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Abstract

In this paper, we consider a McKean-Vlasov (mean-field) stochastic par-
tial differential equations (SPDEs) driven by a Brownian sheet. We study the
propagation of chaos for a space-time Ornstein-Uhlenbeck SPDE type. Subse-
quently, we prove the existence and uniqueness of a nonlinear McKean-Vlasov
SPDE. Finally, we establish a Fokker-Planck equation for the law of the solu-
tion of the McKean-Vlasov type SPDE driven by a time-space Brownian sheet,
and we provide some examples to illustrate the results obtained.

Keywords: McKean-Vlasov (mean-field) SPDE; time-space Brownian sheet;
Fokker-Planck equation.

1 Introduction

In the one-parameter case, McKean-Vlasov equations were originally used in the
kinetic theory of gases to model the dynamics of large particle systems in a medium.
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A crucial concept in kinetic theory is the propagation of chaos, which provides a
description of the distribution of particles in a (monoatomic) gas medium as the
number of particles tends to infinity. This concept, known as the ”Stosszahlansatz,”
was assumed by Boltzmann (see [Ehr]) to assert that each pair of particles in such
a system moves independently. In this context, we also mention the work of Vlasov
[V1], which studied the propagation of chaos of charged particles in an electron gas
or plasma. Regarding the investigation of the connection between Markov processes
and nonlinear parabolic equations such as the Boltzmann equation in kinetic theory,
we refer to McKean [McK].

The purpose of this paper is to study the law of the solution of McKean-Vlason
type SPDEs driven by the Brownian sheet. We shall study the law ji;, = Py 4) of
solutions Y (¢,z),t > 0,z € R of SPDEs of the form

Y (t,x) =Y (to, z0) —i—/

a(s,a,Y (s, a), ts,q)dsda + / B(s,a,Y (s,a), ts,q)B(ds,da),
R(t,z)

R(t,z)
(1.1)
where R(t,z) = Rt0®0) (¢, 2) = [to,t] X [xg,x],t > tg,z > x0, and o and B are Lipschitz
continuous vector fields of linear growth, B is a Brownian sheet.

L]
The differential form of 1' in terms of time-space white noise B and Wick product
o is

2 [
8?8$Y(t7 I’) - Ct(t, xz, Y(t7 :L'), /’Lt,af) + 5(t7 Zz, Y(t7 m)7 IU/t,l‘) © B(tu x) (12)

The identity of (1.1)) and ([1.2)) comes from the fact that

/ o(s,a)B(ds,da) = / w(s,a) o é(s, a)dsda, for all ¢, t,x.
R(t,z) R(t,z)

See, for example, Holden et al. [HOUZ] for more details.

The one-parameter case of McKean-Vlasov stochastic differential equations (SDEs) in
infinite dimensions have been studied recently by Hong et al [HLL].

It is important to find the Fokker-Planck equation, denoted by fi;, for the McKean-
Vlasov SPDE driven by a Brownian sheet as described above. It is worth noting that the
specific type of Fokker-Planck equation for SPDEs driven by a Brownian sheet has not
been previously addressed in the existing literature. Moreover, it is interesting to see the
application of these concepts to understand the behavior of complex systems described by
such equations.

However, in the one-parameter case, Fokker-Planck equations in infinite dimensions
have been studied by Bogachev et al. [BPR]. The authors developed a general tech-
nique to prove uniqueness of solutions for Fokker-Planck equations on infinite-dimensional
spaces. They have been also studied by Agram et al. [AQL [A@Pu | [AR] including various
applications to optimal control and even deep learning.



Recently, Agram et al. have considered various applications including the
optimal control of time-space SPDEs driven by a Brownian sheet.

