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Abstract

In this paper, we study the well-posedness of McKean-Vlasov stochastic differential equations
(SDE) whose drift depends pointwisely on marginal density and satisfies a condition about
local integrability in time-space variables. The drift is assumed to be Lipschitz continuous in
distribution variable with respect to Wasserstein metric Wp. Our approach is by approximation
with mollified SDEs. We establish a new estimate about Hölder continuity in time of marginal
density. Then we deduce that the marginal distributions (resp. marginal densities) of the
mollified SDEs converge in Wp (resp. topology of compact convergence) to the solution of the
Fokker-Planck equation associated with the density-dependent SDE. We prove strong existence
of a solution. Weak and strong uniqueness are obtained when p = 1, the drift coefficient is
bounded, and the diffusion coefficient is distribution free.

AMS subject classification: 60B10, 60H10.
Keywords: McKean-Vlasov SDEs, density-dependent SDEs, well-posedness, local integrability.

1 Introduction

The study of distribution-dependent SDEs started with McKean’s seminal work [1] about Vlasov
equation of plasma which had been proposed in [2]. Classical results about the solvability of McKean-
Vlasov equations include [3, 4, 5]. Since then, the literature on the well-posedness of McKean-Vlasov
SDEs has been extended significantly. For recent results, we refer to [6, 7, 8, 9, 10, 11], the survey
[12], and references therein. For applications on mean-field games, see the two-volume monograph
[13].

In this paper, we consider the density-dependent McKean-Vlasov SDEs studied in [14]. More
precisely, let p ∈ [1,∞) and Pp(R

d) be the space of Borel probability measures on R
d with finite

p-th moment. We endow Pp(R
d) with the Wasserstein metric Wp. Let T > 0 and T be the interval

[0, T ]. We consider measurable functions

b : T× R
d × R+ × Pp(R

d) → R
d,

σ : T× R
d × Pp(R

d) → R
d ⊗ R

m.

∗This work was supported by ANR MaSDOL (No. ANR-19-CE23-0017); Air Force Office of Scientific Research,
Air Force Material Command, USAF (No. FA9550-19-7026); and ANR Chess (No. ANR-17-EURE-0010).
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Let (Bt, t ≥ 0) be a given m-dimensional Brownian motion and F := (Ft, t ≥ 0) a given
admissible filtration on a given probability space (Ω,A,P). We consider the SDE

dXt = b(t,Xt, ℓt(Xt), µt) dt+ σ(t,Xt, µt) dBt, t ∈ T, (1.1)

where the distribution of X0 is ν, that of Xt is µt, and the probability density function (p.d.f.) of
µt is ℓt.

The papers [15, 16, 17] study (1.1) in case σ is constant and b belongs to a Besov space. On
the other hand, [18, 19, 20, 21] study the generalized porous media equation where b = 0 and σ

is density-dependent but time-independent. The papers [22, 23, 24, 25, 14, 26, 27, 28, 29, 30, 31]
study the case where b, σ are density-dependent but time-independent. More generally, [32, 33]
allow b, σ to be time-dependent. However, b and σ do not depend on probability distribution in
those previously mentioned papers. Our paper is closely related to [34, 35] in which b is both
distribution-dependent and density-dependent. In particular, [34] utilizes the total variation norm
‖·‖var on P(Rd) while [35] utilizes the L∞-norm ‖·‖∞ on the space of bounded p.d.f.’s. For a recent
survey on existence result of density-dependent SDEs, we refer to [36].

The current paper contains the following contributions:

(a) Our approach is based on a mollifying argument whereas [34, 35] employ a Picard iteration
argument.

(b) We obtain Hölder continuity of marginal density in both space and time whereas [34, 35]
obtain only Hölder continuity in space.

(c) To obtain uniqueness of a solution, [34, 35] estimate L∞-norm ‖·‖∞ between marginal densities
of two weak solutions. In our case, the presence of Wasserstein metricWp renders this approach
inapplicable. To overcome this difficulty, we use another metric between marginal densities.

We recall two different notions of a solution of (1.1):

Definition 1.1.

1. A strong solution to (1.1) is a continuous Rd-valued F-adapted process (Xt, t ∈ T) on (Ω,A,P)
such that for each t ∈ T:

Xt = X0 +

∫ t

0
b(s,Xs, ℓs(Xs), µs) ds+

∫ t

0
σ(s,Xs, µs) dBs P-a.s. (1.2)

and
∫ t

0
E[|b(s,Xs, ℓs(Xs), µs)|+ |σ(s,Xs, µs)|2] ds <∞. (1.3)

2. A weak solution to (1.1) is a continuous R
d-valued process (Xt, t ∈ T) on some probability

space (Ω,A,P) where there exist some m-dimensional Brownian motion (Bt, t ≥ 0) and some
admissible filtration F := (Ft, t ≥ 0) such that (Xt, t ∈ T) is F-adapted and that (1.2) and
(1.3) hold.

Correspondingly, we have notions of uniqueness of (1.1):

Definition 1.2.
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1. Equation (1.1) has strong uniqueness if any two strong solutions on a given probability space
(Ω,A,P) for a given Brownian motion and a given admissible filtration coincide P-a.s. on the
path space C(T;Rd). Equation (1.1) has weak uniqueness if any weak solution induces the
same distribution on C(T;Rd).

2. Equation (1.1) is strongly well-posed if it has strong solution and strong uniqueness. Equation
(1.1) is weakly well-posed if it has weak solution and weak uniqueness. Equation (1.1) is
well-posed if it is both strongly and weakly well-posed.

In Section 2, we state our main results about existence, Hölder regularity, and uniqueness of a
solution of (1.1). In Section 3, we remind some facts about optimal transport. Also, we recall and
establish estimates of marginal density/distribution of classical SDEs. We explicitly mention the
dependence of an estimate on parameters of a given assumption. This is crucial in ensuring that
those estimates are stable in our mollifying argument. We prove our theorems in Section 4 and
Section 5 respectively. To facilitate the navigation of the readers, we summarize the results in our
papers as follows:

Result Content Assumption

Theorem 2.2
Main results Assumption 2.1

Theorem 2.3

Lemma 3.1
Properties of WpLemma 3.2

Theorem 3.4 Operator norms of semigroups
Assumption 3.3

Lemma 3.5 Heat kernel estimates

Proposition 3.8 Krylov’s and Khasminskii’s estimates
Assumption 3.6Theorem 3.9 Moment estimates

Theorem 3.10 Lp estimates

Theorem 3.12 Hölder continuity in space
Assumption 3.11Corollary 3.13 Duhamel representation

Theorem 3.14 Hölder continuity in time

Above, Assumption 3.11 implies both Assumption 3.6 and Assumption 3.3. On the other hand,
Assumption 3.6 does not imply Assumption 3.3, and vice versa. Throughout this paper, we use the
following conventions:

(a) The set Rm⊗R
n is the space of matrices of size m×n with real entries. For x ∈ R

m⊗R
n and

y ∈ R
n⊗R

k, let xy be their matrix product. For x, y ∈ R
m⊗R

n, let 〈x, y〉 be their Frobenius
inner product and |x| the induced Frobenius norm of x.

(b) Let R+ := {x ∈ R : x ≥ 0}. We denote by B(Rd) the Borel σ-algebra on R
d. For brevity, we

write ∞ for +∞. We denote x ∨ y := max{x, y} and x ∧ y := min{x, y} for x, y ∈ R.

(c) We denote by ∇,∇2 the gradient and the Hessian with respect to (w.r.t.) the spatial variable.
We denote by ∂t the derivative w.r.t. time. For α ∈ (0, 1] and a function f : Rd → R, we
denote by [f ]α the best α-Hölder constant of f , i.e.,

[f ]α := sup
x,y∈Rd

x 6=y

|f(x)− f(y)|
|x− y|α .
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(d) Let L0(Rd) be the space of real-valued measurable functions on R
d. Let L0

+(R
d) be the subset

of L0(Rd) that consists of non-negative functions. Let L0
b(R

d) be the subset of L0(Rd) that
consists of bounded functions.

(e) Let P(Rd) be the space of Borel probability measures on R
d. The weak topology (and thus

weak convergence ⇀) of P(Rd) is the topology induced by Cb(R
d). The weak∗ topology (and

thus weak convergence
∗
⇀) of P(Rd) is the topology induced by Cc(R

d).

2 Main results

Let p, q ∈ [1,∞]. Let Lp(Rd) ⊂ L0(Rd) be the usual Lebesgue space. The localized version L̃p(Rd)
of Lp(Rd) is defined by the norm

‖f‖L̃p := sup
x∈Rd

‖1B(x,1)f‖Lp ,

where B(x, r) is the open ball centered at x with radius r. We define the Bochner space

Lpq(t0, t1) := Lq([t0, t1];L
p(Rd)), 0 ≤ t0 < t1 ≤ T.

The localized version L̃pq(t0, t1) of Lpq(t0, t1) is defined by the norm

‖g‖L̃p
q (t0,t1)

:= sup
x∈Rd

‖1B(x,1)g‖Lp
q (t0,t1).

In particular, ‖g‖L̃∞

∞
(t0,t1)

= ‖g‖L∞

∞
(t0,t1) and we have for p, q ∈ [1,∞):

‖g‖Lp
q (t0,t1) =

(
∫ t1

t0

(
∫

Rd

|g(s, y)|p dy
)

q
p

ds

)
1
q

,

‖g‖L̃p
q (t0,t1)

= sup
x∈Rd

(
∫ t1

t0

(
∫

B(x,1)
|g(s, y)|p dy

)
q
p

ds

)
1
q

.

For brevity, we denote

Lpq(t) := Lpq(0, t), L̃pq(t) := L̃pq(0, t), Lpq := Lpq(0, T ), L̃pq := L̃pq(0, T ).

The class K of exponent parameter is defined by

K :=

{

(p, q) ∈ (2,∞]2 :
d

p
+

2

q
< 1

}

.

For α ∈ (0, 1), let Cαb (R
d) be the Hölder space of functions f : Rd → R with the norm

‖f‖Cα
b
:= ‖f‖∞ + [f ]α.

We denote by Mp(ρ) the p-th moment of ρ ∈ P(Rd), i.e.,

Mp(ρ) :=

∫

Rd

|x|p dρ(x).

