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This paper delves into the crucial aspects of pointer-induced quantum decoherence and the tran-
sition between von Neumann’s projective strong measurement and Aharonov’s weak measurement.
Both phenomena significantly impact the dynamical understanding of quantum measurement pro-
cesses. Specifically, we focus on the interplay between quantum decoherence and the transition
from weak to strong measurement by deducing and comparing the quantum decoherence and weak-
to-strong measurement transition factors within a general model and using the well-known Stern-
Gerlach experiment as an illustrative example. Our findings reveal that both phenomena can be
effectively characterized by a universal transition factor intricately linked to the coupling between the
system and the measurement apparatus. The analysis presented can clarify the mechanism behind
the relations of quantum decoherence to the weak measurement and weak-to-strong measurement
transition.

I. INTRODUCTION

Measurements in quantum mechanics have posed a
longstanding and formidable challenge, playing a funda-
mental role in exploring the properties of quantum sys-
tems [1, 2]. It is widely recognized that von Neumann de-
veloped the first model to describe strong quantum mea-
surements by treating both the system under test and
the quantum measuring instrument, with strong interac-
tions between them [3]. The well-known Stern-Gerlach
(SG) experiment is a typical model of quantum strong
measurements, which can be interpreted as a quantum
measurement process that measures the spin of the par-
ticles through their spatial distribution [4]. During the
strong measurement process, the system’s state collapses
to one of its eigenstates due to the significant interaction
between the system and the measuring instrument. This
process is advantageous because it allows the acquisition
of the desired system information through a single mea-
surement. However, the wave packet collapse induced by
strong measurement is irreversible, suggesting that the
measured quantum state is unlikely to revert to its orig-
inal state.

The issues associated with strong quantum measure-
ment have been extensively elucidated within the frame-
work of quantum mechanics, focusing on the interaction
between the measuring device and the system [5]. One of
these important issues is quantum decoherence, whereby
the measurement devices disrupt over time the quantum
coherence of superpositions [6]. In 1970, Zeh [7] authored
the first paper on decoherence, highlighting that realis-
tic macroscopic quantum systems are inherently open,
undergoing strong interactions with their environments.
However, a crucial advancement in decoherence occurred
in the 1980s with the introduction of the term decoher-
ence. This milestone was notably propelled by the sem-
inal contributions of Zurek [8, 9], who underscored the
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paramount significance of preserving quantum correla-
tions, establishing it as a pivotal criterion for discern-
ing preferred states within the decoherence framework
[10, 11]. The reader is referred to recent reviews in the
field for further details of quantum decoherence [12–15].

As previously discussed, when the interaction between
the measured system and the measuring apparatus is
intense, decoherence takes place. This results in the
collapse of the measured system into its corresponding
eigenstate of the measured observable, imposing infor-
mation loss. Moreover, the irreversible nature of strong
measurements implies that the measured quantum state
is unlikely to return to its original state. Thus, the weak
measurement term was introduced to address the chal-
lenges of strong quantum measurement. In weak mea-
surement, the coupling between the system and the mea-
suring apparatus is minimal, thereby avoiding wave func-
tion collapse [16]. The measurement value is obtained by
incorporating a suitable post-selection step in the weak
measurement process, often termed the weak value, which
may fall beyond the observable’s eigenvalue spectrum.
This leads to a phenomenon known as weak value amplifi-
cation (WVA), which has proven beneficial for detecting
and examining minute effects within linear optical sys-
tems [17–20]. It has also assisted in exploring quantum
mechanics and its applications [21–24].

Despite the successful explanations of various quantum
measurement phenomena achieved by both the theory
of strong and weak measurements, an unavoidable ques-
tion naturally arises regarding the feasibility of transi-
tioning from weak to strong measurement by modifying
the interaction between the system and the apparatus
[25]. Transitioning from weak to strong measurement
can be traced back to the investigation of Zhu et al. [26].
Their study examined quantum measurements involving
pre-selection and post-selection and studied the pointer
position and momentum shifts without relying on ap-
proximations, thus broadening the scope to encompass
strong interactions. Ban’s research [27] focused on ex-
ploring whether another form of observable average ex-
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isted distinct from weak and strong values in a post-
selected quantum system. The author’s findings reveal
that if eigen-projectors of a measured observable solely
represent the measurement’s impact on the system, the
conditional average is a combination of strong and weak
observable values. Later, several studies explored the
transition from weak to strong measurement by select-
ing different pointers. For instance, Pan et al. [28]
designed a system to experimentally observe the tran-
sition from weak to strong measurement in a Gaussian
state by modulating a global transition factor. Orszag
et al. [29] investigated the measurement transition for
a coherent squeezed pointer state. Their study demon-
strates a pathway from weak to strong measurements
while preserving the constancy of the global transition
factor. This methodology offers an alternative pathway
for exploring the measurement transition. Furthermore,
a general approach addressing the transition from weak
to strong measurement employed Fock state-based states
as the pointer state. This approach is based on the prin-
ciple that the Hermitian nature of the photon number
operator allows for any state to be expanded based on
|n⟩ [30].