The paper is organized as follows: In Section 2, we review some preliminary concepts
that will be used throughout this work. Specifically, we introduce background information
about the stochastic calculus of time-space white noise. In Section 3, we investigate the
propagation of chaos for a space-time Ornstein-Uhlenbeck SDE as a motivating factor for
considering mean-field SDEs in the context of time-space. Section 4 is devoted to proving
the existence and uniqueness of solutions to a McKean-Vlasov SPDE driven by a Brownian
sheet. Finally, in Section 5, we state and prove the Fokker-Planck equation and illustrate
the results for some time-space SPDE.

2 Background

In this section, we provide some background on the associated stochastic calculus for
stochastic processes with two parameters.

Throughout this work, we denote by {B(t,z) : t > 0, € R} a Brownian sheet and
(Q, F,P) a complete probability space on which we define the (completed) o-field F;
generated by B(s,a),s <t,a < x.
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Fig. 1 Brownian sheet on a 2D grid

Wong & Zakai [WZ] generalized the notion of stochastic integrals with respect to one-
parameter Brownian motion to stochastic intergrals driven by the two-parameter Brownian
sheet. Let us denote by Ri the positive quadrant of the plane, and let z € R%r. We
define a first type stochastic integral with respect to the two-parameter Brownian sheet as
introduced by Cairoli [C72] denoted by:

¢(¢)B(dC),

R



and a second type [WZ74] double stochastic integral denoted by

[ vte1Bacsa,

R.xXR,

where R, = [0,t] x [0,z],z = (t,z),{ = (¢1,¢2) and ¢' = ({7, &).

In Wong & Zakai [WZ], an It6 formula for stochastic integrals in the plane is given.

In the sequel, we shall put sometimes z = (¢,z),( = (s, a) in the following:

Let P be the predictable o-algebra of subsets of 2 x R, generated by the sets (z,2'] x A,
where A € F,, and we denote by D the o-algebra of Q x R,, X R,, generated by the sets
(21, 21] % (22, 25] x A, where (z1, 21]A(22, 25] and A € F,vz,.

2.1 The Ito formula

We will recall a two-parameter version of the Itd formula. First we introduce some nota-
tion from Wang & Zakai [WZ]. We shall introduce some notations which will be used
throughout this work. We put ¢ = ((1,{2) = (s,a) € R x R and d¢ = d(1d{e =
dsda; B(t,x) is a Brownian sheet, t > 0,2 € R; z = (21,22) = (t,z),R, = [0,21] X
[0, 22]; fRz ©(C)B(d¢) denotes the It6 integral with respect to B(-) over R.; fRz P(Q)d¢
is two-dimensional Lebesgue integral of ¢; if a = (a1,a2),b = (b1,b2), then a Vb =
(max(ai, b1), max(ag, b2)). Moreover,

1 if aq < b1 and a9 > bg,

0 otherwise.

I((a1,a2)A\(b1,b2)) = {
Theorem 2.1 (It6 formula, Wang & Zakai [WZ]) Suppose

Y(z) = Yo+ /R a(Q)d + /R BO)B(dC) + // G(CC)BAOBEC).  (21)

R.XR,



Then, if f : R — R is smooth, we have

(2)) = F(¥o) + /f OdC + B(C /f”

+// {f"( ¢V ua+ /(Y (€VC))w(CC)} (d¢)B(d¢")

R.XR,

+ [[{rreven(ua) + vic.)) + LOw v Olaacniac)

R, xR,

+ [ {roeven(aa) + o ) + 11O v ataldcBc)

R.XR,

+ [[ 1ca{rareven(aa + 102e.o) (22)

R, xR,
+ fO ¢V ) ua(C, ) + LI v ) [ald)a? + aC)u?]
+ OV ¢t facad

where u = 5({') + /R I(CAC)Y(C, ') B(dG), @ = B(C) + /R I(CAC)P(C, ') B(dC).

