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We discuss thermalization in a multimode quantum cavity under unitary evolution. According
to general principles, an isolated system with quadratic couplings does not exhibit thermalization.
However, we find that three-wave perturbation, typical for instance in superconducting Josephson
systems, may lead to thermalization into a Bose-Einstein distribution of occupations of the modes.
The temperature of this state is dictated by energy conservation in this closed system, and the
thermal distribution is robust against weak disturbances. We discuss how our findings open up
new avenues to experimentally probe fundamental assumptions of statistical physics in solid-state
systems.

Thermalization has been a fundamental issue since
the birth of statistical physics, and for quantum sys-
tems since early 20th century. Although dominated by
theory [1–4], experiments especially on cold atoms have
addressed this problem as well [5–7]. Solid state pro-
vides likewise tailored quantum systems, e.g., in form
of superconducting quantum circuits [8] and mesoscopic
electronic structures in semiconductors, metals and two-
dimensional materials [9]. Yet, up to now realizing suffi-
ciently isolated solid-state systems for studies of internal
thermalization has not been feasible in most of these sys-
tems. There are exceptions, however: for instance elec-
trons in metals at low temperatures form a Fermi-Dirac
distribution within a relaxation time of about 1 ns [10]
after a ”quench”, whereas these electrons relax to the ex-
ternal bath formed by lattice phonons over time-scales of
about 100 µs [11]. Such a huge separation of time-scales
allows one to assume electrons to form an isolated inter-
acting quantum system that reaches a quasi-equilibrium
thermal state. Another class of solid-state systems be-
coming suitable for studies of quantum thermalization is
formed of superconducting circuit QED (cQED) struc-
tures [12–14]. With the very rapid development of quan-
tum information processing devices based on supercon-
ducting resonators and qubits, the degree of isolation
measured by high quality factors of resonators and long
coherence times of qubits now allows us to consider these
systems also as quasi-isolated ones. This development
opens a new exciting prospect for experimental studies
of quantum thermalization.

In this paper we demonstrate how a realistic nearly
integrable system reaches a thermal state due to non-
linearity in form of three-wave mixing. We consider a
multimode cavity (see Fig. 1) that can be made of a su-
perconducting coplanar wave resonator or alternatively
of an array of Josephson junctions. Ideally its Hamil-
tonian is quadratic, which makes it integrable with the
number of photons being a conserved quantity. Yet re-
cent developments in cQED area have introduced el-
ements that, combined with the linear cavities, lead
to three-wave mixing type nonlinearities in the circuit.
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FIG. 1. The dynamics of a multimode quantum resonator.
(a) Resonator coupled to a heat bath reaches a thermal state
in the long-time limit. (b) Here we study the population
dynamics of an isolated resonator.

These nonlinearities can be caused by adding shifted co-
sine potentials due to asymmetries in superconducting
Josephson junction loops in magnetic field, like in SNAIL
(Superconducting Nonlinear Asymmetric Inductive eL-
ement) configuration [15]. Another recent strategy for
three-wave mixing has been achieved by coupling a flux-
onium qubit to a Josephson junction array [16]. Natu-
rally, a cavity coupled to a thermal bath as in Fig. 1 (a)
gets thermalized, but here we study explicitly an isolated
cavity, Fig. 1 (b).

We focus on a generic multimode cavity whose Hamil-
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tonian Ĥ can be written as

Ĥ = Ĥ0 + V̂ , (1)

where Ĥ0 =
∑N

k=1 ℏΩka
†
kak is the non-interacting Hamil-

tonian. Here N is the number of available modes, and
a†k, ak are the (bosonic) creation and annihilation oper-
ators of the k:th mode, respectively. The coupling be-
tween the modes, or for an open system that between a
mode and environment, is described by V̂ . We take the
eigen-energies of Ĥ0 to be equidistant so that Ωk = k∆Ω,
where ∆Ω is the free spectral range.

