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Abstract— Open-vocabulary Temporal Action Detection
(Open-vocab TAD) is an advanced video analysis approach that
expands Closed-vocabulary Temporal Action Detection (Closed-
vocab TAD) capabilities. Closed-vocab TAD is typically confined
to localizing and classifying actions based on a predefined set of
categories. In contrast, Open-vocab TAD goes further and is not
limited to these predefined categories. This is particularly useful
in real-world scenarios where the variety of actions in videos
can be vast and not always predictable. The prevalent methods
in Open-vocab TAD typically employ a 2-stage approach,
which involves generating action proposals and then identifying
those actions. However, errors made during the first stage can
adversely affect the subsequent action identification accuracy.
Additionally, existing studies face challenges in handling actions
of different durations owing to the use of fixed temporal
processing methods. Therefore, we propose a 1-stage approach
consisting of two primary modules: Multi-scale Video Analysis
(MVA) and Video-Text Alignment (VTA). The MVA module
captures actions at varying temporal resolutions, overcoming
the challenge of detecting actions with diverse durations. The
VTA module leverages the synergy between visual and textual
modalities to precisely align video segments with corresponding
action labels, a critical step for accurate action identification
in Open-vocab scenarios. Evaluations on widely recognized
datasets THUMOS14 and ActivityNet-1.3, showed that the
proposed method achieved superior results compared to the
other methods in both Open-vocab and Closed-vocab settings.
This serves as a strong demonstration of the effectiveness of
the proposed method in the TAD task.

I. INTRODUCTION
Humans’ ability to recognize unseen objects or actions

with just their name or simple explanations stems from their
capacity to apply accumulated relevant knowledge from past
experiences. In recent years, advancements in large-scale
Vision-and-Language (V&L) models have realized this ca-
pability on computers. These models learn shared represen-
tations among images and texts by leveraging diverse image-
text pairs through Contrastive Learning techniques [16]. As
a result, these models can effectively extract valuable infor-
mation from textual descriptions and visual representations
for various tasks such as multimodal understanding [7],
[27], [38], semantic comprehension [13], [18], [19], few-
shot learning [1], [29], [31], and zero-shot learning [8], [20],
[47]. This capability is attained without extensive training,
allowing them to exhibit excellent performance across these
tasks. Consequently, this progress has inspired researchers to
explore the utilization of V&L models in various domains,
including object detection [10], [48], action recognition [34],
[45], and temporal action detection [15], [37].
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Fig. 1. Comparing the 2-stage approach with the proposed method. (a)
The 2-stage approach involves localizing temporal actions through proposal
generation and utilizing the identified intervals for action identification in
the alignment stage. (b) The proposed method leverages multi-scale features
for both video-text alignment and action localization.

The Closed-vocabulary Temporal Action Detection
(Closed-vocab TAD) task entails localizing temporal actions
within videos and classifying the corresponding action
classes, assuming the action classes are defined in advance.
In contrast, Open-vocabulary Temporal Action Detection
(Open-vocab TAD) requires localizing and identifying
temporal actions absent from the training set. This means
that Open-vocab TAD aims to accurately detect actions
that have not been previously encountered. This poses
a more challenging task, requiring the model to handle
novel and unanticipated actions during the localization and
identification processes. In existing studies [15], [37], a
2-stage TAD approach is adopted for Open-vocab TAD. In
the first stage, the temporal actions are localized, and then,
in the second stage, the identified interval of each action is
utilized for action identification. However, errors in the first
stage can influence the accuracy of the action identification.
Moreover, existing Open-vocab TAD approaches face
challenges in handling actions of different durations owing
to the use of fixed temporal processing methods. This
limitation arises when confronted with unseen actions, as
the fixed temporal processing approach may not adequately
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capture the temporal characteristics of these novel actions.
Figure 1 illustrates the comparison between the conven-

tional and proposed methods. To address the limitations of
the current Open-vocab TAD approach, we propose a 1-
stage approach that combines temporal action localization
and identification for the Open-vocab TAD task. Moreover,
the proposed method aims to overcome the challenges of
different durations of actions by offering a solution that
implements a multi-scale component.

The contributions of this study are summarized as follows:

• We propose a 1-stage approach for Open-vocab TAD
that consists of two main modules: Multi-scale Video
Analysis (MVA) and Video-Text Alignment (VTA),
which are effective in addressing the challenges associ-
ated with Open-vocab scenarios and enabling accurate
detection of a wide range of actions.

• We introduce a novel fusion strategy that combines
temporal multi-scale features extracted from videos with
action label features. This integration enhances the
performance of action detection by effectively captur-
ing actions of various lengths, thereby improving the
accuracy and robustness of the model.