Remark 2.2 FExcept for a deleted factor i in the beginning of the term (2.2) this formula
agrees with Proposition 5.1 in Wang & Zakai [WZ)]. In the case a = 0 it is in agreement
with the formula given by Imkeller [I1], p. 35

It is proved in [WZ] that the double B(d()B(d(’)-integrals, and the mixed d{B(d¢’") and
B(d¢)d(’-integrals are all weak martingales and hence have expectation 0. Therefore, by
the Ito formula above we get the following:

Theorem 2.3 (Dynkin formula)

B ) = £00) + B[ | {alOr((e) + 3850 e e

+ [ 1A { v en(atrat) + 330 + POV O, ¢)

R:xR,
+ 3OV (V) [0l + a( Q] + 1DV (v ¢t fdcdd |

Lemma 2.4 (Integration by parts) Suppose that for k=1,2

Yi(z) = Yi(0) + /R ar(Q)d¢ + /R Br(C)B(dC) + / / (¢, ¢V B(dO) B,

R.xXR,



Then

B (2%(2)] = 0%(0) + B[ [ {1(0)a2(c) + ¥a(O(6) + 1(O5a() g

z

+ [ 1cA¢ {ar¢a2(c) + ar(©as() + n(¢ (¢ ¢ pcac']

R, xR,

3 Propagation of Chaos for space time Ornstein-
Uhlenbeck SDE

In order to motivate mean-field SDEs in the two-parameter case from the viewpoint of
propagation of chaos, consider now the following linear N —particle system, i =1,..., N,

YN (¢, 2) = Yi(to, o) / / Zaw (C1,C) — YON(Gy, ) | dCidéa + Bt @),

where aj €R, j =1,...,N and B = (B!,..., BY) a N—dimensional Brownian sheet.
So the latter system of equations, which could be e.g. used to describe the dynamics
of interacting waves in an ocean, can be written as

Y (t,x) = Y(to, v0) //( A— IN)Y(C17C2)dC1dC2+B(ta~T)7

where 0 < t,z < T, Y(to,z0) € R, Y(t,2) := (YN (t,2),...,YVN(t,2)), Iy is the unit
matrix and
a; -+ ay
A=
ap -+ ay

By applying the Malliavin derivative D,, , to both sides of the latter equation, for 0 < u <'t,
0 <wv < z, we obtain that

Dy,Y (t,2) //< A— IN>DuvY(CbCQ)dCldCz+XRm)(U v)IN.

Using Picard iteration we see that

n

1
u v t HJ / / / (A — IN) dtnd.%'n...dtldxl
Z R(u,,t,z) J R(u,v,t1,x1) R(u,v,tn—1,tn—1) H N

n>0 j=1



- e (w0t (ga-1x)) =7 (e-we-o (Fa-1v)),

where f is a functlon which is related to the Bessel function of order zero and given by

Z 2y Then it follows from the Clark-Ocone theorem for a Brownian sheet
n>0

Y(t2) = E[Y(t )] // <t—u x—v)GA—IN))B(du,dv).

Similarly, we find that

that

E[Y(t2) = f (m (;fA _ 1N>) Y (t, a0).

Hence,
1 1
Y(t,2) = f(ta | =A—In ) ) Y(to,z0)+ (t—u)(x—v)| =A—In) | B(du,dv).
N N
N
Define ||A| = Zaj. Require that Y;(to, z9) =y for all i = 1, ..., N, the sequence a;,j > 1
j=1

is bounded and that
1 1 &
— ||Al = — ;— )
14l NZA1“JN_>00“>O
]:

On the other hand, we observe for n > 0 that

(va-m) = B 0) ) o= () () oo

j=0 J=1
n 1
- g ) e e
- W*( < ”"“‘”"*é}(?) E J“W) alv

1
- mz‘l) + (14l = 1) A



So

P06 = oA - 19) = ¥ - - (A=)
n>0
1 w1 Lo
= 3 (- w0 {( (0 = ) + (141 - D7 AHA}

1 1
Hence

Y(t,z) = f(—tz)(In — ||AH Ay + f(tz) (]17 41 = 1) H‘ZHAy

o f [ e o (- pa)

+f((t —u)(z —v) <N Al - ) HlA\A} B(du,dv).