We are going to look at the evolution of the population
operator for the j:th level, N̂j = a†jaj , and especially

its expectation value n(Ωj) ≡ ⟨N̂j⟩. To find the kinetic
equation for n(Ωj), we write for the time rate of change

of the operator N̂j ,
˙̂
Nj = i

ℏ [V̂ , N̂j ], and use the Kubo
formula in the interaction picture to obtain

ṅ(Ωj) = − i

ℏ

∫ 0

−∞
dt′⟨[ ˙̂Nj , V̂I(t

′)]⟩0, (2)

where V̂I(t) = eiĤ0t/ℏV̂ e−iĤ0t/ℏ, and ⟨·⟩0 denotes aver-
aging in the non-interacting system.

Now the evolution of n(Ωj) depends critically on the

type of coupling V̂ (besides the initial state of the cavity).
If the modes are not coupled (V̂ = 0), the populations

n(Ωj) are trivially stationary, and determined only by
the initialization. Also, unsurprisingly, if the coupling is
quadratic of the form

V̂ =
1

2

∑
p ̸=q

gpq(ap + a†p)(aq + a†q), (3)

where gpq are arbitrary coupling constants between
modes p and q, there is no thermalization. This is ex-
pected from general arguments. We find this explicitly
for our perturbative model as well, since the populations
do not vary in time, i.e. ṅ(Ωj) ≡ 0, presented in the
Supplemental Material.

On the contrary, ubiquitous non-linearities do play a
role in thermalization. In multi-wave mixing, energy con-
servation can be sequred in transitions unlike in coupling
two modes only (Eq. (3)). Experimentally common ex-
amples are three- and four-wave mixing. In basic three-
wave mixing, a photon is down-converted into two, or
vice versa. Formally the coupling then reads

V̂ =
∑
p,q,r

(Mpqra
†
pa

†
qar +M∗

pqra
†
raqap). (4)

In what follows, we write the couplings in the form
Mpqr ≡ ApqBr for convenience and for physical reasons.
We then find the kinetic equation using Eq. (2) as

ṅ(Ωj) =
4π

ℏ2
ν0
{ N∑

k=1

2|Ajk|2|Bj+k|2[n(Ωj +Ωk) + n(Ωj)n(Ωj +Ωk) + n(Ωk)n(Ωj +Ωk)− n(Ωj)n(Ωk)]

−
j−1∑
k=1

|Ak,j−k|2|Bj |2[n(Ωj) + n(Ωj)n(Ωk) + n(Ωj)n(Ωj − Ωk)− n(Ωk)n(Ωj − Ωk)]
}
. (5)

For derivation of Eq. (21), see Supplemental Material.
Here ν0 = 1/∆Ω is the density of modes. We find easily
that a Bose-Einstein distribution nB(Ω) is a stationary
solution of Eq. (21), i.e.

ṅ(Ωj) ≡ 0 if n(Ω) = nB(Ω) ≡
1

eβℏΩ − 1
. (6)

This can be seen, since the following identities hold

for nB(Ω): nB(Ωj + Ωk) = nB(Ωj)nB(Ωk)/[1 +
nB(Ωj) + nB(Ωk)], and nB(Ωj − Ωk) = nB(Ωj)[1 +
nB(Ωk)]/[nB(Ωk) − nB(Ωj)]. Based on these relations,
all terms in the sums on the right-hand side of Eq. (21)
vanish identically for any temperature T = (kBβ)

−1. Be-
low we will find the actual value of T based on energy
conservation.
We can test whether the solution nB(Ω) is stable by in-

troducing small deviations δn(Ωj) around this stationary
solution. We then find that

dδn(Ωj)

dt
= −4π

ℏ2
ν0
{ N∑

k=1

2|Ajk|2|Bj+k|2
nB(Ωk)[1 + nB(Ωk)]

1 + nB(Ωj) + nB(Ωk)
+

j−1∑
k=1

|Ak,j−k|2|Bj |2
nB(Ωk)[1 + nB(Ωk)]

nB(Ωk)− nB(Ωj)

}
δn(Ωj). (7)

This equation can then be written as
dδn(Ωj)

dt = −κjδn(Ωj), where κj is positive for any non-vanishing
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coupling of form (4), securing stability of the station-
ary distribution. Numerical examples of the dynamics
of n(Ωj) will be given below, further demonstrating the
stability of the distribution.