Below, we introduce the main assumption about the initial distribution and the coefficients
of (1.1). Let a := σσ⊤. We denote bt(x, r, ρ) := b(t, x, r, ρ), σt(x, ρ) := σ(t, x, ρ) and at(x, ρ) :=
a(t, x, ρ). We consider the set of assumptions:
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Assumption 2.1. There exist constants α ∈ (0, 1), β ∈ (0, 1), p ∈ [1,∞), C > 0 such that for
t ∈ T;x, y ∈ R

d; r, r̃ ∈ R+ and ρ, ρ̃ ∈ Pp(R
d):

(A1) at is invertible and σt is differentiable w.r.t. the spatial variable.

(A2) There exists 1 ≤ f0 ∈ L̃
p0
q0 with (p0, q0) ∈ K such that |bt(x, r, ρ)| ≤ f0(t, x).

(A3) α ∈ (0, 1 − d
p0

− 2
q0
) and ν ∈ Pp+α(R

d) has a density ℓν ∈ Cαb (Rd).

(A4) The following conditions hold:

|bt(x, r, ρ) − bt(x, r̃, ρ̃)| ≤ C{|r − r̃|+Wp(ρ, ρ̃)},
‖∇σt‖∞ + ‖σt‖∞ + ‖a−1

t ‖∞ ≤ C,

|σt(x, ρ)− σt(x, ρ̃)| ≤ CWp(ρ, ρ̃),

|∇σt(·, ρ)(x) −∇σt(·, ρ)(y)| ≤ C(|x− y|+ |x− y|β).

We gather parameters in Assumption 2.1:

Θ1 := (d, T, α, β,C, p0, q0, f0, p).

There is no continuity condition on the spatial variable of the drift. If b is bounded, then it
satisfies Assumption 2.1[A2]. Assumption 2.1[A4] implies for t ∈ T, γ ∈ (0, 1);x, y ∈ R

d and ρ ∈
Pp(R

d) that |σt(x, ρ)−σt(y, ρ)| ≤ 2C|x− y|γ . Assumption 2.1[A2] means that the marginal density
and marginal distribution do not affect the local integrability of the drift. In Assumption 2.1[A3],
we requires ν ∈ Pp+α(R

d) instead of just ν ∈ Pp(R
d). This gives us a uniform control on the tail

behavior of the marginal distribution in (3.17) of Theorem 3.9.
Our main results are the following:

Theorem 2.2 (Existence and Regularity). Let Assumption 2.1 hold.

1. Equation (1.1) has a strong solution whose marginal distribution is denoted by (µt, t ∈ T) and
marginal density is denoted by (ℓt, t ∈ T).

2. There exist constants c > 0 (depending only on Θ1), c1, c2 > 0 (depending only on Θ1, ν),
δ1 ∈ (0, 12 ) (depending only on d, p0, q0, α), and δ2 ∈ (0, 12) (depending only on q0) such that

sup
t∈T

‖ℓt‖Cα
b
≤ c‖ℓν‖Cα

b
,

‖ℓt − ℓs‖∞ ≤ c1|t− s|δ1 ,
Wp(µs, µt) ≤ c2|t− s|δ2 , s, t ∈ T.

Theorem 2.3 (Uniqueness). Let Assumption 2.1 hold. Assume in addition that p = 1, ‖b‖∞ ≤ C

and that σ does not depend on marginal distribution. Let X1,X2 be two weak solutions of (1.1). Let
ν1, ν2 be their initial distributions and ℓ1, ℓ2 their marginal densities. We assume that ν1, ν2 satisfy
Assumption 2.1[A3] for the same parameters.
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1. There exists an increasing function Λ : R+ → R+ (depending only on Θ1) such that

sup
t∈T

∫

Rd

(|x|+ 1)|ℓ1t (x)− ℓ2t (x)|dx

≤Λ(‖ℓν1‖∞ +M1(ν1))

∫

Rd

(|x|+ 1)|ℓν1(x)− ℓν2(x)|dx.

2. Equation (1.1) has both weak and strong uniqueness.

3 Preliminaries

3.1 Some facts from optimal transport

Let µ, ν ∈ P(Rd). We denote by |µ− ν| the variation of the signed measure µ− ν as in [37, Section
6.1]. By [37, Theorems 6.2 and 6.4], |µ − ν| is a non-negative finite measure. The set of transport
plans (or couplings) between µ and ν is defined by

Γ(µ, ν) := {ξ ∈ P(Rd × R
d) : π1♯ ξ = µ and π2♯ ξ = ν},

where πi is the projection of Rd × R
d onto its i-th coordinate and πi♯ξ is the push-forward of ξ by

πi. Their extended Wasserstein metric is defined by

Wp(µ, ν) := inf
ξ∈Γ(µ,ν)

(
∫

Rd

|x− y|p dξ(x, y)
)1/p

.

By [38, Theorem 6.18], (Pp(R
d),Wp) is a Polish space. By [38, Theorem 6.9], we have for

µn, µ ∈ Pp(R
d) that Wp(µn, µ) → 0 if and only if µn ⇀ µ and Mp(µn) → Mp(µ). For more

information about optimal transport, we refer to [39, 38, 40, 41, 42, 43, 44].
Let Φp be the collection of all (ϕ,ψ) ∈ Cb(R

d) × Cb(R
d) such that ϕ(x) + ψ(y) ≤ |x − y|p for

x, y ∈ R
d. We recall results needed for the proofs of our theorems:

Lemma 3.1.

1. [39, Theorem 1.3] We have for µ, ν ∈ P(Rd) and p ∈ [1,∞) that

(Wp(µ, ν))
p = sup

{
∫

Rd

ϕdµ+

∫

Rd

ψ dν : (ϕ,ψ) ∈ Φp

}

.

2. [39, Theorem 1.14] We have for µ, ν ∈ P1(R
d) that

W1(µ, ν) = sup

{
∫

Rd

f d(µ− ν) : f ∈ L1(|µ − ν|) with [f ]1 ≤ 1

}

.

3. [39, Remark 7.1.2] We have for µ, ν ∈ P(Rd) and 1 ≤ p ≤ q <∞ that Wp(µ, ν) ≤Wq(µ, ν).

Above, the first claim is called Kantorovich duality while the second one is called Kantorovich-
Rubinstein theorem. The next result states that the extended Wasserstein metric is controlled by
the weighted L1-metric between the corresponding p.d.f.’s.

6



Lemma 3.2. Let p ∈ [1,∞) and µ, ν ∈ P(Rd) be absolutely continuous with ℓµ, ℓν being their p.d.f.’s
respectively. Then

(Wp(µ, ν))
p ≤ (1 ∨ 2p−1)

∫

Rd

|x|p|ℓµ − ℓν |(x) dx.

Proof. For B ∈ B(Rd), we denote by Π(B) the collection of all finite measurable partitions of B.
This means (B1, . . . , Bn) ∈ Π(B) if and only if {B1, . . . , Bn} ⊂ B(Rd) are pairwise disjoint and
B =

⋃n
k=1Bk. We have

|µ− ν|(B) = sup

{ n
∑

k=1

|(µ − ν)(Bk)| : (B1, . . . , Bn) ∈ Π(B)

}

= sup

{ n
∑

k=1

∣

∣

∣

∣

∫

Bk

(ℓµ − ℓν)(x) dx

∣

∣

∣

∣

: (B1, . . . , Bn) ∈ Π(B)

}

≤ sup

{ n
∑

k=1

∫

Bk

|ℓµ − ℓν |(x) dx : (B1, . . . , Bn) ∈ Π(B)

}

=

∫

B
|ℓµ − ℓν |(x) dx.

On the other hand, we have from [39, Proposition 7.10] that

(Wp(µ, ν))
p ≤ (1 ∨ 2p−1)

∫

Rd

|x|p d|µ− ν|(x).

The claim then follows.

3.2 Heat kernel estimates of transition density

In the rest of Section 3, we consider measurable functions

b : T× R
d → R

d,

σ : T× R
d → R

d ⊗ R
m.

Let a := σσ⊤. We denote bt := b(t, ·), σt := σ(t, ·) and at := a(t, ·). We consider the following
set of assumptions:

Assumption 3.3. There exist constants β ∈ (0, 1) and C > 0 such that for t ∈ T and x, y ∈ R
d:

(A1) at is invertible.

(A2) The following conditions hold:

‖bt‖∞ + ‖σt‖∞ + ‖a−1
t ‖∞ ≤ C,

|bt(x)− bt(y)| ≤ C(|x− y|+ |x− y|β),
|σt(x)− σt(y)| ≤ C|x− y|β.
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We gather parameters in Assumption 3.3:

Θ2 := (d, T, β,C).

Throughout the remaining of Section 3.2, we assume that (b, σ) satisfies Assumption 3.3.

For any (s, x) ∈ [0, T )× R
d, the SDE

dXx
s,t = b(t,Xx

s,t) dt+ σ(t,Xx
s,t) dBt, t ∈ [s, T ],Xx

s,s = x, (3.1)

is weakly well-posed by [45, Theorem 1.2] and has transition density denoted by (pb,σs,t )0≤s<t≤T , i.e.,

p
b,σ
s,t (x, ·) is the density of Xx

s,t. The associated semigroup (P b,σs,t )0≤s<t≤T is defined for x ∈ R
d and

f ∈ L0
+(R

d) ∪ L0
b(R

d) by

P
b,σ
s,t f(x) := E[f(Xx

s,t)] =

∫

Rd

p
b,σ
s,t (x, y)f(y) dy. (3.2)

As in [45, Section 1.2], we construct a family (ψs,t)s,t∈T of C∞-diffeomorphisms on R
d. Let

ρ : Rd → R be a smooth symmetric p.d.f. whose support is contained in the unit ball of Rd. We
define b : T×R

d → R
d by b(t, ·) := b(t, ·)∗ρ where ∗ is the convolution operator. By [45, Inequalities

1.9 and 1.10],
sup
t∈T

{‖∇nb(t, ·)‖∞ + ‖b(t, ·) − b(t, ·)‖∞} <∞, n ∈ N.

For a fixed (s, x) ∈ T×R
d, we consider the ODE

{

d
dtψs,t(x) = b(t, ψs,t(x)), t ∈ T,

ψs,s(x) = x.

For κ > 0, we consider the Gaussian heat kernel

pκt (x) :=
1

(κπt)
d
2

exp

(

−|x|2
κt

)

, t > 0, x ∈ R
d.

The following results give density and gradient estimates for (3.1):

Theorem 3.4. Let Assumption 3.3 hold.