• We conduct extensive evaluations on widely used
TAD datasets, including the THUMOS14 [12] and
ActivityNet-1.3 [9] datasets. Through these evaluations,
we demonstrate the effectiveness of the proposed MVA
and VTA modules in achieving superior performance in
both Open-vocab and Closed-vocab settings.

This paper is organized as follows: First, we briefly
summarize the relevant literature in Section II. Details of
the proposed method are presented in Section III, followed
by an evaluation in Section IV. Finally, Section V concludes
the paper and discusses future directions.

II. RELATED WORK

A. Closed-vocabulary Temporal Action Detection (Closed-
vocab TAD)

Closed-vocab TAD focuses on action detection from
untrimmed videos. Its approaches can be broadly classified
into two types: 1-stage approaches [24], [25], [50], which are
trained end-to-end and directly predict and classify action
segments, and 2-stage approaches [35], [46], [51], which
employ a range of techniques to predict candidate segments
and subsequently identify them using action classifiers. In
the context of the 1-stage method, a hierarchical architecture
is constructed using a combination of Convolutional Neural
Networks (CNNs) and Graph Neural Networks (GNNs).
On the other hand, in the 2-stage approach, most previous
studies emphasize the proposal generation phase, involving
the prediction of action boundary probabilities and dense
matching of start and end instants based on prediction scores.
However, these approaches rely on a predefined set of actions
for both the training and inference stages, requiring careful
consideration of the completeness of the action annotations.

B. Transformer-based Closed-vocab TAD

In recent years, there has been a notable trend in Closed-
vocab TAD to harness the power of transformers, driven by
the remarkable success of transformers in various domains
like machine translation. Several recent studies [25], [40],
[43] have embraced the attention mechanism inherent in
transformers to enhance the performance of action detection.
Specifically, DEtection TRansformer (DETR) [4] introduces
a Transformer-based approach for image detection, where it
learns shared decoder input features for all input videos and
detects a fixed number of outputs. Building upon this, Liu et
al. [25] proposes an end-to-end framework for Closed-vocab
TAD. This training paradigm is known for its high efficiency
and rapid prediction capabilities. Furthermore, Zhang et
al. [50] employ a transformer-based encoder to extract video
representations. In our work, we also utilize the capabilities
of a Transformer-based encoder to extract video features,
incorporating multi-scale features into our approach.

C. V&L models

In recent years, there has been growing interest in V&L
models. They can learn unified representations for both
images and texts, enabling the successful completion of
diverse tasks that were previously considered challenging.
Notable V&L models include Contrastive Language-Image
Pre-training (CLIP) [36], A Large-scale ImaGe and Noisy-
text embedding (ALIGN) [14], and Batch, dAta and model
SIze Combined scaling (BASIC) [33]. The shared embedding
space learned by these models from large-scale Internet
datasets has enabled highly accurate Open-vocab classi-
fication tasks without fine-tuning and expensive training
processes. In the domain of videos, V&L models have been
utilized for action classification tasks [15], [44] and video-
text retrieval tasks [28]. By combining V&L models, these
approaches can recognize new actions in unseen videos
containing novel scenes. This advancement paves the way
for recognizing unseen actions in real-world scenarios.

D. V&L for TAD

Recent research in the field of V&L applied to TAD
has aimed to tackle two significant challenges: Open-set
Temporal Action Detection (Open-set TAD) [2], [6] and
Open-vocab TAD [15], [37]. Bao et al. [2] and Chen et
al. [6] have proposed a framework for Open-set TAD by
introducing an “Unknown” class to handle missing classes,
whereas Open-vocab TAD focuses on dealing with an open-
ended vocabulary of action classes. Both Ju et al. [15] and
Rathod et al. [37] focus on a general Open-vocab TAD and
employ a 2-stage model that replaces the supervised classifier
in V&L feature comparisons. Our work differs from those in
[15], [37] in several aspects. First, to avoid error propagation,
a 1-stage model is adopted for both action localization and
identification. Furthermore, to adapt to the diverse lengths of
each action, multi-scale features along the temporal axis are
utilized to improve the performance of Open-vocab TAD.
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Fig. 2. (a) Overview of the proposed method. Each video frame is passed through a Pre-trained Image/Video Encoder, followed by Multi-scale Video
Analysis and a Decoder for segment detection. Text labels are embedded using a Pre-trained Text Encoder and aligned with the video features to comprehend
the relationship and accurately determine the action labels. (b) Each layer in the Multi-scale component utilizes a Transformer Encoder for feature extraction,
followed by depthwise 1D convolution for downsampling between layers.

