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Abstract—This paper presents a novel approach to achiev-
ing secure wireless communication by leveraging the inherent
characteristics of wireless channels through end-to-end learning
using a single-input-multiple-output (SIMO) autoencoder (AE).
To ensure a more realistic signal transmission, we derive the
signal model that captures all radio frequency (RF) hardware
impairments to provide reliable and secure communication.
Performance evaluations against traditional linear decoders,
such as zero-forcing (ZR) and linear minimum mean square
error (LMMSE), and the optimal nonlinear decoder, maximum
likelihood (ML), demonstrate that the AE-based SIMO model
exhibits superior bit error rate (BER) performance, but with
a substantial gap even in the presence of RF hardware impair-
ments. Additionally, the proposed model offers enhanced security
features, preventing potential eavesdroppers from intercepting
transmitted information and leveraging RF impairments for
augmented physical layer security and device identification.
These findings underscore the efficacy of the proposed end-to-
end learning approach in achieving secure and robust wireless
communication.

Index Terms—Physical Layer Security, RF Hardware Impair-
ments, Autoencoder.

I. INTRODUCTION

THE demand for massive wireless device connectivity and
reduced end-to-end latency requirements are catalysts for

deploying 6G technologies. As a result of this massive de-
vice connectivity, security concerns have garnered significant
attention in wireless communication systems due to wireless
channels’ inherent broadcasting nature. However, the assur-
ance of security in traditional wireless communication systems
typically hinges on higher-level protocols’ encryption and
authentication mechanisms, which are inevitably characterized
by high computational complexity [1]. Numerous studies have
been conducted on physical layer (PHY) security solutions to
explore alternative, more energy-efficient security solutions.
These solutions primarily leverage the inherent characteristics
of wireless propagation channels or transceivers [2]–[4]. In
recent years, there has been a surge in interest in end-to-
end learning communication, revealing the promise of energy-
efficient and secure wireless communication paradigms [5],
[6]. Classical communication theory traditionally decomposes
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systems into modules, each handling a specific signal process-
ing. Conversely, end-to-end learning communication, based
on deep learning (DL) principles, dispenses this modular
approach and aims to discern optimal communication strate-
gies within particular wireless environments autonomously.
By jointly generating encoding and decoding schemes at
the sender and receiver, respectively, this approach ensures
that symbols generated by the sender can only be perfectly
deciphered by the intended recipient. Furthermore, owing to
the intricate nature of neural network (NN) models, their
parameter space significantly surpasses optimal problem solu-
tions. With challenges in parameter initialization, learning rate
calibration, and the array of training methodologies, achieving
complete consistency across NN models and outputs becomes
a formidable task. Consequently, end-to-end learned commu-
nication systems inherently exhibit potential characteristics of
natural endogenous security.

DL is used to design and optimize beamformers for
multiple-input multiple-output (MIMO) and SIMO wiretap
channels, demonstrating superior robustness and secure capac-
ity compared to analytical and numerical approaches [7], [8].
However, the designs lack a more realistic RF signal modeling
that could present a comprehensive framework for secure
transmission scenarios. For instance, reference [9] proposes
an innovative approach to confidential message transmission
over Gaussian wiretap channels by introducing a secure loss
function based on cross-entropy. Despite its promise, research
efforts in secure communication via end-to-end learning using
AE designs for MIMO and SIMO wiretap channels remain
limited. In this correspondence, we propose a SIMO deep AE
design considering all the RF impairments at the RF trans-
mission chains to present a more realistic signal transmission.
Our contribution as summarized as follows:

• Departing from conventional methodologies that treat
RF hardware impairments merely as additive random
components, we present a derived and holistic RF signal
model encompassing all pertinent hardware impairments
at the transmitter.

• We introduce an AE-based framework for SIMO wiretap
channels. Our proposed model is trained using a metic-
ulously designed joint weighted loss function aimed at
fortifying resilience against eavesdropping attempts while

ar
X

iv
:2

40
4.