Although quantum decoherence and weak-to-strong
measurement transitions have been extensively studied,
their potential relationship remains unexplored. Hence,
this paper investigates the connection between these two
phenomena to uncover the underlying physical implica-
tions by employing a generic computational model for
each phenomenon. Surprisingly, our analytic results re-
veal that the quantum decoherence and transition factors
share a common mathematical form. Besides, we vali-
date our findings further by applying this model to the
renowned SG experiment and obtain consistent outcomes
for both factors. Moreover, upon separately analyzing
the two asymptotic states with factor values approach-
ing 0 and 1, we observe that the measured system demon-
strates consistent trends under identical factors, whether
within the context of decoherence or the transition from
weak to strong measurements.

The remainder of this paper is organized as follows.
Section. II briefly introduces the quantum decoherence
and weak-to-strong measurement transition models. Sec-
tion. III discusses the dynamical measurement process
of the SG experiment as a typical example of our pro-
posal. Section. IV discusses our findings and concludes
this work.

II. BRIEF DESCRIPTION OF QUANTUM
DECOHERENCE AND WEAK-TO-STRONG

MEASUREMENT TRANSITION

A. Quantum decoherence and decoherence function

Any standard quantum measurement model has two
components: system (measured system) and pointer
(measurement device/measuring system/measurement

apparatus). Its Hamiltonian is formulated as follows,

H = Hs +Hp +HI = H0 +HI . (1)

In the equation above, Hs and Hp represent the Hamil-
tonian of the system and measurement pointer, respec-
tively, and HI describes the interaction between the sys-
tem and the pointer. It is important to note that this
work solely focuses on the ideal measurement model with-
out considering the noise caused by a reservoir. In gen-
eral, the interaction Hamiltonian HI takes the von Neu-
mann measurement form as

HI = gA⊗Q, (2)

where A is the system observable we want to obtain infor-
mation from the measurement model and Q = Q† is an
arbitrary pointer operator. The Q is usually the position
(X) or momentum (P ) operator, easing the system infor-
mation acquisition in the lab. The interaction strength
g between the system and the pointer is usually an im-
pulsive function, which is only effective over a very short
time interval to guarantee the precision of the measure-
ment result. We assume that the system Hamiltonian
commutes with the observable A, which yields,

[H,A] = [HI , A] = [Hs, A] = 0, (3)

such that the system observable A involves conserved
quantities. As a consequence, the mean energy of the
system is constant in time, i.e.,

d

dt
⟨Hs(t)⟩ = 0. (4)

From the above assumption, the system and observable
A have the following eigenvalue function, i.e.,

Hs|ai⟩ = Ei|ai⟩, Ai|ai⟩ = ai|ai⟩. (5)

Initially, the system and the pointer are relatively inde-
pendent and the initial state of the composite system is
written as

|Ψ(0)⟩ = |ψi⟩ ⊗ |ϕ⟩. (6)

Here |ψi⟩ =
∑

i αi|ai⟩ with αi = ⟨ai|ψi⟩ and ϕ represent-
ing the initial states of the system and the pointer, re-
spectively. The initial system state |ψi⟩ can be expressed
in terms of density matrix as

ρs(0) = |ψi⟩⟨ψi|

=
∑
i

|αi|2|ai⟩⟨ai|+
∑
j,i

αiα
∗
j |ai⟩⟨aj |, (7)

where |αi|2 is the measuring probability of eigenvalue ai
of the observable A corresponding to the eigenstate |ai⟩
if the system is prepared in |ψi⟩. In order to obtain a
determined outcome, the second term (off-diagonal, the
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part that represented the coherence) of ρ has to vanish
after the measurement. This means that, after the mea-
surement, the system is a mixture of the eigenstates of
the measured observable. Next, we describe this dynamic
transition process.

