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Laminar shear flows can display large non-modal perturbation growth, often through the lift-up
mechansm, and can undergo subcritical transition to turbulence. The process is three-dimensional.
Two-dimensional (2D) spanwise-independent perturbations are often considered less important as
they typically undergo modest levels of transient growth and are short-lived. Strikingly, we show the
existence of 2D non-modal perturbations that get amplified significantly and survive for long periods
of time. Two-layer and three-layer viscosity stratified plane shear flows are taken to be the mean
states. We show that while the two-layer flow is always modally stable, the three-layer flow supports
exponential growing instabilities only when the middle layer is the least viscous. The non-modal
stability analysis is performed only for the modally stable configurations of these flows. At later
times, the non-modal perturbations feature strongly confined vortical structures near the interface in
the two-layer flow. For the three-layer flow, similar observations are noted when all the three layers
have different shear rates with the vortices prominently seen in the vicinity of the interface between
the least viscous and middle layers. For the three-layer flow configuration with the outer layers
having equal shear rates, the perturbation structure shows symmetry about the middle layer and
evolves such that the Orr mechanism can repeatedly occur in a regenerative manner resulting in the
perturbation energy evolving in a markedly non-monotonic fashion. When these same perturbations
are introduced in a uniform plane shear flow, the extent of non-modal transient growth is shown to
be significantly smaller.

I. INTRODUCTION

For examining stability of plane parallel shear flows, non-modal analysis is now firmly established as an invaluable
complement to the more traditional modal analysis [1–3]. Transient algebraic amplification of perturbations can be
observed even when the modal theory predicts all the eigenmodes to decay exponentially in time as the linearised
stability operator is non-normal [4, 5]. The transient growth might be significant enough such that nonlinear effects
become important enough so as to trigger transition in flows [6–8]. Even for modally unstable configurations, the
sub-critical mechanisms can either act to substantially increase the amplitude of the unstable mode or dominate
the transition dynamics outright [9–11]. Furthermore, unstable modes can be shown to arise as a consequence of
non-normality of the underlying linearised stability operator [12].

The two well-known mechanisms behind non-modal behaviour are the three-dimensional (3D) lift-up effect [13, 14]
and the two-dimensional (2D) Orr mechanism [15]. In canonical plane shear flows, the lift-up effect is more dominant
with regard to energy amplification. The lift-up effect arises when a streamwise vortical perturbation evolves to yield
streamwise streaks. Evoking a displaced particle argument, the streamwise vortex is said to move fluid elements from
a lower velocity region to one having a higher velocity and vice versa. Dynamics involving streamwise vortices and
streaks are known to be extremely prevalent in self-sustaining cycle of shear flow turbulence [16–20].

In contrast, the Orr mechanism is a comparatively short-lived phenomenon with the associated energy growth
being far smaller than what is observed during the lift-up effect. Nonetheless, the Orr mechanism has been credited
to be important in bursting events in wall-bounded shear turbulence [21, 22]. Furthermore, wave packets in the
region downstream of the potential core in turbulent jets have been shown to undergo amplification due to the Orr
mechanism [23, 24]. The scenarios in which the Orr mechanism acts in conjunction with the lift-up effect are relevant
for finding non-modal optimal perturbations in nonparallel flows [25] and in the transition of parallel flow due to
oblique waves [26, 27].

The focus of the present study will be on the dynamics of 2D non-modal perturbations. In this regard, it is useful
to highlight what type of perturbations can undergo energy amplification. With ψ representing the streamfunction of
the perturbation to the streamwise mean velocity U(y), the evolution equation for the volume averaged perturbation
energy E is:
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FIG. 1. (a) Two-layer viscosity stratified flow. (b) Three-layer viscosity stratified flow. The viscosities of the different layers
are distinct. The locations of the interfaces are shown using dash-dot lines. The fluid viscosity varies continuously across the
shaded regions.

In the above, U ′ = dU/dy. From equation (1), it is apparent that the contribution to rate of change of E is positive
in those regions where the wavefunction front is inclined against the mean shear. In the case of uniform shear flow,
the mean flow tilts the front until it becomes aligned with the mean shear; this is precisely the physical interpretation
of the Orr mechanism [28].

We wish to explore some non-modal scenarios for perturbation amplification where the mean shear is no longer
uniform. The simplest such departure from the plane shear flow is one where the mean velocity profile has effectively
piecewise constant shear rates. To this end, the base flows considered in this work are stratified shear flows with
density matched fluid layers with distinguishable viscosities. While viscosity stratification can serve to stabilise or
destabilise the flow [29], its role in this study is limited to defining the mean flow. As the lift-up effect and the
Orr mechanism can be described without invoking viscous effects [30, 31], the ensuing discussion of the perturbation
dynamics in the current study is also inviscid.

The outline of the paper is as follows. We describe the base flows considered for this study in section II. Two-
layer and three-layer plane shear flows are considered. To set the stage for non-modal analysis, the modal stability
characteristics of these flows are first presented in section III. We show that while the two-layer flow is always modally
stable, three-flow configurations with the middle layer being the least viscous are unstable. The characteristics of
non-modal perturbations and their evolution are then described for both two-layer and three-layer flows in section
IV. Strikingly, in contrast to the unstratified system, there exist long-lived 2D non-modal perturbations that exhibit
significant transient growth. One principal finding in the current study is the emergence of a regenerative Orr
mechanism that manifests in the form of the perturbations not undergoing rapid decay after the transient growth
phase. Finally, the results are summarised and potential extensions to this work are touched upon in section V.