III. PROPOSED METHOD

For given input video frames I = (I1, I2, . . . , IT ), our
objective is to estimate a series of temporal actions and
corresponding classes Y = {y1, y2, . . . , yN} within the
context of Open-vocab TAD (Dtrain ∩ Dtest = ∅), which
signifies that the actions present in the test set (Dtest) do not
appear in the training set (Dtrain). Here, T is the length of
the video, and N is the number of temporal actions in I . We
extract a feature vector X = (x1,x2, . . . ,xT ) from the input
video frames I , where the maximum value T of frames varies
depending on the length of the video. The input text labels
associated with actions are also extracted as features when
combined with a prompt A = {a1,a2, . . . ,aM}, where M
is the number of temporal actions in the training set (Dtrain).
These text features are integrated with video features to
predict the labels of temporal actions. The output of the
model is represented as a set of yi = (si, ei, ai), where
si and ei denote the start and end times, respectively, and
ai ∈ Dtrain∪Dtest is one of the action labels used for training
or testing.

To elucidate the proposed method, we begin with an
overview in Section III-A, followed by detailed explanations
of its critical components in Sections III-B and III-C. Finally,
we elaborate on learning objectives in Section III-D, which
play crucial roles in enhancing the overall performance.

A. Overview

Figure 2 illustrates an overview of the proposed method.
We adopt a 1-stage detection approach for temporal action
detection in Open-vocab TAD. The proposed method consists

of two key components: (1) Multi-scale Video Analysis
(MVA) and (2) Video-Text Alignment (VTA) modules. The
former determines the start and end times of actions, as well
as determines whether that time frame contains actions or
not. On the other hand, the latter is responsible for learning
the relationship between video and text features to determine
the labels for the actions.

B. Multi-scale Video Analysis (MVA) Module

The input for the MVA module is the video frames I ,
which are then encoded through a pre-trained image/video
encoder to obtain feature sequences X = (x1,x2, . . . ,xT ) ∈
RT×D. The encoded information is then used to construct
a multi-scale feature representation Z∗ = {Z1,Z2, . . . ,ZL},
where L represents the number of scales corresponding to
the hierarchical levels of the network. Finally, the feature
representation is decoded to determine the start and end times
of actions and assess the presence or absence of the action.

1) Projection layer: At the beginning, a shallow neural
network is employed as a projection function E : RD → RD′

to embed each input feature xt into a D′-dimensional space,
resulting in Z0 = (E(x1), E(x2), . . . , E(xT )) as the output.

2) Multi-scale layer: The feature vector Z0 serves as the
input for the multi-scale component. The embedded features
Zl are then transformed into the feature representation Zl+1

of the next scale layer using the Transformer Encoder [41]
function f l+1

l as:

Zl+1 = f l+1
l (Zl).

It is important to note that any function, such as a CNN [17],
GNN [49], can be used for this transformation. Figure 2(b)



shows the architecture of the Transformer Encoder. The idea
behind using the Transformer Encoder for the Open-vocab
TAD task is to leverage the self-attention mechanism, which
enables the calculation of frame similarity and the creation
of a weight matrix for video frames. This allows auto-
matic extraction of important frames, focusing on relevant
action-containing segments and eliminating irrelevant noise.
Within the Transformer Encoder, the Multi-head Attention
mechanism captures diverse temporal dependencies between
frames, while the MLP (Multi-Layer Perceptron) further
refines the attended features, extracting discriminative infor-
mation for precise action detection within video sequences.
In this study, we utilize a strided depthwise 1D convolution
after the Transformer Encoder for downsampling between
layers. This convolution operation reduces the feature size
by half in each subsequent layer. This process is applied
for a total of L layers, resulting in a multi-scale feature
representation denoted as Z∗ = {Z1,Z2, . . . ,ZL}.

3) Decoder: The decoder D predicts sequence labeling
for each frame using the multi-scale feature Z∗. It estimates
the probabilities of action occurrence and their corresponding
time intervals, denoted as Ŷ = {ŷ1, ŷ2, . . . , ŷN}. For each
ŷ = {dst , det , p(at)}, where dst = st + t represents the
time difference from frame t to start time st, det = et − t
represents the time difference from frame t to end time et,
and p(at) indicates the probability of the presence of an
action. The decoder incorporates a lightweight convolutional
network with two heads: the Boundary Regression head and
Background Classification head. The former estimates each
action’s start and end times within the video frames (dst , d

e
t ),

while the latter predicts the probabilities of action occurrence
for each frame p(at).