19
46

3v
2 

 [
ee

ss
.S

P]
  1

4 
M

ay
 2

02
4



concurrently maintaining the fidelity of communication to
the legitimate receiver.

II. RF HARDWARE IMPAIRMENTS SIGNAL MODEL

The transmitted signal is susceptible to various distortions
throughout the transmission chain due to imperfections in the
physical RF hardware components. At the transmitter, the
digital base-band signal, denoted as x[n], is converted to a
continuous analog baseband signal x(t) through the digital-
to-analog converter (DAC). The signal x(t) then undergoes
a series of signal processing steps involving up-conversion
and amplification using RF circuits, including oscillators and
power amplifiers (PA). These components exhibit distinct
impairments, and their collective influence is embedded in
the RF signal. In the subsequent subsections, we present
a detailed modeling of RF signal due to various physical
hardware components.

A. DAC Non-linearities

The DAC is affected by finite digital input precision, which
can introduce nonlinearities that may vary across its units.
Consequently, the transmitter can be characterized by a set of
parameters that uniquely describe its components’ input/output
characteristics. The nonlinearity induced by the DAC can be
modeled using a Taylor series expansion around 0 up to a
maximum degree of kmax [10]. The DAC accepts the in-phase
(xI [n]) and quadrature of the modulated digital signal (xQ[n])
and outputs their corresponding analog versions, expressed as

xI(t) =

kmax∑
k=1

ρ1,kℜ{x[n]}k (1)

xQ(t) =

kmax∑
k=1

ρ2,kℑ{x[n]}k (2)

where ρi,k ∈ R;∀i {1, 2} describes the DAC’s induced non-
linearity; k ∈ {1, · · · , kmax}. Therefore, the continuous time
complex base-band x(t) signal is obtained form the in-phase
(I) and quadrature (Q) branch as

x(t) =

kmax∑
k=1

ρ1,kℜ{x[n]}k + j

kmax∑
k=1

ρ2,kℑ{x[n]}k (3)

For the sake of simplicity, we assume that the DACs are
perfectly matched, resulting in equal weighting coefficients
for the I/Q branches (ρ1,k = ρ2,k = ρk) [10], simplifying
the complex analog base-band signal representation. Thus, the
complex analog base-band signal becomes:

x(t) =

kmax∑
k=1

ρk

(
ℜ{x[n]}k + jℑ{x[n]}k

)
(4)

B. Oscillator and Mixer Imperfections

The analog signal from the DAC undergoes two up-
conversions before being transformed into a bandpass signal as
shown in Fig 2. In the initial conversion stage, the signal passes
through a mixer and an image rejection filter for intermediate
frequency translation, enhancing frequency selectivity. During
the second up-conversion, the signal is converted to a bandpass
via a secondary mixer, restricting the output signal’s bandwidth
to the minimum required for transmitting it at the desired
carrier frequency.

1. First-Stage Up-conversion: Imperfections in the LO
primarily arise from carrier frequency offset (CFO) δfc and
phase noise (PN) ψ(t), both essential in modeling the LO’s
distortions. CFO represents the actual oscillator frequency
deviation from the nominal (reference) frequency. Given the
nominal frequency f0c , the carrier frequency can be expressed
as

fc = f0c + δfc (5)

It has been shown in [11] that δfc a function of frequency
stability (fppm), typically expressed in parts per million (ppm)
as:

−fppm
106

× f0c ≤ δfc ≤ +
fppm
106

× f0c (6)