II. BASE FLOW CONFIGURATIONS

Layered flows have been successfully employed to shed light on the fundamental nature of several instabilities [32, 33].
The impetus for understanding viscosity stratification effects on stability also stemmed from one such study by Yih
[34]. The base shear flow configurations along the streamwise coordinate x with different viscosity stratifications
utilised for this study are shown in figure 1. In the two-layer flow, the layers are assumed to be sufficiently deep
such that wall effects can be neglected as they would be far from the interface. Similarly, for the three-layer flow,
the depths of the lower and upper layers are taken to be much larger than that of the middle layer. While the fluid
viscosity in each layer is distinct, we consider the fluids to be weakly miscible such that the viscosity changes smoothly
(and monotonically) from one layer to the next through a small mixed region. The fluids in the different layers are
density matched, and surface tension effects are neglected.

As there is no imposed pressure gradient, the base state velocity U is then obtained by solving:

d

dy

(
µ
dU

dy

)
= 0. (2)

In the above, µ is the mean viscosity profile whose precise forms for two-layer and three-layer shear flows are given in
the subsections below. While the perturbation analysis used in this study is inviscid, the different layers of the mean
flows will continue to be identified in terms of its mean viscosity.
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A. Two-layer flow

For the two-layer flow (see figure 1 (a)), we align our coordinate system such that y = 0 is coincident with
the interface. The spatial coordinates are non-dimensionalised such that we have U(0.5) − U(−0.5) = 1 for all
configurations. The non-dimensional mean viscosity profile is defined to be:

µ(y) = 1 +
(m− 1)

2

[
1 + tanh

(
y

q

)]
. (3)

The thickness of the mixed region q is specified to be small (q ≪ 1). Away from the interface, the fluid viscosities in
the lower and upper layers are 1 and m respectively.

B. Three-layer flow

For this system (see figure 1 (b)), we choose the reference scales to be defined based on quantities pertaining to
the middle layer. We also take the mid-point of the central layer to lie at y = 0. The non-dimensional fluid viscosity
profile is given by:

µ(y) = ml +
(1−ml)

2

[
1 + tanh

(
y + 0.5

ql

)]
+

(mu − 1)

2

[
1 + tanh

(
y − 0.5

qu

)]
. (4)

As in the two-layer flow, the thickness of the mixed regions are specified to be small (ql, qu ≪ 1). For a fair comparison
between flows for different sets of parameters, we fix U (0.5)− U (−0.5) = 1.

III. MODAL STABILITY CHARACTERISTICS

We discuss in this section whether these flow configurations can support exponentially growing modal instabilities
in the inviscid setting. The perturbations are taken to be of the form f(x, y, t) = f̃(y) exp(iα(x− ct)), where α is the
streamwise wavenumber and c is the complex phase speed. The Rayleigh equation [1, 35] then determines the inviscid
linear modal stability of the base flow U . It is given by:

(U − c)

(
d2

dy2
− α2

)
ṽ − U ′′ṽ = 0. (5)

In the above, ṽ is the normal component of the perturbation velocity. If there exists at least one eigenvalue c with
a positive imaginary component, then the flow is unstable. From Rayleigh’s inflection point theorem [35], for an
exponentially growing instability to exist, the second derivative of U should change sign somewhere in the domain.
For base flows with continuous derivatives, the eigenvalue problem given by equation (5) is solved numerically (see
appendix A). We also appeal to Howard’s semicircle theorem [35, 36] to filter out numerically spurious eigenvalues. For
further insight, we will also refer to the analytically obtained dispersion relations of the sharp interface counterparts
of these flows (see Appendix B).

A. Two-layer flow

When there exists a mixed region across which the viscosity varies smoothly, U ′′ is not always 0; however, it may
be quite small. When the fluid viscosity µ is given by equation (3), we have:

U ′′ = − µ′

µ2
, with µ′ =

(m− 1)

2δ
sech2

[
y

q

]
. (6)

From the above, it is clear that U ′′ does not change sign. Therefore the two-layer flows do not support inviscid modal
instabilities. As long as µ varies monotonically in the mixed layer, this conclusion holds true.
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FIG. 2. The profiles of U ′′ for different base flow configurations. Although, both sets of configurations satisfy Rayleigh’s
criterion, only those on the right satisfy Fjørtoft’s criterion. The interface locations are indicated by the horizontal thin dotted
lines.

B. Three-layer flow

For the three-layer flow, the second derivative U ′′ is given by:

U ′′ = − µ′

µ2
, with µ′ =

(1−ml)

2ql
sech2

[
y + 0.5

ql

]
+

(mu − 1)

2qu
sech2

[
y − 0.5

qu

]
. (7)

Let us first consider the case where the fluid in the middle layer is neither the most or the least viscous of the three
layers, which implies one of either ml < 1 < mu or mu < 1 < ml. It is then evident that U ′′ does not change sign
anywhere, and hence inviscid modal instabilities can not exist as Rayleigh’s inflection point criterion is not satisfied.

