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Abstract: By adapting previously known arguments concerning Ricci flow and the c-

theorem, we give a direct proof that in a two-dimensional sigma-model with compact

target space, scale invariance implies conformal invariance in perturbation theory. This

argument, which applies to a general sigma-model constructed with a target space metric

and B-field, is in accord with a more general proof in the literature that applies to arbi-

trary two-dimensional quantum field theories. Models with extended supersymmetry and a

B-field are known to provide interesting test cases for the relation between scale invariance

and conformal invariance in sigma-model perturbation theory. We give examples showing

that in such models, the obstructions to conformal invariance suggested by general argu-

ments can actually occur in models with target spaces that are not compact or complete.

Thus compactness of the target space, or at least a suitable condition of completeness, is

necessary as well as sufficient to ensure that scale invariance implies conformal invariance

in models of this type.
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1 Introduction

The first part of this article is a general comment on the relation between scale invariance

and conformal invariance for two-dimensional sigma-models. The second part is a specific

application to models with extended supersymmetry.

Consider a two-dimensional nonlinear sigma-model on R
2 with target space M , de-

scribed by local coordinates XK and classical metric GIJ(X
K). For the case that the only

field considered on M is the metric, the action is

I =
1

4πα′

∫

R2

d2xGIJ∂αX
I∂αXJ . (1.1)

Sigma-model perturbation theory is an expansion in powers of α′. At one-loop order,

renormalization requires a counterterm proportional to the Ricci tensor RIJ of M , as

originally found by Friedan [1]. However, as also explained by Friedan, one is interested

in the metric of M only up to a diffeomorphism of M , and therefore the condition to

have a fixed point of the renormalization group is not that RIJ should vanish but rather

that a counterterm
∫
d2xRIJ∂αX

I∂αXJ can be eliminated by a change of coordinates on
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M . The condition that this counterterm can be eliminated by an infinitesimal coordinate

transformation δXI ∼ V I(X) is

RIJ = DIVJ +DJVI . (1.2)

The condition for conformal invariance of the sigma-model is, however, stronger. At

one-loop order, conformal invariance requires

RIJ = −2DIDJΦ , (1.3)

where Φ is a scalar field on M , the dilaton [2–4]. In other words, V must be a gradient:

VI = −∂IΦ , (1.4)

for some function Φ. For a detailed explanation of the relation between the conditions

(1.2) and (1.3), as well as the generalization of these conditions to include a B-field1 in the

sigma-model, see for example [5].

As explained by Hull and Townsend [6] and Polchinski [7], eqn. (1.2) is the condition

for global scale invariance of the nonlinear sigma-model, while eqn. (1.3) is the condition

for local conformal invariance. This raises the question of whether, in general, scale invari-

ance implies conformal invariance for unitary quantum field theories. In two dimensions,

Polchinski showed that this question is closely related to the Zamolodchikov c-theorem [8],

which asserts that the central charge monotonically decreases under renormalization group

flow to the infrared. Indeed, by adapting the original proof of the c-theorem, Polchinski

was able to give an abstract general proof that in a two-dimensional unitary quantum field

theory with a discrete spectrum of operator dimensions, scale invariance always implies

conformal invariance. This argument did not have a straightforward generalization to di-

mensions d > 2, but eventually it was found that also in four dimensions the question

of relating scale invariance and conformal invariance is closely related to monotonicity of

renormalization group flow [9].

In the context of sigma-models, the assumption of a discrete spectrum of operator

dimensions holds if the target space M is compact (and smooth, as we will always assume).

One would hope that in sigma-model perturbation theory, one could demonstrate the

relation between scale invariance and conformal invariance in a concrete way, rather than

relying on Polchinski’s abstract general argument. For sigma-models with compact target

space and noB-field, Polchinski was able to give such a concrete argument at one-loop order

by citing an earlier mathematical result of Bourguignon [10]. Bourguignon had proved that

if a metric G on a compact manifold M satisfies RIJ = DIVJ +DJVI for some V , then in

fact RIJ = 0. Hence the condition for conformal invariance is satisfied, with constant Φ.

This was a nice result, but it had two drawbacks: it does not generalize in any obvious

way in the presence of a B-field, or in higher orders of sigma-model perturbation theory.

Here, we will explain an alternative approach that does give a general result relating scale

1The present article is concerned only with sigma-model perturbation theory, in which flat B-fields

(which locally can be gauged away) are irrelevant. Hence B-fields are always assumed to be non-flat; in

other words, H = dB is always assumed to be non-zero.
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invariance and conformal invariance for sigma-models, to all orders and in the presence of

a B-field. The argument will be a simple adaptation of results of Perelman [11] on the

Ricci flow [12], as extended by Oliynyk, Suneeta, and Woolgar [13] to include a B-field.

As in Polchinski’s work, we again find that the question of showing that scale invari-

ance implies conformal invariance is closely related to the c-theorem. Indeed, Perelman’s

construction gives a way to prove the c-theorem in sigma-model perturbation theory [13–

15]. In some ways, this construction refines the idea of interpreting the central charge of a

sigma model as the spacetime effective action [16, 17].

Perelman was not studying two-dimensional field theories. Rather, following a program

initiated earlier by Hamilton [12], Perelman was using Ricci flow to prove the Poincaré

conjecture (which asserts that a closed and simply-connected three-manifold is a three-

sphere). Ricci flow is the flow on the space of metrics on a manifold M defined by2

dGIJ

dt
= −2RIJ , (1.5)

where t is an auxiliary “time” coordinate.

Up to the normalization of the parameter t, Ricci flow is the one-loop approximation to

the renormalization group flow of the sigma-model; increasing t represents the flow towards

the infrared. To shorten a rather long story (for a detailed account, see [18]), to use Ricci

flow to prove the Poincaré conjecture involves showing that the Ricci flow tends to simplify

the geometry. This could not happen if the Ricci flow has periodic orbits. So a step toward

understanding Ricci flow and eventually proving the Poincaré conjecture was to prove that

Ricci flow is in some sense monotonic, with no periodic orbits. In proving this, Perelman

arrived at what can be interpreted [13–15] as a proof of the c-theorem in sigma-model

perturbation theory.

Perelman also had to consider metrics that satisfy RIJ = DIVJ + DJVI for some

vector field V on M . Mathematically, manifolds endowed with such metrics – or for brevity

sometimes the metrics themselves – have been called (steady3) Ricci solitons; they were first

studied in [19]. If V is the gradient of a scalar function, the Ricci soliton is called a gradient

Ricci soliton. Ricci solitons are important because they are associated to singularities that

can develop under Ricci flow; for example, see the exposition in [20]. Such singularities

present the main technical difficulty in using Ricci flow to prove the Poincaré conjecture,

so as steps toward that conjecture, Perelman proved a number of results on Ricci solitons.

In general, Perelman had to consider Ricci solitons that are complete but not necessar-

ily compact. However, for our purposes, Perelman’s relevant result was a new proof that

any compact (steady) Ricci soliton is a gradient, or in other words, in terms of sigma-models

with compact target space and no B-field, scale invariance implies conformal invariance.

For a useful short explanation of Perelman’s argument, see the proof of Proposition 2.1 in

[21].

2 It is also important to slightly modify the flow by adding a “cosmological constant” term on the right

hand side, so that the flow becomes dGIJ

dt
= −2(RIJ − λGIJ ), for some constant λ. By giving λ a suitable

dependence on t, one can ensure that the volume of M remains constant under this flow.
3Metrics that satisfy the more general condition RIJ − λGIJ = DIVJ +DJVI , for some constant λ, are

also important. They are called expanding or shrinking Ricci solitons depending on the sign of λ.
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Perelman’s proof that compact Ricci solitons are gradients extends naturally to the

case that a B-field is incorporated in the sigma-model. That is not surprising, since it has

been known that the B-field can be included in a Perelman-style proof of the c-theorem [13].

Moreover, the argument based on Perelman’s approach extends to all orders of sigma-model

perturbation theory.

Thus, a Perelman-style argument gives a satisfactory understanding of the relation

between scale invariance and conformal invariance in the context of sigma-model perturba-

tion theory. Our goal in section 2 of this article, accordingly, will be to explain Perelman’s

argument and its generalization to include the B-field, along the lines of [13]. After review-

ing the Perelman-style proof of the c-theorem, we will explain the (short) additional step

that is needed to establish the relation between scale invariance and conformal invariance.

In section 3, we will reconsider a specific class of examples of the relation between scale

invariance and conformal invariance in sigma-model perturbation theory. This involves two-

dimensional sigma-models with N = 4 supersymmetry and a non-trivial B-field. For early

work on such models, see [22]-[29]. The last citation also contains a review of much of the

early literature. For sigma-models with vanishing B-field, N = 4 worldsheet supersym-

metry is associated to hyper-Kähler geometry and conformal invariance. In the presence

of a B-field, matters are not so simple. The one-loop beta functions of a general sigma-

model with extended supersymmetry and a B-field were originally analyzed in [30, 31]

and further analyzed in [6]. It turns out that (0, 4) supersymmetry of such a σ-model (or

(0, 2) supersymmetry with a generalized Calabi-Yau condition) implies one-loop finiteness

of the theory formulated on R
2. One-loop finiteness is the statement that the one-loop

counterterms (which are proportional to the β functions of the metric and the B-field but

not of the dilaton) vanish up to a field redefinition. But, as was soon understood [6], in

the presence of a B-field, one-loop finiteness is not strong enough to imply conformal in-

variance; rather, it implies a condition that generalizes the Ricci soliton equation (1.2) to

include a B-field. To put it differently, in perturbation theory, (0, 4) supersymmetry (or

(0, 2) supersymmetry and a Calabi-Yau condition) with a B-field leads naturally to scale

invariance without conformal invariance.