The remaining question is how the temperature of the
system is determined. This in fact can be answered based
on an elementary energy conservation argument for an
isolated system such as ours. The internal energy of the
initial state is

Uini =

N∑
j=1

N
(ini)
j ℏΩj , (8)

where N
(ini)
j represents the initial population in state j.

If one eventually at t → ∞ reaches the state with popu-
lations nB(Ωj), the final internal energy is

Ufin =

N∑
j=1

ℏΩj

eβℏΩj − 1
. (9)

Equating Ufin = Uini, we then find β. For a sufficiently
large initial energy the final state spreads over many
modes, and we can approximate the sum in Eq. (9) by
an integral, with the result

Ufin ≈ π2

6ℏ∆Ωβ2
. (10)

Then, for instance, if we initialize the system with an
excitation on the level kini, the temperature is given ap-
proximately by

βℏ∆Ω ≈ π/
√
6kini. (11)

Next we present numerical results of the dynamics of
the system. First we analyze the time dependence of the
populations in different modes after the system is intial-
ized in a given state. Figure 2 is an example of such
dynamics, presenting the case of system initially occupy-
ing the mode kini = 30. Populations at different time in-
stants τ = ∆Ωt of modes k = 1, 2, 3, 30 and 50 are shown.
We assume that there are N = 800 lowest modes avail-
able. In the calculation we assume that the three-wave
coupling is parametrized as |Apq|2 = g2e−γ|p−q|, |Br|2 =
r [16], and Γ0 ≡ 4π

ℏ2 ν0g
2 = 0.01∆Ω, with γ = 1. We

see that the system finds its asymptotic state at times
τ ≫ 100 in this case. Very similar dynamics can be
found with other choices of the coupling parameters, for
instance assuming constant |Apq|2 and |Br|2 as demon-
strated by the second set of curves (dashed lines) in Fig.
2. To highlight the rarely populated states, we plot n(Ωk)
for the same states on a logarithmic scale in the lower
panel of Fig. 2.

Based on the numerical evolution in Fig. 2 we expect
the system to be stable and find a state which is poten-
tially the given steady state solution nB(Ω). We may
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FIG. 2. Time-dependent populations on various photon
modes k of the multimode resonator when initialized on the
kini = 30 level with N30 = 1 at τ ≡ ∆Ωt = 0. The
solid lines correspond to the coupling of form |Apq|2 =

g2e−γ|p−q|, |Br|2 = r [16], and Γ0 ≡ 4π
ℏ2 ν0g

2 = 0.01∆Ω, with
γ = 1. The dashed lines on the other hand correspond to the
coupling 4π

ℏ2 |Apq|2|Br|2 = 0.03 for all p, q, r.

test the analytical predictions by plotting the distribu-
tion at a time where populations are stable in time, here
in Fig. 3 at τ = 150 for the couplings with the same
set of parameters as above. In Fig. 3 (a) we present
these asymptotic populations n(Ωk) vs k. To test the
results against the predicted ones, we plot in Fig. 3
(b) n(Ωk)

−1 + 1 vs k for three different initial values of
kini = 10, 30 and 100, demonstrating exponential depen-
dence over nearly 50 orders of magnitude. For compari-
son, we show nB(Ωk)

−1 +1 = eβℏΩk where β is obtained
by equating Uini from Eq. (8) with Ufin either from Eq.
(9) (accurate, dashed line) or from Eq. (11) (integral
approximation, dotted line). The first one coincides per-
fectly with the numerical n(Ωk)

−1+1 over all k, whereas
the approximation becomes less accurate for lower kini as
expected.