On the other hand, when the outer layers are either more or less viscous than the middle layer, it is seen that
U ′′ does end up changing sign in the domain (see figure 2). In such cases, we find that Fjørtoft’s criterion [35],
which additionally requires the inflection point to correspond to a maxima of the square of the mean vorticity for
monotonic base flows [37], has to be satisfied for the existence of modal instabilities. When the middle layer is the
most viscous of the three, this necessary condition is not satisfied. On approximating the mean flow by a piecewise
linear continuous profile with abrupt jumps in the mean shear rate at the interfaces, we can examine analytically the
stability characteristics. Despite considering this extreme condition with a discontinuity in the velocity gradient at
the interface, modal stability is always assured when the shear rate in the middle layer is the least (see appendix B
for details).

We now focus on cases where the middle layer is less viscous than the outer layers. Figure 3 show the growth rates of
the least stable modes for two different flow configurations as a function of the perturbation wavenumber. For modes
with short wavelengths (α > 1), all the eigenmodes are found to be neutrally stable. There exist unstable modes
with α ⪅ 0.8. The growth rates shown here are also seen to be close to those predicted by the analytical analysis for
the piecewise linear continuous base flow (not shown). The wavenumber corresponding to the most unstable mode
is dependent on the configuration considered. The growth rate of the unstable mode is seen to become lower as the
wavenumber reduces.

When examining the structure of the unstable modes, it is seen that associated streamfunction is significantly more
prominent in the vicinity of the middle layer (e.g., see figure 4). In fact, the regions closest to the interfaces are where
most of the production of perturbation kinetic energy occurs. Away from the middle layer, the streamfunction decays
quickly. Asymmetries arise when the upper and lower layers have different viscosities. In this case, the streamfunction
is stronger near the interface where the change in background shear rate is more drastic. When the shear rates in the
upper and lower layers are equal, the phase speed of the unstable mode equals the mean speed at the mid point of
the central layer. In the reference frame considered here, these unstable modes are stationary. When the viscosities in
the upper and lower layers are unequal, then the unstable mode has a positive (negative) phase speed when the shear
rate in the upper (lower) layer is higher. The structure of the unstable modes suggest that the underlying mechanism
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FIG. 3. Growth rates (αci) of the least stable mode as a function of streamwise wavenumber (α).

FIG. 4. Exponentially unstable modes (inviscid) with α = 0.5. The colour and the arrows denote the perturbation streamfunc-
tion and the perturbation velocity vector respectively; the interface locations are indicated by the horizontal thin dotted lines.

can be explained in terms of interaction of vorticity waves at the two interfaces [38].

C. Additional comments

Let us consider the stability analysis of piecewise linear base flows (see appendix B). In the plane shear flow of
a single layer, [39] showed that no modal solutions exist. In the two-layer flow, the dispersion relation is a linear
equation in c with real coefficients as there is only one interface. For the three-layer flow, which has two interfaces,
the dispersion relation is now given by a quadratic equation with real coefficients. Mathematically, this allows for the
phase speed c to take on complex conjugate values for certain parameter ranges. This idea can be extended to for
shear flows with arbitrary number of fluid layers. Therefore, plane shear flows of three or more fluid layers, where
the shear rate in each layer is different from those of its neighbours, can potentially be susceptible to exponentially
growing instabilities.

The three-layer shear flow considered here has a vorticity profile similar to that of the piecewise linear shear layer
(e.g., see [1]). The crucial difference for the flow considered here is that the vorticity is non-zero outside of the
central layer. If one were to analyse the smoothened shear layer profile such that all derivatives of the mean flow are
continuous, it can be verified that Fjørtoft’s criterion is always satisfied by the unstable configurations. Earlier work
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have shown the three-layer immiscible plane Couette flow [40] and the three-layer immiscible flow down an incline [41]
to support long-wave instabilities; note that these studies account for the effect of surface tension at the interface and
viscous terms. The unstable mean flow configuration for those systems, as in the current study, requires the central
layer to be the least viscous of the three.

IV. NON-MODAL STABILITY ANALYSIS

As the two-layer flow is always stable, it is straightforward to proceed with the non-modal analysis. On the other
hand, for the three-layer flow, the exponential growth rates associated with the instabilities are considerably high (see
figure 3). It is apparent that the exponential instabilities will end up dominating the perturbation dynamics. This is
unlike scenarios where the modal instability having a small exponential growth allows for non-modal mechanisms to
significantly increase the perturbation amplitude [11]. Therefore, the non-modal analysis is restricted to the modally
stable configurations for three-layer flows.