The question has a few variants, depending on exactly what properties one assumes

for M . One may impose conditions on M that lead to extended supersymmetry for only

right-movers (or left-movers) of the sigma-model, or one may impose conditions that lead

to extended supersymmetry for both left- and right-moving modes. The extension may be

to either N = 2 or N = 4 supersymmetry. And, in the case of extended supersymmetry

for both left- and right-moving modes, the complex structures associated to left- and right-

moving extended supersymmetry may commute or not commute, a distinction that will be

important in this article and whose importance was observed in [24]. We describe some of

the options in sections 3.1-3.4. Much of this material is a review, but some statements about

the Lee form for particular types of geometry are new. The Lee form is important because

it controls the potential obstruction to conformal invariance in scale-invariant models with

extended supersymmetry. In section 3.5, we describe some simple and relatively well-

known examples, and in section 3.6, we reconsider the relation between scale invariance

and conformal invariance in light of these examples. Once a model satisfies the one-loop
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condition for scale invariance, the one-loop condition for conformal invariance is satisfied if

and only if there exists a dilaton field Φ on the sigma-model target space M that satisfies

a certain condition. The basic conclusion in section 3.6 is that the ability to satisfy this

condition is no better than is predicted by the constraints discussed in sections 3.1-3.4. For

example, in a generic model with a B-field and (4, 4) (or less) supersymmetry, there is a

local obstruction to finding a dilaton field Φ onM with the properties that lead to conformal

invariance. If we suppose that the complex structures related to supersymmetry of left- and

right-movers commute, then there is no local obstruction to conformal invariance, but there

can still be a global obstruction. Notably, and in keeping with the general argument in [7]

as well as the specific sigma-model argument that we explain in section 2, the examples

that we can find that realize the obstruction have target spaces that are singular and not

complete. A condition of compactness or at least some sort of completeness is necessary

as well as sufficient to ensure that in these models, scale invariance implies conformal

invariance.

Another perspective on the geometries that we will discuss in section 3 is provided by

generalized complex geometry [32]. For example, the bihermitian – or in the language we

use in section 3, bi-KT – geometries that were introduced in [24] have been reinterpreted in

terms of generalized Kähler geometry [33]. This approach might very well lead to further

results about the Lee form, but will not be considered in the present article. When the

article was substantially finished, we learned of recent work [34] in which the Ricci flow –

generalized to include the B-field as in [13] – is studied from the point of view of generalized

geometry. Our result on the relation between conformal invariance and scale invariance in

leading order is actually equivalent to Corollary 6.11 in that reference.

2 Scale and Conformal Invariance in Sigma-Model Perturbation Theory

2.1 Preliminaries

The fields that are common to all closed-string theories are the metric GIJ , with Riemann

tensor RIJKL, the B-field, which is a two-form with three-form field strength H = dB,

and the dilaton Φ. (It is straightforward to include in the following also the massless gauge

fields of the heterotic string, or a “cosmological constant” term proportional to D − 26,

where D is the target space dimension. Either of these additions just modifies the potential

in the effective Schrödinger equation that we will encounter.) In Euclidean signature, up

to an overall constant that can be absorbed in an additive shift of Φ, the standard action

for these fields, in leading order in α′, is

S(G,B,Φ) =

∫
dDX

√
Ge−2Φ

(
−R− 4GIJDIΦDJΦ+

1

12
H2

)
. (2.1)

A noteworthy fact about this action is that the kinetic energy GIJDIΦDJΦ of the dilaton

field has a coefficient of the wrong sign. That is not true of the other fields. The H2 term

in the action has a positive coefficient, and in Euclidean signature the standard Einstein-

Hilbert action is a negative multiple of the scalar curvature R.
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Before concluding that the theory must be pathological, we should pause and note that

pure Einstein gravity has the same feature [35]. Indeed, if one expands the Einstein-Hilbert

action −
∫
dDX

√
GR around a classical solution, one finds that the kinetic energy for the

conformal mode of the metric, that is for a rescaling of the metric by G → eφG, is negative.

Going back to the string theory case, if the action S is expanded around a classical

solution, one finds that just one linear combination of the two modes φ and Φ has a kinetic

energy of the wrong sign. The kinetic energy for the two modes φ and Φ is associated to

a quadratic form with one positive and one negative eigenvalue.

In Einstein gravity, Gibbons, Hawking, and Perry [35] suggested to deal with the wrong

sign kinetic energy of the conformal mode by aWick rotation φ → iφ. This amounts roughly

to saying that one should maximize the action as a function of φ instead of minimizing it.

Carrying over this idea to the string theory case, one might arrive at Perelman’s idea of,

roughly, maximizing S as a function of Φ, to obtain a well-behaved functional of the other

fields. To see that this could work, consider a quadratic form Q(x, y) = ax2 + 2bxy + cy2

in two variables x, y, with coefficients a, b, c chosen so that ac − b2 < 0, ensuring that Q

has indefinite signature. If c < 0, we cannot minimize Q as a function of y for fixed x, but

we can maximize it. The maximum of Q for fixed x is 1
c (ac − b2)x2. Since c and ac − b2

are both assumed negative, this is a positive function of x.

Before discussing in what sense one can maximize S as a function of Φ, we follow

Perelman [11] and the extension of Perelman’s computation to include the B-field [13], and

rewrite S as follows:

S(G,B,Φ) = −
∫

dDX
√
Ge−Φ

(
−4∆2 +R− 1

12
H2

)
e−Φ . (2.2)

Here ∆2 = GIJDIDJ is the scalar Laplacian. We do not literally want to maximize S as

a function of Φ, because the maximum would be attained for Φ → ±∞ and would be 0

or ∞, depending on the other fields. Instead Perelman’s approach is to maximize S as a

function of Φ under the constraint4
∫
dDX

√
Ge−2Φ = 1. Including a Lagrange multiplier

λ, a maximum of S under the constraint is an extremum of

S′ = −
∫

dDX
√
Ge−Φ

(
−4∆2 +R− 1

12
H2

)
e−Φ + λ

(∫
dDX

√
Ge−2Φ − 1

)
. (2.3)

Extremizing this with respect to Φ, we learn that e−Φ must be an eigenfunction of the

Schrödinger-like operator −4∆2 +R− 1
12H

2 with eigenvalue λ:

(
−4∆2 +R− 1

12
H2

)
e−Φ = λe−Φ . (2.4)

Of course, e−Φ is positive-definite. A Schrödinger-like operator has a unique normalized

positive-definite eigenfunction, namely the ground state. This ground state is the unique

extremum of S under the constraint, and in particular it is the absolute maximum.

4We consider compact manifolds only, so that
∫
dDX

√
Ge−2Φ < ∞. However, see [14] for a variant of

this argument suitable for complete Riemannian manifolds of infinite volume.
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Thus the constrained maximum of S(G,B,Φ) as a function of Φ for fixed G and

B always exists and is unique. Because of this uniqueness, and general properties of

elliptic partial differential equations, the maximum varies smoothly as a function of G and

B. Therefore, S(G,B) = S(G,B,Φ(G,B)), where Φ is regarded as a function Φ(G,B),

evaluated at the constrained maximum of S, is a smooth function of G and B.

2.2 Monotonicity of Renormalization Group Flow

To see that S(G,B) has the properties of a c-function is a simple consequence of standard

formulas for the relation between the variation of S(G,B,Φ) and the beta functions. There

is one important detail, however. It is most useful to begin with the formula for the variation

of S under a change of G and B, keeping fixed not Φ but Φ̂ = Φ− log
4√
G. Though we do

not have a completely satisfactory a priori explanation for why this procedure gives the

best results, the following is suggestive.

In Perelman’s approach, e−Φ is treated as a quantum mechanical wavefunction, a

vector in a Hilbert space of square integrable functions on the spacetime M . However,

there is not really a natural Hilbert space of L2 functions; the inner product in this Hilbert

space depends on the measure dDX
√
G, which depends on the metric G. Instead, on

any smooth manifold M there is a completely natural Hilbert space of L2 half-densities.

A half-density is the square root of a measure or density; in other words, it transforms

under coordinate changes as the square root of a density. In the present context, e−Φ is a

function but e−Φ̂ = e−Φ 4√
G is a half-density. The norm of the half-density e−Φ̂ is simply∫

M dDXe−2Φ̂ with no structure required to make sense of this integral beyond the fact that

M is a smooth manifold.5 It turns out that the most useful procedure is to vary G and B

keeping fixed not the function Φ but the quantum state e−Φ̂.

Bearing in mind that we want to vary G and B keeping fixed Φ̂ rather than Φ, the

standard relation between the action S and the sigma-model β functions can be written:

δS

δGIJ

∣∣∣∣
Φ̂

= e−2Φ̂βIJ
G = e−2Φ̂

(
RIJ − 1

4
HI

KLH
JKL + 2DIDJΦ

)

δS

δBIJ

∣∣∣∣
Φ̂

= e−2Φ̂βIJ
B = e−2Φ̂

(
1

2
DKHKIJ −DKΦHKIJ

)
. (2.5)

Here βG and βB are the beta functions that appear in the renormalization group equation

for the evolution of G and B:

dGIJ(X)

dt
= −βG,IJ(X)

dBIJ

dt
= −βB,IJ(X) . (2.6)

There is a similar formula for δS/δΦ, but we do not need it as we will be evaluating S at

an extremum with respect to Φ. Note that extremizing S with respect to Φ at fixed G and

B is the same as extremizing S with respect to Φ̂ at fixed G and B. From eqn. (2.5), it

5In fact, a smooth structure on M is more than is needed here.
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follows that

δS

δGIJ
= e−2Φ̂βIJ

G

δS

δBIJ
= e−2Φ̂βIJ

B . (2.7)

This is true because S(G,B) = S(G,B,Φ(G,B)), where Φ(G,B) is such that

δS(G,B,Φ)

δΦ

∣∣∣∣
Φ=Φ(G,B)

= 0 . (2.8)

A statement equivalent to eqn. (2.7) is that in a first order variation of G and B, one has

δS =

∫
dDXe−2Φ̂

(
βIJ
G δGIJ + βIJ

B δBIJ

)
. (2.9)

The monotonicity of renormalization group flow is an immediate consequence of eqns.