C. Video-Text Alignment (VTA) Module

The VTA module receives text labels of actions as input
and integrates them with a prompt. These texts are trans-
formed into text features using a pre-trained text encoder
and are denoted as A = {a1,a2, . . . ,aM}, where M
corresponds to the number of classes in the training set
(Dtrain). Subsequently, the text features A are combined with
the length-aware pooled video features Z0

p and Zl
p ∈ Z∗

p to
align the text and video representations.

1) Length-aware pooling: In the proposed method, we
take action-related features to establish alignment with tex-
tual information. To achieve this, action representations are
extracted from the video features in projection layer Z0

and each layer Zl ∈ Z∗ based on ground-truth segments.
Following that, average pooling is performed on the features
extracted from each action interval. This pooling process
combines the features within the intervals and generates
representative features denoted as Z0

p and each layer Zl
p ∈

Z∗
p. These representative features are then utilized to align

with the corresponding text, facilitating the synchronization
between video and text information.

2) Video-text alignment: The text features A are aligned
with the video features extracted from Z0

p and corresponding
scale layer Zl

p ∈ Z∗
p. We calculate the similarity between

these features using the dot product, represented as Z0
p ·A⊤

and Zl
p ·A⊤, where ⊤ denotes the transpose operation. The

dot product measures the similarity based on the magnitude
and direction of their components, indicating the level of
alignment between the text and video features. By applying
the dot product, we can quantify the similarity and establish
meaningful associations between textual and visual informa-
tion in video-text alignment.

D. Learning Objectives

1) Objective function for MVA: This module utilizes
two loss functions to the Boundary Regression head and
Background Classification head for every frame t (1 ≤ t ≤
T ). The former employs Distance Intersection over Union
(DIoU) loss [53] to accurately regress the distances to the
boundaries of the actions, aiming for precise localization of
the actions as:

Lt
BR = 1− IoU +RDIoU, (1)

where IoU represents the Intersection over Union between
the predicted and ground-truth action interval. The term
RDIoU measures the inconsistency between the predicted
interval and the ground-truth interval using the DIoU metric.
The latter employs Focal loss [23] to effectively handle
imbalanced samples between background and action as:

Lt
BC = −αt(1− pt)

γ log(pt), (2)

where pt is the predicted probability of an action occurrence,
αt is the balancing factor to address the class imbalance, and
γ is a modulating factor that focuses on hard samples. The
overall loss function of the MVA module (LMVA) is defined
as the sum of the above losses (Eqn. 1 and Eqn. 2) for each
time step as:

LMVA =

T∑
t

(Lt
BR + λ1L

t
BC), (3)

where λ1 is a balancing coefficient.
2) Objective function for VTA: This module aims to

model the cross-modal relationship between two modalities:
video features and text features. The principle is to minimize
the distance between representations of corresponding video-
text pairs, while encouraging those of non-corresponding
pairs. The learning objective LVTA consists of two contrastive
terms: LZ0→A (Eqn. 4) and LZ∗→A (Eqn. 5). The former
aligns the video projection features with text features, while
the latter aligns the video multi-scale features with text
features. Below are the details of the VTA loss:

LZ0→A = − 1

N

N∑
i=1

log
exp((Z0

p ·A⊤)+/τ)∑M
j=1 exp((Z

0
p ·A⊤)−/τ)

, (4)

LZ∗→A = − 1

N

N∑
i=1

L∑
l=1

log
exp((Zl

p ·A⊤)+/τ)∑M
j=1 exp((Z

l
p ·A⊤)−/τ)

,

(5)
LVTA = LZ→A + λ2LZ∗→A, (6)



where N is the number of temporal actions, M is the number
of text classes, L is the number of multi-scale layers, “+”
and “−” represent a pair of samples that are correspond-
ing and non-corresponding, respectively, τ is a temperature
hyperparameter controlling the impact of penalties on hard
negative samples, and λ2 is a balancing coefficient.

3) Overall objective function: The overall loss function
of the proposed method is defined as the sum of the MVA
loss (Eqn. 3) and VTA loss (Eqn. 6), multiplied by a balance
coefficient λ3 as:

LTotal = LMVA + λ3LVTA. (7)

IV. EVALUATION

In this section, we evaluate the proposed method exten-
sively through a series of comprehensive experiments. In
addition, we perform in-depth ablation studies to gain clearer
insights into the key characteristics of the proposed method.

A. Experimental Conditions

1) Datasets: We perform evaluations on the THUMOS14
[12] and ActivityNet-1.3 [9] datasets, which are widely used
for TAD.