A. Problem formulation and other definitions

The perturbations are now considered to be of the form f(x, y, t) = f̂(y, t) exp (iαx). When these perturbations can
not be described in terms of any single eigenmode of the linearised operator, their structure changes over the course
of its evolution. The governing equation for the linear perturbation in the absence of viscous effects is:

F v̂ ≡ ∂t
(
∂2y − α2

)
v̂ + iαU(∂2y − α2)v̂ − iαU ′′v̂ = 0. (8)

v̂ is the normal component of the perturbation velocity.
We use the direct-adjoint looping procedure [42] to find an initial condition that maximises an objective functional

(see Appendix C for details). The objective functional for this study is the gain in perturbation energy at t = T for
a given set of base flow and perturbation parameters. In terms of v̂, the perturbation energy is given by:

E(t) =
1

4α2

∫ Σ/2

−Σ/2

dy ∂y v̂∂y v̂
∗ + α2v̂v̂∗ =

1

8α2

∫ Σ/2

−Σ/2

dy (v̂∗Mv̂ + v̂Mv̂∗) . (9)

In the above, v̂∗ represents the complex conjugate of v̂ and M =
(
α2 − ∂2y

)
. Throughout this work, the non-modal

perturbations are normalised such that E(0) = 1.
For analysing the non-modal perturbations, we also consider the volume-averaged rate of change of perturbation

energy, or simply, production:

dE

dt
= −1

4

∫ Σ/2

−Σ/2

dy U ′ (v̂û∗ + ûv̂∗) . (10)

In the above, û = i∂y v̂/α. For the form of perturbations considered here, note that equations (1) and (10) are
equivalent.

Non-uniform fluid properties often end up breaking symmetry of the perturbation structures [43, 44]. The multi-
layer plane shear flows offer us a natural framework for analysing the perturbation evolution in different regions.
In this regard, the distribution of perturbation energy and its production in different layers are useful quantitative
measures. While evaluating these expressions for different layers, the limits of the integrals in equations (9) and (10)
are suitably modified.

We also include some discussion on the structure of the non-modal perturbation at different times during its
evolution in the following subsections. Let l = l(t) be the largest magnitude of perturbation velocity at any time.
Subsequently, provided the perturbation has evolved for a sufficiently long period, we define L = max∀t l. For each
snapshot in time, the velocity is scaled by l so that the orientation of the vector field comes out clearly. In order to
give the true magnitude of the velocity, l will be specified as a fraction of L.

For all the results to follow, the computational domain is y ∈ [−0.5Σ, 0.5Σ] with Σ = 11. The upper and lower
layers are specified to have equal depths for both the mean flows considered. These depths are large enough such that
there is no undue influence of the walls on the dynamics. We also note that while the choice of the target time T does
indeed affect the extent of amplification in perturbation energy observed, the dynamics at play qualitatively remains
the same. The results presented here were obtained by fixing T = 30.

Although a majority of the studies on non-modal stability pertains to finding the optimal initial condition that
extremises an objective functional (often the perturbation energy), such an undertaking for the current study is
superfluous. By employing the direct-adjoint looping procedure, we are content with finding non-modal perturbations
that are not necessarily global optimal initial conditions for these systems.
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FIG. 5. Perturbation energy E as a function of time. (a) m = 2: for each value of wavenumber α, the initial condition is
evaluated by the direct-adjoint looping method. (b) The initial conditions used in (a) are evolved in the absence of viscosity
stratification.

B. Results for two-layer flow

In the previous section, it has been established two-layer shear flow is modally stable regardless of the value of the
viscosity ratio m. Therefore, without loss of generality, we discuss results only for m = 2. It then follows that the
lower layer is less viscous one. It has been verified that the principal features of the non-modal perturbations do not
change for other values of m.

The most striking feature of non-modal perturbations in shear flows is the transient algebraic amplification of
perturbation energy E. In figure 5 (a), the evolution of E in time is shown for different wavenumbers. After a period
of energy amplification, E is seen to become nearly constant at later times. In fact, there is an imperceptibly weak
decay in E that becomes more apparent at much later times. The extent of amplification seen here is significantly
larger than in unstratified plane shear flow. This can be verified in two complementary ways. First, upon specifying
the different layers to have equal viscosities while keeping all other conditions fixed and performing the optimisation
procedure, we report that the maximum amplification seen is at most O(10). Next, we check what happens when the
non-modal perturbation found for the stratified flow is introduced in a unstratified shear flow. The resulting growth
in E is seen to be extremely weak and the perturbation dies out at later times (see figure 5 (b)).

Now that we have seen the non-modal perturbations can exhibit considerable amount of transient growth, let us
examine a specific case in greater detail. For this purpose, we choose the non-modal perturbation for the case when
m = 2 and α = 1; we have verified that other choices for these parameters do not yield qualitatively different results.
The distribution of perturbation energy is seen to be uneven between the two layers throughout the evolution (see
figure 6 (a)). The disparity is greatest at t = 0, and reduces as time increases. As was observed for E at later times,
the perturbation energy content in the two layers too approach nearly constant values. The perturbation energy
content in the lower (less viscous) layer is seen to be greater for the the period of the evolution considered here.

When it comes to kinetic energy production, it is seen that the differences between the two layers can be far more
dramatic (see figure 6 (b)). For the phase of evolution where the perturbation energy is continuously increasing, it is
seen that the production in the lower layer is significantly larger. The production in the upper (more viscous) layer
is negative for certain periods. As the perturbation energy approaches the near saturation phase, the production in
the lower layer starts becoming much lesser. At later stages, the difference in the production between the two layers
is no longer as pronounced.

