3.28)

p′′m,n := P0 ⊗ P (ξ)
xn

(
V̂−[0,m] ∩ ξ[0, (1− εr)n]εn

1/2 ̸= ∅,

V̂−[0, (1 + λ)m] ∩ ξ[0, n] = ∅
)
.(3.29)

We outline the steps in estimating p′m,n and p′′m,n as follows.

(i) Estimate p′m,n. Let r′ ∈ (0, r). According to the random walk estimate (3.9), with
high probability as ε→ 0, ξ[(1−εr)n, n] is contained in B(ξn, ε

r′/2n1/2) the ball centered at
ξn with a radius of εr′/2n1/2. Therefore, estimating p′m,n boils down to evaluating whether

ξn is in
(
V̂−[0,m]

)ηn1/2

, where η is some power of ε. This is the motivation for estimating

#
(
V̂−[0,m]

)ηn1/2

, a task addressed in Lemma 3.7.

(ii) Estimate p′′m,n. We divide T̂− into two pieces X and Y , as done in (3.4) and (3.5),
and give an estimate on their ranges, see Fig. 2. By Lemma 3.1, there are few points in
VX ∩ V̂−[0,m], then we may replace V̂− by VY in p′′m,n. This, in view of (3.6), boils down to
estimating the corresponding probability for V+. To achieve this, we will cut the range of
V+ into a certain number ⌊ε−1/ζ⌋ of pieces. An application of the strong Markov property
of ξ allows us to reduce the problem to estimating the expectation of the maximum over
⌊ε−1ζ⌋ of identically distributed random variables, whose common law is that of qε,r(n),
where

(3.30) qε,r(n) := max
|x|≤4εn1/2, x∈Zd

P (ξ)
x (ξ[0, εrn] ∩ V+[0, εn

2] = ∅)1{V+[0,εn2]⊂B(0,εζn1/2)},

with ζ ∈ (0, 1
4
− 1

q
) a fixed constant. We mention that P (ξ)

x only computes the probability
with respect to the random walk ξ starting from x, so that qε,r(n) is a random variable
depending on V+. Finally, qε,r(n) is estimated in the following Lemma 3.9.

Lemma 3.9. Let d = 5. Assume (1.3), (1.4) with q > 4 and (1.12). Let ζ ∈ (0, 1
4
− 1

q
)

and qε,r(n) be as in (3.30) and r ∈ (0, 2ζ). For any M > 0, there exist some υ = υr,ζ > 0
and C = Cr,ζ > 0 such that for all ε ∈ (0, 1),

(3.31) lim sup
n→∞

P0(qε,r(n) ≥ ευ) ≤ C εM .

Proof. Only small ε needs to be considered. Apply a change of variables (n′, ε′) =
(ε1/2n, 4ε3/4) to (3.11) in Lemma 3.3, we deduce that there are some υ′, C ′, C ′′ > 0 such
that

lim sup
n→∞

P0

(
max

|x|≤4εn1/2,x∈Z5
P (ξ)
x (ξ[0,∞) ∩ V+[0, εn

2] = ∅) ≥ C ′ευ
′
)
≤ C ′′εM .(3.32)
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Let ℓn = εζn1/2. On the event {V+[0, εn
2] ⊂ B(0, ℓn)}, we deduce from the Markov

property of ξ at εrn that

P (ξ)
x (ξ[0,∞) ∩ V+[0, εn

2] = ∅)

≥ P (ξ)
x

(
ξ[0, εrn] ∩ V+[0, εn

2] = ∅, |ξεrn| > 2ℓn, ξ[ε
rn,∞) ∩ B(0, ℓn) = ∅

)
≥ inf

|y|≥2ℓn
P (ξ)
y (ξ[0,∞) ∩ B(0, ℓn) = ∅) P (ξ)

x

(
ξ[0, εrn] ∩ V+[0, εn

2] = ∅, |ξεrn| > 2ℓn
)

≥ c P (ξ)
x

(
ξ[0, εrn] ∩ V+[0, εn

2] = ∅, |ξεrn| > 2ℓn
)
,

for all n such that ℓn ≥ R0, where R0 > 0 is a large enough constant such that

c = inf
R≥R0

inf
|y|>2R

P (ξ)
y (ξ[0,∞) ∩ B(0, R) = ∅) > 0.

By the local limit theorem for the random walk (3.10), there is C ′′′ > 0 such that

max
|x|≤4εn1/2

P (ξ)
x (|ξεrn| ≤ 2ℓn) ≤ P

(ξ)
0 (|ξεrn| ≤ 3ℓn) ≤ C ′′′εζd−rd/2.