Without loss of generality, ψ(t) can be added to the instan-
taneous phase of the signal as follows:

xLO(t) = cos(ωct+ ψ(t)) (7)

where ωc = 2π(f0c + δfc).
The imbalance LO signals at the I and Q arms used for

up-conversion are given by

bI(t) = cos(ωct+ θ) (8)

bQ(t) = gT sin(ωct− θ) (9)

where gT and θ are gain and phase mismatch or error and
follow random uniform distribution in the range of [-1, 1] dB
and [-5 5] degrees, respectively. The RF baseband signal in
the presence of I/Q imbalance and oscillator imperfections can
be written as follows [12]

xRF (t) = xI(t) cos(ωct+ψ(t)+θ)−gTxQ(t) sin(ωct+ψ(t)−θ)
(10)

xRF (t) = ej(ωct+ψ(t))
[
xI(t) + jgT e

jθxQ(t)
]
+

e−j(ωct+ψ(t))
[
xI(t)− jgT e

−jθxQ(t)
]

(11)

Rearranging (11), we have

xRF (t) = [xI(t) cos θ + gTxQ(t) sin θ] cos(ωct+ ψ(t))−
[xI(t) sin θ + gTxQ(t) cos θ] sin(ωct+ ψ(t)) (12)

By introducing uI(t) and uQ(t) notations for the baseband
signal at the I/Q branches, (12) becomes:

xRF (t) = uI(t) cos(ωct+ψ(t))−uQ(t) sin(ωct+ψ(t)) (13)

where
uI(t) = xI(t) cos θ + gTxQ(t) sin θ (14)



uQ(t) = xI(t) sin θ + gTxQ(t) cos θ (15)

Following this, it is easy to obtain the equivalent baseband
signal as:

uBB(t) = uI(t) + juQ(t) (16)

Using (14) and (15), (16) can be written as:

uBB(t) = xI(t)e
jθ + jgTxQ(t)e

−jθ (17)

The resultant RF signal from the mixer and LO is thus

xRF = [cos(ωct+ ψ(t)) + j sin(ωct+ ψ(t))]uBB(t) (18)

xRF = uBB(t)e
j(ωct+ψ(t) (19)

It can be easily seen that (13) is the real part of (19).
2. Second-Stage Up-conversion: In the second up-

conversion, voltage control oscillator (VCO) is used to further
up-convert the signal and translate it into bandpass RF signal
using bandpass filter. By following similar steps as in the first
up-conversion, the output of the second mixer and the VCO
is given by

xBP (t) = ℜ{xRF (t)} ejθvco + jgvcoℑ{xRF (t)} e−jθvco (20)

x̄RF (t) = xBP (t)ej(ωvcot+ψvco(t)) (21)

ωvco = 2π
(
Kvco · Vvco + f0vco

)
(22)

where gvco(t) and ψvco(t) are the VCO’s gain and phase noise,
respectively. Vvco is the control voltage, whose value depends
on the type of VCO, Kvco is frequency sensitivity gain and f0vco
is the oscillator’s reference or nominal frequency. Therefore,
the amplitude of the transmitted RF bandpass signal is thus

|x̄RF (t)| = |xBP (t)| (23)

So, the resultant RF bandpass signal x̄RF (t) can be represented
as:

x̄RF (t) = |x̄RF (t)| ej(ωvcot+ψvco(t)) (24)

C. Power Amplifier Imperfection

The PA is an essential transmitter component that boosts
low-power signal to a higher amplitude, yet its inherent
non-linearity introduces signal distortion. It is characterized
by both amplitude-to-amplitude (AM-AM) and amplitude-to-
phase (AM-PM) distortions. The widely employed non-linear
model for characterizing the non-linear behaviors of PA in
a narrowband system is the Saleh model [13]. This model is
expressed in terms of its AM-AM and AM-PM characteristics,
described as:

xPA(t) = A(|xBP (t)|)ej(φ(t)+Φ(|xBP (t)|)) (25)

were A (·) and Φ (·) represent AM/AM and AM/PM effects,
respectively, and φ(t) = ∠xBP (t) + ωvcot+ ψvco(t). Without
loss of generality, the AM-AM and AM-PM characteristics of
Saleh model are respectively defined as follows:

A(|xBP (t)|) =
αA |xBP (t)|

1 + βA |xBP (t)|2
, (26)

(a) (b)

(c) (d)

Fig. 1: (a). Constellation change due to DAC non-linearity; (b).
First stage up-conversion symbol constellation due to local os-
cillator; (c). Second stage up-conversion symbol constellation
due to VCO; (d). RF-band symbol constellation due to PA.