We next examine the structure of the perturbation at different times during its evolution. Panels (c) and (d)
in figure 6 show the perturbation structures at t = 0 and t = 50 respectively; note that the snapshot at t = 50 is
representative of the perturbation at times after the instant the maximum in E has occurred. The initial perturbation
is seen to be more pronounced in the less viscous lower layer. The streamfunction wavefronts are also initially tilted
against the mean shear in both layers that allows for the Orr mechanism to occur to some extent. The perturbation
field evolves such that the tilt of the streamfunction against the mean shear is no longer as considerable as it was
at t = 0. The perturbation is found to be propagating downstream while its structure evolves in time. Near the
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FIG. 6. m = 2 and α = 1. (a) Perturbation energy fraction and (b) production as a function of time. The perturbation
structure at (c) t = 0 and (d) t = 50; the colour, the arrows and the dotted lines denote the streamfunction, the velocity vector
and the interface respectively. For the arrows: (c) l = 0.1638L, (d) l = 0.9968L.

interface, vortices can be discerned within the perturbation structure at later times. The peaks of the perturbation
voriticty magnitude is observed to lie just below the interface in the lower (less viscous) layer.

C. Results for three-layer flow

We now consider the three-layer plane shear flow that is modally unstable only when the middle layer is the least
viscous. The additional layer gives us a larger parameter space to explore. We shall first discuss characteristics
of non-modal perturbations in the core-annular set-up with the upper and lower layers having identical viscosities.
We then proceed to examine mean flow configurations where all three layers have unequal viscosities; note that the
viscosity of the middle layer no longer needs to be the largest in these flow configurations as we already established
their modal stability in subsection III B.

1. Core-annular configurations

For the mean flow where the outer layers have equal viscosity, we set ml = mu = 0.5; there were no qualitative
differences for other modally stable core-annular configurations. Figure 7 shows how the energy E evolves in time
for different non-modal perturbations. The approach to the maximum value of E is not monotonic with the curves
revealing an oscillatory in time behaviour. The time periods between successive crests/troughs of E settle close to a
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FIG. 7. Evolution of perturbation energy for different wavenumbers. Base flow parameters: ml = mu = 0.5.

FIG. 8. The evolution of perturbation energy distribution in the different layers. Base flow parameters: ml = mu = 0.5.

fixed value only at the later stages of the perturbation evolution. The number of oscillations in a given time window
increases with the wavenumber of the perturbation. In the figure, it might appear that E decays at later time only
for α = 1.5 at first. We report that the perturbations eventually does decay for all values of α at later times. For the
present, the focus will be on the early stage dynamics of the perturbations. For the sake of brevity, we refer to the
phase of non-modal growth before E attains its maximum value as the oscillatory growth phase.
For the above set of initial conditions, figure 8 shows the distribution of perturbation energy among the different

layers as a function of time. The oscillatory nature of the perturbation evolution is again reflected here. In terms
of perturbation energy content, the upper and lower layers are equivalent at all times. This should not come as a
surprise owing to the symmetric nature of the mean flow. At t = 0, the initial condition can be seen to be more
energetic in the less viscous outer layers. As the perturbation evolves in time, there are periods when the contribution
of the perturbation energy in the middle layer dominates that of the outer layers put together. This behaviour is
seen despite the middle layer having the smallest volume fraction and being the most viscous of the three layers.
Additionally, we note that the perturbation energy fraction of the middle layer (and subsequently, the outer layers)
go through a wider range of values for lower values of the wavenumber over the course of the evolution.

The picture becomes more interesting when we examine the production in the different layers (see figure 9). At first,
it might seem appear that the evolution of the perturbation energy is solely tied to the dynamics in the middle layer.
The contribution of the outer layers to the production is seen to be comparatively much smaller after all. During the
oscillatory growth phase, it can be noted that the curves representing the total production always lie above those of
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FIG. 9. Production in the different layers as a function of time. Base flow parameters: ml = mu = 0.5.

FIG. 10. Phase difference of the streamfunction ψ̂ at y = ±δ as a function of time. Early (t ∈ [0, 15]) and late (t ∈ [45, 60])
stages of the evolution are shown. Base flow parameters: ml = mu = 0.5.

the production in the middle layer. This implies that the production in the outer layers during this phase is always
positive. In particular, when the production in the middle layer is negative, the production in the outer layers ensures
that the perturbation energy does not go back to its original value after each oscillation. This slight offset appears to
be crucial in allowing for the perturbation energy to grow, albeit in an oscillatory manner, during the initial stages.
At later times, the production in the middle and outer layers end up being in phase for all wavenumbers. When
α = 1.5, the oscillatory decay of the production is in line with what was observed in the perturbation energy.