(2.6) and (2.9):

dS

dt
= −

∫
dDXe−2Φ̂

(
βG,IJβ

G,IJ + βB,IJβ
B,IJ

)
≤ 0 , (2.10)

This establishes a version of the c-theorem, to lowest order in sigma-model perturbation

theory.

2.3 Why Not “Einstein” Flow?

Before going on, let us ask why, from Perelman’s point of view, it was necessary to include

the dilaton in this analysis. Perelman wanted a monotonicity result for the Ricci flow

dGIJ

dt
= −2RIJ . (2.11)

It would have been ideal if this could be interpreted as gradient flow with respect to

a multiple of the Einstein-Hilbert action −
∫
dDx

√
GR. However, that is not the case;

gradient flow with respect to the Einstein-Hilbert action would give instead

dGIJ

dt
= −2

(
RIJ − 1

2
GIJR

)
. (2.12)

But why did Hamilton [12] and following him Perelman [11] not consider the “Einstein”

flow (2.12) instead of the Ricci flow (2.11)? The answer to this question is precisely that

the conformal mode appears in the Einstein-Hilbert action with the wrong sign. The

Ricci flow equation (2.11) is a parabolic differential equation, similar to the heat equation.

Integrated forward in time, it tends to smooth irregularities in the metric, evolving in the

direction of simplification (once certain singularities that present the main difficulties in the

theory are excised). Because the conformal mode enters the Einstein-Hilbert action and

the corresponding equations of motion with the wrong sign, the “Einstein” flow equation

has the opposite effect on the conformal mode: it magnifies irregularities. Starting with
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generic smooth initial data, the “Einstein” flow equation cannot be integrated forward in

time for any non-zero time interval, just as the heat equation and the Ricci flow equation

cannot be integrated backwards in time.

So one would want to to eliminate the conformal mode before interpreting the “Ein-

stein” flow as a gradient flow. Could one do this by maximizing the Einstein-Hilbert action

with respect to the conformal mode, under a constraint on the volume, similarly to what

Perelman did with the dilaton in the case of the string effective action? Trying to do

this leads to the Yamabe problem, a celebrated and much-studied problem in differential

geometry [36]. There is a very elegant general theory of the Yamabe problem, but for

the purposes of finding a c-theorem, this theory is not very satisfactory: in general, the

volume-constrained extremum of the Einstein-Hilbert action with respect to the conformal

factor is not unique, and the absolute maximum can jump discontinuously as the metric is

varied. The crucial step in Perelman’s work that would not go through in the absence of

the dilaton is that the problem of constrained maximization of the action with respect to

the wrong-sign mode always has a unique and smoothly varying solution.

2.4 Scale Invariance and Conformal Invariance

Finally we will explain the small additional step that is needed to explain the relation be-

tween scale-invariance and conformal invariance. The condition for scale-invariance is not

that βG and βB must vanish, but that they must vanish up to an infinitesimal diffeomor-

phism generated by a vector field V along with a B-field gauge transformation generated

by a one-form Λ. Under the action of V and Λ, the variation of G and B is

δGIJ = DIVJ +DJVI , δBIJ = V KHIJK + ∂IΛJ − ∂JΛI . (2.13)

Thus the condition for global scale-invariance is

βG, IJ = DIVJ +DJVI , βB IJ = V KHIJK + ∂IΛJ − ∂JΛI . (2.14)

The condition for local conformal invariance is instead βG = βB = 0, in other words,

the same condition but with V = Λ = 0. By the Curci-Paffuti relation [17], if βG =

βB = 0, then βΦ is a constant (the central charge) and conformal invariance holds. So

to demonstrate that scale invariance implies conformal invariance in the lowest order of

sigma-model perturbation theory, we have to show that if the condition (2.13) for global

scale invariance holds, then in fact the same condition holds with V = Λ = 0 and the

model is conformally invariant in this order.

This is an immediate consequence of facts already stated plus the fact S is invariant

under diffeomorphisms and B-field gauge transformations. That invariance of S means

that δS vanishes in first order if G and B are varied as in eqn. (2.13). Since in general δS

is given by eqn. (2.9), the condition that it vanishes if the variations δG and δB are those

produced by a vector field V and a one-form Λ gives

0 =

∫

M
dDXe−2Φ̂

(
βIJ
G (DIVJ +DJVI) + βIJ

B

(
V KHIJK + ∂IΛJ − ∂JΛI

))
. (2.15)
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This is just a statement of diffeomorphism and gauge invariance and holds irrespective of

any equations of motion. In a globally scale-invariant model, we have eqn. (2.14), and

therefore

0 =

∫

M
dDXe−2Φ̂

(
βIJ
G βGIJ + βIJ

B βB IJ

)
. (2.16)

This implies that βG = βB = 0, and conformal invariance holds.

2.5 Higher Orders

Both for the c-theorem and for the relation between scale invariance and conformal invari-

ance, we have presented up until this point arguments that are valid in lowest order of

sigma-model perturbation theory. However, the nature of the construction is such that the

conclusions automatically apply to all orders.

We used two facts: the relation between the spacetime effective action S(G,B,Φ) and

the sigma-model beta functions, and the existence of a unique maximum of S(G,B,Φ)

as a function of Φ keeping G and B fixed. The relationship between the effective action

and the beta functions holds to all orders [17]. (See [37] for a recent discussion.) As

for the existence and uniqueness of a maximum of the spacetime effective action as a

function of Φ, because the maximum exists and is unique and nondegenerate in lowest

order of perturbation theory, it automatically persists (with perturbative modifications) to

all orders in perturbation theory.

To elaborate slightly on this point, in general consider a set of real variables ~φ =

(φ1, · · · , φk) and a system of possibly nonlinear equations Fi(~φ) = 0, i = 1, · · · , k. A

solution ~φ = ~φ0 of the equations Fi(~φ) is said to be nondegenerate if det ∂Fi

∂φj

∣∣∣
~φ=~φ0

6= 0.

Equivalently, a solution is nondegenerate if the linear equation that one gets by linearizing

the equation F (~φ) = 0 around the given solution has no zero-mode. In general, if a solution
~φ = ~φ0 of an equation F (~φ) = 0 is nondegenerate, then the existence of this solution is

stable against sufficiently small perturbations to F : as F is varied, the solution ~φ = ~φ0 will

move but, for sufficiently small perturbations and in particular in perturbation theory, will

not disappear.

If instead of a finite set of variables, we consider a field Φ(X) on some manifold M ,

the same statement holds for a solution of an elliptic differential equation F (Φ(X)) = 0. A

solution is called nondegenerate if the linear equation obtained by linearizing around the

given solution has no nonzero solution. A nondegenerate solution is always stable in the

sense that it varies smoothly and remains nondegenerate under a suitable class of variations

of F . In particular, this is true for arbitrary perturbative modifications of F .

In the preceding analysis, the equation that is solved to maximize the effective action

as a function of Φ was the equation that says that e−Φ is the normalized positive ground

state wavefunction of a certain Schrödinger operator. The Schrödinger equation is linear,

and nondegeneracy of the solution for Φ is just the well-known fact that the ground state

of a Schrödinger operator of the sort that we encountered is nondegenerate.

Therefore, the conclusions about the c-theorem and the relation between scale invari-

ance and conformal invariance hold to all orders of sigma-model perturbation theory. The

reason that we do not make a claim beyond perturbation theory is primarily that although
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a sigma-model with target M can be constructed order by order in perturbation theory for

any M , the conditions under which this sigma-model exists nonperturbatively are in gen-

eral not fully understood. Hence it appears that one does not have a satisfactory framework

to make a nonperturbative claim in general.

3 Geometry and Worldsheet Supersymmetry

Worldvolume supersymmetry in a sigma-model with target space M is intimately related

to the geometry of M . For a generic Riemannian target space M , one can construct a

model with (1, 1) supersymmetry. In the absence of a B-field, this is promoted to (2, 2)

supersymmetry if M is Kähler [38] and to (4, 4) supersymmetry if M is hyper-Kähler [39].

Under the same conditions, (0, 1) supersymmetry is promoted to (0, 2) or (0, 4).

In the presence of a B-field, there is a richer and more complicated story, leading to

the construction of supersymmetric sigma-models with skew-symmetric torsion H = dB

and with (p, q) supersymmetry for various values of (p, q). For early work on such models,

see [22]-[29].

For our purposes in this article, what is relevant is that, as observed long ago [6, 7],

supersymmetric sigma-models with torsion provide an interesting test case for the relation

between scale invariance and conformal invariance. In sections 3.1-3.5, we explain some

background on such models and describe some simple examples. In section 3.6, we then

consider the relationship between scale invariance and conformal invariance in the context

of these examples. The basic conclusion is as predicted in [7] and is in accord with the

explicit proof that we have given in section 2.4 for sigma-models with a B-field: although

geometries can be constructed that satisfy the perturbative conditions for scale invariance

without conformal invariance, the examples that we are able to construct are non-compact

and singular.

3.1 Kähler Geometry with Torsion

A hermitian manifold is a Riemannian manifold M of even dimension D = 2n with a metric

G and an integrable complex structure I, such that G is hermitian with respect to I. A

complex structure I is in particular a tensor IPQ satisfying IPQI
Q
R = −δP R, or equiva-

lently I2 = −1. Integrability means that locally M admits complex coordinates z1, · · · , zn
that are holomorphic with respect to I; transition functions relating such descriptions are

also holomorphic with respect to I. In such coordinates, I is a constant tensor:

I = IPQ∂P ⊗ dxQ = iδαβ∂α ⊗ dzβ − iδαβ∂α ⊗ dzβ . (3.1)

The condition for the metric to be hermitian is GPQI
P
KIQL = GKL; equivalently, G is

of type (1, 1), meaning that its nonzero elements in the basis dzα, dzβ are of the form

Gαβ = Gβα. Associated with I and G is the two-form I = 1
2IPQ dxP ∧ dxQ, where IPR =

GPQI
Q
R. In local complex coordinates, Iαβ = −iGαβ , Iβα = iGβα; thus in particular, I

is of type (1, 1). Note that we use the same symbol I for the complex structure and the

associated two-form; hopefully the context will always make clear what is intended. On
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the complex manifold M , the exterior derivative d has the usual decomposition d = ∂ + ∂,

where ∂ and ∂ are of respective types (1, 0) and (0, 1).

