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Abstract—Variational Quantum Algorithms (VQAs) represent
a class of algorithms that utilize a hybrid approach, combining
classical and quantum computing techniques. In this approach,
classical computers serve as optimizers that update circuit
parameters to find approximate solutions to complex problems. In
this study, we apply a method known as Light Cone Cancellation
(LCC) to optimize variational circuits, effectively reducing the
required number of qubits and gates for circuit simulation.
We then evaluate the performance of LCC one of the VQAs—
the Variational Quantum Eigensolver (VQE)—to address the
Max-Cut problem. Compared with the Quantum Approximate
Optimization Algorithm (QAOA), VQE offers greater degrees of
freedom at lower circuit depths. By applying LCC to VQE, we
can shift the complexity of circuit simulation from the number of
qubits to the number of edges in the graph, i.e., from exponential
time to polynomial time. This enables us to solve large problems
up to 50 vertices, without actually simulating the entire circuit.
From our simulation in a 7-qubit and a 27-qubit noisy devices,
we show that LCC yields higher approximation ratios than those
cases without LCC, implying that the effect of noise is reduced
when LCC is applied.

Index Terms—Variational Quantum Algorithms, Variational
Quantum Eigensolver, Light Cone Cancellation, NISQ era

I. INTRODUCTION

Many combinatorial optimization problems (COP) are con-
sidered to be difficult to address using traditional compu-
tational approaches. COPs aim to find the optimal combi-
nation of variables that minimizes (or maximizes) a given
objective function, while simultaneously satisfying a set of
constraints. Recent years, people focus on using quantum-
classical hybrid methods, known as the variational quantum
algorithms (VQA) [1] to heuristically solve COPs. The quan-
tum approximate optimization algorithm (QAOA) [2] is one
of the VQAs that is intensively explored due to its predictable
patterns in the variational parameters [3]–[5], and also its
relation with quantum annealing [6], [7]. Another VQA, the
variational quantum eigensolver (VQE) [8], is also capable
of solving COPs, while it is more known for its application
to quantum chemistry. Unlike QAOA which has a problem-
dependent ansatz, the structure of the VQE ansatz is static
and does not depend on the problem solved. Moreover, the
VQE ansatz offers a greater degree of freedom in the sense
that it has greater expressibility [9] and more number of
variational parameters compared to the QAOA ansatz. In our
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previous work, we have shown that VQE generally has better
performance than QAOA and the Multi-angle QAOA [10] in
solving the Max-Cut problem using noiseless simulations.

The VQAs have shown the potential quantum advantage on
Noisy Intermediate Scale Quantum (NISQ) [11] devices. How-
ever, an increase in the number of qubits often leads to higher
error rates when building actual quantum hardware. Although
recent advancements have prominently featured quantum error
correction algorithms, it involve intricate designs that must
effectively address the inherent noise and decoherence in
quantum environments. It seems that reducing the number of
qubits and the number of gates is a more feasible and efficient
approach while maintaining the accuracy of the algorithm.

In this paper, we apply a method known as Light Cone
Cancellation (LCC) [12], [13] to solve the Max-Cut problem
using VQE. When computing the expectation function of
variational circuits, there are many redundant operators that
need not be included in the computations. LCC exploits the
preliminary knowledge of which operators are redundant, so
that we do not include them in the calculation at the first
place. LCC is widely applied for circuits like QAOA, and
also inspired the tensor network for QAOA [14]–[16]. The
contribution of our work is that we exploit LCC on the
two-local ansatz of VQE. Particularly, we design the sub-
circuits for LCC-VQE and analyze its performance, supported
by experimental evidences with noisy devices. To verify the
impact of LCC for VQE in a noisy environment, we conduct
experiments using simulated noisy backends with 7 qubits
and 27 qubits. Experiments show that compared with original
VQE, the implementation of LCC has better performance.

The rest of the paper is structured as follows. Section
II provides background information and the construction ar-
chitecture of LCC. The detailed results of experiments are
articulated in Section III. Section IV contains the concluding
remarks of this study.