1. [46, Inequalities 2.7 and 2.8] There exist constants c, κ > 0 (depending only on Θ2) such that
for i ∈ {0, 1}, 0 ≤ s < t ≤ T and x, y ∈ R

d:

|∇i
xp
b,σ
s,t (x, y)| ≤ c(t− s)−

i
2pκt−s(x− y).

2. [45, Lemma A.1] For α ∈ (0, β), there exist constants c, κ > 0 (depending only on Θ2, α) such
that for 0 ≤ s < t ≤ T and x, y, y′ ∈ R

d:

|∇xp
b,σ
s,t (x, y)−∇xp

b,σ
s,t (x, y

′)|
≤c|y − y′|α(t− s)−

1+α
2 {pκt−s(ψs,t(x)− y) + pκt−s(ψs,t(x)− y′)}.

8



We define for κ > 0, f ∈ L0
+(R

d) ∪ L0
b(R

d), x ∈ R
d and 0 ≤ s < t ≤ T :

P κt f(x) :=

∫

Rd

pκt (x− y)f(y) dy, (3.3)

P̂ κs,tf(x) :=

∫

Rd

pκt−s(ψs,t(x)− y)f(y) dy,

P̃ κs,tf(x) :=

∫

Rd

pκt−s(ψs,t(y)− x)f(y) dy. (3.4)

For brevity, we denote q−p
pq := 1

p − 1
q for p, q ∈ [1,∞]. By Young’s inequality for convolution,

there exists a constant c > 0 (depending only on d, κ) such that for t > 0 and 1 ≤ p ≤ p̄ ≤ ∞:

‖P κt ‖Lp→Lp̄ := sup
‖f‖Lp≤1

‖P κt f‖Lp̄ ≤ ct
− d(p̄−p)

2pp̄ .

We recall an essential generalization for dealing with unbounded drift:

Lemma 3.5. [35] Let Assumption 3.3 hold. There exists a constant c > 0 (depending only on Θ2)
such that for 0 ≤ s < t ≤ T and 1 ≤ p ≤ p̄ ≤ ∞:

‖P κt−s‖L̃p→L̃p̄ + ‖P̂ κs,t‖L̃p→L̃p̄ + ‖P̃ κs,t‖L̃p→L̃p̄ ≤ c(t− s)−
d(p̄−p)
2pp̄ .

For the sake of being self-contained, we also include the proof.

Proof. Let z ∈ R
d, f ∈ L0

+(R
d) and Bn := {v = (v1, . . . , vd) ∈ Z

d :
∑d

i=1 |vi| = n} for n ∈ N. We
write M1 . M2 if there exists a constant c > 0 (depending only on Θ2) such that M1 ≤ cM2. By
[35, Inequality 3.11], there exists a constant c1 > 0 (depending only on Θ2) such that

‖1B(z,1)P̂
κ
s,tf‖Lp̄ . (t− s)

− d(p̄−p)
2pp̄

∞
∑

n=0

∑

v∈Bn

e
− n2

c1(t−s) ‖1B(z+v,d)f‖Lp .

We have card(Bn) ≤ (2n+ 1)d, so

∞
∑

n=0

∑

v∈Bn

e
− n2

c1(t−s) ≤
∞
∑

n=0

(2n + 1)de
− n2

c1T . 1.

On the other hand, ‖1B(z+v,d)f‖Lp . ‖f‖L̃p . Then

‖P̂ κs,tf‖L̃p̄ . (t− s)−
d(p̄−p)
2pp̄ ‖f‖L̃p .

Clearly, P κt−s is a special case of P̂ κs,t in which ψs,t is the identity map on R
d. Then

‖P κt−sf‖L̃p̄ . (t− s)
− d(p̄−p)

2pp̄ ‖f‖L̃p .

It remains to prove for P̃ κs,t. By [35, Inequality 3.2], there exists a constant c2 ≥ 1 (depending
only on Θ2) such that

sup
0≤s≤t≤T

{‖∇ψs,t‖∞ + ‖∇ψ−1
s,t ‖∞} ≤ c2. (3.5)
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We have

P̃ κs,tf(x) =

∫

Rd

pκt−s(ψs,t(y)− x)f(y) dy by (3.4)

≤
∫

Rd

pκt−s

(

ψ−1
s,t (x)− y)

c2

)

f(y) dy by (3.5)

.

∫

Rd

pκ̄t−s(ψ
−1
s,t (x)− y)f(y) dy where κ̄ := κ|c2|2

= (P κ̄t−sf) ◦ ψ−1
s,t (x). (3.6)

It suffices to consider p̄ <∞. We have

‖1B(z,1)P̃
κ
s,tf‖p̄Lp̄ .

∫

B(z,1)
|(P κ̄t−sf) ◦ ψ−1

s,t (x)|p̄ dx by (3.6)

=

∫

ψ−1
s,t (B(z,1))

|(P κ̄t−sf)(x)|p̄|det∇ψs,t(x)|dx (3.7)

.

∫

ψ−1
s,t (B(z,1))

|(P κ̄t−sf)(x)|p̄ dx (3.8)

= ‖1ψ−1
s,t (B(z,1))P

κ̄
t−sf‖p̄Lp̄

. ‖P κ̄t−sf‖p̄L̃p̄
by (3.5).

Above, (3.7) is due to change of variables formula and (3.8) due to Hadamard’s inequality for
determinants. It follows that

‖1B(z,1)P̃
κ
s,tf‖Lp̄ . ‖P κ̄t−sf‖L̃p̄ .

This completes the proof.

3.3 Moment and L
p estimates of marginal density

We consider another set of assumption:

Assumption 3.6. There exist constants β ∈ (0, 1), C > 0, l ∈ N
∗ such that for t ∈ T and x, y ∈ R

d:

(A1) ν ∈ P1(R
d) has a density ℓν .

(A2) at is invertible and σt is weakly differentiable.

(A3) There exist measurable maps b(0) : T × R
d → R

d and b(1) : T × R
d → R

d such that bt(x) =

b
(0)
t (x) + b

(1)
t (x).

(A4) There exists 1 ≤ f0 ∈ L̃
p0
q0 with (p0, q0) ∈ K such that |b(0)t (x)| ≤ f0(t, x).

(A5) For i ∈ {1, 2, . . . , l}, there exists 1 ≤ fi ∈ L̃
pi
qi with (pi, qi) ∈ K such that |∇σt(x)| ≤

∑l
i=1 fi(t, x).
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(A6) The following conditions hold:

|b(1)t (x)− b
(1)
t (y)| ≤ C|x− y|,

|b(1)t (0)| + ‖σt‖∞ + ‖a−1
t ‖∞ ≤ C,

|σt(x)− σt(y)| ≤ C|x− y|β.

Assumption 3.6 is appealing because it is a general but sufficient condition to obtain Krylov’s
and Khasminskii’s estimates, which are a key ingredient for establishing the other estimates in the
remaining of Section 3. We gather parameters in Assumption 3.6:

Θ3 := (d, T, β,C, l, (pi, qi, fi)
l
i=0).

The class K̄ of exponent parameter is defined by

K̄ :=

{

(p, q) ∈ (1,∞)2 :
d

p
+

2

q
< 2

}

.

Remark 3.7. If f ∈ L̃
p
q for some (p, q) ∈ K then there exists (p̄, q̄) ∈ K̄ such that |f |2 ∈ L̃p̄q̄ .

Let ν ∈ P(Rd) and ℓν be its density. We consider the SDE

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, t ∈ T, (3.9)

where the distribution of X0 is ν. By [10, Theorem 1.1(1)], (3.9) is well-posed under Assumption 3.6.
First, we establish an essential result for proving Theorem 3.9:

Proposition 3.8. Let (b, σ) satisfy Assumption 3.6 and (Xt, t ∈ T) be the solution of (3.9).

1. (Khasminskii’s estimate) For each (p, q) ∈ K̄, there exist constants c > 0, k > 1 (depending
only on Θ3, p, q) such that for 0 ≤ t0 < t1 ≤ T and g ∈ L̃

p
q(t0, t1):

E

[

exp

(
∫ t1

t0

|g(s,Xs)|ds
)
∣

∣

∣

∣

Ft0
]

≤ exp(c(1 + ‖g‖k
L̃p
q (t0,t1)

)). (3.10)

2. (Krylov’s estimate) For each (p, q) ∈ K̄ and j ≥ 1, there exists a constant c > 0 (depending
only on Θ3, p, q, j) such that for 0 ≤ t0 < t1 ≤ T and g ∈ L̃

p
q(t0, t1):

E

[(
∫ t1

t0

|g(s,Xs)|ds
)j ∣

∣

∣

∣

Ft0
]

≤ c‖g‖j
L̃p
q (t0,t1)

. (3.11)

Proof. We fix (p, q) ∈ K̄.

1. There exists q̄ ∈ (1, q) such that (p, q̄) ∈ K̄. By [47, Theorem 3.1], there exists a constant
c1 > 0 (depending only on Θ3, p, q̄) such that for 0 ≤ t0 < t1 ≤ T , a stopping time τ and
g ∈ L̃

p
q̄(t0, t1):

E

[
∫ t1∧τ

t0∧τ
|g(s,Xs)|ds

∣

∣

∣

∣

Ft0
]

≤ c1‖g‖L̃p
q̄ (t0,t1)

.
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Let δ := 1
q̄ − 1

q ∈ (0, 1). By Hölder’s inequality, we have for 0 ≤ t0 < t1 ≤ T and g ∈ L̃
p
q(t0, t1):

‖g‖L̃p
q̄ (t0,t1)

≤ (t1 − t0)
δ‖g‖L̃p

q (t0,t1)
. (3.12)

We denote by Inj the open interval ( (j−1)(t1−t0)
n ,

j(t1−t0)
n ) for j = 1, . . . , n. We fix g ∈

L̃
p
q(t0, t1) ⊂ L̃

p
q̄(t0, t1). Let n ≥ 2 be the smallest integer such that

‖g‖L̃p
q̄ (I

n
j ) ≤

1

2c1
, j = 1, . . . , n. (3.13)

By [48, Lemma 3.5],

E

[

exp

(
∫ t1

t0

|g(s,Xs)|ds
)
∣

∣

∣

∣

Ft0
]

≤ 2n.

By (3.13), there exists j̄ ∈ {1, . . . , n− 1} such that

‖g‖L̃p
q̄ (I

n−1
j̄

) >
1

2c1
. (3.14)

It follows from (3.12) and (3.14) that

(

t1 − t0

n− 1

)δ

‖g‖L̃p
q (I

n−1
j̄

) >
1

2c1
,

which implies

n < 1 + T (2c1)
− 1

δ ‖g‖1/δ
L̃p
q (t0,t1)

.