It follows that

qε,r(n) ≤
1

c
max

|x|≤4εn1/2
P (ξ)
x (ξ[0,∞) ∩ V+[0, εn

2] = ∅) + C ′′′εζd−rd/2.

By (3.32), we obtain Lemma 3.9 by choosing any υ ∈ (0,min(υ′, (ζ − r/2)d)). □

We are now ready to present the proof of Proposition 3.8.

Proof of Proposition 3.8. As in Lemma 3.9, let ζ ∈ (0, 1
4
− 1

q
) and fix some constant

r ∈ (0, 2ζ). Recall (3.28) and (3.29). Let δ ∈ (0, 1
9
). It is enough to show that there is

some c > 0 independent of δ, and some constant Cδ > 0 such that for any small ε > 0,

lim sup
n→∞

max
m∈[δn2, 1

δ
n2]

p′m,n ≤ Cδ ε
c.(3.33)

lim sup
n→∞

max
m∈[δn2, 1

δ
n2]

p′′m,n ≤ Cδ ε
c.(3.34)

We mention that the exact values of Cδ, c are not important, they may change from
one paragraph to another.

(i) Proof of (3.33). Fix some 0 < r′ < r. Apply (3.9) with (n, s) = (εrn, ε(r
′−r)/2)

there, we have

P (ξ)
xn

(
max

(1−εr)n≤k≤n
|ξk − ξn| ≥ εr

′/2n1/2

)
≤ C εr−r′ .

Since ε ≤ εr
′/2, we deduce that for all m ∈ [δn2, 1

δ
n2],

(3.35) p′m,n ≤ C εr−r′ +P0 ⊗ P (ξ)
xn

(
ξn ∈

(
V̂−[0,m]

)2εr′/2n1/2
)
.

To estimate the above probability term, we apply (3.23) to m = n2/δ, η = 2δ1/4εr
′/2

with d = 5, γ ∈ (0, 1) and M = 1, to see that there are some Cδ, cδ > 0 (we may choose
cδ := C2γδ−(d−γ)/4 and Cδ := 2C ′δ1/4 with C,C ′ as in (3.23)) such that

lim sup
n→∞

max
m∈[δn2, 1

δ
n2]

P0

(
#
(
(V̂−[0,m])2ε

r′/2n1/2 ∩ Z5
)
> cδ ε

γr′/2n5/2
)

≤ lim sup
n→∞

P0

(
#
(
(V̂−[0,

1

δ
n2])2ε

r′/2n1/2 ∩ Z5
)
> cδ ε

γr′/2n5/2
)

≤ Cδε
r′/2.(3.36)
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Moreover, by (3.10), for any finite set A ⊂ Z5,

P (ξ)
xn

(ξn ∈ A) ≤ C n−5/2#A.

It follows that on {#
(
(V̂−[0,m])2ε

r′/2n1/2 ∩ Z5
)
≤ cδ ε

γr′/2 n5/2},

P (ξ)
xn

(
ξn ∈

(
V̂−[0,m]

)2εr′/2n1/2
)
≤ C cδ ε

γr′/2,

which in view of (3.35) and (3.36) yield that for all m ∈ [δn2, 1
δ
n2],

p′m,n ≤ C εr−r′ + Cδε
r′/2 + C cδ ε

γr′/2 + on(1),

with on(1) independent of m and on(1)→ 0 as n→∞. This proves (3.33).

(ii) Proof of (3.34). Recall (3.29) for the definition of p′′m,n. By (3.8), V̂−[0,m] =

R(m)

X ,V̂−
∪ R(m)

Y,V̂−
. We are going to apply (3.27) with η = εδ1/4. Note that for all m ∈

[δn2, 1
δ
n2], on the event {max

x∈R
(m)

X ,V̂−

d(x,R(m)

Y,V̂−
) < εδ1/4m1/4}, V̂−[0,m]∩ξ[0, (1−εr)n]εn1/2 ̸=

∅ implies that R(m)

Y,V̂−
∩ ξ[0, (1 − εr)n]2εn

1/2 ̸= ∅. It follows from (3.27) that for all
m ∈ [δn2, 1

δ
n2] and n large enough,

(3.37) p′′m,n ≤ p′′′m,n + on(1),

where as before, on(1) is independent of m and on(1)→ 1 as n→∞, and

p′′′m,n := P0 ⊗ P (ξ)
xn

(
R(m)

Y,V̂−
∩ ξ[0, (1− εr)n]2εn

1/2 ̸= ∅,R((1+λ)m)

Y,V̂−
∩ ξ[0, n] = ∅

)
.