II. BACKGROUND

A. Max-Cut

Max-Cut is a fundamental and widely studied NP-complete
problem in the field of graph theory. The primary objective of
Max-Cut is to partition the nodes of an undirected graph into
two disjoint subsets such that the number of edges connecting
the two subsets is maximized. This problem finds relevance
in diverse fields, including network design, VLSI layout,
community detection, and social network analysis [17].

Consider an n-node undirected graph G = (V,E), where
|V | = n. V represents the nodes and E represents the edges
of graph G. A cut is defined as a partition of the original set
V into two subsets. The cost function C(x) to be maximized
is the sum of the edges connecting points in the two different
subsets, which can be expressed as:

C(x) =
∑

(i,j)∈E

(xi ⊕ xj), (1)

where x = (x1, x2, . . . , xn) and xi represent the binary
variable of node i. The symbol ⊕ denotes the XOR (exclusive-

Ry(θ1,1) Ry(θ1,2)

Ry(θ2,1) Ry(θ2,2)

Ry(θ3,1) Ry(θ3,2)

Ry(θ4,1) Ry(θ4,2)

Fig. 1: Two-local ansatz used in the experiments in our work. The architecture
of single qubit Ry gates with circular CZ entanglement and one repetition is
used. The figure shows a 4-qubit example. The parameters θk,l are based on
the notation specified in Eq. (4).

OR) operation. We want to find the combinations of x such
that the cost function is maximized, which also means that
make the number of edges cut is maximum. A brute-force
approach in a classical computer will require an O(2n) time
to solve this problem.

In the quantum realm, the cost function in Eq. (1) can
be formulated as the cost Hamiltonian HC , in which its
expectation is to be maximized:

HC =
1

2

∑
(i,j)∈E

(I − ZiZj), (2)

where Zi represents Pauli-Z operator acting on qubit i.

B. Variational Quantum Eigensolver

The variational quantum eigensolver (VQE) is initially
developed for calculating the minimum energy states of
molecules. When re-formulated to address the Max-Cut prob-
lem, the expectation value of the cost Hamiltonian HC over a
trial state |ψ(θ)⟩ is defined as

E(θ) = ⟨ψ(θ)|HC |ψ(θ)⟩ . (3)

The objective is to maximize E(θ), which is equivalent to min-
imizing −E(θ), using a classical optimizer. θ is the collection
of variational parameters for the VQE ansatz circuit. In this
paper, we employ a two-local circuit with Ry(θ) single-qubit
rotation gates and CZ (controlled-Z) circular entanglement,
with only one repetition. Fig. 1 shows an example of a 4-
qubit ansatz circuit. The circular entanglement has CZ gates
between adjacent qubits, and also between the first and the last
qubit. Instead of using a flattened array θ, we use a matrix Θ
to represent the variational parameters to suit the geometrical
position of those parameters in the circuit:

Θ =


θ1,1 θ1,2
θ2,1 θ2,2

...
...

θn,1 θn,2

 . (4)

It is important to note that Θ is simply the re-shaped version
of θ, and the notation θk,l denotes the l-th parameter for the
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Fig. 2: (a) The light cone cancellation (LCC) in a two-local ansatz with repetition of 1. The expectation function ⟨ψ(θ)|ZiZj |ψ(θ)⟩ is visualized as a
quantum circuit on the left figure. Ry’s are the single-qubit gates and Cz’s are the two-qubit gates. The gates on the left of the red dashed line show |ψ(θ)⟩
and the gates on the right show ⟨ψ(θ)|. The blue shaded regions show the redundant gates that can be cancelled during the calculation of the expectation. The
figure on the right shows the resulting circuit after cancellation. (b), (c) and (d) shows the possible resulting circuit for the Max-cut Hamiltonian, depending
on the indices i and j (positions of the Pauli-Z operators). (b) When Zi and Zj are adjacent; (c) when Zi and Zj are one qubit apart; and (d) when Zi and
Zj are two or more qubits apart.

k-th qubit in the original circuit. Also, due to the periodicity
of the Ry rotation gate, the range of the values for θk,l are
restricted to [0, 2π).