Φ(|xBP (t)|) =
αP |xBP (t)|2

1 + βP |xBP (t)|2
(27)

The αA and αP in (26) and (27) are amplitude and phase
gain factors, respectively, and βA and βP are the amplitude
and phase compression factors, respectively. These factors are
the fitting parameters for the measured PA’s AM–AM charac-
teristics A(|xBP (t)|) and AM–PM characteristics Φ(|xBP (t)|)
[14].

After passing through sequence of RF hardware chains, the
transmitted signal is ready to be emitted by the antenna. For
simplicity, we drop the subscript and (25) can be written as:

x(t) = x̄(t)ej(ωvcot+ψvco(t)) (28)

where x̄(t) = A(|xBP (t)|)ej(∠xBP (t)+Φ(|xBP (t)|)).
One of the most crucial parameters influencing the nonlinear

behavior of DAC is Integral Nonlinearity (INL). INL defines
the deviation between the actual output level of the DAC and
its ideal output level given a specific input. For simplicity, this
behavior is captured by nonlinear coefficients (ρ), as described
in Section A. The impact of the DAC’s nonlinearity is depicted
in Fig. 1 (a). As illustrated, the misalignment of the symbol
constellation from the DAC with its input digital constellation
arises from the nonlinear characteristics of the DAC, whose
severity is determined by the degree of the nonlinear coef-
ficients. Similarly, Fig. 1 (b) compares the impact of local
oscillator’s imperfection due to the IQ imbalance in mixer
and the phase Similarly, Fig. 1 (b) shows the impact of local
oscillator’s imperfection due to the IQ imbalance in mixer,
the CFO and phase noise and the output from the DAC. It can



be observed that these imperfections result in constellation
rotation. The severity of the RF distortion is also observed
in the second up-conversion due to additional nonlinearity
introduced by the VCO as shown in Fig. 1 (c). Finally, the
impact of PA non-linearity is shown in Fig. 1 (d), depicting
its severity on the symbol constellation.

III. PHYSICAL LAYER SYSTEM MODEL

Consider a communication system comprising a transmit-
ting node, T , which aims to transmit a signal to the in-
tended receiver, R, while contending with the presence of
an eavesdropper, E. The eavesdropper attempts to decode the
transmitted signal by intercepting the broadcast from node T
to node R. Suppose the transmitter, intended receiver, and
eavesdropper are equipped with uniform linear arrays of Nt,
Nr, and Ne antennas, respectively. The multipath channel
between the different nodes can be geometrically represented
as follows:

hAB =
L[AB]∑
l=1

ℏlg[B]
r (ϕr,l)g

[A]
t (ϕt,l) (29)

where A = T and B = R or E such that hTR and hTE
are the channels between the transmitter-intended receiver
and transmitter-eavesdropper, respectively as depicted in Fig.
2. Here, L[AB] denotes the number of multipath channels
between A and B, ℏl ∼ CN (0, 1) is the complex channel
gain, g[A]

t ∈ C and g
[B]
r ∈ CNr×1 are the steering vectors of

the transmitter and receiver, respectively, and ϕr is the angle of
arrival (AoA), which follow uniform distribution ∼ U(−π

2 ,
π
2 ),

The steering vector is given by:

g[B]
r (ϕ) =

1√
N

[
1, e−j2π

d̄c
λc

sin(ϕr), · · · , e−j2π(N−1) d̄c
λc

sin(ϕr)
]T

(30)
where N ∈ {Nr, Ne}, ϕ ∈ {ϕr}, d̄c and λc are the antenna
spacing and carrier wavelength.