The discussion so far has been on volume averaged quantities. To take a closer look at the perturbation structure,
we first examine the phase of the streamfunction Φψ as a function of time and the vertical coordinate. In particular,
to get a sense of how Φψ varies about the mid-point of the central layer, we evaluate ∆Φψ(δ, t) = Φψ(δ, t)−Φψ(−δ, t)
for different values of δ. Such a definition for ∆Φψ can be deemed natural owing to the symmetry of the mean flow.
In figure 10, the values of δ are selected such that different regions in the flow domain are represented; while the
δ = 0.5 is representative of the interfaces, the curves for δ = 0.25 and δ = 1.0 are typical of the middle and outer
layers respectively. ∆Φψ are seen to be different during the oscillatory growth phase of the perturbation evolution. At
later stages, ∆Φψ for δ = 0.5, 1.0 become equal. The implication of this observation will be made clear and discussed
in the subsequent.

We now focus on the evolution of the non-modal perturbation for one specific wavenumber: α = 0.5.At t = 0,
the perturbation streamfunction is inclined against the mean shear with the degree of inclination varying with y.
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FIG. 11. When ml = mu = 0.5 and α = 0.5, the perturbation structure is shown at (a) t = 39.65, (b) t = 40.80, (c) t = 41.95,
(d) t = 43.10. The colour, the arrows and the dotted lines denote the streamfunction, the velocity vector and the interfaces
respectively; for the arrows: (a) l = 0.9999L, (b) l = 0.8470L, (c) l = 0.6613L, (d) l = 0.8401L. In (e) and (f), the red dots
correspond to the snapshots shown in (a)-(d).

This is favourable for the Orr mechanism. Figures 9 and 10 hinted at the importance of the dynamics in the outer
layers during the initial stages of the perturbation evolution. Therefore, we start with observations made in the outer
layers. Away from the interface, the gradient of Φψ quickly reduces to zero in time. The streamfunction fronts in the
outer layer become nearly vertical in each of the outer layers. There is however a region in the immediate vicinity of
the interfaces where Φψ changes rapidly. This region becomes narrower quickly after the initial growth phase. This
behaviour is reflected in the plots of ∆Φψ in figure 10.

We next turn our attention to the dynamic processes in the middle layer, which is shown to have considerable
dominance in the production of perturbation energy (see figure 9). The Orr mechanism certainly comes into play.
However, the novel distinction in the current setting is that once the energy approaches a local minima in time,
the streamfunction wavefront is seen to be tilted against the mean shear yet again ensuring another round of Orr
mechanism dynamics. At early times, E at the end of each Orr mechanism cycle is always greater than what it was
the start. Recall the important role of the production in the outer layers in the oscillatory growth stage (see figure
9). For the core-annular mean flow configurations considered here, this phenomenon is seen to occur regardless of the
perturbation wavenumber.

The perturbation structures at four different times during the later stages of its evolution are shown in panels
(a)-(d) of figure 11. Panels (a) and (c) correspond to a local minima and maxima of the perturbation energy in time
respectively (see figure 11 (e)). When E is at a minima, what immediately catches the eye are alternating sets of
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FIG. 12. Evolution of perturbation energy for different wavenumbers. The upper and lower layers have unequal viscosities.

two streamwise jets converging in the middle layer. It is notable that the largest perturbation velocity magnitudes
correspond to the minimum of E. On the other hand, when E is at a maxima, the perturbation resembles a roll
centred about the middle layer. At this point, the perturbation is seen to more energetic in the outer layers. The
panels (b) and (d) correspond to times when the production is maximum and minimum (see figure 11 (f)). As was
established earlier, the middle layer alone accounts for most of the production. In this regard, when we focus only on
the perturbation structure in the middle layer, the orientation of the streamfunction wavefronts in panels (b) and (d)
are typical of those seen in the classical Orr mechanism during the early and late stages respectively. With increase
in time, these perturbation structures emerge again cyclically.

We report that the broad features of the structures shown in figure 11 are seen repeatedly throughout the pertur-
bation evolution in the core-annular flow configuration. This can be discerned even during the early stages of the
perturbation evolution. The prevalence of these structures allows for a novel regenerative form of the Orr mechanism.
During the early stages, this regenerative Orr mechanism allows for the perturbation energy to increase significantly.
At later stages, it allows for the perturbation to remain in a state of higher energy for periods far longer than what
would be observed in uniform plane shear flows.

2. Layers with unequal viscosities

The most general configurations of the mean flow have the three fluid layers being of unequal viscosities. We
consider two specific mean flows here: (I) ml = 0.6 and mu = 0.8, (II) ml = 2 and mu = 0.5. In configuration I, the
middle layer is the most viscous of the three. On the other hand, the upper layer takes the mantle of being the most
viscous in configuration II.

Figure 12 shows how the perturbation energy changes as a function of time for two different wavenumbers. Once
again, the non-modal perturbations demonstrate significant amplification in E. Unlike what was observed for core-
annular configurations, E initially increases monotonically in time. The late-time behaviour is dependent on the
wavenumber of the perturbation. For the two mean flows considered, the perturbations with α = 0.5 have a nearly
constant oscillatory evolution stage after the initial transient. For larger wavenumbers (α = 1.5), as was seen in the
core-annular configurations, the curves of E show an oscillatory decay after attaining maximum transient growth. The
curves in figure 12 share some of the features already reported for the core-annular three-layer flow and the two-layer
flow. We will elaborate on this aspect in the following by restricting our discussion to perturbations with α = 0.5.