Numerous metrics are available for assessing the perfor-
mance of VQE. Within the scope of unconstrained COP,
our focus is on studying the approximation ratio (AR). This
metric compares the expected solutions obtained through VQE
with that of the optimal solutions, essentially measuring the
efficiency of VQE in approximating the best possible outcome.
It is defined as:

AR =
E(θ∗)

MaxCut(G)
, (5)

where θ∗ is the quasi-optimal parameters returned by the opti-
mizer, E(θ∗) is its corresponding expectation, and MaxCut(G)
is the real solution of graph G. The closer the value of AR is
to 1, the closer it is to the true solution of Max-Cut.

The performance of noiseless VQE and QAOA in address-
ing Max-Cut problems is evaluated in a previous research.
When both algorithms are initialized with the same number
of parameters, our findings indicate that VQE outperforms
QAOA using random initialization. Furthermore, a comparison

with Multi-angle quantum approximate optimization algorithm
(ma-QAOA) [10] reveals that VQE also achieves superior
performance in different undirected graphs [18]. The reason
for this is that at the lower circuit depth, the degree of freedom
in VQE is greater than that in ma-QAOA, which in turn is
greater than that in QAOA.

C. Light Cone Cancellation

Light cone cancellation (LCC) is a method that utilizes
the intrinsic property of the expectation function, so that
the redundant operators in the expectation function are not
included in the computation of the expectation function in
the first place [19]. The LCC property was originally used in
QAOA in reducing the problem graphs into their constituent
subgraphs, hence simplifying the problem to be solved [20]–
[22]. It also inspired applications like the tensor network of
QAOA [14]–[16]. Referring to Eq. (2), for a Hamiltonian HC

that can be written as the sum of local operators, the trial
wavefunction (or ansatz) of both sides, ⟨ψ(θ)| and |ψ(θ)⟩, can
be cancelled out partially. This is because some of the unitary
gates used to prepare |ψ(θ)⟩ commutes through the central
local operators. Fig. 2(a) shows an example of the LCC of
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Fig. 3: Comparison of the approximation ratio (AR) for the VQE solved with a 7-qubit device FakeCascablanca (with LCC) and a 27-qubit device
FakeParis (without LCC). Each point shows the best AR (highest) chosen out of 24 trials. The lines are linear fits of their respective data.

a two-local circuit used to prepare the trial wavefunction for
VQE. The figure visualizes the expectation function Eq. (3)
as a quantum circuit. The circuit on the left of the red dashed
line shows the term |ψ(θ)⟩, and the circuit on the right of
the dashed line shows ⟨ψ(θ)|, with the central operator ZiZj

(between the red dashed lines) acting on qubit i and j. Since
|ψ(θ)⟩ is just the conjugate transpose of ⟨ψ(θ)|, they are the
counterpart of each other in the circuit. The blue shades show
the gates that are not related to qubits i and j can commute
through the center are cancelled. The result of the cancellation
is shown on the right of Fig. 2(a), which has reduced the
number of qubits and number of gates.

The Max-Cut Hamiltonian in Eq. (2) has a two-local Z oper-
ator on every term. After LCC on the two-local ansatz that we
considered (single layer Ry and circular CZ entanglement), we
can get 3 different types of sub-circuits as shown in Fig. 2(b),
(c) and (d), which requires a 4-, 5-, and 6-qubit quantum
circuit, respectively. Circular entanglement means the adjacent
qubits, as well as the first and the last qubits, are entangled.
Note that one sub-circuit corresponds to the expectation of
a local term in the Hamiltonian, so the simulation of the
sub-circuits can be done separately. Also, the sub-circuit in
Fig. 2(d) can be further divided into two separate circuits
as the first 3 qubits and the last 3 qubits are not entangled.
Thus, we only require a maximum of 5 qubits to simulate
the expectation of the entire Max-Cut Hamiltonian, regardless
of the problem size. In fact, only at most 2k + 1 qubits are
required to simulate the expectation of a k-local Hamiltonian
for this kind of ansatz (one layer of single-qubit gates and
circular entanglement). The architecture of the entanglement
is crucial in deciding how many qubits we can reduce. For
linear entanglement (adjacent qubits entangled, first and last
not entangled), there would be another case of the sub-circuits

where the operator is located on the first qubit or on the last
qubit. For full entanglement (all qubits entangled), LCC will
not be possible.