A connection is said to be compatible with the hermitian data if G and I are covariantly

constant. Such a connection necessarily has holonomy in U(n). The Riemannian connection

generically does not have this property (as I is not covariantly constant, unless M is

Kähler), but there are several natural connections for which both G and I are covariantly

constant. Of interest here is the unique such connection for which the torsion is completely

antisymmetric and thus is given by a three-form H. This connection, which we call ∇̂, can

be explicitly defined in terms of the Riemannian connection ∇ by specifying the covariant

derivative of an arbitrary vector field V :

∇̂RV
S = ∇RV

S +
1

2
HS

RTV
T , HS

RT = GSS′
HS′RT . (3.2)

Covariant constancy of G and I is the assertion that ∇̂KGLP = ∇̂KILP = 0, or more

briefly ∇̂G = ∇̂I = 0. To satisfy ∇̂I = 0, H must be determined from G and I as

H = −ιIdI = −dII , (3.3)

where dI is the exterior derivative of the Hermitian form I, ιI is the inner derivation6 with

respect to I, and dI = ιId − dιI = i(∂ − ∂). The 3-form H is of type (2, 1) ⊕ (1, 2) with

respect to the complex structure I, i.e. its (3,0) and (0,3) components vanish. This is a

consequence of ∇̂I = 0 together with the integrability of the complex structure I.

In a generic Hermitian geometry (M ;G, I), the three-form H is not closed, dH 6= 0.

However, in the application to sigma-models, at least in the context of Type II superstring

theory,7 H is interpreted as the three-form field strength of a two-form field B: H = dB.

For this, H must be closed (and additionally must satisfy a Dirac quantization condition).

A manifold M endowed with the pair G, I has been called a KT manifold (Kähler with

torsion), and if dH = 0, then M is called a strong KT manifold. The condition dH = 0 is

equivalent to

∂∂I = 0 . (3.4)

Thus, locally I = ∂Y + ∂Y , where the (1,0)-form Y is the closest analog in this situation

of the Kähler potential of a Kähler manifold [27]. Of course if H = 0, then (M ;G, I) is a

Kähler manifold.

The Lee form of a KT manifold is defined as

θ̂K ≡ DP IPQI
Q
K = −1

2
ILKHLPQI

PQ , (3.5)

where the second equality follows as a consequence of ∇̂I = 0. The Lee form θ̂ depends on

the complex structure I.

6The inner derivation ιIL of a k-form L with respect to I is ιIL = 1
(k−1)!

IKP1
LKP2...Pk

dxP1 ∧· · ·∧dxPk .
7In the heterotic string, one has H = dB + CS where CS is a Chern-Simons form. Hence in general,

dH 6= 0. We will not consider that generalization in the present article. For an early discussion of the

relation of scale and conformal invariance in that context, see [26].
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The Riemann tensor of the connection with torsion ∇̂ is defined by

∇̂P ∇̂QV
S − ∇̂Q∇̂PV

S = R̂PQ
S
TV

T −HT
PQ∇̂TV

S , (3.6)

for any vector field V . However, R̂PQ
S
T does not satisfy all of the algebraic properties of

the ordinary Riemann tensor of Riemannian geometry. If we define R̂PQST = GSS′R̂PQ
S′

T ,

then R̂PQST is obviously antisymmetric in the first two indices, and the fact that G and

I are covariantly constant with respect to ∇̂ implies that R̂PQST is antisymmetric and of

type (1, 1) in the last two indices. The type (1, 1) condition is equivalent to

R̂PQST = R̂PQS′T ′ IS
′

SI
T ′

T . (3.7)

The Bianchi identities satisfied by R̂PQST are described in appendix A.

A generic Kähler manifold is, of course, not Ricci-flat and does not satisfy the condition

of scale or conformal invariance in leading order of sigma-model perturbation theory. The

Kähler manifolds that do satisfy this condition are the Calabi-Yau manifolds. Similarly,

the strong KT manifolds that we have investigated so far generically do not satisfy the

condition for leading order scale or conformal invariance. A condition that ensures that

the leading order condition for scale invariance is satisfied is the analog of the Calabi-Yau

condition.8 Restricting the holonomy of ∇̂ to be contained in SU(n) ⊂ U(n), one gets

what has been called a strong CYT manifold (Calabi-Yau with torsion) or a generalized

Calabi-Yau manifold. The Riemann tensor of a strong CYT manifold obeys an additional

condition

R̂PQST IST = 0 . (3.8)

Eqns. (3.7) and (3.8) together with the Bianchi identity (A.2) and eqn. (3.5) yield

R̂KL = ∇̂K θ̂L . (3.9)

The symmetric and antisymmetric parts of this equation are actually equivalent to the

conditions (2.14) for global scale-invariance, with V being the vector field dual to θ̂ and

Λ = θ̂. This (or more precisely the one-loop finiteness of the sigma-model, which is a

closely related statement) was first recognized in [30] for a particular class of examples and

in [31] for the general case of a strong CYT manifold. Leading order conformal invariance

holds if and only if there is a scalar function Φ (the dilaton) such that

∇̂K θ̂L = −2∇̂K∂LΦ . (3.10)

This condition follows from but is weaker than θ̂L = −2∂LΦ. It says that if we define

V̂L = θ̂L + 2∂LΦ , (3.11)

then V̂L is covariantly constant for the connection ∇̂:

∇̂K V̂L = 0 . (3.12)

8For a local analysis of the implications of the Calabi-Yau condition in this context, see [41]. Eqns.

(6.68) and (6.69) in that paper correspond to eqns. (3.11) and (3.12) below.
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Concretely, given the definition of ∇̂, the part of this equation that is symmetric in K and

L says that V̂ L is a Killing vector field, satisfying DK V̂L +DLV̂K = 0, and the antisym-

metric part says that V̂ PHPQR + ∂QV̂R − ∂RV̂Q = 0. Together these relations say that a

diffeomorphism generated by the vector field V̂ P combined with a B-field gauge transfor-

mation generated by the one-form ΛL = V̂L leaves invariant the sigma-model background

fields G,B. If ∇̂K V̂L = 0, then in eqn. (3.9), we can replace θ̂L with −2∂LΦ, and eqn.

(3.9) becomes the one-loop condition of conformal invariance with dilaton Φ.

3.2 Hyper-Kähler Geometry with Torsion

An important special class of strong CYT manifolds are manifolds with a strong HKT

structure (also called generalized hyper-Kähler manifolds). The relation of strong HKT

manifolds to strong CYT manifolds roughly generalizes the relation between Calabi-Yau

manifolds and hyper-Kähler manifolds to the case that a B-field is present.

A hypercomplex manifold is a manifold of dimension D = 2n = 4k endowed with

three integrable complex structures Ir, r = 1, 2, 3 that satisfy the algebra of imaginary

unit quaternions: I21 = I22 = −1, I1I2 + I2I1 = 0, and I3 = I1I2. An HKT manifold

(hyper-Kähler with torsion) is a hypercomplex manifold that is endowed with a metric G

that is hermitian with respect to all three complex structures, and a connection ∇̂ with

completely antisymmetric torsion H such that G and all of the Ir are covariantly constant

with respect to ∇̂. In particular, M endowed with G and any one of the Ir (or more

generally any real linear combination
∑

r arIr with
∑

r a
2
r = 1) is a KT manifold. Thus,

just as a hyper-Kähler manifold has many Kähler structures, an HKT manifold has many

KT structures. This is the starting point of the twistor construction for HKT manifolds

[40].

A key point in the definition of an HKT manifold is that, just as the same metric G

must be hermitian for all three complex structures, all three complex structures are required

to be covariantly constant for the same connection ∇̂, and hence H must be expressible

as in (3.3) with respect to each of the complex structure Ir. This is a rather restrictive

condition. In particular, H must be of type (2, 1)⊕ (1, 2) for each of I1, I2, I3, since this is

a general property of KT manifolds.

As in the KT case, to each of the complex structures Ir we associate a two-form

Ir PQ = GPRI
R
r Q. The quaternion relations satisfies by the Ir imply, for example, that

I2+iI3 is of type (2, 0) with respect to I1 (and I2− iI3 is of type (0, 2)), along with obvious

permutations of these statements.

One can define a Lee form θ̂r for each of the complex structures Ir by the formula

(3.5). For HKT manifolds, all three Lee forms are equal [42]

θ̂ ≡ θ̂1 = θ̂2 = θ̂3 . (3.13)

One way to prove this is to use the fact that H is of type (2, 1) ⊕ (1, 2) with respect to I1
while I2 + iI3 is of type (2, 0). Hence

0 = HPQR (I2 + iI3)
TP (I2 + iI3)

QR . (3.14)

– 14 –



The real part of this relation reads

HPQRI
TP
2 IQR

2 = HPQRI
TP
3 IQR

3 , (3.15)

which says that θ̂2 = θ̂3. Similarly θ̂1 = θ̂2.

It follows from covariant constancy of G and of the Ir that the holonomy of ∇̂ is

contained in Sp(k) ⊂ SU(n) ⊂ SO(N). Accordingly, a strong HKT manifold is a special

case of a strong CYT manifold. In particular, therefore, as for any strong CYT manifold,

the curvature R̂ of a strong HKT manifold satisfies the condition (3.9) associated to scale

invariance.

There are many examples of compact homogeneous strong HKT manifolds [43, 44].