• THUMOS14 dataset contains 413 videos with 20 action
categories, with an average of 15 instances per video.

• ActivityNet-1.3 dataset is a large-scale action dataset,
consisting of 200 activity classes and approximately
20,000 videos with more than 600 hours.

2) Data preparation: We decompose these datasets into
train-test splits by following the Open-vocab data split strat-
egy [37]. This approach randomly splits action categories
into specific ratios, with corresponding videos associated
with these splits. According to [37], we choose two ratios,
namely, “75/25 split” and “50/50 split”. The former involves
10 random splits, selecting 75% of action categories and cor-
responding videos as a training set and the rest as a test set.
Similarly, the latter involves 5 random splits, selecting 50%
for a training set and the rest as a test set. In addition, with
the Acitivity-Net1.3 dataset, we employ the “Smart split”
strategy described in [37], which leverages the hierarchy of
action categories, with 25% of the labels allocated to the
test set. The smart split is constructed by selecting pairs
of neighboring leaf nodes from the hierarchy, designating
one node for evaluation, and including the other in the
training set. The selection process considers the perceptual
similarities between classes to ensure an effective split.

3) Evaluation metrics: To evaluate the final output of the
model, we utilize Soft Non-Maximum Suppression (Soft-
NMS) [3] to eliminate duplicate detections, considering the
potential overlap among the estimated action candidates.
Subsequently, the results are evaluated based on the mean
Average Precision (mAP), which measures the percentage of
correctly estimated actions using threshold processing on the
temporal Intersection over Union (tIoU) with ground truth.

4) Comparison methods: We compare the proposed
method with the following methods:

• Baseline model: An 1-stage approach similar to the
proposed model but utilizes a single scale within the
multi-scale component to observe the effectiveness of
the multi-scale component of the proposed method.

• OV-TAD [37]: The current state-of-the-art Open-vocab
TAD setting, operating in a 2-stage TAD approach.

• STALE [30] and EffPrompt [15]: 1-stage and 2-stage
Open-vocab TAD methods that incorporate the classifi-
cation score, respectively, with the weakly-supervised
action recognition model [42]. We also utilize these
scores for comparison when comparing with these meth-
ods.

5) Implementation details: The proposed method was
implemented according to the detailed description in Sec-
tion III, utilizing six layers in the MVA module. For the
video encoder, we utilize a two-stream Inflated 3D (I3D)
ConvNet pre-trained on the Kinetics dataset [5] to extract
video features. For the text encoder, we utilize a pre-trained
CLIP model [36] to extract text features. Following Rathod et
al. [37], we do not use a prompt in the main experiment. The
text prompt is analyzed in Section IV-C.3. In the projection
layers, we use fully connected layers with Gaussian Error
Linear Unit (GELU) activation [11]. The balance coefficients
in Eqns. (3), (6), and (7) are set as 1. We investigate the
impact of the coefficients in Section IV-C.4. For optimization
purposes, we utilize AdamW [26]. To attain optimal results,
we carefully considered each dataset’s model complexity and
available training data, ensuring the appropriate selection of
hyperparameters.

B. Experimental Results

Table I presents the performance of the proposed method
with other comparison methods. We report the mAP at
different tIoU thresholds, with the average calculated in
the range of mAP@[0.30:0.10:0.70] for THUMOS14 and
mAP@[0.50:0.05:0.95] for ActivityNet-1.3 datasets. The re-
sults are divided into two tables; Table I(a) shows the
results in a completely Open-vocab setting, while Table I(b)
shows the results with methods using fusion classification
scores from a weakly-supervised action recognition model.
In Table I(a), the results are split into two groups using pre-
trained text features from CLIP base and CLIP large models.

1) THUMOS14: The proposed method consistently at-
tained the highest results for both groups shown in Table I(a),
surpassing other methods by a considerable margin. The
results indicated a significant advantage of the proposed
method, particularly at mAP@0.7, where it outperformed
other methods nearly threefold. This demonstrated the sub-
stantial contribution of the multi-scale feature in achieving
more accurate unseen action detection. In Table I(b), since
the classes of actions in a THUMOS14 dataset video are
mostly singular, the average mAP of the proposed method
using fusion classification scores was more than twice that
without using them. Furthermore, the proposed method’s



TABLE I
RESULTS ON THUMOS14 AND ACTIVITYNET-1.3 DATASETS. MAP (↑) AT DIFFERENT TIOU THRESHOLDS ARE REPORTED. THE AVERAGE MAP IN

THE RANGE OF [0.30:0.10:0.70] IS REPORTED FOR THUMOS14, WHILE [0.50:0.05:0.95] IS REPORTED FOR ACTIVITYNET-1.3. BEST RESULTS

WITHIN EACH GROUP ARE HIGHLIGHTED IN BOLD, WHILE THE OVERALL BEST RESULTS ARE UNDERLINED.