Since now the number of qubits required stays constant, the
complexity of circuit simulation now shifts to the number of
sub-circuits, i.e. the number of terms that is in the Hamiltonian.
For Max-Cut, the number of terms scales with the number
of edges in the graphs, which is at most n(n − 1)/2 edges
(a complete graph). Without LCC, the simulation complexity
would be dominated by the number of qubits n, which takes
O(2n) space and time when simulated classically. With LCC,
the time complexity now depends on the number of edges
of the graph, which is O(n2). The shift in complexity of
quantum circuit simulation, from exponential to polynomial,
is a significant advantage for LCC.

Another advantage for LCC is that the number of gates is
reduced, which in turn reduces the effect of gate noises in
quantum devices. On the other hand, it is also worth noting
that even though the number of qubits and the number of
gates are reduced, the number of parameters stays unchanged
after LCC. This is because the sub-circuits after LCC will
have different parameters corresponding to the indices i and
j, depending on where the operators ZiZj are. Therefore, the
difficulty in optimization remains the same before and after
LCC.

LCC is also applicable for other circuits like QAOA and
ma-QAOA. However, QAOA or ma-QAOA usually needs
more repetitions (larger circuit depths) to achieve higher ARs.
Meanwhile, VQE with even one repetition is enough to reach
most of the states and hence easier to reach higher ARs than
QAOA. This is due to the difference in expressibility between
the two-local ansatz and the QAOA ansatz [9]. When the
repetition increases, the number of gates (and the number of



qubits) that can be cancelled decreases, resulting in a larger
sub-circuit after LCC. Since VQE yields higher ARs with
fewer repetitions than QAOA, LCC-VQE can be done with
fewer qubits, compared to LCC-QAOA or LCC-ma-QAOA.

III. RESULTS

We solve the Max-Cut problem using VQE with a two-
local ansatz (single layer Ry and CZ entanglement), and we
use the COBYLA optimizer [23] for all the experiments. The
experiments are to compare the performances of the VQE
with LCC and that without LCC. We measure the performance
using the approximation ratio (AR), which defines how near
the result given by VQE is to the actual solution. To make
sure that the optimizer does not converge to a good minimum
by chance, we perform 24 trials of random initial parameters
for every instance, i.e., random initialization. The experiments
are performed under noisy conditions so that we can observe
the effect of the reduction in the number of qubits and the
number of gates on the amount of noise in the circuit. We
use two different fake noisy devices provided by Qiskit [24]:
FakeCascablanca (7 qubits) and FakeParis (27 qubits).
The fake devices simulate the same noise settings in their
respective real quantum devices.

Figure 3 shows the comparison between Max-Cut instances
solved with LCC on the 7-qubit device, and those solved with-
out LCC on the 27-qubit device. As only 5 qubits are required
to simulate the sub-circuits for LCC, the VQE simulation can
be run on a device with 7 qubits. On the other hand, simulation
with full number of qubits is required for those without LCC.
In both settings, we solve the Max-Cut for 36 non-isomorphic
instances, ranging from number of vertices n = 10 to n = 15.
Additonally, 20 non-isomorphic instances are solved on the
7-qubit device (with LCC) for n = 20, 30, 40 and 50. The
dataset for the experiments is shown in the Appendix. Each
point in the plot represents the best AR out of 24 trials for
a single problem instance. The red points plot the ARs for
the instances solved with LCC on the 7-qubit device; the blue
points plot the ARs for the instances solved without LCC on
the 27-qubit device. The red line is a linear fit through the
red points (with LCC) for n = 10 to n = 50. The blue line
linearly fits through the blue points (without LCC) for n = 10
to n = 15. The green line is a fit for the red points (with LCC)
from n = 10 to n = 15.