The simplest is S3 × S1, which we will discuss in section 3.5. Of course, any hyper-Kähler

manifold is a strong HKT manifold. The compact smooth strong HKT manifolds that

have been described in the literature are locally the product of a hyper-Kähler manifold

and a homogeneous strong HKT manifold. If one drops the strongness condition dH = 0,

then compact HKT manifolds can be constructed as nontrivial fibrations of a homogeneous

HKT manifold over a hyper-Kähler base, see e.g. [45]. If one relaxes the assumption of

compactness, then many more examples of strong HKT manifolds are known.

3.3 Bi-KT and Bi-HKT Geometries

In the context of sigma-models, a KT or HKT structure can lead to enhanced supersym-

metry. If the target space M of a sigma-model has a KT or HKT structure, this can be

used to enhance the right-moving supersymmetry of the sigma-model from N = 1 super-

symmetry to N = 2 or N = 4, respectively. Thus, (0, 1) supersymmetry is enhanced to

(0, 2) or (0, 4), and similarly (1, 1) supersymmetry is enhanced to (1, 2) or (1, 4).

To achieve extended supersymmetry for both left- and right-movers of the sigma-model,

M must be endowed with KT or HKT structures for both left-moving and right-moving

sigma-model modes. Although it is possible to use the same KT or HKT structure for

both left-movers and right-movers, this is not necessary. The two structures can be chosen

independently [24]. This leads to the idea of bi-KT and bi-HKT geometries.

In the bi-KT case, M is a manifold of dimension D = 2n that admits a pair of KT

structures with the same metric G but in general with different complex structures Î and Ĭ.

The two KT connections ∇̂ and ∇̆ satisfy ∇̂G = ∇̆G = 0, along with ∇̂Î = ∇̆Ĭ = 0. Since

the sigma-model only has one B-field, the two connections are determined by the same

three-form H = dB. However, since B is odd under reversing the sigma-model worldsheet

orientation (or exchanging left- and right-movers), the connections ∇̂ and ∇̆ actually are

required to have equal and opposite torsion. Thus ∇̂ is defined as in eqn. (3.2), and ∇̆ is

defined by the same formula but with H → −H. The bi-KT structure of M is said to be

strong if dH = 0, as required in the construction of a sigma-model.

Strong bi-KT geometries generically do not satisfy the scale invariance condition (2.14).

However, as in the KT case above, one can consider strong bi-CYT geometries for which

the holonomy of both ∇̂ and ∇̆ are restricted to lie in SU(n) ⊂ U(n) ⊂ SO(D). In such

a case, one has that R̂KL = ∇̂K θ̂L and R̆KL = ∇̆K θ̆L, where θ̆K = +1
2J

L
KHLPQJ

PQ.
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Moreover, the Bianchi identity (A.3) implies that R̆KL = R̂LK and so one finds that

DK(θ̂ − θ̆)L +DL(θ̂ − θ̆)K = 0 , (dθ̂ + dθ̆)KL = HP
KL(θ̂ − θ̆)P . (3.16)

The first condition says that the dual of θ̂ − θ̆ is a Killing vector field that leaves the

metric invariant, and the second condition says that this vector field also leaves the B-field

invariant up to a gauge transformation generated by the one-form θ̂+ θ̆. So θ̂− θ̆ generates

a symmetry of the sigma-model background.

A special case arises when the two CYT structures commute, i.e.

ÎKLĬ
L
P = ĬKLÎ

L
P , (3.17)

or more briefly Î Ĭ = Ĭ Î. Taking the D derivative of that equation (where D is the Rie-

mannian connection), and using the covariant constancy conditions ∇̂Î = ∇̆Ĭ = 0 as well

as the integrability of Î and Ĭ, one can show that

θ̂ = θ̆ . (3.18)

Indeed, by taking the D-covariant derivative of Î Ĭ − Ĭ Î = 0 and using ∇̂Î = ∇̆Ĭ = 0, one

finds that

HF
EAÎFDĬ

D
B −HF

EB ÎADĬ
D
F +HF

EDÎAF Ĭ
D
B +HF

EDÎ
D
B ĬAF = 0 . (3.19)

Contracting this with ÎEA leads to

ĬDB Î
F
DHFEAÎ

EA −HFDBĬ
FD +HFEDÎ

E
AÎ

D
B Ĭ

AF = 0 . (3.20)

As H is of type (2, 1) ⊕ (1, 2) with respect to Î, it satisfies the condition

HFEDÎ
E
AÎ

D
B +HBED Î

E
F Î

D
A +HAEDÎ

E
B Î

D
F −HFAB = 0 . (3.21)

Contracting this with ĬAF and moving the last two terms of the above identity to the right

hand side, one finds that

2HFEDÎ
E
AÎ

D
B Ĭ

AF = −HBEDÎ
E
F Î

D
AĬ

AF −HAFB Ĭ
AF = 0 , (3.22)

where the commutativity of the complex structures was again used in the last step. Sub-

stituting this into (3.20) and multiplying with ĬBK , we conclude that

ÎFKHFEAÎ
EA + ĬFKHFEAĬ

EA = 0 , (3.23)

establishing (3.18).

In turn, the conditions (3.16) imply that θ = θ̂ = θ̆ is closed. Therefore, at least

locally one can introduce a dilaton Φ satisfying θ = −2dΦ and thus satisfying the one-loop

condition for sigma-model conformal invariance. The condition Î Ĭ = Ĭ Î was used in [24]

as a necessary condition to describe a sigma-model in terms of chiral and twisted chiral

superfields. We will use this condition in section 3.4 in discussing off-shell supersymmetry.
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Bi-HKT geometries are defined similarly. These admit two HKT structures with re-

spect to the hypercomplex structures9 Îr and Ĭr, respectively, such that ∇̂Îr = ∇̆Ĭr = 0.

As in the bi-KT case, ∇̂ and ∇̆ are defined with equal and opposite torsion H. The bi-

HKT structure is called strong if dH = 0, as needed for application to sigma-models (at

least in Type II superstring theory). On a bi-HKT manifold, the Lee forms θ̂r and θ̆r are

independent of r by virtue of eqn. (3.13), so we denote them simply as θ̂ and θ̆. Since

bi-HKT geometry is a specialization if bi-CYT geometry, θ̂ and θ̆ are related as in (3.16).

If in addition the two HKT structures commute, meaning that Îr Ĭs = ĬsÎr for all r, s, then

it follows, specializing the bi-CYT result, that θ̂ = θ̆, so we denote either of these as θ. As

dθ = 0, the condition of one-loop conformal invariance can then be satisfied at least locally

on M .

Similar considerations hold if M admits an HKT structure Îr, ∇̂Îr = 0, and a KT

(CYT) structure Ĭ, ∇̆Ĭ = 0. If dH = 0, this pair of structures can be used to construct

a sigma-model with (2, 4) supersymmetry. In the strong CYT-HKT case, the Lee forms θ̂

and θ̆ will satisfy (3.16). If, in addition, the strong HKT and CYT structures commute,

Îr Ĭ = Ĭ Îr, then θ = θ̂ = θ̆ is a closed 1-form, and the condition of one-loop conformal

invariance can be satisfied at least locally.

3.4 Worldsheet Supersymmetry and Geometry

The fields X of a (1,1)-supersymmetric sigma-model are maps from a superspace R
2|1,1

with coordinates (u, v|ϑ±) into a Riemannian manifold M with metric G. Here (u, v) are

Grassmann even light-cone coordinates while ϑ± are the Grassmann odd coordinates of

R
2|1,1. The action of an (1,1)-supersymmetric sigma-model [23, 24] with G and B couplings

written in terms of (1,1) superfields X is

S =
1

4πα′

∫

R2|1,1

dudvd2ϑ (G+B)IJD+X
ID−X

J , (3.24)

where D± are superspace derivatives that commute with the supersymmetry generators

and satisfy D2
+ = i∂u, D2

− = i∂v and D+D− + D−D+ = 0. This action is manifestly

invariant under (1,1) supersymmetry transformations.

If the sigma-model target space admits either strong KT structure Î (∇̂Î = 0), or

strong HKT structure Îr (∇̂Îr = 0), then the action (3.24) is invariant under (1,2) or (1,4)

supersymmetry transformations, respectively. Following [24, 46], the additional supersym-

metry transformations are given by

δÎrX
K = εr ÎKr LD+X

L , (3.25)

with r = 1 for the KT case and r = 1, 2, 3 for the HKT case, where εr = εr(u, ϑ+) are

Grassmannian odd infinitesimal parameters. These can depend on the superspace coordi-

nates (u, ϑ+), as classically the action is superconformally invariant. The commutator of

two such transformations is given by

[δ
Î
, δ′

Î
]XK = −2iεrε′sδrs∂uX

K + (ε′sD+ε
r ÎKs P Î

P
r L − εrD+ε

′sÎKr P Î
P
s L)D+X

L , (3.26)

9From now on to simplify notation, we shall denote the HKT structures by only mentioning their

associated hypercomplex structures.
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where the integrability condition of the complex structures Îr has been used.10 In the

KT case, the second term in the right hand side of the commutator can be expressed

as (εD+ε
′ − ε′D+ε)D+X

K , while in the HKT case it can be expressed as δrs(ε
rD+ε

′s −
ε′sD+ε

r)D+X
K − (εrD+ε

′s + ε′sD+ε
r)ǫrs

tÎt
K

LD+X
L. In either case, the commutator

(3.26) closes to spacetime translations and supersymmetry transformations as expected.

Similarly, if the sigma-model target space admits either a strong bi-KT structure (Î , Ĭ)

or a strong bi-HKT structure (Îr, Ĭr), then the action (3.24) is invariant under (2,2) or

(4,4) supersymmetry transformations, respectively. The additional supersymmetry trans-

formations are given by

δ
Î
XK = ε̂r ÎKr LD+X

L , δĬX
K = ε̆r ĬKr LD−X

L , (3.27)

where the δÎ transformations are as in (3.25) and the infinitesimal parameters ε̆r of the δĬ
transformations may depend on the worldsheet superspace as ε̆r = ε̆r(v, ϑ−). Again this

is because the action (3.24) is classically invariant under superconformal transformations.