(a) Results in a completely Open-vocab setting using text features from pre-trained CLIP base and pre-trained CLIP large.

Model Image
Feature

Text
Feature

THUMOS14 [12] ActivityNet-1.3 [9]

75/25 50/50 Smart 75/25 50/50

0.3 0.5 0.7 Avg. 0.3 0.5 0.7 Avg. Avg. Avg. Avg.

OV-TAD [37]

CLIP B/16 CLIP B/16 21.8 13.2 3.7 12.9 18.0 8.9 2.2 9.5 23.4 21.4 19.5

I3D CLIP B/16 27.8 15.3 4.3 15.6 23.6 12.8 3.2 12.9 24.1 22.1 20.1

CLIP B/32 CLIP B/32 21.4 11.8 3.5 12.0 15.4 7.7 1.9 8.0 22.6 19.4 17.3

I3D CLIP B/32 25.1 13.9 4.0 14.1 21.0 11.3 3.0 11.5 23.9 20.2 18.2

Baseline I3D CLIP B/16 24.3 16.6 5.6 15.8 15.5 10.7 3.8 10.2 21.7 16.7 14.5

Proposed I3D CLIP B/16 32.1 25.3 13.6 24.0 18.6 15.2 9.3 14.6 28.2 22.6 20.8

OV-TAD [37]
CLIP L/14 CLIP L/14 28.6 15.4 4.2 15.8 21.0 9.8 2.0 10.5 28.7 24.6 22.4

I3D CLIP L/14 30.1 16.8 4.7 17.0 26.1 14.3 3.6 14.5 28.1 24.8 22.8

Baseline I3D CLIP L/14 29.5 19.7 5.6 18.8 18.3 11.2 3.1 10.9 21.0 17.4 14.4

Proposed I3D CLIP L/14 35.3 26.6 13.6 25.5 18.7 15.8 9.6 15.0 28.8 24.9 21.1

(b) Results of methods that incorporate the classification score with the weakly-supervised action recognition model [42].

EffPrompt [15] I3D CLIP B/16 39.7 23.0 7.5 23.3 37.2 21.6 7.2 21.9 — 23.1 19.6

STALE [30] I3D CLIP B/16 40.5 23.5 7.6 23.8 38.3 21.2 7.0 22.2 — 24.9 20.5

Baseline I3D CLIP B/16 51.6 29.7 7.1 29.5 44.2 24.5 5.7 24.8 25.3 23.0 21.9

Proposed I3D CLIP B/16 60.4 47.4 24.3 44.8 51.9 38.1 17.9 36.5 36.0 34.1 33.6

performance was nearly 1.5 to 2.0 times higher compared
to the STALE [30] and EffPrompt [15] methods.

2) ActivityNet-1.3: In both groups in Table I(a), the
proposed method consistently outperformed other methods
in most of the split scenarios. Particularly in the Smart
split, the proposed method demonstrated performance gains
ranging from 4.1% to 6.5% in the pre-trained CLIP base
group and from 0.1% to 7.8% in the pre-trained CLIP large
group. Furthermore, the proposed method also demonstrated
notable growth in the 75/25 split and 50/50 split. In contrast,
the baseline model exhibited suboptimal performance on
this dataset, which can be attributed to the dataset’s large
size and diverse nature, including a significant number of
labels that were not sufficiently trained during the training
process. These results underscore the significant contribution
of the multi-scale feature in enabling the proposed method
to overcome these challenges and achieve superior results. In
Table I(b), the proposed method was also superior to other
benchmarks when considering the fusion classification score.

C. Ablation Study

We conducted a series of excision experiments as part of
an ablation study to evaluate the effectiveness of the proposed
method on the THUMOS14 dataset using the “75/25 split”
and “50/50 split” evaluation settings.

1) Feature extraction in the MVA module and fusion strat-
egy in the VTA module: Table II shows the effects of modify-
ing components within the MVA and VTA modules. Specif-
ically, when we replaced Transformer layers (Trans Layer)

TABLE II
EFFECT OF CHANGES OF FEATURE EXTRACTION IN MVA MODULE AND

FUSION STRATEGY IN VTA MODULE. AVERAGE MAP (↑) IN THE RANGE

OF [0.30:0.10:0.70] IS REPORTED.