There are a few observations worth noting. LCC enabled
the simulation of large problems up until n = 50, only with
quantum circuits with at most 5 qubits. From the red and blue
fitted lines, we can see that the ARs for problems with LCC
are generally higher than those without LCC. Although with
different environments (7-qubit device and 27-qubit device),
the error rate is generally lower on a smaller device, so the
AR is not so much deteriorated on a 7-qubit device. Moreover,
with less number of gates, the effect of noise on the AR is
also reduced. It can also be observed that the AR decreases as
the problem size (number of vertices of the graph) increases.
Another interesting point to note is that the green line has
similar slope as the red line, which means the decreasing trend
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Fig. 4: Comparison of the AR for the VQE with LCC and without LCC, using
the same FakeParis backend (27 qubits). The diagonal dashed line shows
where the AR of both methods are equal. The points in the lower triangle
have higher AR with LCC. The points in the upper triangle have higher AR
without LCC.

is similar for microscopic (n = 10 to n = 15) and macroscopic
(n = 10 to n = 50) number of nodes. Also, we can observe
from the blue line that if without LCC, the AR decreases faster
due to more noises in the circuits. This implies the possibility
that in the case without LCC, the AR would decrease faster
than the case with LCC, if the blue line is extrapolated to
larger problem size.

Figure 4 shows the comparison for n = 10 to n = 15
problems solved with and without LCC, using the same 27-
qubit backend. The 36 instances used are the same as those in
Fig. 3. The diagonal dashed line shows where both methods
(with and without LCC) have the same AR. The points in the
lower triangle are those which LCC gives higher ARs than
without having LCC; while the points in the upper triangle
are those which LCC gives lower ARs. Under the same noise
conditions, 27 out of the 36 instances gives higher ARs with
LCC applied, while the others have higher ARs for without
LCC. This result shows the effect of the reduction in the
number of gates in a more evident way than the experiment
shown in Fig. 3, as the number of qubits and the error rates are
the same for both with and without LCC. It is also observed
that problems with larger size n benefit more from LCC as
their ARs stay in the lower triangle, and those with smaller
sizes stay in the upper triangle. This is because larger circuits
generally have more noise, causing their ARs to deteriorate
more.

IV. CONCLUSION

We studied the effect of LCC on VQE in solving the Max-
Cut problem. Our work opens up the possibility of using
VQE to solve combinatorial optimization problems, as VQE
requires lower repetition than QAOA to achieve the same



performance. This lower repetition of VQE allows us to cancel
a larger number of qubits when applying LCC, thereby shifting
the complexity of circuit simulation from exponential scaling
(number of qubits) to polynomial scaling (number of edges
in a graph). For the Max-Cut problem with a two-local cost
Hamiltonian, only at most five qubits are required to solve the
problem of any size. We compare the performance of circuits
with and without LCC on a noisy simulator provided by Qiskit.
The results show that the circuits with LCC generally yield
higher approximation ratios than the circuits without LCC,
hence implying that the noise is being mitigated.

APPENDIX

DATASET OF THE EXPERIMENTS

Table I shows the experiment datasets we conducted in
this study, we use two categories of unweighted, undirected
graphs: the G(n, p) Erdös-Rényi graphs and the regular
graphs. The graphs are generated using the NetworkX
Python package. The G(n, p) graphs are generated using
fast_gnp_random_graph(); the regular graphs are gen-
erated using random_regular_graph(), with the seeds
specified. Each seed represents one graph instance.

TABLE I: The datasets used in the experiments—the regular graphs with
degree d and G(n, p) graphs with edge probability p.

No. of nodes Graph type d (reg.) or p (ER) Seed

10 ER 0.5 0, 1, 2, 3

10 Reg. 3 0, 1, 2, 3

11 ER 0.5 0, 1, 2, 3

11 Reg. 4 0, 1, 2, 3

12 ER 0.5 0, 1, 2, 3

12 Reg. 3 0, 1, 2, 3

13 ER 0.5 0, 1

13 Reg. 2 1, 3

14 ER 0.4 0, 1

14 Reg. 2 2, 5

15 ER 0.3 1, 2

15 Reg. 2 3, 7

20 ER 0.25 0, 3, 5, 17

20 Reg. 3 0, 1, 2, 3

30 ER 0.12 0, 5

30 Reg. 2 3, 8

40 ER 0.06 106, 125

40 Reg. 2 0, 1

50 ER 0.06 126,167,424,561
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