The estimate (3.10) then follows with k := 1
δ .

2. We fix j ≥ 1. We adapt an elegant idea from [10, Lemma 2.3] into our simpler setting. Let
Cj := ej−1. Then h(r) := | log(Cj + r)|j is concave for r ∈ R+. We have

E

[(
∫ t1

t0

|g(s,Xs)|ds
)j ∣

∣

∣

∣

Ft0
]

≤E

[{

log

(

Cj + exp

(
∫ t1

t0

|g(s,Xs)|ds
))}j∣

∣

∣

∣

Ft0
]

≤
{

log

(

Cj + E

[

exp

(
∫ t1

t0

|g(s,Xs)|ds
)∣

∣

∣

∣

Ft0
])}j

by Jensen’s inequality

≤{log[Cj + exp(c(1 + ‖g‖k
L̃p
q (t0,t1)

))]}j ,

where the constants c, k > 0 are given by (3.10). As a result, there exists a constant C̄j > 0
(depending only on c, j) such that

E

[(
∫ t1

t0

|g(s,Xs)|ds
)j ∣

∣

∣

∣

Ft0
]

≤ C̄j(1 + ‖g‖k
L̃p
q (t0,t1)

)j .
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Replacing g with g
‖g‖

L̃
p
q (t0,t1)

in the above inequality, we obtain

E

[(
∫ t1

t0

|g(s,Xs)|ds
)j ∣

∣

∣

∣

Ft0
]

≤ C̄j2
j‖g‖j

L̃p
q (t0,t1)

.

The estimate (3.11) then follows. This completes the proof.

For another proof of Proposition 3.8, see [49, Lemma 4.1]. Second, we establish moment esti-
mates:

Theorem 3.9. Let p ∈ [1,∞) and (b, σ) satisfy Assumption 3.6. Let µt be the distribution of Xt in
(3.9).

1. µt is absolutely continuous w.r.t. Lebesgue measure on R
d.

2. There exist constants c > 0 (depending only on Θ3, p) and δ ∈ (0, 12 ) (depending only on q0)
such that for α > 0 and 0 ≤ u ≤ t ≤ T :

E
[

sup
s∈[u,t]

|Xs|p
]

≤ c(1 + E[|Xu|p]), (3.15)

E
[

sup
s∈[u,t]

|Xs −Xu|p
]

≤ c|t− u|δp(1 + E[|Xu|p]), (3.16)

sup
s∈[u,t]

∫

Bc
R

|x|p dµs(x) ≤
c(1 + E[|Xu|p+α])

R
, R > 0, (3.17)

where Bc
R := R

d \B(0, R). Estimate (3.17) also holds for p = 0.

In particular, (3.17) is essential in proving Lemma 4.3 in Section 4.2.

Proof. By Assumption 3.6[A3], there exist measurable maps b(0) : T×R
d → R

d and b(1) : T×R
d →

R
d such that bt(x) = b

(0)
t (x)+b

(1)
t (x). By Assumption 3.6[A4], there exists f0 ∈ L̃p0q0 with (p0, q0) ∈ K

such that |b(0)t (x)| ≤ f0(t, x). We consider the SDE

dX̄t = b(1)(t, X̄t) dt+ σ(t, X̄t) dBt, t ∈ T, (3.18)

where the distribution of X̄0 is ν. Clearly, (b(1), σ) satisfies Assumption 3.6, so (3.18) is well-posed.
We define

ξt := {σ⊤t a−1
t b

(0)
t }(X̄t),

B̄t := Bt −
∫ t

0
ξs ds,

Rt := exp

(
∫ t

0
ξ⊤t dBt −

1

2

∫ t

0
|ξt|2 dt

)

,

It := E

[

exp

(

1

2

∫ t

0
|ξt|2 dt

)]

, t ∈ T.
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By the uniform boundedness of σ⊤t a
−1
t , Remark 3.7 and Proposition 3.8[1], we get IT < ∞. So

RT is an exponential martingale with E[RT ] = 1. By Girsanov’s theorem, the process (B̄t, t ∈ T) is
an m-dimensional Brownian motion under the probability measure P̄ := RTP. We denote by Ē the
expectation w.r.t. P̄. Clearly, (3.18) can be written under P̄ as

dX̄t = b(t, X̄t) dt+ σ(t, X̄t) dB̄t, t ∈ T. (3.19)

1. By Assumption 3.6[A6] and [45, Theorem 1.2], the distribution of X̄t under P admits a density.
Notice that P̄ and P are equivalent, so the distribution of X̄t under P̄ also admits a density.
Because X̄0 is F0-measurable, we have for each ϕ ∈ C∞

c (Rd) that

Ē[ϕ(X̄0)] = E[ϕ(X̄0)R0] = E[ϕ(X̄0)].

It follows that the distribution of X̄0 under P̄ is also ν. By weak uniqueness of (3.9) and
(3.19), the distribution of Xt under P is the same as that of X̄t under P̄. As a result, the
distribution of Xt under P admits a density.

2. We combine the localization argument (see, for instance, [50, Theorem 9.1]) with Krylov’s
estimate.

(a) We fix p ∈ [1,∞) and u ∈ [0, T ) such that E[|Xu|p] < ∞. For R > 0, let τR := inf{t ∈
[u, T ] : |Xt| ≥ R} be the exit time of Xt from the open ball B(0, R). We adopt the
convention that τR = T if |Xt| < R for all t ∈ [u, T ]. We denote XR(t) := Xt∧τR . We
have for t ∈ [u, T ]:

XR(t) = Xu +

∫ t∧τR

u
b(r,Xr) dr +

∫ t∧τR

u
σ(r,Xr) dBr

= Xu +

∫ t

u
b(r,Xr)1{r<τR} dr +

∫ t

u
σ(r,Xr)1{r<τR} dBr

= Xu +

∫ t

u
b(1)(r,XR(r))1{r<τR} dr +

∫ t

u
b(0)(r,Xr)1{r<τR} dr

+

∫ t

u
σ(r,XR(r))1{r<τR} dBr.

By Hardy’s inequality, we have for n ∈ N
∗, p ≥ 1 and x1, . . . , xn ∈ R

d:

|x1 + · · ·+ xn|p ≤ np(|x1|p + · · · + |xn|p).

We write M1 . M2 if there exists a constant c > 0 (depending only on Θ3, p) such that
M1 ≤ cM2. Then

E
[

sup
s∈[u,t]

|XR(s)|p
]

. E[|Xu|p] + E

[(
∫ t

u
f0(r,Xr) dr

)p]

+ E

[(
∫ t

u
|b(1)(r,XR(r))|dr

)p]

+ E

[

sup
s∈[u,t]

∣

∣

∣

∣

∫ s

u
σ(r,XR(r))1{r<τR} dBr

∣

∣

∣

∣

p]

=: E[|Xu|p] + I1 + I2 + I3.
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By Proposition 3.8[2], I1 . 1. We have |b(1)(r, x)| . 1 + |x|, so

I2 ≤ |t− u|p−1
E

[
∫ t

u
|b(1)(r,XR(r))|p dr

]

by Hölder’s inequality

. |t− u|p−1
E

[
∫ t

u
(1 + |XR(r)|p) dr

]

. 1 + |t− u|p−1
E

[
∫ t

u
|XR(r)|p dr

]

.

By Burkholder-Davis-Gundy inequality (see, for instance, [51, Theorem 19.20]) and the
boundedness of σ (from Assumption 3.6[A6]),

I3 . E

[(
∫ t

u
|σ(r,XR(r))|2 dr

)p/2]

. |t− u|
p
2 .

As a result,

ηR(t) := E
[

sup
s∈[u,t]

|XR(s)|p
]

. 1 + E[|Xu|p] +
∫ t

u
E[|XR(r)|p] dr, t ∈ [u, T ].

By construction, |XR(s)| ≤ |Xu|∨R for s ∈ [u, t]. This implies ηR(t) ≤ E[|Xu|p∨Rp] <∞
for t ∈ [u, T ]. We have

ηR(t) . 1 + E[|Xu|p] +
∫ t

u
ηR(r) dr, t ∈ [u, T ].

By Grönwall’s lemma,

ηR(t) . 1 + E[|Xu|p], t ∈ [u, T ], R > 0.

Because X has continuous sample paths, τR ↑ T a.s. as R→ ∞. Hence

sup
s∈[u,t]

|XR(s)|p ↑ sup
s∈[u,t]

|Xs|p a.s. as R→ ∞.

The estimate (3.15) then follows from an application of monotone convergence theorem.

(b) We have

E
[

sup
s∈[u,t]

|Xs −Xu|p
]

. E

[(
∫ t

u
f0(r,Xr) dr

)p]

+ E

[(
∫ t

u
|b(1)(r,Xr)|dr

)p]

+ E

[

sup
s∈[u,t]

∣

∣

∣

∣

∫ s

u
σ(r,Xr) dBr

∣

∣

∣

∣

p ]

=: J1 + J2 + J3.
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There exists q̄0 ∈ (2, q0) such that (p0, q̄0) ∈ K̄. Let δ := 1
q̄0

− 1
q0

∈ (0, 12). By Hölder’s
inequality,

‖f0‖L̃p0
q̄0

(u,t) ≤ (t− u)δ‖f0‖L̃p0
q0

(u,t).

By Proposition 3.8[2],

J1 . ‖f0‖pL̃p0
q̄0

(u,t)
≤ (t− u)δp‖f0‖pL̃p0

q0
(u,t)

. (t− u)δp.

As for I2 and I3, we get

J2 . |t− u|p−1
E

[
∫ t

u
(1 + |Xr|p) dr

]

. |t− u|p(1 + E[|Xu|p]) by (3.15),

J3 . |t− u| p2 .

It follows that
E
[

sup
s∈[u,t]

|Xs −Xu|p
]

. |t− u|δp(1 + E[|Xu|p]).

The estimate (3.16) then follows.

(c) We have

sup
s∈[u,t]

∫

Bc
R

|x|p dµs(x) ≤
1

R
sup
s∈[u,t]

∫

Rd

|x|p+α dµs(x) by Markov’s inequality

.
1 + E[|Xu|p+α]

R
by (3.15).

The estimate (3.17) then follows. This completes the proof.