CLIP B/16 CLIP L/14

75/25 50/50 75/25 50/50

Proposed 24.0 14.6 25.5 15.0
Trans Layer → Conv Layer 22.4 12.8 23.2 12.9

(w/o) Projection Feature (Z0
p) 21.7 12.3 23.0 14.4

(w/o) Multi-scale Feature (Z∗
p) 22.5 12.2 24.7 14.0

with Convolutional layers (Conv Layer), we observed that the
Trans Layer outperformed the Conv Layer, highlighting the
beneficial impact of the attention mechanism. Additionally,
we investigated altering the fusion strategy between text
and video features. Utilizing either the individual projection
feature (Z0

p) or the multi-scale feature (Z∗
p) independently

resulted in reduced performance compared to integrating
both with the text feature. These results underscore the
importance of harnessing the combined strength of temporal
multi-scale features and action label features to enhance
performance significantly.

2) Number of layers in the MVA module: Table III shows
the performance impact of varying the number of layers
in the MVA module. The results indicate that increasing
the number of layers consistently improved performance,
as evidenced by the increase in mAP. However, the model



TABLE III
EFFECT OF NUMBER OF LAYERS IN THE MULTI-SCALE FEATURE OF THE

MVA MODULE. AVERAGE MAP (↑) IN THE RANGE OF [0.30:0.10:0.70]
AND INFERENCE TIME ARE REPORTED.

Number
of layers

CLIP B/16 CLIP L/14 Inference Time [s]
(B/16 ∼ L/14)75/25 50/50 75/25 50/50

1 17.5 10.5 18.3 10.0 0.1038 ∼ 0.1202
3 21.0 11.4 23.4 11.8 0.1280 ∼ 0.1428

5 23.5 13.6 24.8 15.1 0.1774 ∼ 0.1813

6 24.0 14.6 25.5 15.0 0.1786 ∼ 0.1878

7 24.3 14.2 26.8 14.8 0.2013 ∼ 0.2458

TABLE IV
IMPACT OF TEXT PROMPTS. AVERAGE MAP (↑) IN THE RANGE OF

[0.30:0.10:0.70] IS REPORTED.

Prompt
CLIP B/16 CLIP L/14

75/25 50/50 75/25 50/50

[CLASS] 24.0 14.6 25.5 15.0

A video of action [CLASS] 24.3 12.8 26.8 13.5

[CLASS] + [DESCRIPTION] 28.7 16.1 29.6 16.2
[DESCRIPTION] 25.0 13.3 27.2 14.5

tended to converge in terms of mAP at layers 5, 6, and
7, where the performances were relatively similar. Adding
more layers beyond a certain point does not yield significant
performance improvements. There was a slight trade-off with
the inference time as the computational complexity increased
with more layers. Specifically, seven layers required more
than twice the computation of one layer. Therefore, selecting
an optimal number of layers in the MVA module is crucial
to balance performance and computational efficiency.

3) Text prompts: We evaluated the impact of text prompts
on the Open-vocab TAD accuracy. The results, as shown in
Table IV, indicate that a basic prompt such as “A video of
action [CLASS]” yields negligible improvements. The THU-
MOS14 dataset contains simplistic labels like Shot Put, High
Jump, and Long Jump, which lack detailed contextual in-
formation. The experiments with [CLASS]+ [DESCRIPTION]
prompts, with descriptions generated from ChatGPT [32]
like “High Jump: Athlete jumps over a horizontal bar”,
significantly enhanced the detection performance by approx-
imately 4% in the 75/25 split and 1.5% in the 50/50 split.
However, the results also underscore that merely adding
descriptions without the action class is insufficient to sub-
stantially increase the accuracy of action detection, pointing
to the necessity of a nuanced approach in employing text
prompts for video analysis.

4) λ coefficient in the overall loss function: We experi-
mented on the interplay between MVA Loss and VTA Loss
as formulated in Eqn. 7. The outcomes of this analysis are
visually represented in Fig. 3. The results demonstrate that
varying the value of λ3 from 0.2 → 2.0 only resulted in a
deviation of no more than ±0.5 compared to that when λ3

was set to 1. This indicates a relatively stable performance
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Fig. 3. Change of λ coefficient in the overall loss function.

of the loss function across a range of λ coefficient values.