After completing measurements, the time evolution of
the total system is characterized by

|Ψ(t)⟩ = U (t) |Ψ(0)⟩, (8)

where U(t) is a unitary time evolution operator defined
as

U(t) = exp [−iHt] = exp [−i (Hs +Hp +HI) t]

=
∑
i

e−iEite−i(Hp+g0aiQ)t|ai⟩⟨ai|. (9)

By substituting Eq. (9) into Eq. (8) we obtain

|Ψ(t)⟩ =
∑
i

αie
−iEit|ai⟩|ϕi(t)⟩. (10)

Here |ϕi(t)⟩ = e−i(Hp+g0aiQ)t|ϕ⟩ represents the final
states of the pointer and contains the information of the
system observable A. |Ψ(t)⟩ indicates that the system
and pointer become entangled after time evolution and
cannot be separated. However, we can determine the
system state by tracing out the degrees of freedom of the
pointer as

ρs(t) = Trp (|Ψ(t)⟩⟨|Ψ(t))

=
∑
i

|αi|2|ai⟩⟨ai|

+
∑
i ̸=j

α∗
jαie

−i(Ei−Ej)t|ai⟩⟨aj |⟨ϕj(t)|ϕi(t)⟩. (11)

The above expression reveals that the diagonal terms of
ρs(t) remain unchanged with time, while the off-diagonal
terms vary over time. The dependence of matrix element
⟨ai| ρs(t) |aj⟩ on time is given in the form of overlapping
integrals of |ϕi(t)⟩ and |ϕj(t)⟩, and the impact exerted by
the pointer (measuring apparatus) on the statistical mea-
surement outcomes is effectively subsumed in the overlap.
The amount of overlap is a quantitative measure delin-
eating the degree of interference. Generally,

F (t) = |⟨ϕi(t) | ϕj(t)⟩| = exp [−Γij(t)] ,Γij(t) ≥ 0.
(12)

The above formula describes the behavior of the non-
diagonal elements of the reduced density matrix ρs(t)
when i ̸= j. Its time dependence is related to many el-
ements, such as the specific form or the system-pointer
coupling, on the underlying model’s various parameters
and the initial state’s properties. Therefore, F (t) is called
the decoherence function. For many physical systems,
the irreversible dynamics induced by the system-pointer
(system-reservoir) interaction rapidly decreases the over-
lap ⟨ϕj(t)|ϕi(t)⟩ when i ̸= j. Thus, to quantitatively

Figure 1. Schematic relations between decoherence and weak-
to-strong measurement transition model.

describe the decreasing F (t), we introduce the decoher-
ence time τD term. If for i ̸= j the overlap of the states
|ϕi(t)⟩ and |ϕj(t)⟩ approaches to zero after large times
compared to τD such that

⟨ϕj(t)|ϕi(t)⟩ → δij , for t≫ τD, (13)

then, the reduced density matrix of the system becomes
as

ρs(t) →
∑
i

|αi|2 |ai⟩ ⟨ai| . (14)

This result shows that the coherence of our system’s
density matrix of our system vanishes after a long time
(t ≫ τD) interaction with the pointer. In the measure-
ment problem, after t≫ τD the state ρs(t) of the system
behaves as an incoherent mixture of the state |ai⟩, so that
the interference terms of the form ⟨ai|A|aj⟩ (i ̸= j) of any
system observable A no longer occurs in the expectation
value. In other words, after a longer time of interaction
between the system and the pointer or environment, the
super-positions of the states |ai⟩ are destroyed locally,
meaning they are unobservable for all measurements exe-
cuted exclusively on the system. The dynamic transition
process expressed by Eq. (14) is called decoherence. The
main idea of our proposal to reveal the relations between
quantum decoherence and weak-to-strong measurement
transition is illustrated in Fig. (1).

B. A model of pointer-induced decoherence

This subsection introduces a pointer-induced decoher-
ence model. As mentioned previously, in the ideal mea-
surement, the Hamiltonian part only adds a phase factor
to the total system state after time evolution and does
not affect measurement results. Thus, we assume the
Hamiltonian of one measurement as

H =
p2

2m
− g(t)x⊗A. (15)
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Here, A =
∑

i ai|ai⟩⟨ai| as defined is a system observable
and m is the mass of a quantum object. The initial state
of the total system is |ψi⟩ ⊗ |ϕ⟩, where |ψi⟩ as defined in
Sec. ( II A) and the pointer is assumed to be a Gaussian
profile as

|ϕ⟩ =
(

1

2πσ2

) 1
4
∫

exp(− x2

4σ2
)dx|x⟩, (16)

where σ is the width of the Gaussian wave packet. The
evolution of the total system can be written as

|Ψ(t)⟩ = U(t)|ψi⟩ ⊗ |ϕ⟩ (17)

with U(t) = exp (−iHt). The explicit form of |Ψ(t)⟩ is
obtained by factorizing the unitary operator U(t), ac-
complished by adopting the Wei-Norman technique [31]
as