The non-modal perturbation does not have any form of symmetry along the vertical coordinate owing to the nature
of the mean flows considered. This is immediately apparent when we plot the perturbation energy fraction as a
function of time in figure 13. The least viscous layer is the largest contributor to E for all time, a characteristic also
seen in the non-modal perturbations obtained for the two-layer flow (see figure 6 (a)). The perturbation is seen to
be considerably strong in the middle layer, regardless of whether it is the most viscous or not. In particular, this can
be seen in figure 13 (a). The undulations seen in the curves resemble those seen for non-modal perturbations in the
core-annular setting. However, it is pointed out that the undulations are not nearly as prominent as was seen in figure
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FIG. 13. Perturbation energy distribution in the different layers as a function of time when α = 0.5. The lower and upper
layers are the least viscous in (a) and (b) respectively.

FIG. 14. Production in the different layers as a function of time when α = 0.5. The lower and upper layers are the least viscous
in (a) and (b) respectively.

8.

Figure 14 shows the evolution of the production and its subdivision between the different layers. The least viscous
layer drives the production during the early stages of the perturbation evolution (till t ≈ 30). In this regard, there is a
marked difference from what was observed in the core-annular setting (see figure 9). On the other hand, the early-time
dynamics is similar to what was seen in the two-layer flow (see figure 6 (b)). The production in the middle layer
slowly picks up before eventually dominating at later times; the production in the outer layers are negligible at this
stage. At later times, comparisons with the core-annular configurations are once again more suitable. Nonetheless,
it is important to recall that the least viscous layer continues to account for the largest portion of the perturbation
energy content.

We now proceed to discuss the structure of the non-modal perturbations. In figure 15, we show snapshots at
t = 0 and at an instant t = τ when E is maximum. It is to be noted that τ need not be uniquely defined for any
given non-modal perturbation (see figure 12). The similarity of these perturbations to the ones seen in the two-layer
flow is more readily seen now. The perturbation is more stronger in the least viscous layer with the initial tilt of
the streamfunction fronts allowing for the Orr mechanism to amplify the perturbation energy at early times. While
discussing figures 12 and 14, it was suggested earlier that the dynamics at later times bears some similarity to the
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FIG. 15. The perturbation structure at t = 0 and t = τ for different mean flows. The colour, the arrows and the dotted lines
denote the streamfunction, the velocity vector and the interfaces respectively. Top row: τ = 46.65; arrow length scale: (a)
l = 0.1562L, (b) l = 0.9171L. Bottom row: τ = 41.40; arrow length scale: (c) l = 0.1019L, (d) l = 0.9996L. L is different in
the top and bottom rows.

FIG. 16. Evolution of perturbation energy when the mean flow is unstratified. The perturbation wavenumber is α = 0.5, and
the initial conditions obtained for the stratified flow are used here.

regenerative Orr mechanism seen in the core-annular configurations. However, upon examining different snapshots
visually, it is not straightforward to discern the process in terms of the tilt of the streamfunction wavefronts against
the mean shear.

3. Perturbation evolution in unstratified flow

Finally, we will briefly address how the non-modal perturbations found for the stratified three-layer plane shear flow
would evolve when introduced in an unstratified plane shear flow. For the sake of brevity, we only report the results
for those specific non-modal perturbations which were analysed in greater depth earlier in this section. We emphasise
that similar trends are observed for other modally stable mean flow configurations and perturbation wavenumbers.
Figure 16 shows the evolution of the perturbation energy when α = 0.5. Once again, as previously seen in figure 6
(b), it is abundantly clear that the mean shear being non-uniform is vital for observing the levels of perturbation
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FIG. 17. Profiles of |v̂| when α = 0.5 for different flow configurations: (a) two-layer flow with m = 2, and three-layer flows
with (b) ml = mu = 0.5, (c) ml = 0.6, mu = 0.8, (d) ml = 2, mu = 0.5. The blue-dashed lines represent the interfaces. The
red-dotted lines identify the critical layers given in table I.

energy amplification reported above.

D. Connection to discrete modal eigenfunctions

Can we state something more precise with regard to the initial conditions obtained from the optimisation procedure?
It turns out that we can when we turn to insight gained from modal analysis of these systems. The base flows
under consideration are smoothened counterparts of sharp interface configurations for which they would have been
discontinuous jumps of the mean shear rate. For such piecewise linear profiles, the number of elements in the discrete
spectrum is given by the number of interfaces. When working with these smoothened mean flow profiles, these discrete
modes are no longer present. However, their effects can still manifest by means of a set of continuous spectrum modes
in the form of a quasi-mode [45–48].

We shall continue the discussion using the non-modal perturbations highlighted in the preceding subsections. For
the discrete modes of the piecewise continuous flow, we can identify the critical layer where the piecewise continuous
mean flow velocity matches the phase speed of each discrete mode. For piecewise continuous flows, the critical layer
is not as vital as U ′′ = 0 everywhere except at the interfaces. We report that there is very little difference in the
critical layer locations regardless of whether the flow is bounded or unbounded in the current setting. If we were to
use the smoothened mean flow instead, the evaluated location again barely changes. For the configurations studied
here, the phase speeds and the corresponding critical layer locations for the bounded piecewise linear mean flow are
given in table I.