Discussion: Our non-linear system loses information of
its initial state, apart from its total energy, thus exhibit-
ing full thermalization. This is contrary to several other
model systems, like a one-dimensional chain of hard-core
bosons [17] or quadratically coupled two-level systems
[18]. They relax to their maximum entropy state [17, 20]
according to the principle of Generalized Gibbs Ensem-
ble [17, 19, 20], still remembering the initial state even at
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FIG. 3. Long term asymptotic distribution of oscillator mode
populations in form n(Ωk)

−1 + 1 for three different initial
states, kini = 10, 30 and 100. The symbols are from the nu-
merics, the dashed lines are the exact Bose-Einstein distribu-
tions assuming energy conservation, and the dotted line is the
approximate result based on Eq. (11).

long times due to, e.g., the excitation number (and en-
ergy) conservation in the latter model. In our analysis we
employed the perturbative approach (Kubo formula, Eq.
(2)) and the continuum approximation of states when se-
curing the energy conservation in the step between Eqs.
(12) and (13) in SM. The implication of the latter ap-
proximation is still not quite clear to us, and it remains
to be seen in further work, whether the true thermaliza-
tion without Poincare recoveries can be achieved only in
multimode resonators with very small free spectral range
∆Ω [21, 22], and what determines this condition. We
find an analogous situation in the problem of electron-
electron relaxation [10], where in metallic samples the
density of states is large, of the order of inverse 1 mK,
due to the large number of electrons, securing internal
thermalization. Similarly, a long (1 - 100 m) supercon-
ducting waveguide yields a free spectral range of the same
order. Moreover, superconducting waveguides can have
quality factors in excess of 105, lending a regime of quasi-
isolation over times of order 1 s. Therefore long nonlinear
superconducting waveguides [22] could serve as a testbed
for our model. In summary, solid state systems, in par-
ticular superconducting quantum circuits provide a new,

highly controllable pathway to the studies of thermaliza-
tion in quantum regime.
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Supplemental Material

Relaxation of a multilevel system by three-wave
mixing

The total Hamiltonian of a multilevel system (cavity)
reads

Ĥ = Ĥ0 + V̂ , (12)

where Ĥ0 =
∑N

j=1 ℏΩja
†
jaj is the non-interacting Hamil-

tonian.

V̂ =
∑
k,l,m

(Mklma†ka
†
l am +M∗

klma†malak) (13)

presents the three-wave coupling Hamiltonian between
the cavity modes. Number operator for the j:th level
of the cavity is given by N̂j = a†jaj and its expectation

value is denoted by n(Ωj) ≡ ⟨N̂j⟩. In order to find the
kinetic equation for n(Ωj), we start with the time rate of

change of the operator N̂j given by

˙̂
Nj =

ı

ℏ
[V̂ , N̂j ] =

ı

ℏ
∑
k,l,m

{
Mklm[a†ka

†
l am, a†jaj ] +M∗

klm[a†malak, a
†
jaj ]

}
. (14)

For bosonic modes where we have [ai, a
†
j ] = δij , Eq. (14) reads

˙̂
Nj =

ı

ℏ
∑
k,l

{
Mklja

†
ka

†
l aj −Mkjla

†
ja

†
kal −Mjlka

†
ja

†
l ak +M∗

jlka
†
kalaj +M∗

kjla
†
l akaj −M∗

klja
†
jalak

}
. (15)

Next we use the Kubo formula in the interaction picture
as

ṅ(Ωj) = − ı

ℏ

∫ 0

−∞
dt′⟨[ ˙̂Nj , V̂I(t

′)]⟩0, (16)

where V̂I(t) = eiĤ0t/ℏV̂ e−iĤ0t/ℏ, and ⟨·⟩0 denotes aver-
aging in the non-interacting system. Substituting the
expresions of Eq. (15) and the coupling term in the in-
teraction picture in Eq. (16), we will have twelve terms.
Here, we use one of these terms as an example to illus-
trate the derivation of the complete expression for ṅ(Ωj).
This ”first” term in the integrand of Eq. (16) reads

1st =
1

ℏ2
∑
k,l

∑
k′,l′,m′

MkljM
∗
k′l′m′⟨a†ka

†
l aja

†
m′al′ak′⟩eı(Ωm′−Ωl′−Ωk′ )t′ . (17)

Applying the Wick’s theorem for the expectation values of bosonic operators we have