Third, we recall a Duhamel presentation and an Lp estimate of marginal density:

Theorem 3.10. [35, Lemma 4.1] Let (b, σ) satisfy Assumption 3.6. Let ℓt be the p.d.f. of Xt in
(3.9). Then

1. Let v : T × R
d → R

d be another drift such that (v, σ) satisfies Assumption 3.3. We assume
there exists 1 ≤ g ∈ L̃

p̄
q̄ with (p̄, q̄) ∈ K̄ such that |bt(x)− vt(x)| ≤ g(t, x) for t ∈ T and x ∈ R

d.

Then we have for t ∈ T and x ∈ R
d:

ℓt(x) =

∫

Rd

p
v,σ
0,t (y, x)ℓν(y) dy

+

∫ t

0

∫

Rd

ℓs(y)〈bs(y)− vs(y),∇yp
v,σ
s,t (y, x)〉dy ds.

2. There exists a constant c > 0 (depending only on Θ3) such that

sup
t∈T

‖ℓt‖L̃k ≤ c‖ℓν‖L̃k , k ∈ [p∗0,∞].

We remind that p0 is a parameter in Θ3. Also, p∗0 is the Hölder conjugates of p0, i.e., 1 = 1
p0
+ 1
p∗0

.

Although the statement of Theorem 3.10[1] does not appear in [35], its proof is contained in part
(c) of the proof of [35, Lemma 4.1].
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3.4 Hölder estimates of marginal density

For Hölder continuity of ℓt, we need another set of stronger assumptions:

Assumption 3.11. There exist constants β ∈ (0, 1) and C > 0 such that for t ∈ T and x ∈ R
d:

(A1) ν ∈ P1(R
d) has a density ℓν .

(A2) at is invertible and σt is weakly differentiable.

(A3) There exists 1 ≤ f0 ∈ L̃
p0
q0 with (p0, q0) ∈ K such that |bt(x)| ≤ f0(t, x).

(A4) The following conditions hold:

‖∇σt‖∞ + ‖σt‖∞ + ‖a−1
t ‖∞ ≤ C,

|∇σt(x)−∇σt(y)| ≤ C(|x− y|+ |x− y|β).

We gather parameters in Assumption 3.11:

Θ4 := (d, T, β,C, p0, q0, f0).

Assumption 3.11 is stronger than Assumption 3.6 in two aspects: b is not allowed to have linear
growth and ∇σt is uniformly bounded and uniformly continuous (in space). Assumption 3.11[A4]
implies for t ∈ T, γ ∈ (0, 1) and x, y ∈ R

d that |σt(x)− σt(y)| ≤ 2C|x− y|γ .
First, we recall an estimate about Hölder continuity in space:

Theorem 3.12. [35, Lemma 5.1] Let (b, σ) satisfy Assumption 3.11 and α ∈ (0, 1− d
p0

− 2
q0
). Let

ℓt be the p.d.f. of Xt in (3.9). There exists a constant c > 0 (depending only on Θ4, α) such that

sup
t∈T

‖ℓt‖Cα
b
≤ c‖ℓν‖Cα

b
.

Second, we define b̄ : T× R
d → R

d by

(b̄t)
i :=

1

2

d
∑

j=1

∂(at)
i,j

∂xj
, i ∈ {1, 2, . . . , d}, (3.20)

where

1. (b̄t)
i is the entry in the i-th row of b̄t.

2. (at)
i,j is the entry in the i-th row and j-th column of at.

By construction, b̄ depends only on σ. By [52, Equation 1.6], pb̄,σs,t is symmetric, i.e., pb̄,σs,t (x, y) =

p
b̄,σ
s,t (y, x). Clearly, if (b, σ) satisfies Assumption 3.11, then (b̄, σ) satisfies both Assumption 3.3 and

Assumption 3.11. We apply Theorem 3.10[1] to the pair (b, σ) and v = b̄. As a consequence, we get

Corollary 3.13. Let (b, σ) satisfy Assumption 3.11. Let ℓt be the p.d.f. of Xt in (3.9). Let b̄ be
defined by (3.20). We have for t ∈ T and x ∈ R

d:

ℓt(x) = P
b̄,σ
0,t ℓν(x) +

∫ t

0

∫

Rd

ℓs(y)〈bs(y)− b̄s(y),∇yp
b̄,σ
s,t (y, x)〉dy ds,

where P b̄,σ0,t ℓν is defined by (3.2).
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Third, we establish an essential estimate about Hölder continuity in time:

Theorem 3.14. Let (b, σ) satisfy Assumption 3.11 and ℓν ∈ Cαb (R
d) for some α ∈ (0, 1− d

p0
− 2

q0
).

Let ℓt be the p.d.f. of Xt in (3.9). Then there exist a constant δ ∈ (0, 12) (depending only on
d, p0, q0, α) and a constant c > 0 (depending only on Θ4, α, ν) such that

‖ℓt − ℓs‖∞ ≤ c|t− s|δ, s, t ∈ T.

We remind that the constants C, p0, q0 are parameters in Θ4. Theorem 3.12 and Theorem 3.14
are prerequisite for applying Arzelà–Ascoli theorem in Section 4.2. The proof of Theorem 3.14 is
by extending an idea from [53, Corollary 2.5(iii)].

Proof. We write M1 . M2 if there exists a constant c > 0 (depending only on Θ4, α, ν) such that
M1 ≤ cM2. Let b̄ be defined by (3.20). Recall that (b̄, σ) satisfies Assumption 3.3. By Theorem 3.4,

(a) There exists a constant κ̄ > 0 (depending only on Θ4) such that for i ∈ {0, 1}, 0 ≤ s < t ≤ T

and x, y ∈ R
d:

|∇i
yp
b̄,σ
s,t (y, x)| . (t− s)−

i
2pκ̄t−s(y − x). (3.21)

(b) There exist a constant κ > 0 (depending only on Θ4, α) and a family (ψs,t)0≤s<t≤T of C∞-
diffeomorphisms on R

d such that for 0 ≤ s < t ≤ T and x, y, z ∈ R
d:

|∇yp
b̄,σ
s,t (y, z)−∇yp

b̄,σ
s,t (y, x)| . |z − x|α(t− s)−

1+α
2 {pκt−s(ψs,t(y)− z)

+ pκt−s(ψs,t(y)− x)}.
(3.22)

Recall that pb̄,σr,t is symmetric, so
∫

Rd

p
b̄,σ
s,t (z, x) dz =

∫

Rd

p
b̄,σ
s,t (x, z) dz = 1. (3.23)

WLOG, we assume s < t. We have for i ∈ {0, 1} that

∇i
yp
b̄,σ
r,t (y, x)−∇i

yp
b̄,σ
r,s (y, x)

=∇i
y

∫

Rd

pb̄,σr,s (y, z)p
b̄,σ
s,t (z, x) dz −∇i

yp
b̄,σ
r,s (y, x) (3.24)

=∇i
y

∫

Rd

pb̄,σr,s (y, z)p
b̄,σ
s,t (z, x) dz −∇i

y

∫

Rd

pb̄,σr,s (y, x)p
b̄,σ
s,t (z, x) dz (3.25)

=

∫

Rd

{∇i
yp
b̄,σ
r,s (y, z) −∇i

yp
b̄,σ
r,s (y, x)}pb̄,σs,t (z, x) dz. (3.26)

Above, (3.24) is due to Chapman–Kolmogorov equation, (3.25) due to (3.23), and (3.26) due to
Leibniz integral rule. Recall that |b̄| . 1 ≤ f0 and |b| ≤ f0, so

|b− b̄| . f0. (3.27)

By Corollary 3.13,

ℓt(x) = P
b̄,σ
0,t ℓν(x) +

∫ t

0

∫

Rd

ℓr(y)〈br(y)− b̄r(y),∇yp
b̄,σ
r,t (y, x)〉dy dr,

ℓs(x) = P
b̄,σ
0,s ℓν(x) +

∫ s

0

∫

Rd

ℓr(y)〈br(y)− b̄r(y),∇yp
b̄,σ
r,s (y, x)〉dy dr.

(3.28)
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By (3.27) and (3.28),

|ℓt(x)− ℓs(x)| .
∣

∣

∣

∣

∫

Rd

ℓν(y){pb̄,σ0,t (y, x)− p
b̄,σ
0,s(y, x)}dy

∣

∣

∣

∣

+

∫ s

0

∫

Rd

ℓr(y)f0(r, y)|∇yp
b̄,σ
r,t (y, x)−∇yp

b̄,σ
r,s (y, x)|dy dr

+

∫ t

s

∫

Rd

ℓr(y)f0(r, y)|∇yp
b̄,σ
r,t (y, x)|dy dr

=: I1(x) + I2(x) + I3(x).

We are going to upper bound I1(x), I2(x) and I3(x) separately.

1. We consider the SDE

dYt = b̄(t, Yt) dt+ σ(t, Yt) dBt, t ∈ T,

where the distribution of Y0 is ν. Recall that (b̄, σ) satisfies Assumption 3.11. Let ℓ̄t be the
p.d.f. of Yt. Then

∣

∣

∣

∣

∫

Rd

ℓν(y){pb̄,σ0,s(y, z)− p
b̄,σ
0,s(y, x)}dy

∣

∣

∣

∣

= |ℓ̄s(z)− ℓ̄s(x)|

. |z − x|α by Theorem 3.12. (3.29)

By (3.26) with i = r = 0,

I1(x) ≤
∫

Rd

∣

∣

∣

∣

∫

Rd

ℓν(y){pb̄,σ0,s(y, z) − p
b̄,σ
0,s(y, x)}dy

∣

∣

∣

∣

p
b̄,σ
s,t (z, x) dz

.

∫

Rd

|z − x|αpb̄,σs,t (z, x) dz by (3.29)

=: J(x)

.

∫

Rd

|z − x|αpκ̄t−s(z − x) dz by (3.21)

=

∫

Rd

|z|αpκ̄t−s(z) dz

. |t− s|α2 .

2. By (3.26) with i = 1 and (3.22),

I2(x) .

∫ s

0
(s− r)−

1+α
2

∫

Rd

∫

Rd

ℓr(y)f0(r, y)|z − x|α{pκs−r(ψr,s(y)− z)

+ pκs−r(ψr,s(y)− x)}pb̄,σs,t (z, x) dz dy dr.