The commutators [δ
Î
, δ′

Î
] are given as in (3.26). The commutator [δĬ , δ

′
Ĭ
] is also given as in

(3.26) after replacing the parameters ε̂ and ε̂′ with ε̆ and ε̆′, respectively, and the D+ and

∂u derivatives on the fields X with D− and ∂v. So far, the commutators close to spacetime

translations and worldsheet supersymmetry transformations.

The remaining commutator, upon using ∇̂Îr = ∇̆Ĭs = 0, can be arranged as

[δÎ , δĬ ]X
K = ε̂r ε̆s(ÎKr P Ĭ

P
s L − ĬKs P Î

P
r L)∇̂+D−X

L , (3.28)

where r = s = 1 for bi-KT geometries and r, s = 1, 2, 3 for bi-HKT geometries. Clearly,

the commutator fails to close off-shell unless Îr and Ĭs commute. If Îr and Ĭs do commute,

the algebra of transformations (3.27) closes off-shell to (2,2) or (4,4) supersymmetry. A

similar analysis applies for (2, 4) or (4, 2) supersymmetry.

Provided that all conditions for the off-shell closure of worldsheet supersymmetry trans-

formations of a (p, q) supersymmetric sigma-model are met, one can construct a (standard)

(p, q) superfield description of the theories. The (p, q) superfields X are maps for the R2|p,q

superspace with coordinates (u, v|ϑ+0, ϑ+r, ϑ−0, ϑ−s), r = 1, . . . , q− 1 and s = 1, . . . , p− 1,

into the sigma-model target manifold M that satisfy the constraints [46, 48]

D+rX
K = ÎKr LD+0X

L , D−sX
K = ĬKs LD−0X

L . (3.29)

The conditions we have found above for the off-shell closure of the supersymmetry algebra

arise as integrability conditions for these constraint equations. A superfield action is

S =
1

4πα′

∫

R2|1,1

dudvd2ϑ0 (G+B)IJD+0X
ID−0X

J , (3.30)

where the superfields X satisfy the constraint (3.29). It can be shown that this action is

invariant under all (p, q) supersymmetry transformations.

Note that the non-linear constraints (3.29) on the fields can be linearised after an

appropriate choice of coordinates on M . For example the conditions on (0,2) and (1,2)

10Vanishing of the Nijenhuis tensors of Îr and Îs was also used to simplify their right hand side.
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superfields can be linearised using complex coordinates on M [24, 27]. However, this is

not always the case. In some models additional conditions are needed on M , which do

not arise as integrability conditions of (3.29). For example the linearisation of the con-

straints [48] for the (0,4) and (1,4) superfields requires the vanishing of the curvature of

the Obata connection of the hypercomplex structure. (The Obata connection on a hyper-

complex manifold is the unique torsion-free connection for which the complex structures

are covariantly constant; it is not metric compatible.)

3.5 Examples

Here, we shall describe in detail some examples of HKT manifolds that are useful for

illustrating the relation of scale and conformal invariance in sigma-models. We consider

first homogenous HKT structures on S3 × S1, and then we consider some deformations of

(portions of) this space. We endow11 S3 × S1 with an obvious homogeneous metric:

ds2 = 4dΩ2 + dτ2, (3.31)

where dΩ2 is a round metric on S3 of radius 1, and τ is a periodic variable with an arbitrary

period T , τ ∼= t+ T . A factor of 4 was included in eqn. (3.31) to avoid factors of 2 later;

of course, the metric in (3.31) could be rescaled by any constant factor without affecting

the HKT condition.

We recall that S3 can be identified as the SU(2) group manifold, and that the round

metric on S3 is invariant under the left and right action of SU(2) on itself. Similarly, we can

view S3×S1 as the group manifoldK = SU(2)×U(1). On this group manifold, we can pick

orthonormal bases of left- and right-invariant one-forms. The form L0 = R0 = dτ is both

left- and right-invariant, as U(1) is abelian. On S3 we can pick a basis12 of left-invariant

one-forms L1, L2, L3, normalized so that

dL1 = L2 ∧ L3, (3.32)

11There is an extensive literature on different aspects of the the S3 × S1 model, for example [47]-[51].

S3 × S1 is an example in which the Obata connection, mentioned at the end of section 3.4, has vanishing

curvature. The superfield constraints (3.29) can be linearised in this model [48] and the geometry can be

written in terms of a quaternionic coordinate Q: ds2 = (QQ)−1dQdQ. In these coordinates, the commuting

bi-HKT structure (Î−, Ĭ+), given later, is associated with left and right multiplication on Q with the

quaternionic imaginary units. The model constructed with these commuting hypercomplex structures can

be described with one chiral supermultiplet and one twisted chiral supermultiplet [49]. Twisted chiral

supermultiplets were introduced in [24].
12 Explicitly, parametrize S3 by functions y0, · · · , y3 satisfying

∑3
i=0 y

2
i = 1, and set L1 = 2(y0dy1 −

y1dy0 + y2dy3 − y3dy2), with L2 and L3 differing from this by cyclic permutations of indices 1, 2, 3. Then

dL1 = L2 ∧ L3 (along with cyclic permutations of this statement) and L1 ⊗ L1 + L2 ⊗ L2 + L3 ⊗ L3 =

4
∑

i dy
2
i = 4dΩ2. Because the Li are left-invariant, it suffices to verify these statements at the point p

defined by (y0, y1, y2, y3) = (1, 0, 0, 0). Similarly, one can take R1 = 2(y0dy1 − y1dy0 − y2dy3 + y3dy2),

with R2 and R3 obtained by cyclic permutations of indices 1, 2, 3, leading to dR1 = −R2 ∧ R3, and cyclic

permutations. The L’s and R’s are respectively left-invariant and right-invariant as they were constructed

using antisymmetric 4× 4 matrices that are respectively self-dual or anti-self-dual. As the L’s and R’s are

both orthonormal bases, L1 ∧L2 ∧L3 and R1 ∧R2 ∧R3 both equal the volume form of S3, up to sign, and

hence must be equal up to sign. A short calculation at the point p confirms that they are equal.
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and cyclic permutations of this statement. Similarly, we can pick a basis of right-invariant

one-forms R1, R2, R3, satisfying

dR1 = −R2 ∧R3 , (3.33)

and cyclic permutations. Then La, a = 0, · · · , 3 is a basis of left-invariant one-forms, and

Ra, a = 0, · · · , 3, is a basis of right-invariant ones. These bases are orthonormal, meaning

that the line element defined in eqn. (3.31) satisfies

ds2 =
3∑

a=0

La ⊗ La =
3∑

a=0

Ra ⊗Ra . (3.34)

We can define a connection ∇̂ on the tangent bundle of S3 × S1 by saying that the one-

forms La are covariantly constant, and another connection ∇̆ by saying that the one-

forms Ra are covariantly constant. From eqn. (3.2), it follows that for any one-form V

and metric compatible connection ∇̂ with completely antisymmetric torsion H, one has

∇̂IVJ = ∇IVJ − 1
2HIJKV K . Consequently, if ∇̂V = 0, then ∇IVJ − ∇JVI = HIJKV K .

Taking V = L1, and using (3.32), we find that the torsion H of ∇̂ must equal the volume

form L1 ∧ L2 ∧ L3 of S3. By the same reasoning, the torsion of ∇̆ is −R1 ∧ R2 ∧ R3. In

fact, L1∧L2∧L3 = R1∧R2∧R3 (see footnote 12), so the connections ∇̂ and ∇̆ have equal

and opposite torsion.

To find an HKT structure on S3 × S1 with connection ∇̂, what we still need is to de-

scribe a hypercomplex structure such that the complex structures are covariantly constant

with respect to ∇̂, and the metric is of type (1, 1) with respect to each complex structure.

There actually are two natural left-invariant HKT structures, compatible with the same

connection ∇̂, and differing by a choice of orientation of S1, and similarly there are two

natural right-invariant HKT structures, differing in a similar way and compatible with the

connection ∇̆.

For one left-invariant HKT structure, we can define a complex structure Î+1 by

Î+1 (L0) = L1 , Î+1 (L1) = −L0 , Î+1 (L2) = L3 , Î+1 (L3) = −L2 . (3.35)

The resulting complex structure can be described as follows. There is a left-invariant Hopf

fibration S3 → S2 with fiber S1. Taking the product with another S1, we get a fibration

S3 × S1 → S2 with fiber S1 × S1. Both the base space of this fibration S2 ∼= CP
1 and the

fiber S1 × S1 = T 2 are complex maifolds. The structure group of the fibration is the U(1)

group of rotations of the first factor of T 2 = S1 × S1, which acts holomorphically on T 2.

So the total space of the fibration, namely S3 × S1, is a complex manifold. The other two

complex structures making up the hypercomplex structure are obtained from eqn. (3.35)

by cyclic permutations of indices 1, 2, 3. They do obey the expected quaternion relations

including Î+1 Î+2 = +Î+3 .

The corresponding hermitian forms are

Î1 = L0 ∧ L1 + L2 ∧ L3 , (3.36)
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along with similar formulas obtained by cyclic permutations of indices. These hermitian

forms or equivalently the corresponding complex structures are all covariantly constant for

the connection ∇̂, since the L’s are covariantly constant. So this defines an HKT structure,

which is strong as dH = 0.

To get a second HKT structure also compatible with the same connection, we can

simply change coordinates in M by τ → −τ , resulting in L0 → −L0. However, if we merely

reverse the sign of L0 in eqn. (3.35) and the corresponding cyclically permuted formulas,

we will get three complex structures that will satisfy I1I2 = −I3, not the standard form of

the quaternion relations. We can compensate for this by reversing the sign of all the I’s.

Thus we can define a second HKT structure via the complex structure

Î−1 (L0) = L1 , Î−1 (L1) = −L0 , Î−1 (L2) = −L3 , Î−1 (L3) = +L2 , (3.37)

or equivalently the hermitian form

Î−1 = L0 ∧ L1 − L2 ∧ L3 , (3.38)

along with their cyclically permuted relatives.