The latter entails that

XV(r) = (-t (1= ) v 1) (140 1)

t x .
+/0/0 F((t = w)(z — v))dB(du, dv) + Iz,

where

N 4
No= _;/0/0 F(=(t = u)(z —v)) HdeBj(du dv)
N 4 o
+ Jz::l/o/o f(=(t—u)(x—v)) <]17||A”— )Hz‘inBJ(du o),

for all 1 < ¢ < N. Using the It6 isometry, our assumptions on a;,j > 1 and dominated
convergence, we find that

; —u)(z—wv 2L — 2)%dudv
Bl < HAH// ~(t D2 141l = 2dud

N—)oo

where C is a constant. Thus, for N — oo
t x
Yo (t, z) 4, Y(t,x) := f(tz)(a — )y + / / f(=(t —u)(x —v))dB(du, dv),
0 Jo

8



for all ¢ > 1, where Y(t,z), 0 < ¢, x < T solves (by the same reasoning as above) the
mean-field hyperbolic SPDE

Y(tz) =y + /0 /0 WB Y (G G)] — V(G Go)dGdG + Bt ).

4 McKean-Vlasov SPDE

In this section, we prove the existence and uniqueness of the solution to a McKean-Vlasov
SPDE driven by a Brownian sheet. To this end, we denote by z = (t,z) € R2, R, will
denote the rectangle [0,¢] x [0,z]. The object of our study is an SPDE of the type

2 .
8t8xy(t’ z)=ot,z,Y(t,x), ue o) + Bt z, Y (t, x), ) © B(t,z), Y(0,0)=y. (4.1)

Here p , represents the probability distribution of Y (¢, ). We shall define the space where
these probability distributions reside.

Definition 4.1 (Special weighted Sobolev space) Let M be the pre-Hilbert space of
random measures |1 on R equipped with the norm

N a2
e = B (o) e ), (12)
where [i is the Fourier transform of the measure p, i.e.

ily) = Jpe p(dr); yeR

If p,m € M, we define the inner product (1,n)y by

Gemhs = BL | ReGiy)iu)e " dy.
where, Re(z) denotes the real part and z denotes the complex conjugate of the complex

number z.

The space M equipped with the inner product (u, 1), is a pre-Hilbert space. For not having
ambiguity, we will also use the notation M for the completion of this pre-Hilbert space.
Moreover, we have the following estimate: Let Y7 and Y5 be two d-dimensional random
variables in L?(IP) with associated probability distributions g and pz, respectively. Thus

I = 2l < 7w E[(Y: - Y2)?).

To study the well-posedness of the McKean-Vlasov SPDE (4.1)) driven by Brownian sheet,
we impose the following set of assumptions on the coefficients o and S for which we aim,
they will insure the well-posedness:



(a) a(z,y,p1): [0,T>x Rx M — R, (2,9, 1) : [0,7]?> x R x M — R are locally bounded
and Borel-measurable functions.

(b) There exists a constant C, such that for all z € Ri, v,y w1, we have
|z, y, 1) = alz, ' 1) + [B(z, 9, 1) = Bz, 1) < Cly =o' + [ |1 = 1| |1

and
E / 10,0, 610,0))| + B(C. 0, 60.0)) 2 dC < oo,
R,

where ¢ is the Dirac measure.
Let fo be the Bessel function of order zero and rg ~ 1.4458 be the first nonnegative zero
of Joi
<_

12)3 /=0
5!

ro =1inf t>0:f0(2\/i):i
j=0

We shall recall the two-parameter version of Gronwall’s Lemma in [ZN].

Lemma 4.2 (Two-parameter Gronwall’s Lemma) Let f be a non-negative and bounded
function. There exists Cy > 0 satisfies Cy|z| < 19, such that

f(z) <Co [ f(Q)dC.
R,

Moreover, f vanishes on R,.