For simplicity, we assume that the legitimate receiver and
eavesdropper are equipped with N̄ antennas, such that N̄ =
Nr = Ne. The transmit signal, x will be used instead of x(t)
for the rest of the paper. The received signal vectors at the
legitimate receiver and eavesdropper are respectively as given
as

yr = hTR x + nr (31)

ye = hTE x + ne (32)

where x ∈ C is the impaired transmitted symbol, hTR ∈
CN̄×1 and hTE ∈ CN̄×1 refer to the channel vectors from
transmitter to legitimate receiver and eavesdropper, respec-
tively; nr ∼ N (0, σ2

rI) ∈ CN̄r and ne ∼ N (0, σ2
eI) ∈ CN̄r

are the received additive Gaussian noise vectors at the legiti-
mate receiver and eavesdropper, respectively.

IV. AUTOENCODER-BASED SIMO ARCHITECTURE

An autoencoder (AE) end-to-end learning for a single-input
single-output system (SISO) was first proposed in [5]. End-to-
end learning entails implementing a transceiver using a pair of

multi-layer neural networks (NNs), denoted as FΘT
: M → C

and FΘR
: C → [0, 1]

M, which encode and decode the trans-
mitted and received signals (messages), respectively. Here,
FΘT

and FΘR
are the transmitter and receiver parameters.

The same principle can be extended to MIMO encoding and
decoding for signal detection [15], [16]. Accordingly, the AE-
based SIMO implementation is formulated as follows

1) Transmitter: FΘT
: MK → CK maps K con-

secutive M constellation points (messages), x =
{x1, · · · , xK}K ∈ MK into K coded vector with an
average power constraint E {xx∗} ≤ PT , where PT
denotes the total transmission power.

2) Receiver: FΘR
: CK×Nr × CNr → [X]

MK

. The
transmitted signal is recovered from the received signal
by mapping the learned constellation using the following
transformation:

y = FΘR
(y,h) , (33a)

x̂ = argmax {y}
x∈MK

(33b)

where x̂ is the recovered symbol.

Our end-to-end communication system has one transmitter
with a single antenna, a legitimate receiver, and an eavesdrop-
per, both with multiple antennas and two wireless channels
(the main and the wiretap channels). The transmitter aims
to securely transmit a message (x) to the legitimate receiver
via wireless channels while ensuring the eavesdropper cannot
thwart the message. Despite both the legitimate receiver and
the eavesdropper being able to receive the signal simulta-
neously, the transmission occurs through distinct wireless
channels. Even though we use a single decoder at the receiver,
the received signals at the legitimate receiver and the eaves-
dropper are distinct, owing to the unique characteristics of each
wireless channel. The objective is to design a SIMO-based Au-
toencoder (AE) to facilitate secure end-to-end communication,
with the aim of reconstructing the transmitted signal at the
intended receiver with maximum probability Pr (x̂r = x|yr).
Concurrently, the design seeks to mimize the probability at
the eavesdropper’s Pe (x̂e = x|ye) end while ensuring com-
prehensive incorporation of all hardware impairments present
at the RF front in the transmitted signal. The comprehensive
architecture of the proposed AE is depicted in Fig. 3. A com-
mon loss function that could be used to reconstruct continuous
input signals at the legitimate receiver is the Mean Squared
Error (MSE). Conversely, the most suitable loss function
for the eavesdropper should promote divergence between the
eavesdropper’s output and the originally transmitted signal.
Theoretically, one appropriate loss function for this purpose is
the negative MSE, aimed at maximizing the MSE between the
decoded and transmitted signals. However, this is practically
infeasible. Therefore, a softmax layer is employed as the AE
output to address this issue, enabling cross-entropy as the
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loss function. This enables correct decoding by the legitimate
receiver with the highest probability, expressed as.