U(t) =
∑
i

eg1eg2p
2

eg3peg4x|ai⟩⟨ai| (18)

with

g1 = − i(gai)
2

6m
t3, (19)

g2 = − it

2m
, (20)

g3 =
it2gai
2m

, (21)

g4 = igait. (22)

By substituting Eq. (18) into Eq. (17), we obtain

|Ψ(t)⟩ =
∑
i

αi|ai⟩|ϕi(t)⟩. (23)

Here, |ϕi(t)⟩ are final states of the pointer, and reads as

|ϕi(t)⟩ =
(
σ2/2π

)1/4√
σ2 + it

2m

e−iθ(t)e−igaitx

× exp

−
(
x− gait

2

2m

)2

4(σ2 + it
2m )

 (24)

with θ(t) =
(gaj)

2

6m t3. The expression above
represents a Gaussian wavepacket with width

σ(t)=σ
(
1 + t2

4m2σ4

)1/2

and a central position at

xi =
gait

2

2m .
The final state of the system after time evolution is

ρ′s(t) = Trp (|Ψ(t)⟩⟨Ψ(t)|)

=
∑
i

|αi|2|ai⟩⟨ai|+
∑
i ̸=j

αiα
∗
j |ai⟩⟨aj |Fij . (25)

Here, the decoherence factor is given by

F = |Fij | = |⟨ϕi(t)|ϕj(t)⟩|

= exp

[
−5

8

(△x)2

σ2(t)
− t2

32σ4m2

(△x)2

σ2(t)
− 2σ4m2(△x)2

t2σ2(t)

]
,

(26)

where △x = gt2(ai−aj)/2m. This function can quantify
the degree of decoherence as a function of time t. It
should be noted that the distinguishability condition of
the wavepackets at time t is the distance of the center of
two near wavepackets larger than its width, i.e., △x ≫
σ(t) . This condition can easily be satisfied if time t is
long enough.

C. Weak-to-strong measurement transition model

Let the weak-to-strong measurement transition model
have the same Hamiltonian as in the above subsection.
Using the pointer shift, we read the system’s observ-
able values in all measurement schemes. Therefore, three
value types of the observable A correspond to different
measurement circumstances. To clearly understand the
mechanism of measurement transition, let’s first briefly
introduce each value of A :

1. Expectation value. Suppose a system state |ψi⟩ =∑
j αj |aj⟩ with

∑
j |αj |2 = 1, then the expectation value

of the observable under the state |ψi⟩ is given by

⟨A⟩ =
∑
j

aj |αj |2. (27)

This expectation value can obtained by reading the po-
sition shift δx under the state given in Eq. (23), i.e.,

δx = ⟨Ψ(t)|X|Ψ(t)⟩ − ⟨ϕ|X|ϕ⟩ = gt2

2m
⟨A⟩. (28)

2. Conditional Expectation value. In time-symmetric
quantum mechanics [32–34], if we take a post-selection
by using the state |ψf ⟩ =

∑
j βj |aj⟩ with

∑
j |βj |2 = 1

after some evolution, the conditional expectation value
of the observable A is determined by [32]

⟨A⟩c =
∑

j aj |⟨ψf |aj⟩⟨aj |ψi⟩|2∑
j |⟨ψf |aj⟩⟨aj |ψi⟩|2

=

∑
j aj |αjβ

∗
j |2∑

j |αjβ∗
j |2

. (29)

This value is also called the post-selected strong value
of A. The above processes we assume that the cou-
pling between the measured system and the pointer is
strong enough so that the spatial sub-wave-packets of
the pointer corresponding to the different eigenvalues of
the observable are distinguishable, i.e., g△a ≫ σ. Here,
△a = ai − ai−1 and σ represent the differences between
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neighboring eigenvalues and the width of the sub-wave
packets, respectively.