Theorem 4.3 (Existence and uniqueness) Under the above assumptions (a)-(b), the
conditional McKean-Viasov SPDE (4.1) has a unique strong solution.

Proof. The proof is based on the Picard iteration argument as in the proof of the
Propagation of Chaos for Space time Ornstein-Uhlenbeck SPDE in Section 3.

Step 1. Uniqueness

Suppose that we have two solutions Y, Y’ and set Y=Y-Y , such that Y satisfies

V(t,x) = /R {0(C Y (O 1) — &, Y'(€), ) ¢
+ /R (BCY Q) pic) — BC.Y'(O), ) }AB(Q).

10



Taking the mean square yields
BV (o) = B /R {0(C Y (O ac) — alC, Y'(C), )¢
+ /R (BEY () i) — BGY'(C), i)} AB(O)

Triangle inequality together with the linearity of the expectation, leads
BT (L) < BI [ {alC.Y(0.10) = alc. V(0. )}l

+E| | {B(Y Q) ne) = BCY'(C), u) YdB(C)

R

We use the Cauchy-Schwarz inequality for the d(-integral and the isometry for the dB-
integral, we get
BIV(ta)? < |:PE [ 1a(G.Y(0).1i0) = alC.Y (O PC
+B [ 18 Y010 = BE YO, iOPC

where we have used the notation |z| = tz.
Jensen inequality combined with the Lipschitz condition, give

BV (t2) < |2*(C + Cn)? /R E|Y () — Y/(O)2d¢ + (C + Cm)? /R EIY ()~ Y'(C)PdC

— (C+ Cm2(|42 + 1) / E|V(¢)[dc.

z

By Gronwall’s Lemma , we get E|Y (¢, )| = 0.

Step 2. Existence

Define Y%(z) = y and Y"(2) inductively with corresponding probability distributions §,
and p¢ = Pyn(c) respectively, as follows

Y™ () =y + / (¢, Y™(O), u)dC + /R BC,Y(C), 1) dB(C).

z

Similar computations as in the uniqueness, for some constant K > 0 depending on the
lipschitz constant, lead to

EY™ 1 (2) - Y7(2)2 < K22 /R E|Y™(¢) — Y™ ().

11



Repeating this procedure n-times, we get
BlY™(z) =Y (2)]?
2n |2 1 0 2
<k [ [ B G Y G Pl
< K™z |2n8upu€RzE|Y1( )P

Taking the sum, we have
oo [0.9]
D EY(z) = Y (2)? < supuer. BIY ()P Y (K|2)*x, < oo,

with @, = =371, ((;1))2 zp—; and K|z| < \/rg. Thus (Y™),, converges. O

5 The Fokker-Planck equation

In this section we state and prove our main result.
In the following we let D = % denote the derivative in the sense of distributions meaning
in the space S’ of tempered distributions on R.

We first prove the following auxiliary result:
Lemma 5.1 Suppose F' has the form

F(¢, ¢y, 1) = DP[f(Coy, )9Sy, mmeverls p=1,2,3,4. (5.1)
Then

o . | H@Or e = o [( [ s@ua i [ o6 mmac)u]

In particular, if f(¢,y, 1) = f(C) and g(,y, 1) = g(¢)do not depend on y and p, we get

e / | HCROF(E ¢y e = / FGu )G [ gt GdGs) DV

and if f,g are a constants, we have

3tax // (CACF(C, ¢y, p)dCdC = tx fgDP pug .