(3.30)

By Theorem 3.10[2],
sup
r∈T

‖ℓr‖∞ . ‖ℓν‖∞. (3.31)
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By Lemma 3.5 with (p, p̄) = (p0,∞),

‖P̃ κr,s{(s− r)
d

2p0 f0(r, ·)}‖∞ . ‖f0(r, ·)‖L̃p0 . (3.32)

Then
∫

Rd

∫

Rd

ℓr(y)f0(r, y)|z − x|αpκs−r(ψr,s(y)− z)pb̄,σs,t (z, x) dz dy

.

∫

Rd

(
∫

Rd

f0(r, y)p
κ
s−r(ψr,s(y)− z) dy

)

|z − x|αpb̄,σs,t (z, x) dz by (3.31)

=(s− r)
− d

2p0

∫

Rd

|z − x|αpb̄,σs,t (z, x)P̃ κr,s{(s − r)
d

2p0 f0(r, ·)}(z) dz by (3.4)

.(s− r)
− d

2p0 ‖f0(r, ·)‖L̃p0

∫

Rd

|z − x|αpb̄,σs,t (z, x) dz by (3.32)

=(s− r)
− d

2p0 ‖f0(r, ·)‖L̃p0J(x). (3.33)

Similarly,

∫

Rd

∫

Rd

ℓr(y)f0(r, y)|z − x|αpκs−r(ψr,s(y)− x)pb̄,σs,t (z, x) dz dy

.(s− r)
− d

2p0 ‖f0(r, ·)‖L̃p0J(x).

(3.34)

It follows from (3.30), (3.33) and (3.34) that

I2(x) . J(x)

∫ s

0
(s− r)

−( 1+α
2

+ d
2p0

)‖f0(r, ·)‖L̃p0 dr.

By Hölder’s inequality,

∫ s

0
(s− r)

−( 1+α
2

+ d
2p0

)‖f0(r, ·)‖L̃p0 dr

≤
(
∫ s

0
(s− r)

−q∗0(
1+α
2

+ d
2p0

)
dr

)
1
q∗
0

(
∫ s

0
‖f0(r, ·)‖q0L̃p0

dr

)
1
q0

=

(
∫ s

0
(s− r)

−q∗0(
1+α
2

+ d
2p0

)
dr

)
1
q∗0 ‖f0‖L̃p0

q0
(s).

Above, q∗0 ∈ [1, 2) is the Hölder conjugate of q0, i.e., 1
q0
+ 1
q∗0

= 1. Notice that α ∈ (0, 1− d
p0
− 2
q0
)

implies q∗0

(

1+α
2 + d

2p0

)

< 1 and thus

sup
s∈T

∫ s

0
(s− r)

−q∗0(
1+α
2

+ d
2p0

)
dr <∞.

Recall from (1) that J(x) . |t− s|α2 , so I2(x) . |t− s|α2 .
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3. By Lemma 3.5 with (p, p̄) = (p0,∞),

‖P κ̄t−r{(t− r)
d

2p0 f0(r, ·)}‖∞ . ‖f0(r, ·)‖L̃p0 . (3.35)

We have

I3(x) .

∫ t

s
(t− r)−

1
2

(
∫

Rd

ℓr(y)f0(r, y)p
κ̄
t−r(y − x) dy

)

dr by (3.21)

.

∫ t

s
(t− r)−

1
2

(
∫

Rd

f0(r, y)p
κ̄
t−r(y − x) dy

)

dr by (3.31)

=

∫ t

s
(t− r)

−( 1
2
+ d

2p0
)
P κ̄t−r{(t− r)

d
2p0 f0(r, ·)}(x) dr by (3.3)

.

∫ t

s
(t− r)

−( 1
2
+ d

2p0
)‖f0(r, ·)‖L̃p0 dr by (3.35)

≤
(
∫ t

s
(t− r)

−q∗0(
1
2
+ d

2p0
)
dr

)

1
q∗0 ‖f0‖L̃p0

q0
(s,t) by Hölder’s inequality.

Notice that (p0, q0) ∈ K implies ε := q∗0(
1
2 + d

2p0
) ∈ (0, 1). Then

∫ t

s
(t− r)−ε dr =

(t− s)1−ε

1− ε
.

It follows that

I3(x) . |t− s|
1−ε
q∗0 .

The claim then follows by picking

δ :=
α

2
∧ 1− ε

q∗0
.

4 Proof of Theorem 2.2

We recall that Θ1 = (d, T, α, β,C, p0, q0, f0, p) contains the parameters in Assumption 2.1. We write
M1 . M2 if there exists a constant c > 0 (depending only on Θ1, ν) such that M1 ≤ cM2. We
construct a sequence (ρn) of mollifiers as follows. We fix a smooth p.d.f. ρ : Rd → R whose support
is contained in the unit ball of Rd. For each n ∈ N

∗, we define ρn : Rd → R by ρn(x) := ndρ(nx)
and consider the SDE

dXn
t = b(t,Xn

t , (ρ
n ∗ µnt )(Xn

t ), µ
n
t ) dt+ σ(t,Xn

t , µ
n
t ) dBt, t ∈ T, (4.1)

where the distribution of Xn
0 is ν and that of Xn

t is µnt . Above, ∗ is the convolution operator, i.e.,

(ρn ∗ µnt )(x) :=
∫

Rd

ρn(x− y) dµnt (y).

Clearly, (4.1) is the mollified version of (1.1).
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4.1 Stability estimates for mollified SDEs

We define the map bn : T× R
d × Pp(R

d) → R
d by bn(t, x, µ) := b(t, x, (ρn ∗ µ)(x), µ). Then

|bn(t, x, µ) − bn(t, x, µ̃)| .
∣

∣

∣

∣

∫

Rd

ρn(x− y) d(µ− µ̃)(y)

∣

∣

∣

∣

+Wp(µ, µ̃) (4.2)

≤ ‖∇ρn‖∞W1(µ, µ̃) +Wp(µ, µ̃) (4.3)

≤ (1 + ‖∇ρn‖∞)Wp(µ, µ̃). (4.4)

Above, (4.2) is due to Assumption 2.1[A4], (4.3) due to Lemma 3.1[2], and (4.4) due to Lemma 3.1[3].
It follows that bn is Lipschitz in distribution. We consider the McKean-Vlasov SDE

dYt = bn(t, Yt, ξt) dt+ σ(t, Yt, ξt) dBt, t ∈ T, (4.5)

where the distribution of Y0 is ν and that of Yt is ξt. It follows from [10, Theorem 1.1(1)] that (4.5)
is well-posed. Clearly, (Xn

t , t ∈ T) satisfies (4.5). As a consequence, (4.1) is well-posed. We define
the maps b̄n : T× R

d → R
d and σ̄n : T× R

d → R
d ⊗ R

m by

b̄n(t, x) := bn(t, x, µnt ),

σ̄n(t, x) := σ(t, x, µnt ).

Clearly,
dXn

t = b̄n(t,Xn
t ) dt+ σ̄n(t,Xn

t ) dBt. (4.6)

Let ān := σ̄n(σ̄n)⊤. We denote b̄nt := b̄n(t, ·), σ̄nt := σ̄n(t, ·) and ānt := ān(t, ·).
Remark 4.1. We emphasize that every pair (b̄n, σ̄n) satisfies Assumption 3.11 for the same set
of parameters. More precisely, we have for n ∈ N

∗, t ∈ T and x, y ∈ R
d:

|b̄nt (x)| ≤ f0(t, x),

‖∇σ̄nt ‖∞ + ‖σ̄nt ‖∞ + ‖(ānt )−1‖∞ ≤ C,

|∇σ̄nt (x)−∇σ̄nt (y)| ≤ C(|x− y|+ |x− y|β).
By Theorem 3.9[1], each Xn

t admits a p.d.f. denoted by ℓnt . By Theorem 3.12,

sup
n∈N∗

sup
t∈T

‖ℓnt ‖Cα
b
. 1. (4.7)

By Theorem 3.14, there exists a constant δ1 ∈ (0, 12 ) (depending only on d, p0, q0, α) such that

sup
n∈N∗

‖ℓnt − ℓns ‖∞ . |t− s|δ1 , s, t ∈ T. (4.8)

By Theorem 3.9[2], there exists a constant δ2 ∈ (0, 12) (depending only on q0) such that

sup
n∈N∗

sup
t∈T

Mp(µ
n
t ) . 1, (4.9)

sup
n∈N∗

Wp(µ
n
s , µ

n
t ) . |t− s|δ2 , s, t ∈ T, (4.10)

sup
n∈N∗

sup
t∈T

∫

Bc
R

|x|p dµnt (x) .
1

R
, (4.11)

sup
n∈N∗

sup
t∈T

µnt (B
c
R) .

1

R
, R > 0. (4.12)

By (4.10), the map T → Pp(R
d), t 7→ µnt is continuous.
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4.2 Convergence of marginal densities of mollified SDEs

By (4.7), (4.8) and Arzelà–Ascoli theorem, there exist a sub-sequence (also denoted by (ℓn) for
simplicity) and a continuous function ℓ : T× R

d → R+ such that

lim
n

sup
t∈T

sup
x∈B(0,R)

|ℓnt (x)− ℓt(x)| = 0, R > 0. (4.13)

where ℓt := ℓ(t, ·). Clearly, ℓ0 = ℓν . Taking the limit n→ ∞ in (4.7) and (4.8), we get

sup
t∈T

‖ℓt‖Cα
b
. ‖ℓν‖Cα

b
, (4.14)

‖ℓt − ℓs‖∞ . |t− s|δ1 , s, t ∈ T.

We remark that the constant in (4.14) depends only on Θ1. Next we verify that ℓt is indeed a
p.d.f. for t ∈ T. We have

∫

B(0,R)
ℓnt (x) dx = 1−

∫

Bc
R

ℓnt (x) dx

& 1− 1

R
by (4.12).

By (4.13), (4.14) and dominated convergence theorem (DCT),

∫

B(0,R)
ℓt(x) dx = lim

n→∞

∫

B(0,R)
ℓnt (x) dx.

It follows that

1− 1

R
.

∫

B(0,R)
ℓt(x) dx ≤ 1,

which implies
∫

Rd

ℓt(x) dx = lim
R→∞

∫

B(0,R)
ℓt(x) dx = 1.

Let µt ∈ P(Rd) be the probability measure induced by ℓt, i.e.,

µt(B) :=

∫

B
ℓt(x) dx, B ∈ B(Rd).

Lemma 4.2. We have for each t ∈ T that µnt ⇀ µt as n→ ∞.

Proof. By (4.13),

µnt
∗
⇀ µt as n→ ∞. (4.15)

Let f ∈ Cb(R
d) and g ∈ Cc(R

d) such that 0 ≤ g ≤ 1. Then gf ∈ Cc(R
d) and f = (1− g)f + gf .