Let

τm,n := inf{i ≥ 0 : d(ξi,R
(m)

Y,V̂−
) ≤ 2εn1/2}.

We have

p′′′m,n = P0 ⊗ P (ξ)
xn

(
τm,n ≤ (1− εr)n,R((1+λ)m)

Y,V̂−
∩ ξ[0, n] = ∅

)
≤ E0

(
max

d(y,R
(m)

Y,V̂−
)≤2εn1/2, y∈Z5

P (ξ)
y (ξ[0, εrn] ∩R((1+λ)m)

Y,V̂−
= ∅)

)
,(3.38)

where the inequality follows from the strong Markov property of ξ at τm,n. Let

Am :=
{
#(T̂−[0, (1 + λ)m] ∩ X ) < λm/2

}
.

On Am, we have

(3.39) R(m)

Y,V̂−
⊂ VY [0,m] ⊂ VY [0, (1 +

λ

2
)m] ⊂ R((1+λ)m)

Y,V̂−
.

By Lemma 3.1, there is some positive constant cδ such that

max
m∈[δn2, 1

δ
n2]

P0

(
Ac

m

)
≤ e−cδn

2

,

which, in view of (3.38) and (3.39), implies that

p′′′m,n ≤ e−cδn
2

+ E0

(
1Am max

d(y,R
(m)

Y,V̂−
)≤2εn1/2, y∈Z5

P (ξ)
y (ξ[0, εrn] ∩R((1+λ)m)

Y,V̂−
= ∅)

)
≤ e−cδn

2

+ E0

(
max

d(y,VY [0,m])≤2εn1/2, y∈Z5
P (ξ)
y (ξ[0, εrn] ∩ VY [0, (1 +

λ

2
)m] = ∅)

)
.
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Recall that ζ ∈ (0, 1
4
− 1

q
). Let

BY :=
{

max
0≤k≤ε−1/ζ

max
0≤j≤ε1/ζm

|VY(j + kε1/ζm)− VY(kε
1/ζm)| < εn1/2

}
.

On the event BY , for any y ∈ Zd such that d(y, VY [0,m]) ≤ 2εn1/2, there is some
0 ≤ k < ε−1/ζ such that |y − VY(kε

1/ζm)| ≤ 3εn1/2 < 4εn1/2, furthermore

P (ξ)
y (ξ[0, εrn] ∩ VY [0, (1 +

λ

2
)m] = ∅) ≤ P (ξ)

y (ξ[0, εrn] ∩ VY [kε
1/ζm, kε1/ζm+ λm/2] = ∅).

It follows that

(3.40) E0

(
max

d(y,VY [0,m])≤2εn1/2, y∈Z5
P (ξ)
y (ξ[0, εrn]∩VY [0, (1+

λ

2
)m] = ∅)

)
≤ P0(B

c
Y)+J(3.40),

with

J(3.40) := E0

(
max

0≤k<ε−1/ζ
max

|y−VY (kε1/ζm)|≤4εn1/2,y∈Z5
P (ξ)
y (ξ[0, εrn]∩VY [kε

1/ζm, kε1/ζm+λm/2] = ∅)
)
.

Applying (3.20) to η = ε1/ζ , r = εδ1/4 and p sufficiently large such that p( 1
4ζ
−1)− 1

ζ
≥ 1

and p ≥ 4
1
4
− 1

ζ

, we get that uniformly in m ∈ [δn2, 1
δ
n2],

P0(B
c
Y) ≤ Cδ ε+ on(1),

where Cδ :=
C

µ(0)
δ−p/4 in notation of (3.20). Therefore we have shown that uniformly in

m ∈ [δn2, 1
δ
n2],

(3.41) p′′′m,n ≤ Cδ ε+ on(1) + J(3.40).

For J(3.40), we deduce from (3.6) that

(3.42) J(3.40) ≤
1

µ(0)
E0

(
max

0≤k<ε−1/ζ
Uk

)
,

where for ε small enough so that εn2 ≤ λm/2 and for each k,

Uk := max
|y−V+(kε1/ζm)|≤4εn1/2, y∈Z5

P (ξ)
y (ξ[0, εrn] ∩ V+[kε

1/ζm, kε1/ζm+ εn2] = ∅).