12



Proof. By the definition of I({A(’) we have

me | Z / TEACIF(C e = / z I e ccweng (G C)dcdC!

x G2
- [ ([ [ recraas) dac,
0o Jo 0 1
Taking derivatives, we get

H //</ ¢ () dC2> d¢dCz,
an
81‘87& // (G ), (£, G))dCa)d¢r = // DP[£(G1,2)g(t, e wpvitey)]

_ /0 /0 DPL(Cr, @)g(ts Go)pina)dChdCs = DP /0 /0 F(Gr)g(t, G)AGAC ) e

= o[( [ stcumic [ ote.hrict)m]
O

Theorem 5.2 (The Fokker-Planck equation) Let Y (t,z) be the solution of a mean-
field SPDE of the form

2 .
ﬁtf)xy(t’x) =at,z,Y(t,x), ) + Bt 2, Y (t,x), ) o B(t,z), t,x >0; Y(0,0) =

o (Integral version) Then the law pu . = . (dy) = L(Y (t,x))(dy) of Y (t,z) satisfies
the following integral (Fokker-Planck) equation:

pe=dy+ [ {ailnd+ [ Loluddcac, (5.2)
R, R
where the operators Ay and L¢ are given by
Ailuc) = =Dla(C,y, w)uc) + 5 D*[BX(Cy, ne)mc] (5.3)

and, with z = (t,x),
Loluc) = 1(GAC) (D2 [a(¢, y sy, v |
(¢ B o) + (s By ) v |

1
5
+ 308 By B v e ). (5.4)

13



o (Differential form) Equivalently, in differential form the Fokker-Planck equation
states that

02 [ ot ics [ ottt v
[

t x
A0( [ et e [ e

t
+ [ o800 [ (o)) )]

0

S0 [( [ e [ Fedmad)i]. 69

In particular, if « and B are constants, we get

82

mﬂt,x = —aDpyy s + %BQDQMt,a: + tx <O¢2D2Mt,x + Oé/BQDSMt,z + i54D4Mt,m>-

(5.6)

Proof.  The proof follows the idea of the proof of a similar result in [AQ)].
By the Dynkin formula we have, for a given locally bounded smooth function ¢,

Blev ()] - o) = | [ Z ApY (@)

.
5
=
o
I
AS)

Y (Oale) + 3" VO + [

R

A" (Y (€ V ¢l
+ 3PV (VOB + ald)BAO) + heD (Y (CV ONBHOBC) Jac.

Applying this to the function ¢(y) = ¢w(y) = e ™¥; y,w € R, where i = /-1, and with
/ . ione—twy M — o2 —twy (3) — i3 o—twy  ,A(3) — 4 —iwy
¢ (y) = —iwe™™Y, @"(y) = —we™, ¥ (y) = iw e, o (y) = wie "V we get

E [e—ti(z)} _e Wy _ |:/RZ { o iwe_ti(C)a(C) + %(_U)Q)e—ti(g“)ﬁQ(C)

+ / I(CAC) (—ue™Da(Q)a((!) + diwte Y O (a()B(() + al¢)BX(Q)
R,

e OR8¢ ) de' ] (5.7)

14



Note that
Y(Q) =Y VI, Y(()=Y(CVKE )
where
I ) = 15000246 ), KGO = 15080566 C)-
Therefore can be written

E {efiwy(z)] — ey — E{/ / { — iwefiwy(évcl)(a(g v (I
R. JR,

(—w)e VBV ()T + / 1(CAS) (= w?e ™Y a(¢ v ¢)Ial¢ v K
R,

+ Jiwde YV (¢ v ) IBHC VK +al¢ Vv I BV K C))
Fwle YD g ) dd e (5.8)

+

D=

Note that if F' denotes the Fourier transform operator, and ji¢(dy) denotes the law of Y (¢),
we have

B[ O] = [ ety = Plecl(w),

and similarly
Efe™"Y (V) = /R e gy (dy) = Flugu)(w),
Using this, and noting that e = F[§,(-)](w), we see that can be written
Plel() =PI, 0le) = [ { = iwPlopg ) ~ Ju* F820c]w)

+ /R Z 1A ( = w?Fla(Qal e (w)

+ 3w Fl(@(O)8*(C) + )8 everl(w)
+ 30t FIBO B meve ] (w) ) dc F (5.9)

Now we use that
iwF[apc)(w) = F[D(ap))(w) and  — w?F[8%uc)(w) = F[D*(8%u¢))(w)],

where D = 8%, D? = 88—;2 denote derivatives with respect to ¥, in the sense of distribu-
tion. Using (3.12) and (3.13), we can define terms with third and fourth-order derivatives.