We can also define a pair of right-invariant HKT structures using the same formulas

but with the L’s replaced by the R’s. Thus the complex structures are

Ĭ±1 (R0) = R1, Ĭ±1 (R1) = −R0, Ĭ±1 (R2) = ±R3, Ĭ±1 (R3) = ∓R2 , (3.39)

plus cyclic permutations, and equivalently the hermitian forms are

Ĭ±1 = R0 ∧R1 ±R2 ∧R3 , (3.40)

plus permutations.

To make a bi-HKT geometry, we can take either of the two left-invariant structures

and pair it with either of the two right-invariant structures. However, since a change of

coordinates τ → −τ exchanges the two left-invariant structures and likewise exchanges the

two right-invariant structures, there are only two essentially different cases: we can pair the

hypercomplex structure defined by Î+r with the one defined by either Ĭ+s or Ĭ−s . The two

choices differ by whether or not the two hypercomplex structures commute. Because all

the hypercomplex structures considered are left- or right-invariant, to decide if two of them

commute, it suffices to check that at a single point in S1×S3, for instance the product of any

point in S1 with the point p ∈ S3 defined in footnote 12. In the tangent space at this point,

selfdual matrices commute with anti-selfdual matrices, but selfdual or antiselfdual matrices

do not commute with matrices of the same type. Moreover, Î+r and Ĭ+s act in the tangent

space at the given point by selfdual matrices, but Î−r and Ĭ−s act by anti-selfdual matrices.

So to get a bi-HKT structure with commuting hypercomplex structures, we should pair Î+r
with Ĭ−s or Î−r with Ĭ+s . The other pairings give non-commuting hypercomplex structures.

This complete our description of the basic S3 × S1 example. In what follows, we will

consider two types of modification of this example. The two constructions differ by whether

the two hypercomplex structures commute. First we consider certain four-dimensional bi-

HKT geometries [52, 53] that admit a triholomorphic Killing vector field V that leaves
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everything invariant, i.e. LV G = LV Îr = LVH = 0 (where L is the Lie derivative). The

metric G and torsion H of the example constructed in [52] are described by

ds2 = W−1(dτ + ω)2 +Wds2S3 , H = Wdvol(S3) , (3.41)

where ds2S3 is the line element of a round three-sphere normalized as before and dvol(S3) is

the volume form of the sphere. The functionW and one-form ω are assumed to be invariant

under the symmetry generated by the Killing vector field V = ∂
∂τ , and to be related by

⋆3dω = dW , where ⋆3 is the Hodge star operator of S3. This implies, in particular, that

W must be a harmonic function on S3. Of course, W must be positive in order for the

metric (3.41) to be well-defined. An everywhere smooth harmonic function would have to

be constant, leading back to the the original S3 × S1 geometry. However, there certainly

exist functions W that are harmonic and positive on an open set M ⊂ S3×S1. Restricting

to such an open set M , this construction gives new (incomplete) strong HKT geometries.

It is convenient to use the same left-invariant one-forms Lr as before. An orthonormal

co-frame for the metric G is

E0 = W− 1
2 (dτ + ω) , Er = W

1
2Lr . (3.42)

In this frame, the Hermitian forms of the hypercomplex structure are

Î−r = E0 ∧ Er − 1

2
ǫrstE

s ∧ Et . (3.43)

The Lee form is θ̂ = W−1(dτ+ω). The dual vector field is the Killing vector field V , which

is evidently triholomorphic as it generates a symmetry that leaves invariant the hermitian

forms as well as the metric.

The same geometry (3.41) admits another HKT structure Ĭ−r with equal and opposite

torsion [53]. The Hermitian forms are

Ĭ−r = Ẽ0 ∧ Ẽr − 1

2
ǫrstẼ

s ∧ Ẽt , (3.44)

where

Ẽ0 = W− 1
2 (dτ + ω), Ẽr = W

1
2Rr , (3.45)

with Rr as before. The hypercomplex structures Ĭ−r and Î−r do not commute, since indeed

they do not commute in the special case that W is constant.

A different deformation of a portion of S3 × S1 preserves a strong bi-HKT structure

in which the two hypercomplex structures commute. Before explaining this, let us note

than in four dimensions, any hyperhermitian metric on a hypercomplex manifold M is an

HKT metric (see Lemma 1 in [54]). It is also true that any two hyperhermitian metrics

on a hypercomplex four manifold differ only by a Weyl rescaling. And since the space of

four-forms in four dimensions is one-dimensional, the strong HKT equation dH = 0 is a

single differential equation for the Weyl factor; this turns out to be a Laplace-like equation

that always has local solutions, though it may lack nonsingular global solutions.
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One can recover some well-known solutions by implementing this idea for R4 with its

standard hypercomplex structure. In fact, R4 has two standard and commuting hypercom-

plex structures, with the hermitian forms being selfdual or anti-selfdual two-forms. The

standard flat metric is hyperhermitian for these hypercomplex structures, and any other

hyperhermitian metric is conformally equivalent to this one. So we consider the metric

GIJ = e2ΦδIJ , (3.46)

with a scalar function Φ. A short calculation shows that this metric is bi-HKT, with

H = −1
2 ⋆ de

2Φ (here ⋆ is the Hodge star defined with respect to the flat metric δIJ). The

strong HKT condition dH = 0 becomes ∆2e2Φ = 0, where ∆2 =
∑4

I=1 ∂
2
I is the Laplacian

with respect to the flat metric. The Lee form is θ = −2dΦ. It is closed, as is the case for

any bi-HKT geometry with commuting hypercomplex structures, according to the general

analysis in section 3.3.

The solution associated to the NS5-brane [55–57] is13

e2Φ = 1 +
4

~X2
, ~X2 =

∑

I

(XI)2 . (3.47)

In the near horizon region, one drops the constant term and replaces this with

e2Φ =
4

~X2
. (3.48)

With or without the constant term, this gives a solution that is smooth away from the

point X = 0. The one-loop condition for conformal invariance is satisfied, with Φ as the

dilaton. The central charge is ĉ = 4.

However, we can do the following. The metric in the near horizon geometry is described

by the line element

ds2 = 4
d ~X2

~X2
. (3.49)

This is scale-invariant. So we can take the quotient by the group Z acting via X → eT/2X

(for any chosen constant T > 0). This will give a solution with target space S3 ×S1 where

S3 has radius 2 and S1 has circumference T . We have recovered the bi-HKT geometry

S3 × S1 with commuting hypercomplex structures that was described earlier. A single-

valued dilaton does not exist, since Φ is not invariant under the rescaling ofX. Nevertheless,

as explained in our earlier discussion of S3×S1, since the Lee form is covariantly constant

for the connection with torsion (in either of the two hypercomplex structures), the model

satisfies the condition for conformal invariance with constant dilaton, leading to a conformal

field theory with ĉ < 4.

At the cost of introducing some singularities, we can easily modify the construction so

that the Lee form will no longer be covariantly constant for the connection with torsion.

To do so, we simply modify Φ, preserving the fact that e2Φ satisfies the Laplace equation

13An arbitrary factor of 4 is included here for convenience.
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and is invariant under the rescaling X → eT/2X. For example, we can pick two generic

points a, b ∈ R
4 and a small parameter ǫ > 0 and take

e2Φ =
4

~X2
+ ǫ

∑

n∈Z

(
1

| ~X − enT/2a|2
− 1

| ~X − enT/2b|2

)
. (3.50)

The sum over n converges exponentially fast for n → ±∞; for n → −∞, this depends on a

cancellation between the two series with a and b. To achieve this cancellation, one of the

series must occur with a negative coefficient, as in eqn. (3.50). The solution can only be

defined on the open set M ⊂ S3 × S1 on which e2Φ > 0. For small ǫ, M can be described

approximately as the complement of a small ball around a point b ∈ S3×S1. In particular,

the fundamental group of M coincides with the fundamental group of S3 × S1, namely Z.

It remains true that Φ cannot be defined as a single-valued function on M .

3.6 Scale and Conformal invariance Revisited

A notable fact about strong HKT geometry and related geometries is that, generically,

extended worldsheet supersymmetry with a generalized Calabi-Yau condition ensures that

a sigma-model satisfies the one-loop condition for scale-invariance but does not guarantee

the one-loop condition for conformal invariance [6, 30, 31]. As we have reviewed, the

obstruction involves the Lee form θ. The one-loop condition for scale-invariance is always

satisfied, with the vector field V of eqn. (2.14) being the dual of θ, while the generator Λ of

a B-field gauge transformation is simply θ. Conformal invariance requires that θ should be

the sum of two terms: the gradient of a scalar function, and a one-form that is covariantly

constant for the connection ∇̂. Such a one-form is the dual of a Killing vector field V that

satisfies

V IHIJK + ∂JVK − ∂KVJ = 0 , (3.51)

as well as the Killing vector condition DIVJ +DJVI = 0. The gradient of a scalar function

can be interpreted as the sigma-model dilaton, and a one-form that is covariantly constant

for ∇̂ does not actually contribute in the condition R̂KL = ∇̂KθL (eqn. (3.9)) for global

scale invariance.

The one-loop condition for conformal invariance may be obstructed at two levels. It

may be impossible even locally to write θ as the sum of an exact one-form and a covariantly

constant one-form, or this may be possible locally but not globally.

In the case of a generic strong CYT or strong HKT geometry, we have found nothing

that would indicate that θ is locally the sum of an exact one-form and a covariantly constant

one-form. Hence it is reasonable to expect that generically there will be a local obstruction

to the one-loop condition for conformal invariance. On the other hand, in the important

special case of a strong bi-HKT geometry with commuting hypercomplex structures, we

proved in section 3.3 that dθ = 0. Therefore, at least locally, θ = −2dΦ for some scalar

function Φ, and the condition of conformal invariance can be satisfied at least locally, but

there might be a global obstruction.