To estimate max0≤k<ε−1/ζ Uk, we cut V+ into smaller pieces. Consider the event

BV+ = BV+(m,n) :=
{

max
0≤i<j≤(1+λ

2
)m, j−i≤εn2

|V+(j)− V+(i)| ≤ εζn1/2
}
.

By (3.12), we deduce from the union bound and the translation invariance for V+ in (3.1)
that for some positive constant a′,

(3.43) max
m∈[δn2, 1

δ
n2]

P0

(
Bc

V+

)
≤ Cδ ε

a′ .

It follows that
(3.44)

E0

(
max

0≤k<ε−1/ζ
Uk

)
≤ Cδ ε

a′ + E0

(
max

0≤k<ε−1/ζ
Uk1BV+

)
≤ Cδ ε

a′ + E0

(
max

0≤k<ε−1/ζ
q(k)ε,r (n)

)
,

where for each k ≥ 0,

q(k)ε,r (n) := Uk1{max0≤i≤εn2 |V+(kε1/ζm+i)−V+(kε1/ζm)|≤εζn1/2}.

By (3.1), (q(k)ε,r (n))0≤k<ε−1/ζ are identically distributed as qε,r(n), which was defined in
(3.30). Applying Lemma 3.9 to an arbitrary M > 1

ζ
, there exists some υ such that for all

large n,
P0(qε,r(n) > ευ) ≤ C εM + on(1).
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By union bounds,

P0

(
max

0≤k<ε−1/ζ
q(k)ε,r (n) > ευ

)
≤ ε−1/ζ P0(qε,r(n) > ευ) ≤ C εM−1/ζ .

Since q
(k)
ε,r (n) ≤ 1, we have

E0

(
max

0≤k<ε−1/ζ
q(k)ε,r (n)

)
≤ ευ + C εM−1/ζ + on(1).

Going back to (3.44), we get that

E0

(
max

0≤k<ε−1/ζ
Uk

)
≤ Cδ ε

a′ + ευ + C εM−1/ζ + on(1),

which together with (3.37), (3.41) and (3.42), imply that for all large n and m ∈ [δn2, 1
δ
n2],

p′′m,n ≤ on(1) + Cδ ε+ Cδ ε
a′ + ευ + C εM−1/ζ ,

implying (3.34) and completing the proof of Proposition 3.8. □

Figure 3. An illustration of Tc
and
←−
Tc.

Figure 4. In order that the vertex
on the top does not belong to Tc[0, k]∪←−
Tc[0, k], there must be at least 2k+1−
#Tc points on the line connecting it to
the root. In this figure, k = 10.

3.5. Proof of Proposition 1.3. As shown in Fig. 3, we write Tc(0), Tc(1), . . . as Tc in
its depth-first order, and we write

←−
Tc(0),

←−
Tc(1), . . . as the depth-first order in the reversed

sense.
Observe that if a vertex does not belong to Tc[0, 35#Tc] ∪

←−
Tc [0, 35#Tc], then the line

connecting it to the root contains at least 1
5
#Tc points, as shown in Fig. 4. Hence there

is some positive constant C such that for every δ > 0, n ≥ 1,

(3.45)

P

(
Tc ̸⊂

←−
Tc
[
0,

3

5
#Tc

]
∪ Tc

[
0,

3

5
#Tc

]
,#Tc ∈ [δn2, n2/δ]

)
≤P
(
height of Tc is at least δn2/5

)
≤C δ−1n−2

where the last inequality follows from the classical estimate on the branching process:

(3.46) P(height of Tc is at least j) ∼ 2

σ2j
, j →∞.
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For simplicity we may and will assume that the offspring distribution µ is aperiodic, as
one can be easily adapt the proof line by line for the periodic case. In particular, given
aperiodicity, by Dwass [15] and local central limit theorem (see [20, Theorem 2.3.9]),

n3/2P(#Tc = n) ∼ 1

σ
√
2π

, n→∞.(3.47)

Therefore

(3.48) P(#Tc > j) ∼ 2

σ
√
2πj

, j →∞.

We are now ready to prove Proposition 1.3.