D. Open-vocab TAD Results Visualization

We present the visualization of outcomes for several
actions in Fig. 4. In Fig. 4(a), the results for the “Shot
Put” action were identified almost accurately across varying
action durations. However, the third action scene showed
an error in action localization where the video frames
predominantly displayed the athlete performing preparatory
motions similar to the “Shot Put” action, leading to a wrong
detection. Similarly, in Fig. 4(b), the “High Jump” action
was also detected nearly accurately in the first two scenes,
with varying lengths of the action. The third scene wrongly
identified where it should have been “High Jump” was as
“Long Jump”. This error occured because most of the frames
in this sequence showed the athlete running, which was a
characteristic more associated with “Long Jump”, leading
to the misidentification of the action. These visualizations
highlight the effectiveness and limitations of Open-vocab
TAD in accurately localizing and identifying actions within
a given video, underscoring the importance of nuanced
differentiation between similar actions and the challenges
posed by actions with similar preparatory movements.

E. Closed-vocab Temporal Action Detection Setting

1) Setting: In this section, we evaluate the Closed-vocab
setting (Dtest ⊂ Dtrain), which refers to the common context
in which the model undergoes training and evaluation using
the same action categories. It is important to note that the
common context utilizes only videos and lacks the ability
to detect unseen actions. In contrast, the Open-vocab setting
employs both video and text, enabling evaluation of seen and
unseen actions. To ensure a fair and consistent comparison,
we use the same dataset splits as those utilized in previous
studies and evaluate them on the THUMOS14 dataset.

2) Comparison methods: We considered the following
methods for conducting comparisons with the proposed
method. In the common context, some of the modern
models for TAD in recent years have utilized the Inflated
3D (I3D) ConvNet and Temporal Segment Network (TSN)
encoder backbone. In the Open-vocab setting, we conducted
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Fig. 4. Illustrating the results of Open-vocab TAD using CLIP B/16 as the text feature.

TABLE V
COMPARISON IN A CLOSED-VOCAB SETTING USING THE THUMOS14

DATASET. AVERAGE MAP (↑) IN THE RANGE OF [0.30:0.10:0.70] IS

REPORTED.

Model Setting Image
Feature

Text
Feature

mAP
@Avg.

BMN [22]

Video

TSN — 38.5

TAL-MR [52] I3D — 43.3

VSGN [51] TSN — 50.2

AFSD [21] I3D — 52.0

TadTR [25] I3D — 46.6

ActionFormer [50] I3D — 66.8

TriDet [39] I3D — 69.3

EffPrompt [15]

Video
&

Text

CLIP B/16 CLIP B/16 34.5

STALE [30] CLIP B/16 CLIP B/16 44.4

STALE [30] I3D CLIP B/16 52.9

OV-TAD [37] CLIP B/32 CLIP B/32 26.6

OV-TAD [37] CLIP B/16 CLIP B/16 29.0

OV-TAD [37] CLIP L/14 CLIP L/14 32.6

Baseline I3D CLIP B/16 39.9

Proposed I3D CLIP B/16 59.5

comparisons with methods using various pre-trained text-
image models. The baseline model remains unchanged, as
previously mentioned.

3) Results: The results presented in Table V show that
the proposed method achieved the highest mAP@Avg of
59.5% in the video & text setting (Open-vocab methods).
This performance is particularly notable compared to leading
methods using only video settings (Closed-vocab methods)
such as “ActionFormer” and “TriDet”. The results of the

proposed method were closely competitive, and it outper-
formed approximately two-thirds of the existing methods.
Meanwhile, the baseline model only achieved 39.9%, under-
scoring the significance of the 19.6% performance gap due to
its lack of multi-scale component. These results highlight that
the proposed method excels among the Open-vocab methods
and performs well among the Closed-vocab methods.

V. CONCLUSION

We proposed a method for the Open-vocab TAD task that
leveraged temporal multi-scale and action label features. The
proposed 1-stage approach consists of a Multi-scale Video
Analysis (MVA) module and a Video-Text Alignment (VTA)
module. We also introduced a fusion strategy that combined
temporal multi-scale features and action label features to
improve the accuracy and robustness of action detection. A
series of comprehensive experiments on THUMOS14 [12]
and ActivityNet-1.3 [9] datasets indicated that the MVA
module’s multi-scale feature with the attention mechanism
and the VTA module were instrumental in boosting perfor-
mance. The number of layers in the MVA module signif-
icantly affected the experimental outcomes, necessitating a
careful selection to balance performance with computational
complexity. Furthermore, the use of text prompts within the
VTA module impacted action identification results, highlight-
ing the need for detailed analysis in Open-vocab setting.

In future work, we plan to investigate further methods for
incorporating contextual information and higher-level scene
understanding to enhance the performance of the action de-
tection system. We also aim to address the accurate detection
of actions’ start and end times, as this significantly impacts
the precise determination of those actions. Additionally, we
aim to explore techniques for handling complex and dynamic
scenes in cluttered or occluded environments.
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