We have
∣

∣

∣

∣

∫

Rd

f d(µnt − µt)

∣

∣

∣

∣

≤ ‖f‖∞
∫

Rd

(1− g) d(µnt + µt) +

∣

∣

∣

∣

∫

Rd

gf d(µnt − µt)

∣

∣

∣

∣

.

By (4.15),

lim sup
n

∫

Rd

gf d(µnt − µt) = 0,
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which implies

lim sup
n

∣

∣

∣

∣

∫

Rd

f d(µnt − µt)

∣

∣

∣

∣

≤ ‖f‖∞ lim sup
n

∫

Rd

(1− g) d(µnt + µt).

Notice that

lim sup
n

∫

Rd

(1− g) dµnt = 1− lim inf
n

∫

Rd

g dµnt

= 1−
∫

Rd

g dµt by (4.15)

=

∫

Rd

(1− g) dµt,

which implies

lim sup
n

∣

∣

∣

∣

∫

Rd

f d(µnt − µt)

∣

∣

∣

∣

≤ 2‖f‖∞
∫

Rd

(1− g) dµt. (4.16)

Because µt is a probability measure,

sup

{
∫

Rd

g dµt : g ∈ Cc(R
d) and 0 ≤ g ≤ 1

}

= 1. (4.17)

The claim then follows from (4.16) and (4.17).

By monotone convergence theorem (MCT),

∫

Bc
R

|x|p dµt(x) = lim
K→∞

∫

Bc
R
∩B(0,K)

|x|p dµt(x)

= lim
K→∞

lim
n→∞

∫

Bc
R
∩B(0,K)

|x|p dµnt (x) by (4.13)

.
1

R
by (4.11),

which implies

sup
t∈T

∫

Bc
R

|x|p dµt(x) .
1

R
. (4.18)

Clearly, | · |p is continuous and bounded from below. By Lemma 4.2 and Portmanteau’s theorem,

sup
t∈T

Mp(µt) ≤ sup
t∈T

lim inf
n

Mp(µ
n
t )

. 1 by (4.9),
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which implies µt ∈ Pp(R
d) for t ∈ T. We have

(Wp(µs, µt))
p = sup

{
∫

Rd

ϕdµs +

∫

Rd

ψ dµt : (ϕ,ψ) ∈ Φp

}

(4.19)

= sup

{

lim
n

(
∫

Rd

ϕdµns +

∫

Rd

ψ dµnt

)

: (ϕ,ψ) ∈ Φp

}

(4.20)

≤ lim sup
n

sup

{
∫

Rd

ϕdµns +

∫

Rd

ψ dµnt : (ϕ,ψ) ∈ Φp

}

= lim sup
n

(Wp(µ
n
s , µ

n
t ))

p (4.21)

. |t− s|δ2p. (4.22)

Above, (4.19) and (4.21) are due to Lemma 3.1[1], (4.20) due to Lemma 4.2, and (4.22) due to
(4.10). It follows that

Wp(µs, µt) . |t− s|δ2 , s, t ∈ T.

Next we establish an essential result about convergence:

Lemma 4.3. We have
lim sup

n
sup
t∈T

Wp(µ
n
t , µt) = 0.

Proof. Let t ∈ T, n ∈ N
∗ and R > 0. We have

(Wp(µ
n
t , µt))

p .

∫

Rd

|x|p|ℓnt (x)− ℓt(x)|dx by Lemma 3.2

≤
∫

B(0,R)
|x|p|ℓnt (x)− ℓt(x)|dx+

∫

Bc
R

|x|p(ℓnt (x) + ℓt(x)) dx

=: J(t, n,R) +K(t, n,R).

By (4.13),
lim
n

sup
t∈T

J(t, n,R) = 0.

By (4.11) and (4.18),

sup
n∈N∗

sup
t∈T

K(t, n,R) .
1

R
.

As such,

lim sup
n

sup
t∈T

(Wp(µ
n
t , µt))

p

. lim sup
n

sup
t∈T

J(t, n,R) + lim sup
n

sup
t∈T

K(t, n,R)

.
1

R
.

The claim then follows by taking the limit R→ ∞.
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4.3 Existence of a weak solution

For convenience, we write ℓn(t, x) := ℓnt (x). Notice that ρn ∗ µnt = ρn ∗ ℓnt . The Fokker-Planck
equation (in distributional sense) associated with (4.1) is

∂tℓ
n(t, x) = −

d
∑

i=1

∂

∂xi
{b(t, x, (ρn ∗ ℓnt )(x), µnt )ℓn(t, x)}

+
1

2

d
∑

i,j=1

∂2

∂xi∂xj
{ai,j(t, x, µnt )ℓn(t, x)},

which means for each (ϕ,ψ) ∈ C∞
c (T)× C∞

c (Rd) that

−
∫

T

∫

Rd

ϕ′(t)ψ(x) dµnt (x) dt

=

d
∑

i=1

∫

T

∫

Rd

b(t, x, (ρn ∗ ℓnt )(x), µnt )ϕ(t)
∂ψ

∂xi
(x) dµnt (x) dt

+
1

2

d
∑

i,j=1

∫

T

∫

Rd

ai,j(t, x, µnt )ϕ(t)
∂2ψ

∂xi∂xj
(x) dµnt (x) dt.

(4.23)

Above, ai,j is the entry in the i-th row and j-th column of a. We recall from Lemma 4.3 and
(4.13) that

sup
t∈T

Wp(µ
n
t , µt)

n→∞−−−→ 0, (4.24)

sup
t∈T

sup
x∈B(0,R)

|ℓnt (x)− ℓt(x)| n→∞−−−→ 0, R > 0. (4.25)

We fix (ϕ,ψ) ∈ C∞
c (T) × C∞

c (Rd). By (4.24), the boundedness of a, and the continuity of a
w.r.t. the distribution variable, we get for t ∈ T:

∫

Rd

ψ(x) dµnt (x)
n→∞−−−→

∫

Rd

ψ(x) dµt(x),

∫

Rd

ai,j(t, x, µnt )
∂2ψ

∂xi∂xj
(x) dµnt (x)

n→∞−−−→
∫

Rd

ai,j(t, x, µt)
∂2ψ

∂xi∂xj
(x) dµt(x).

Let S := B(0, 1) + suppψ. By triangle inequality,

‖1S{(ρn ∗ ℓnt )− ℓt}‖∞ ≤ ‖1S{ρn ∗ (ℓnt − ℓt)}‖∞ + ‖1S(ρn ∗ ℓt − ℓt)‖∞
≤ ‖ρn ∗ {1S(ℓnt − ℓt)}‖∞ + ‖1S(ρn ∗ ℓt − ℓt)‖∞
≤ ‖1S(ℓnt − ℓt)‖∞ + ‖1S(ρn ∗ ℓt − ℓt)‖∞.

By (4.25), ‖1S(ℓnt − ℓt)‖∞ → 0 as n→ ∞. By [54, Proposition 4.21], ‖1S(ρn ∗ ℓt− ℓt)‖∞ → 0 as
n→ ∞. It follows that ‖1S{(ρn ∗ ℓnt )− ℓt}‖∞ → 0 as n→ ∞. Hence we have for t ∈ T:

‖1S{b(t, ·, (ρn ∗ ℓnt )(·), µnt )− b(t, ·, ℓt(·), µt)}‖∞ n→∞−−−→ 0. (4.26)
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Recall that |b| ≤ f0 and f0 ∈ L̃
p0
q0 . It follows from (4.24), (4.26) and DCT that

∫

Rd

b(t, x, (ρn ∗ ℓnt )(x), µnt )
∂ψ

∂xi
(x) dµnt (x)

n→∞−−−→
∫

Rd

b(t, x, ℓt(x), µt)
∂ψ

∂xi
(x) dµt(x).

Taking the limit n→ ∞ in (4.23), we get

−
∫

T

∫

Rd

ϕ′(t)ψ(x) dµt(x) dt

=

d
∑

i=1

∫

T

∫

Rd

b(t, x, ℓt(x), µt)ϕ(t)
∂ψ

∂xi
(x) dµt(x) dt

+
1

2

d
∑

i,j=1

∫

T

∫

Rd

ai,j(t, x, µt)ϕ(t)
∂2ψ

∂xi∂xj
(x) dµt(x) dt, (ϕ,ψ) ∈ C∞

c (T)× C∞
c (Rd).

So ℓ satisfies the Fokker-Planck equation

∂tℓ(t, x) = −
d

∑

i=1

∂

∂xi
{b(t, x, ℓt(x), µt)ℓ(t, x)}

+
1

2

d
∑

i,j=1

∂2

∂xi∂xj
{ai,j(t, x, µt)ℓ(t, x)}.

Moreover, ℓ satisfies the following integrability estimate:

Lemma 4.4. There exists a constant c > 0 (depending only on Θ1) such that
∫

T

∫

Rd

{|b(t, x, ℓt(x), µt)|+ |a(t, x, µt)|}dµt(x) dt ≤ c(1 + ‖f0‖L̃p0
q0
).

Proof. By (4.6), dXn
t = b̄n(t,Xn

t ) dt+ σ̄n(t,Xn
t ) dBt. By Remark 4.1, every pair (b̄n, σ̄n) satisfies

Assumption 3.6 for the same set of parameters. Then
∫

T

∫

Rd

f0(t, x) dµ
n
t (x) dt = E

[
∫ T

0
f0(t,X

n
t ) dt

]

by Tonelli’s theorem

. 1 + ‖f0‖L̃p0
q0

by Proposition 3.8[2]. (4.27)

We have
∫

T

∫

Rd

f0(t, x) dµt(x) dt =

∫

T

lim
k

∫

Rd

1B(0,k)(x)f0(t, x)ℓt(x) dxdt (4.28)

≤ lim inf
k

∫

T

∫

Rd

1B(0,k)(x)f0(t, x)ℓt(x) dxdt (4.29)

= lim inf
k

∫

T

lim
n

∫

Rd

1B(0,k)(x)f0(t, x)ℓ
n
t (x) dxdt (4.30)

≤ lim inf
k

lim inf
n

∫

T

∫

Rd

1B(0,k)(x)f0(t, x)ℓ
n
t (x) dxdt (4.31)

≤ lim inf
n

∫

T

∫

Rd

f0(t, x)ℓ
n
t (x) dxdt

. 1 + ‖f0‖L̃p0
q0

by (4.27). (4.32)
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Above, (4.28) is due to MCT; (4.29) and (4.31) are due to Fatou’s lemma. We will justify how
(4.30) follows from f0 ∈ L̃

p0
q0 and DCT:

1. From (4.7), we get 1B(0,k)(x)f0(t, x)ℓ
n
t (x) . 1B(0,k)(x)f0(t, x).

2. From (4.25), we get 1B(0,k)(x)f0(t, x)ℓ
n
t (x) → 1B(0,k)(x)f0(t, x)ℓt(x) (as n→ ∞) for all x ∈ R

d.