But have we overlooked some additional constraints that follow from the geometries

in question? For example, it took a fairly elaborate argument to show in section 3.3 that
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dθ = 0 for a certain class of geometries. Might a more complete analysis place constraints

beyond those that we know? In this section, we will use the examples described in section

3.5 to show that the obstructions to conformal invariance that are allowed by the conditions

we know actually can occur.

First we consider the homogeous bi-HKT model with target space S3 × S1. This is

an example in which the one-loop condition for conformal invariance is not obstructed.

(Indeed, the sigma-model with this target space is a conformally-invariant WZW model.)

For M = S3 × S1, we found the Lee form to be θ = dτ . This is covariantly constant for

the connection with torsion. Hence the condition for one-loop (and even exact) conformal

invariance can be satisfied, with a constant dilaton that does not contribute to the beta

functions.

The model obtained this way has ĉ < 4 (since the WZWmodel with target S3 ∼= SU(2)

has ĉ < 3). Something else that we can do with the same model is to replace S1 with its

universal cover R. On the universal cover, the closed one-form θ = dτ becomes exact, so we

can achieve conformal invariance by introducing a linear dilaton, proportional to τ . This

gives a different model with a noncompact target space and ĉ = 4.

In section 3.5, we discussed two ways to make a singular perturbation of the HKT

manifold S3 × S1. Both of these constructions led to strong bi-HKT geometries, and

therefore, at least in perturbation theory,14 to models with (4, 4) supersymmetry. The two

examples differ by whether or not the two hypercomplex structures commute.

In eqns. (3.41)-(3.44), we described a strong bi-HKT deformation of an open set

M ⊂ S3×S1 in which the two hypercomplex structures do not commute. In this example,

the one-loop condition for scale-invariance cannot be satisfied even locally. The Lee form

of the connection ∇̂ is θ̂ = W−1(dτ + ω), which actually is dual to the Killing vector field

V = ∂
∂τ . There is no Killing vector field that is covariantly constant with respect to ∇̂

(for generic W , V is the only Killing vector field, and it is not covariantly constant). So to

satisfy the one-loop condition for conformal invariance, we would need a scalar function φ

such that θ̂ = 2dφ. Such a function does not exist even locally, as dθ̂ 6= 0.

On the other hand, in eqn. (3.50), we described a strong bi-HKT deformation of an

open set M ⊂ S3 × S1, with commuting hypercomplex structures. Generically, M has

no Killing vector fields, so to satisfy the one-loop condition for conformal invariance, we

need θ̂ = 2dφ for some function φ. This is possible locally, since, as follows from a general

argument explained in section 3.3, in this model θ̂ is closed. But if the parameter ǫ in

eqn. (3.50) is sufficiently small so that M inherits the fundamental group of S3 × S1,

then globally θ̂ is not exact and the condition of one-loop conformal invariance cannot be

satisfied globally.

Thus, at least for these particular questions, the general behavior is no better than

is predicted by the constraints we know. As originally suggested in [7], the examples

that show a discrepancy between the conditions for scale-invariance and for conformal-

invariance involve non-compact (and incomplete) target spaces. This is in accord with the

14The reason that we say “at least in perturbation theory” is that in both cases the perturbations

were singular and the perturbed target space is singular and noncompact. Hence it is not clear that the

corresponding sigma-models make sense nonperturbatively.
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general argument in [7] concerning two-dimensional field theories with a discrete spectrum

of operator dimensions, as well as the explicit sigma-model argument that we described in

section 2.4.

A Bianchi Identities

As we have used throughout the paper the Bianchi identities of connections with torsion,

we collect them here for completeness. The Riemann tensor R̂LN
K

P of a connection ∇̂
with torsion H is defined by

∇̂L∇̂NV K − ∇̂N∇̂LV
K = R̂LN

K
PX

P −HP
LN∇̂PV

K , (A.1)

for any vector field V . Assuming that dH = 0, the first Bianchi identities are

R̂K[LPQ] = −1

3
∇̂KHLPQ , (A.2)

and

R̂KLPQ = R̆PQKL , (A.3)

where R̂KL,PQ is the curvature of the metric-compatible connection ∇̂ with torsion H and

R̆KL,PQ is the curvature of the metric-compatible connection ∇̆ with torsion −H.

The second Bianchi identity gives

∇̂KR̂LPQW + ∇̂P R̂KLQW + ∇̂LR̂PKQW = HZ
KLR̂PZQW

+HZ
PKR̂LZQW +HZ

LP R̂KZQW . (A.4)

After contracting with the metric, this implies that

∇̂QR̂LPQW + ∇̂P R̂LW − ∇̂LR̂PW = HZQ
LR̂PZQW −HZQ

P R̂LZQW +HQ
LP R̂QW . (A.5)

A second contraction and use of eqn. (A.2) gives

∇̂LR̂KL − 1

2
DKR̂ =

1

12
DKH2 −HLP

KR̂LP . (A.6)

In these formulas, H2 = HKLPH
KLP , R̂NP = R̂LN,

L
P is the Ricci tensor, and R̂ =

GNP R̂NP is the Ricci scalar.

B Another Approach To Scale-Invariance and Conformal-Invariance

In section 2.4, we explained a proof of the relation between scale-invariance and conformal

invariance following the logic of [11, 14]. In this appendix, we will instead describe another

attempt that does not quite succeed, but curiously would succeed if one artificially adds

to the metric beta function βG a cosmological constant term −λGIJ with λ 6= 0. The

interpretation of this is not clear in sigma-models (though inclusion of this term is important

in the context of Ricci flow, as already remarked in footnote 2).
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We recall that the metric compatible connection ∇̂ with torsion H satisfies ∇̂IV
J =

DIV
J + 1

2H
J
IKV K . We will consider the scale-invariance condition in the form in which it

naturally arises in HKT geometry, but with an extra term −λGIJ added on the left hand

side:

R̂IJ − λGIJ = ∇̂IVJ . (B.1)

Here R̂IJ = R̂KI
K

J is the Ricci tensor of ∇̂. The conformal invariance condition, also with

the extra term added, is

R̂IJ − λGIJ + 2∇̂I∂JΦ = 0 . (B.2)

It turns out that if λ 6= 0, a solution of eqn. (B.1) on a compact manifold M is actually,

for suitable Φ, a solution of eqn. (B.2).

We will first discuss a direct attempt to imitate Bourguignon’s argument [10]. Using

(B.1) and taking the divergence of the Bianchi identity (A.6) with respect to ∇̂, one finds,

after some computation, that

∆2

(
−1

2
R̂+

1

12
H2

)
= V IDI

(
1

2
R̂+

1

12
H2

)
+ R̂IJ R̂

IJ − λR̂ , (B.3)

where R̂ is the Ricci scalar of ∇̂ and ∆2 = GIJDIDJ is the Laplacian. For H = λ =

0, this formula reduces to that of Bourguignon. Bourguignon’s argument was based on

applying the maximum principle to this formula.15 The H2 terms do not seem to enter in

a convenient way for this argument.

However, us try to solve the conformal invariance condition (B.2) for the dilaton Φ.

For this, consider

I =

∫

M
dDX

√
Ge−2Φ(R̂ − λG+ 2∇̂∂Φ)IJ(R̂ − λG+ 2∇̂∂Φ)IJ

=

∫

M
dDX

√
Ge−2Φ(R̂IJ R̂

IJ + 4∇̂I∂JΦR̂
IJ + 4∇̂I∂JΦ∇̂I∂JΦ

−2λR̂− 4λ∆2Φ+ 4λ2D) . (B.4)

Clearly if it can be shown that there exists a function Φ such that I = 0, the conformal

invariance condition (B.2) will be satisfied. Assuming (B.1) and after using (B.3) to sub-

stitute for the R̂IJ R̂
IJ term, and the Bianchi identity (A.6) and integration by parts to

simplify the second term, one finds that

I = 2

∫

M
dDX

√
G
(
∆2Φ− (∂Φ)2 + λΦ+

1

4
R̂+

1

24
H2
)(

−∆2e−2Φ +DI(VIe
−2Φ)

)
. (B.5)

15Assume that λ = H = 0, so that in particular there is no distinction between RIJ and R̂IJ . By taking

the trace in eqn. (B.1) and integrating over M , one learns that the average value of R is zero. In eqn.

(B.3), at a point at which R achieves its minimum, the left hand side is non-positive and the right hand

side is non-negative, so both must vanish. At this point, therefore, RIJ = 0, implying that R = 0. Hence

the minimum value of R is zero, and as the average value is also zero, it follows that R vanishes identically.

But then eqn. (B.3) implies that RIJ = 0, so that the condition of conformal invariance is satisfied with

constant dilaton. For λ = 0, the same argument implies that R̂IJ = 0 provided one of the following three

conditions is satisfied: R̂ = 0, H2 constant or R constant.
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Thus the integrand of I factorises. Clearly, I vanishes if either of the two factors vanishes.

In particular, I vanishes for Φ such that

∆2Φ− (∂Φ)2 + λΦ+
1

4
R̂+

1

24
H2 = 0 . (B.6)

In terms of the positive function W = e−Φ, this equation becomes

(
∆2 − 1

4
R̂− 1

24
H2 + λ logW

)
W = 0 . (B.7)

If λ = 0, the equation becomes linear and asserts that a certain Schrödinger operator on

the compact manifold M has W as an eigenfunction with zero eigenvalue. If this is the

case, then as W > 0, W will be the ground state wavefunction of the operator in question.

As a Schrödinger operator with a generic potential does not have a ground state energy

of 0, the equation generically does not have a solution for λ = 0. However, for λ < 0,

the left hand side of eqn. (B.7) is positive for very small positive W and negative for

very large W . That is precisely the situation in which the method of subsolutions and

supersolutions can be used to prove the existence of a solution of an equation of this kind.

For an elementary explanation of this method, see the analysis of eqn. (3.10) in [58]. So for

λ < 0, the modified equation (B.1) of scale invariance does imply the modified condition

(B.2) of conformal invariance. According to Theorem 11.3 in [59], the same is true for

λ > 0.
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