3. Weak value. The weak value of observable A with
pre- and post-selected state reads as

⟨A⟩w =
⟨ψi|A|ψf ⟩
⟨ψi|ψf ⟩

=

∑
j

∑
k αjβ

∗
k⟨ak|A|aj⟩∑

j

∑
k αjβ∗

k⟨ak|aj⟩

=

∑
j ajαjβ

∗
j∑

j αjβ∗
j

. (30)

It can be seen that, in general, the conditional expec-
tation value ⟨A⟩c and the weak value ⟨A⟩w are different
[please see the Eq. (29) and Eq. (30) ], and correspond
to different measurement strengths. Hence, the (condi-
tional) expectation value of the system observable is re-
lated to the (post-selected) strong measurement, while
the post-selected weak measurement causes the weak
value. If βi = αi, the above-introduced conditional ex-
pectation value and weak value are reduced to the typi-
cal expectation value of the observable A as given in Eq.
(27). Actually, the ⟨A⟩w and ⟨A⟩c are the two extreme
values of the transition value of observable A defined be-
low

AT =
⟨ψf |Aρ′s(t)|ψf ⟩
⟨ψf |ρ′s(t)|ψf ⟩

=

∑
i ai|αiβi|2 +

∑
i ̸=j aiβjβ

∗
i αiα

∗
j ⟨ϕi(t)|ϕj(t)⟩∑

i |αiβi|2 +
∑

i ̸=j βjβ
∗
i αiα∗

j ⟨ϕi(t)|ϕj(t)⟩
.

(31)

The expression above reveals that the transition value
depends on the overlap ⟨ϕi(t)|ϕj(t)⟩ of the states |ϕi(t)⟩
and |ϕj(t)⟩, and its module F is decoherence function
of the system [see Eq. (26)]. F is an exponentially de-
creasing function of time t and coupling strength g. If
gt2|ai − aj |/2m≫ σ(t), then F approaches zero and AT

becomes as

(AT )F→0 =

∑
j aj |αjβ

∗
j |2∑

j |αjβ∗
j |2

= ⟨A⟩c. (32)

On the contracy, using gt2|ai − aj |/2m≪ σ(t), the over-
lap ⟨ϕi(t)|ϕj(t)⟩ approximately equals one, and AT is re-
duced to

(AT )F→1 =

∑
i ai|αiβi|2 +

∑
i̸=j aiβjβ

∗
i αiα

∗
j∑

i |αiβi|2 +
∑

i̸=j βjβ
∗
i αiα∗

j

=

∑
j ajαjβ

∗
j∑

j β
∗
jαj

= ⟨A⟩w. (33)

From an experimental point of view, we obtain the above
values of the system observable A by reading the posi-
tion and momentum shifts of the pointer. As given in
the above subsection, the |Ψ(t)⟩ [see Eq. (23)] is the
total system state of the our system described by the
Hamiltonian in Eq. (15) after the time evolution. If we

take a post-selection on it using the post-selected state
|ψf ⟩, then the unnormalized final state of the pointer is
given as

|Ξ(t)⟩ =
∑
i

β∗
i αi|ϕi(t)⟩. (34)

Using this final state provides the position and momen-
tum shifts of the pointer, and their expression are ex-
pressed as

δx =
⟨Ξ(t)|x|Ξ(t)⟩
⟨Ξ(t)|Ξ(t)⟩

− ⟨ϕ|x|ϕ⟩

=
1∑

i,j αiα∗
jβ

∗
i βjFij

{
∑
i,j

αiα
∗
jβ

∗
i βj

gt2(ai+aj)
4m Fij

+igt
∑
i,j

αiα
∗
jβ

∗
i βj(

t2(ai−aj)
8σ2m2 −(ai − aj)σ

2(t))Fij}

=
gt2

2m
Re(AT ) +

gt3

4σ2m2
Im(AT )− 2gtσ2(t)Im(AT ),

(35)

and

δp =
⟨Ξ(t)|p|Ξ(t)⟩
⟨Ξ(t)|Ξ(t)⟩

− ⟨ϕ|p|ϕ⟩

=

∑
i,j αiα

∗
jβ

∗
i βj

[
gt(ai+aj)

2 − i
gt2(ai−aj)

8mσ2

]
Fij∑

i,j αiα∗
jβ

∗
i βjFij

= gtRe(AT )−
gt2

4σ2m
Im(AT ), (36)

respectively. If the transition factor F approaches one,
the shift in the pointer’s position and momentum behave
as

(δx)F→1 =
gt2

2m
Re [⟨A⟩w]−

gt3 + 8gtσ4m2

4σ2m2
Im [⟨A⟩w] ,

(37)

(δp)F→1 = gtRe [⟨A⟩w]−
gt2

4σ2m
Im [⟨A⟩w] . (38)

On the other hand, if F = 0 then Eqs.(35) and (36)
reduce to

(δx)F→0 =
gt2

2m
⟨A⟩c, (39)

and

(δp)F→0 = gt⟨A⟩c. (40)