—iw’ Flafuc)(w) = FID*(af’ue)](w)]  and  w'F[5232uc](w) = F[D*(6°6°pue)] (w)].

15



Then (5.9) can be written

Flug - 8,)w) = F[ [

: { — Dlauc] + §D?[5 ]

+ [ 168 (DO nee] = AP0 + al¢)F(O)ncve]
+ 4D (BB aguer ) S pac] ().
By uniqueness of the Fourier transform we conclude that u satisfies the equation

fiz = 0y +/RZ {Al[ﬂd +/RZ Lc'[uddC’}dC,

which is (5.2)).
The rest of the theorem, i.e. (5.5) and (5.6) follow by Lemma O

Example 5.3 Consider the time -space SPDE

82
otox

where > 0 is a constant. By (5.2) the law pi(-) = L(Y(t,x)) satisfies the integral
equation

it [ Apcddc+ [ { [ Loludac'}ac
a8 [ Dgac+ist [ { [ 1@ ntcelac}ac @)

Y(t,x) = BB(t,z); t,x >0, Y(0,0) =y,

where as before we have put z = (t,x).
As in Lemma/[5.1, using the definition of I(CAC') and (V (', we see that, with
C - (Clv CQ)a C, = (C{’ Cé)v we have

t
| 1RO D euelds’ = ¢ /< D[t en)JdCH-

z

In particular, if we assume that s . s absolutely continuous with respect to Lebesgue mea-
sure with Radon-Nikodym derivative m 4y (y), i-e., pit2(dy) = m »)(y)dy then the equation
(5.2) gets the following integro-differential form

0? _ 0t
M @) = moo ) + 46 [ Sometac+ kst [ { [ 10A¢) e ac Y

82 t 84 ,
=35 [ g8t [ o[ gimaanmic)dade 6
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Differentiating this with respect to t and x we obtain

0* 02 o [0 t 94
bt W) = %?m(t””) W)+, <8t / ( / Wm(ci,cz)(y)dc"> dCldCQ)
9? 0
82
- %7 / 8 a4 tw) )dC1
| 02
= 25,20 () + 5 tfva Tt (Y)- (5.12)

If we put B = 1 the process Y (t,x) is just the Brownian sheet, which is Gaussian and
we know that in that case the law is absolutely continuous with respect to 2-dimensional
Lebesgue measure with density m .)(y) given by

1 (v — o)
m(t,x)(y)_me)(p T o (-

Below is the graph of the density of the Brownian sheet for a given yo = 0.5.
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Fig. 2 Brownian sheet density on a 2D grid
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Remark 5.4 We now verify by explicit computation that this function m ;) (y) solves the
Fokker-Planck equation (5.5)):
First we compute

0 Y — Yo
@m(t,x) (y) = —M(t2) (y) tr

)

and

0? {1 (y—yg)2]

a2 t) (¥) =Mty (Y) | =1 53 (5.13)

and

2(y — vo)

o? y—vw [ 1  (y—yo)?
t2x2

aiygm(t,z) (y) = =m0 () v | + t%Q} + M) (Y)

(y—50)®  3(y—wo)
33 t22 ’

— 0y 0) |-

and

o y—yo [ (w—w0)® . 3(y—wo)
aiy4m(t,x) (y) = —M(tz) (y) tr I:_ £33 1222 ]

—3(y — yo)? 3
+ mt,2) (Y) [ 373 1222

1 {(y—yo)4 6(y — w0)? +3]' (5.14)

1242 tx

Next, we compute

and

By substituting (5.13|) and (5.14)) into (5.15)) we get (5.12)), as required.
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