1st =
1

ℏ2
∑
k,l

∑
k′,l′,m′

MkljM
∗
k′l′m′

{
⟨a†kaj⟩⟨a

†
l al′⟩⟨a

†
m′ak′⟩+ ⟨a†kaj⟩⟨a

†
l ak′⟩⟨a†m′al′⟩ (18)

+⟨a†kal′⟩⟨a
†
l aj⟩⟨a

†
m′ak′⟩+ ⟨a†kal′⟩⟨a

†
l ak′⟩⟨aja†m′⟩+ ⟨a†kak′⟩⟨a†l aj⟩⟨a

†
m′al′⟩+ ⟨a†kak′⟩⟨a†l al′⟩⟨ajam′⟩

}
eı(Ωm′−Ωl′−Ωk′ )t′ .

Since we have ⟨a†a⟩ = n(Ω) and ⟨aa†⟩ = [1 + n(Ω)], Eq. (18) reads
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1st =
1

ℏ2
{∑

l,k′

MjljM
∗
k′lk′ n(Ωj)n(Ωl)n(Ωk′)e−ıΩlt

′
+

∑
l,l′

MjljM
∗
ll′l′ n(Ωj)n(Ωl)n(Ωl′)e

−ıΩlt
′

+
∑
k,k′

MkjjM
∗
k′kk′ n(Ωk)n(Ωj)n(Ωk′)e−ıΩkt

′
+

∑
kl

MkljM
∗
lkj n(Ωk)n(Ωl)[1 + n(Ωj)]e

ı(Ωj−Ωk−Ωl)t
′
+

∑
kl′

MkjjM
∗
kl′l′ n(Ωk)n(Ωj)n(Ωl′)e

−ıΩkt
′
+

∑
kl

MkljM
∗
klj n(Ωk)n(Ωl)[1 + n(Ωj)]

}
eı(Ωj−Ωl−Ωk)t

′
. (19)

By following the same procedure, we can derive the re-
maining eleven terms. Combining them all and substi-

tuting into Eq. (16), and carrying out the integral, we
obtain

ṅ(Ωj) =
4π

ℏ2
∑
k,l

{
2|Ajk|2|Bl|2

[
n(Ωl) + n(Ωj)n(Ωl) + n(Ωk)n(Ωl)− n(Ωj)n(Ωk)

]
δ(Ωl − Ωj − Ωk) (20)

−|Akl|2|Bj |2
[
n(Ωj) + n(Ωj)n(Ωk) + n(Ωj)n(Ωl)− n(Ωk)n(Ωl)

]
δ(Ωj − Ωk − Ωl)

}
,

where we express the coupling term in the form Mjkl ≡
AjkBl. Replacing

∑
l on all possible modes by the inte-

gral
∑

l → ν0
∫ Ωmax

0
dΩl, where ν0 is the density of modes

and Ωmax is the frequency of the highest mode consid-
ered, we have finally

ṅ(Ωj) =
4π

ℏ2
ν0
{ N∑

k=1

2|Ajk|2|Bj+k|2
[
n(Ωj +Ωk) + n(Ωj)n(Ωj +Ωk) + n(Ωk)n(Ωj +Ωk)− n(Ωj)n(Ωk)

]
−

j−1∑
k=1

|Ak,j−k|2|Bj |2
[
n(Ωj) + n(Ωj)n(Ωk) + n(Ωj)n(Ωj − Ωk)− n(Ωk)n(Ωj − Ωk)

]}
. (21)

Quadratic coupling

If we assume quadratic coupling

V̂ =
1

2

∑
p ̸=q

gpq(ap + a†p)(aq + a†q), (22)

instead of the three-wave mixing (Eq. (13)), we find by
a similar analysis

˙̂
Nj =

ı

ℏ
∑
p

(gpj + gjp)(apaj + a†paj − a†jap − a†ja
†
p). (23)

With Eq. (16) we then obtain

ṅ(Ωj) =
2π

ℏ2
∑
p

(gpj+gjp)
2[n(Ωp)−n(Ωj)]δ(Ωp−Ωj) = 0,

(24)
demonstrating absence of relaxation in this case.
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