Since the decohence factor F is a continuous function, its
two extreme cases of can establish a relationship between
weak and strong measurements. As noticedin this work,
both displacements in the weak and strong measurement
regimes do not coincide with the results obtained by
Josza [35] and Turek [30], owing to the Hamiltonian of
our scheme. Since we aim to investigate the mechanism
behind the weak-to-strong measurement transition and
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its relations with pointer-induced decoherence, we con-
sider the pointer’s kinetic energy. However, in previous
works, we only considered the interaction of the Hamil-
tonian between the measured system and the pointer.
However, one interesting point of our scheme is that if
particle mass is assumed to be too heavy, the above dis-
placements reproduce the previous results, i.e.,

(δx)F→1,m→∞ = −2gtσ2Im [⟨A⟩w] , (41)

(δp)F→1,m→∞ = gtRe [⟨A⟩w] , (42)

and

(δx)F→0,m→∞ = 0, (43)

(δp)F→0,m→∞ = gt⟨A⟩c, (44)

respectively. Most existing studies consider the inter-
action between Hamiltonian HI to be in gÂ⊗ P̂ form,
whereas in this work, HI = gÂ ⊗ X̂. Thus, contrary to
the previous results, in a weak measurement regime, the
position shift of the pointer is proportional to the imag-
inary part of the weak value, and the momentum shift
gives the real part of the weak value. It is worth noting
that the original paper of Aharonov [36] used the same
interaction Hamiltonian as in this paper. Fig.2 highlights
the above relations. The next section provides a feasible
example of the proposed scheme.

III. A TYPICAL EXAMPLE–THE
STERN-GERLACH (SG) EXPERIMENT

The Stern-Gerlach (SG) experiment is a very impor-
tant quantum measurement model, which reflects the re-
lationship between spin and spatial degrees of freedom
in atoms, and makes it possible to distinguishing differ-
ent spin states from spatial distributions. In the SG ex-
periment, a silver atom in the ground state with orbital
angular momentum L = 0 moves along the x direction
and enters the non-uniform magnetic field directed on
the z-axis. This process is described by the Hamiltonian,
which can be written as

H =
p2

2m
− µB(x)σz. (45)

Here, m is the mass of the atom. If we take a linear
approximation B(x) ≈ ∂B

∂x |x=0x, then the above Hamil-
tonian becomes as

H =

(
H+ 0
0 H−

)
, (46)

where H± = p2

2m ∓ fx and f = µ∂B
∂x |x=0x. If we assume

that the initial system and pointer prepared to |ψi⟩ =
cos θ1| ↑⟩+ eiδ1 sin θ1| ↓⟩ and |ϕ⟩ [see Eq. (16)], the time
evolution of the total system is given by

|Φ(t)⟩ = cos θ1| ↑⟩|ϕ+(t)⟩+ eiδ sin θ1| ↓⟩|ϕ−(t)⟩. (47)

Figure 2. Weak-to-strong measurement model and its rela-
tion with the quantum decoherence factor. (a) measurement
readout by the displacements of position and momentum ob-
servables. (b) decoherence and transition factors describing
different physical processes but share the same expression.

Here, |ϕ±(t)⟩ = e−iH±t|ϕ⟩ and their explicit expression
in position representation is obtained as

ϕ±(x, t) =

(
σ2/2π

)1/4√
σ2 + it

2m

e−iθ′(t)e∓iftx

× exp

−
(
x± ft2

2m

)2 (
σ2 − it

2m

)
4σ4 + t2

m2

 , (48)

with θ′(t) = f2t3

6m . The width of this Gaussian wavepacket
is σ(t) with a central position at x± = ± ft2

2m . Every
wavepacket has the same group velocity but propagates
in opposite directions, i.e., υ± = ±ft/m. The expres-
sion presented above infers that the central motion of
wavepackets obeys the rule of classical dynamics, i.e., an
object with mass m has acceleration f/m under the ex-
ternal force f .

It can observed that the spatial degree of freedom and
internal degree (spin) of freedom of the silver atoms are
entangled. Since the atoms in different spin states |↑⟩ and
|↓⟩ experience opposite forces, the atom with the initial
superposition of the two spin states will eventually form
two macroscopic distinguishable spots on the detection
screen. Once a particle is found at the position associated
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with the |↑⟩ state, the state of the system’s state is said
to collapse to the |↑⟩ state, and vice versa.