Proof of Proposition 1.3. Let δ > 0 be small, we have

I(ε, n) ≤ P

(
Tc ̸⊂

←−
Tc
[
0,

3

5
#Tc

]
∪ Tc

[
0,

3

5
#Tc

]
,#Tc ∈ [δn2, n2/δ]

)

+2

n2/δ∑
m=δn2

P0 ⊗ P (ξ)
xn

(
Vc

[
0,

3

5
m

]
∩ (ξ[0, n])εn

1/2 ̸= ∅, Vc

[
0,

4

5
m

]
∩ ξ[0, n] = ∅,#Tc = m

)
+P(#Tc > n2/δ) +Pxn

(
#Tc < δn2, Rc ∩ B(0, η|xn|+ εn1/2) ̸= ∅

)
=: J0(δ, n) + 2

n2/δ∑
m=δn2

J1(ε, n,m) + J2(δ, n) + J3(δ, ε, n).

We have already bounded J0 in (3.45). For J2, we deduce from (3.48) that for some
positive constant C,

J2(δ, n) = P(#Tc > n2/δ) ≤ C δ1/2n−1.

For J3, when ε < (1−η)|x|/4, we have for all large n, Rc∩B(0, η|xn|+εn1/2) ̸= ∅ implies
that there is some z ∈ Rc such that |z − xn| ≥ |xn| − (η|xn|+ εn1/2) ≥ 1

2
(1− η)|x|n1/2. It

follows that

J3(δ, ε, n) ≤ P0

(
max
z∈Rc

|z| ≥ 1

2
(1− η)|x|n1/2,#Tc < δn2

)
.

By (3.13), there exists some C > 0 such that for all m ≥ 1, E0(maxz∈Rc |z|q |#Tc = m) ≤
C mq/4. Using Markov’s inequality and (3.47), we have that for some positive constants
Cη,x and C ′

η,x,

J3(δ, ε, n) =
δn2∑
m=1

P0(#Tc = m)P0

(
max
z∈Rc

|z| ≥ 1

2
(1− η)|x|n1/2

∣∣∣∣#Tc = m

)

≤Cη,xn
−q/2

δn2∑
m=1

m−3/2E0

(
max
z∈Rc

|z|q |#Tc = m
)

≤C ′
η,x δ

1/2 n−1.

Finally, by taking k = 4m/5 in (3.3), we can find some universal constant C > 0 such
that J1(ε, n,m) is bounded above by

C P0 ⊗ P (ξ)
xn

(
V̂−[0, 3m/5] ∩ (ξ[0, n])εn

1/2 ̸= ∅, V̂−[0, 4m/5] ∩ ξ[0, n] = ∅
)
P(#Tc = m).

Then by Proposition 3.8, we deduce that for some positive constants c, Cδ and C ′
δ such

that for all δn2 ≤ m ≤ n2/δ,

J1(ε, n,m) ≤ (Cδ ε
c + on(1))P(#Tc = m),
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hence by (3.47)
n2/δ∑

m=δn2

J1(ε, n,m) ≤ (Cδ ε
c + on(1))P(#Tc ≥ δn2) ≤ C ′

δ (ε
c + on(1))n

−1.

Combine the above estimates, we see that

lim sup
n→∞

n
(
J0(δ, n) + 2

n2/δ∑
m=δn2

J1(ε, n,m) + J2(δ, n) + J3(δ, ε, n)
)
≤ C δ1/2 + C ′

η,x δ
1/2 + C ′

δ ε
c,

and we conclude Proposition 1.3 by letting ε→ 0 then δ → 0. □

We end the paper by a remark on the condition {ξ[0, n] ⊂ B(0, η|xn|)} in Proposition
1.3:

Remark 3.10. Without the condition ξ[0, n] ⊂ B(0, η|xn|), Proposition 1.3 is no longer
true. In fact, we have Rc = {xn} with probability µ(0) > 0, then

nPxn ⊗ P
(ξ)
0

(
Rc ∩ (ξ[0, n])ε

√
n ̸= ∅,Rc ∩ ξ[0, n] = ∅

)
≥ µ(0)nP

(ξ)
0

(
{xn} ∩ (ξ[0, n])ε

√
n ̸= ∅, {xn} ∩ ξ[0, n] = ∅

)
≥ µ(0)n

(
P

(ξ)
0

(
B(x
√
n, ε
√
n) ∩ ξ[0, n] ̸= ∅

)
− P

(ξ)
0 ({xn} ∩ ξ[0, n] ̸= ∅)

)
≥ µ(0) cε n

which diverges as n → ∞, where the last inequality follows from the facts that cε :=

lim infn→∞ P
(ξ)
0 (B(x

√
n, ε
√
n) ∩ ξ[0, n] ̸= ∅) > 0 and limn→∞ P

(ξ)
0 ({xn} ∩ ξ[0, n] ̸= ∅) = 0.
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