We denote by I the LHS of the inequality in the statement of Lemma 4.4. Then

I . 1 +

∫

T

∫

Rd

f0(t, x) dµt(x) dt

. 1 + ‖f0‖L̃p0
q0

by (4.32).

This completes the proof.

Clearly,

1. The maps (t, x) 7→ b(t, x, ℓt(x), µt) and (t, x) 7→ a(t, x, µt) are measurable.

2. By Lemma 4.4,
∫

T

∫

Rd

{|b(t, x, ℓt(x), µt)|+ |a(t, x, µt)|}dµt(x) dt <∞.

3. The map T → Pp(R
d), t 7→ µt is continuous by (4.22).

By the same application of the superposition principle [55, 56, 57] as in [14, Section 2], (1.1) has
a weak solution whose marginal distribution is exactly (µt, t ∈ T).

4.4 Existence of a strong solution

By the previous sub-section, there exists a probability space (Ω̄, Ā, P̄) on which there exist an m-
dimensional Brownian motion (B̄t, t ≥ 0), an admissible filtration F̄ := (F̄t)t≥0, and a continuous
F̄-adapted process (X̄t, t ∈ T) such that

dX̄t = b(t, X̄t, ℓt(X̄t), µ̄t) dt+ σ(t, X̄t, µ̄t) dB̄t, t ∈ T,

where the distribution of X̄0 is ν, that of X̄t is µ̄t, and the p.d.f. of X̄t is ℓt. We define the map
b̄ : T×R

d × Pp(R
d) → R

d by b̄(t, x, ρ̃) := b(t, x, ℓt(x), ρ̃). We consider the SDE

dYt = b̄(t, Yt, µt) dt+ σ(t, Yt, µt) dBt, t ∈ T, (4.33)

where the distribution of Y0 is ν and that of Yt is µt. We recall that (Bt, t ≥ 0) is the fixed m-
dimensional Brownian motion on the fixed probability space (Ω,A,P) introduced in Section 1. By
[10, Theorem 1.1(1)], (4.33) is well-posed. On the other hand,

dX̄t = b̄(t, X̄t, µ̄t) dt+ σ(t, X̄t, µ̄t) dB̄t.

It follows that µt = µ̄t and thus the p.d.f. of Yt is ℓt. In particular,

dYt = b(t, Yt, ℓt(Yt), µt) dt+ σ(t, Yt, µt) dBt.

This completes the proof.
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5 Proof of Theorem 2.3

For k ∈ {1, 2}, we consider

dXk
t = b(t,Xk

t , ℓ
k
t (X

k
t ), µ

k
t ) dt+ σ(t,Xk

t ) dB
k
t , t ∈ T, (5.1)

where the distribution of Xk
0 is νk, that of Xk

t is µkt , the p.d.f. of Xk
t is ℓkt , and (Bk

t , t ≥ 0) is a
d-dimensional Brownian motion on a probability space (Ωk,Ak,Pk) with an admissible filtration
F
k := (Fk

t )t≥0. We define measurable maps bk : T× R
d → R

d by bk(t, x) := b(t, x, ℓkt (x), µ
k
t ).

5.1 Uniqueness of marginal density

Clearly, (bk, σ) satisfies Assumption 3.11. Let b̄ be defined by (3.20). We denote bkt (x) := bk(t, x).
By Corollary 3.13,

ℓkt (x) = P
b̄,σ
0,t ℓνk(x) +

∫ t

0

∫

Rd

ℓks(y)〈bks (y)− b̄s(y),∇yp
b̄,σ
s,t (y, x)〉dy ds,

which implies

|ℓ2t (x)− ℓ1t (x)| ≤ P
b̄,σ
0,t {|ℓν1(x)− ℓν2 |}(x)

+

∫ t

0

∫

Rd

|b2s(y)− b̄s(y)| |ℓ2s(y)− ℓ1s(y)| |∇yp
b̄,σ
s,t (y, x)|dy ds

+

∫ t

0

∫

Rd

ℓ1s(y)|b2s(y)− b1s(y)| |∇yp
b̄,σ
s,t (y, x)|dy ds.

(5.2)

We write M1 4M2 if there exists a constant c > 0 (depending only on Θ1) such that M1 4 cM2.
We have ‖bk‖∞ + ‖b̄‖∞ <∞, so

|bk − b̄| 4 1. (5.3)

By (5.2) and (5.3),

|ℓ2t (x)− ℓ1t (x)| 4 P
b̄,σ
0,t {|ℓν1(x)− ℓν2 |}(x)

+

∫ t

0

∫

Rd

|ℓ2s(y)− ℓ1s(y)| |∇yp
b̄,σ
s,t (y, x)|dy ds

+

∫ t

0

∫

Rd

ℓ1s(y)|b2s(y)− b1s(y)| |∇yp
b̄,σ
s,t (y, x)|dy ds.

(5.4)

By Theorem 3.10[2],
sup
t∈T

‖ℓ1t ‖∞ 4 ‖ℓν1‖∞. (5.5)

By Assumption 2.1[A4],

|b2s(y)− b1s(y)| 4 |ℓ2s(y)− ℓ1s(y)|+Wp(µ
2
s, µ

1
s). (5.6)
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By (5.4), (5.5) and (5.6),

|ℓ2t (x)− ℓ1t (x)| 4 P
b̄,σ
0,t {|ℓν1(x)− ℓν2 |}(x)

+ (1 + ‖ℓν1‖∞)

∫ t

0

∫

Rd

|ℓ2s(y)− ℓ1s(y)| |∇yp
b̄,σ
s,t (y, x)|dy ds

+

∫ t

0
Wp(µ

2
s, µ

1
s)

∫

Rd

ℓ1s(y)|∇yp
b̄,σ
s,t (y, x)|dy ds

=: I1(t, x) + (1 + ‖ℓν1‖∞)I2(t, x) + I3(t, x).

The pair (b̄, σ) satisfies Assumption 3.3. By Theorem 3.4[1], there exists a constant κ > 0
(depending only on Θ1) such that for i ∈ {0, 1}, 0 ≤ s < t ≤ T and x, y ∈ R

d:

|∇i
yp
b̄,σ
s,t (y, x)| 4 (t− s)−

i
2 pκt−s(y − x). (5.7)

Then
∫

Rd

(|x|p + 1)|∇i
yp
b̄,σ
s,t (y, x)|dx

4(t− s)−
i
2

∫

Rd

(|x|p + 1)pκt−s(y − x) dx by (5.7)

4(t− s)−
i
2 (|y|p + 1). (5.8)

We define a measurable map f : T → R+ by

f(s) :=

∫

Rd

(|x|p + 1)|ℓ2s(x)− ℓ1s(x)|dx, s ∈ T.

By (3.15), f is bounded. First,
∫

Rd

(|x|p + 1)I1(t, x) dx

=

∫ t

0

∫

Rd

|ℓν1(y)− ℓν2(y)|
∫

Rd

(|x|p + 1)|pb̄,σ0,t (y, x)|dxdy ds

4

∫ t

0

∫

Rd

|ℓν1(y)− ℓν2(y)|(|y|p + 1) dy ds by (5.8)

4

∫

Rd

(|y|p + 1)|ℓν1(y)− ℓν2(y)|dy = f(0).

Second,
∫

Rd

(|x|p + 1)I2(t, x) dx

=

∫ t

0

∫

Rd

|ℓ2s(y)− ℓ1s(y)|
∫

Rd

(|x|p + 1)|∇yp
b̄,σ
s,t (y, x)|dxdy ds

4

∫ t

0
(t− s)−

1
2

∫

Rd

|ℓ2s(y)− ℓ1s(y)|(|y|p + 1) dy ds by (5.8)

=

∫ t

0
(t− s)−

1
2 f(s) ds.
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Third,
∫

Rd

(|x|p + 1)I3(t, x) dx

=

∫ t

0
Wp(µ

2
s, µ

1
s)

∫

Rd

ℓ1s(y)

∫

Rd

(|x|p + 1)|∇yp
b̄,σ
s,t (y, x)|dxdy ds

4

∫ t

0
(t− s)−

1
2Wp(µ

2
s, µ

1
s)

∫

Rd

ℓ1s(y)(|y|p + 1) dy ds by (5.8)

4(1 +Mp(ν1))

∫ t

0
(t− s)−

1
2Wp(µ

2
s, µ

1
s) ds by (3.15)

4(1 +Mp(ν1))

∫ t

0
(t− s)−

1
2 |f(s)|

1
p ds by Lemma 3.2.

To sum up,

f(t) 4 f(0) + (1 + ‖ℓν1‖∞ +M1(ν1))

∫ t

0
(T − s)−

1
2 (f(s) + |f(s)|

1
p ) ds.

Assuming p = 1, we get

f(t) 4 f(0) + (1 + ‖ℓν1‖∞ +M1(ν1))

∫ t

0
(T − s)−

1
2 f(s) ds.

By Grönwall’s lemma,

sup
t∈T

f(t) 4 f(0) exp
{

2
√
T (1 + ‖ℓν1‖∞ +M1(ν1))

}

, (5.9)

which implies the existence of the function Λ as required in Theorem 2.3[1].

5.2 Weak and strong uniqueness of a solution

By (5.1),
dXk

t = bk(t,Xk
t ) dt+ σ(t,Xk

t ) dB
k
t .

Now we let ν := ν1 = ν2. By (5.9), ℓ1t = ℓ2t and µ1t = µ2t for t ∈ T. Then bbb := b1 = b2. We
consider the SDE

dYt = bbb(t, Yt) dt+ σ(t, Yt) dBt, t ∈ T, (5.10)

where the distribution of Y0 is ν. By [10, Theorem 1.1(1)], (5.10) is well-posed. On the other hand,
(X1

t , t ∈ T) and (X2
t , t ∈ T) satisfy (5.10). It follows that (1.1) has both weak and strong uniqueness.
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