The reduced density operator corresponding to the
spin degrees of freedom of the atom is given as

ρs(t) = Trp (|Φ(t)⟩⟨Φ(t)|)
= cos2 θ1| ↑⟩⟨↑ |+ sin2 θ1| ↓⟩⟨↓ |

+
1

2
e−iδ1 sin 2θ1| ↑⟩⟨↓ |F ′(t) + h.c (49)

with F ′(t) = ⟨ϕ+(t)|ϕ−(t)⟩ and its explicit expression
reads as

F ′(t) = exp

[
−γ

2

8
− 1

32

t2

m2σ4
γ2 − 2σ2f2t2

]
. (50)

where γ′ = ft2/mσ(t). This expression can be obtained
directly from Eq. (26) by substituting the ai,j = ±1
eigenvalues. Furthermore, if the post-selection with the
system state |ψf ⟩ = cos θ2| ↑⟩ + eiδ2 sin θ2| ↓⟩ is placed
onto |Φ(t)⟩, the normalized final state of the pointer in
the position representation is obtained as

Ω(x, t) =
cos θ1 cos θ2ϕ+(x, t) + sin θ1 sin θ2e

i(δ1−δ2)ϕ−(x, t)

β
,

(51)
Here, β is the normalized coefficient, which is given by

β2 = cos2θ1cos
2θ2 + sin2θ1sin

2θ2

+
1

2
sin2θ1sin2θ2cos(δ1 − δ2)F

′(t). (52)

We obtain the explicit expressions of position and mo-
mentum shift by using Ω(x, t), and the results expresssed
as

δx =
1

β2
{ft

2

2m
(cos2θ1cos

2θ2 − sin2θ1sin
2θ2)

+
ft3 + 8ftσ4m2

8σ2m2
sin2θ1sin2θ2 sin(δ1 − δ2)F

′(t)},
(53)

and

δp =
1

β2
{ft(cos2θ1cos2θ2 − sin2θ1sin

2θ2)

+
ft2

8σ2m
sin2θ1sin2θ2 sin(δ1 − δ2)F

′(t)}, (54)

respectively.
Then, if F ′ → 0, we consider the larger value of

the coupling strength parameter to know the position
and momentum shifts of the pointer in the post-selected
strong measurement regime, which can be written as

(δx)F ′→0 =
ft2

2m

cos2θ1cos
2θ2 − sin2θ1sin

2θ2
cos2θ1cos2θ2 + sin2θ1sin2θ2

=
ft2

2m
⟨σz⟩c .

(55)

and

(δp)F ′→0 = ft
cos2θ1cos

2θ2 − sin2θ1sin
2θ2

cos2θ1cos2θ2 + sin2θ1sin2θ2
= ft ⟨σz⟩c .

(56)
Here, ⟨σz⟩c is the conditional expectation value of ob-
servable σz, which is obtained in a conditional strong
measurement.

Furthermore, if one wants to know the position shift
formula for the post-selected weak measurement regime,
a limit F ′ → 1 should be taken for this extreme case.
Then, the position and momentum shifts become as

(δx)F ′→1 =
ft2

2m
Re [⟨σz⟩w]−

ft3 + 8ftσ4m2

4σ2m2
Im [⟨σz⟩w] ,

(57)

and

(δp)F ′→1 = ftRe [⟨σz⟩w]−
ft2

4σ2m
Im [⟨σz⟩w] . (58)

These are the general results of the SG experiment in
the post-selected weak measurement. However, in the
dynamical evolution of the measurement process, we usu-
ally assume the mass of the pointer to be too large and
do not consider the effects of the pointer caused by it-
self. In this case, we omit the terms in the above results
associated with mass m, thereby recovering the typical
displacements presented in previous studies.

IV. DISCUSSION AND CONCLUSION

The experimental results reveal that whether we pro-
pose a general model of ideal measurement or explain it
through the specific SG experiment, the decoherence fac-
tor obtained from the decoherence process and the tran-
sition factor in the weak-to-strong measurement transi-
tion exhibit the same mathematical form. This similarity
raises the question of whether the decoherence process
of the measured system caused the weak-to-strong mea-
surement transition and weak measurement procedure as
well.

The decoherence factor given in Eq.(26) can be rewrit-
ten as

F = exp

[
−1

8

(△x)2

σ2(t)
− t2

32σ4m2

(△x)2

σ2(t)
− 2m2σ2(△x)2

t2

]
.