Lr = −
K∑
i=1

yi log2 Pi (34)

In contrast, a legitimate receiver’s optimization goal is to
render it impossible for eavesdropping users to recover the
original message accurately. Therefore, the optimal loss func-
tion should aim to equalize the decoder’s output probabilities
across the message space, thus maximizing the information
entropy of the decoding result. Consequently, the loss function
can be expressed as follows:

Le =
K∑
i=1

Pi logPi (35)

The AE is trained using a joint loss function formulated
for both the legitimate receiver and the eavesdropping user.
This joint training combines the two components of the loss
functions, enabling the optimization of the entire system’s
parameters through a unified loss function expressed as:

Ltotal = α · Lr + (1− α) · Le (36)

The parameter 0 ≤ α ≤ 1 balances the importance of mini-
mizing the error at the legitimate receiver against maximizing
the error at the eavesdropper, thus ensuring robustness against
eavesdropping while maintaining reliable communication for
the intended recipient.

V. EXPERIMENT AND SIMULATION RESULTS

The dataset comprises 50,000 samples of 16-QAM symbols
sampled at a rate of 1 MHz. 70% of the dataset is allocated
for training, while the remaining 30% is reserved for testing.
The training is performed with a signal-to-noise ratio (SNR)
ranging from 0 to 18 dB, drawn from a uniform distribution to
enable the AE to learn across a wide range of SNR values. We
adopt the FTR5123-B crystal LO 1, which is typically used in
LoRa devices and mobile phones, with a frequency variation
of fppm = 10 ppm. Table 1 summarizes the parameter
values used in the simulation. Figs 4 and 5 depict the

TABLE I: Simulation settings

Parameters Values
Training samples 50,000
Test samples 15,000
Batch Size 256
Transmit and Receive antennas Nt = 1, N̄ = 6

Gain and Phase imbalances [−1 1] dB and [−5 5] degree
Sampling Frequency 1 MHz
Carrier Frequency 2 GHz
CFO 1000Hz [11]
Kvco, Vvco 100, 0.1 V
PA nonlinearity (Saleh model) [αA=2.1587,βA=1.1517,

αP =4.0033, βP =9.1040] [11]
Training SINR range [0 - 18] dB
Test SINR range [0 - 20d] dB
Initial Learning Rate 0.0003
Learning Rate decay factor 0.65
Training epoch 100

performance evaluation of classical linear decoders, namely
ZR and LMMSE, alongside the optimal nonlinear decoder
(ML), compared to the proposed AE-based SIMO end-to-end
learning model, both with and without RF hardware impair-
ments. In both scenarios, the AE-based SIMO model exhibits

1https://lora-alliance.org/sites/default/%EF%AC%81les/showcase-
documents/FTR5123-B0.pdf
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an SER gap of less than 5.5468×10−4 and 3.8969×10−5, with
and without RF impairments, respectively, when compared to
the ML decoder. Furthermore, it surpasses the performance
of traditional linear decoders by a significant margin. As
anticipated, performance degradation is observed in Fig. 5
across all cases due to the presence of hardware impairments
in the RF transmit signal. Additionally, the proposed end-
to-end learning model ensures secure and reliable commu-
nication between the transmitter and the intended legitimate
receiver, thereby preventing information leakage to potential
eavesdroppers. This is shown by the constant line, indicating
that the eavesdropper is unble to decode the received message
correctly. Notably, the presence of RF impairments augments
PHY security could potentailly enhance the PHY security as
illustrated in Figure 5.

A. Conclusion

This paper introduces an AE-based SIMO model for end-to-
end communication, leveraging RF hardware impairments. A
comprehensive mathematical signal model has been presented
to encapsulate the hardware impairments inherent in various
RF physical components. To assess the effectiveness of our

proposed approach, we compared our model with traditional
linear and optimal decoders in terms of SER performance. The
experimental findings demonstrate that weighted joint autoen-
coder training ensures secure signal transmission, mitigating
potential eavesdropping risks. In our future work, we will
show that the drop in BER performance due to RF hardware
impairments can be exploited to provide an additional layer of
security, enabling the extraction of unique features present in
the transmitted signal for enhanced PHY security and device
identification.
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