(59)

This factor also occurred in the weak-to-strong measure-
ment transition process. The value of F depends on some
parameters, including time t, mass of the atom m, cou-
pling strength g, and atomic beam width σ. Among these
parameters, we can easily control the time t and coupling
strength g. After the dynamical evolution, the atomic

beam width changed from σ to σ(t) = σ
(
1 + t2

4m2σ4

)1/2

.
Thus, during dynamic evolution, the wavepacket of the
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atomic beam spreads in space. Decoherence arises from
the interaction between the measured system and the
measuring apparatus during the quantum measurement.
Under the evolution of time, the system will change from
a superposition state that embodies quantum coherence
to a mixed state. Hence, utilizing a density matrix be-
comes essential to describe the local system with greater
relevance. However, providing the exact decoherence
time of our decoherence factor F is impossible, but we
can discuss the two extreme cases with the time scale
given in σ(t). If the dynamical evolution time t is too
long so that t≫ mσ2, then

F ≈ exp

[
−g

2(ai − aj)
2

32σ2m2
t4
]
. (60)

If t or g or both are large, this factor tends to zero,
and it can characterize the complete decoherence. In
the context of decoherence, the density matrix of the
system’s final state approaches this limit, causing the
off-diagonal elements that characterize coherence to be-
come zero. Taking the SG experiment as an exam-
ple, when F = 0, the system’s final state density ma-
trix transforms into a completely mixed state ρ̂s(t) =
cos2θ1 |↑⟩ ⟨↑|+ sin2θ1 |↓⟩ ⟨↓|. Moreover, since the overlap
is zero, indicating orthogonality between | ↑⟩ and ⟨↓ |,
and the information about the apparatus’s final state
can be effectively distinguished. Additionally, the deco-
herence discussed here arises from the strong interaction
between the system and the apparatus induced during
the measurement process. On the other hand, when $F$
approaches zero, the measurement is considered strong
in the weak-to-strong measurement of the transition pro-
cess. In this case, the displacement of the apparatus’s
position is proportional to the conditional expectation
value. When the factor approaches zero, the prepared
quantum system will collapse, allowing us to differen-
tiate the information about the apparatus’s final state
effectively within a single measurement.

If we consider the very short time case, i.e., t≪ mσ2,
then the decoherence factor Eq. (59) is reduced to

F ≈ exp

[
−σ

2g2 (ai − aj)
2
t2

2

]
≈ 1− τ2t2, (61)

where τ = gσ(ai − aj)/
√
2. This kind of Gauss attenu-

ation can be considered a quantum Zero effect [37]. In
this process, transitions between quantum states are in-
hibited by frequent state measurements. The inhibition
phenomena arises because the measurement causes wave
function collapse. If the time between measurements is
short enough, the wave function usually collapses back to
the initial state, and the main point of the post-selected

weak measurement could occur. In this case, since the
factors on the off-diagonal elements representing coher-
ence tend to be one, the system’s density matrix is con-
stant. As given in the SG experiment, the amount of
overlap quantifies the degree of interference based on the
system. When F = 1, the reduced density matrix of
the measured system after dynamical evolution becomes
ρs = cos2θ1 |↑⟩ ⟨↑|+sin2θ1 |↓⟩ ⟨↓|+e−iδcosθ1sinθ1 |↑⟩ ⟨↓|+
eiδcosθ1sinθ1 |↓⟩ ⟨↑|, as the initial state never touched.

Similarly, in the weak-to-strong measurement transi-
tion, when the F → 1, the measurement is considered
weak. In this process, the position displacements and
momentum of the pointer are proportional to the imagi-
nary and real parts of weak value. Since the interaction
strength between the system and the apparatus is weak
in the weak-measurement process, the shifts displayed on
the dial of the pointer during a single measurement are
insufficient to achieve the desired measurement outcome.
However, a zero-effective process in enough short time or
weak coupling cases allows us to take multiple consecu-
tive measurements to obtain statistical results. Thus, we
can confirm that controlling the quantum decoherence is
essential to performing the weak measurement.

This paper studied the relations between quantum de-
coherence and weak-to-strong measurement transition.
We observed that there exists a certain connection be-
tween decoherence and weak-to-strong transitions, as
they share common features and exhibit analogous be-
haviors regarding these factors. We presented the general
expression of the decoherence factor in weak-to-strong
measurement transition by taking the pointer’s Hamilto-
nian into account. We found that in the pointer-based
decoherence process, the mass m of the pointer is highly
important. Additionally, we noticed that, in general,
quantum measurement’s dynamical evolution, whether
weak or strong, displacements of position and momen-
tum of the pointer are not zero. Specifically, in a weak
measurement regime, both displacements of position and
momentum observables are proportional to the real and
imaginary parts of the weak value, respectively. In con-
trast, in a strong measurement regime, they are both
associated with conditional expectation value. This re-
sult is not very common for the measurement community.
However, assuming the mass of this pointer is too heavy
to disturb the measurement result, the results presented
in this paper recovered the previous results. Overall, the
proposed scheme can help deepen the understanding of
weak-to-strong measurement and clarify the hiding mech-
anism behind the weak measurement theory.
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