Upon examining the initial conditions more closely, we find the critical layers to be located in close proximity to
the peak of different perturbation quantities. As an illustration, we plot the magnitude of the normal component of
the perturbation velocity (|v̂|) in figure 17. For three-layer flows, the critical layer that determines the localisation
of the perturbation is the one that lies in the layer with the largest shear rate, i.e., the least viscous layer. We also
report that the region around the critical region continues to be energetically active at later times albeit not in the
dominant fashion seen at t = 0.

We emphasise that the optimisation procedure employed here does not specify the perturbation to be more stronger
in the vicinity of the critical layers or at any specific location. Such initial conditions emerge after the first couple of
iterations of the algorithm. On the other hand, one might be able to construct initial conditions centred about the

TABLE I. Phase speeds and locations of critical layer for discrete modal perturbations of the piecewise continuous mean flow.
2L and 3L refer to two-layer and three-layer flows respectively. For 3L systems, only the critical layer in the less viscous layer
is given.

Mean flow parameters α c yc
2L: m = 2 1 -0.333322 -0.249992
3L: ml = mu = 0.5 0.5 ±1.361278 ±0.930639
3L: ml = 0.6, mu = 0.8 0.5 -1.125263 -0.875158
3L: ml = 2, mu = 0.5 0.5 1.594689 1.047344
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critical layer in an ad hoc manner. But such prescriptions can not ensure the levels of perturbation amplification seen
in the results here. For example, Polyachenko and Shukhman [49] show that an initial vorticity perturbation in the
form of a Gaussian first undergoes Landau damping followed by an asymptotic algebraic decay without ever entering
a phase of transient growth.

V. CONCLUSION AND OUTLOOK

The inviscid stability characteristics of plane shear flows comprising two and three layers to 2D perturbations are
examined in this study. Every configuration of the two-layer flow is shown to be modally stable. On the other hand,
for the three-layer flow, modal instabilities emerge when the middle layer has the lowest viscosity. Upon analysing
the piecewise continuous counterpart of these shear flows, we are able to show that a minimum of three layers in the
mean flow is a prerequisite for modal instability. The corresponding perturbation structure highlight the importance
of the interfacial regions.

Most of the focus of this work is on the non-modal stability characteristics of these flows. We report significant
differences from what is observed for the shear flow of a single fluid layer. The amplification of perturbation energy
is considerably larger in both shear flows of two and three layers for a wide range of wavenumbers. Moreover, these
non-modal perturbations do not decay quickly. Moreover, the evolution of the perturbation energy is not necessarily
monotonic in the growth phase for the three-layer flow. The same initial conditions when introduced in an unstratified
shear flow certainly do not evolve to replicate the levels of the transient growth seen in the layered flows. We posit
these observations to be among the more important take-away messages from this work.

The structure and the subsequent dynamics of the non-modal perturbation is dependent on the mean flow consid-
ered. For the two-layer flow, the perturbation energy is shown to be always larger in the less viscous layer. The less
viscous layer is also the more dominant contributor to the production during the phase of perturbation energy growth.
At later stages, the net production almost reduces to zero resulting in the apparent plateauing of the perturbation
energy.

In core-annular three-layer flow configurations, the optimised non-modal perturbations are energetically equivalent
in the outer layers. The corresponding dynamics result in the middle layer, which has the smallest volume fraction
and is the most viscous, accounting for more perturbation energy for a considerable portion of time. At first glance,
the middle layer appears to dominate the production of perturbation energy throughout the perturbation evolution.
However, the outer layers end up subtly playing a vital role during the oscillatory growth phase. Throughout the
perturbation evolution, a novel regenerative form of the Orr mechanism is in evidence.

When the three layers are distinct from each other, the non-modal perturbations demonstrate some features of those
obtained for both the two-layer and the core-annular three-layer flows. As in the two-layer flow, the least viscous
layer accounts for most of the perturbation energy. During the early stages of the evolution, the least viscous layer
also dominates the production of perturbation energy. At the same time, the participation of the middle layer in the
production process picks up. Comparisons with the three-layer core-annular flow configurations are more apt at later
stages of the perturbation evolution when the middle layer ends up dominating the production. However, the level of
production is not to the same extent resulting in smaller oscillations of the perturbation energy in time.

This study sheds light on the dynamics of a class of non-modal perturbations in viscosity stratified shear driven
flows. Such scenarios can be envisaged in large geophysical flows where a stratification of the eddy viscosity may be
considered [50, 51]. The fact that the mean shear is not constant everywhere leads to scenarios where the perturbation
energy amplification is considerably significant even for 2D perturbations. In this regard, it would be interesting to
verify if the phenomena discussed here can play a more direct role in the nonlinear evolution of such flows. This
might perhaps be in conjunction or in opposition to 3D processes, which are typically more potent in rendering the
flow nonlinear in canonical shear flows.

The very nature of the mean flows considered here offer a large parameter space which remains to be explored. For
instance, altering the depths of the different layers offer one such avenue for future study. If density stratification
effects were to be included, it is possible to get other forms of non-modal perturbations where the initial forcing
is primarily due to buoyancy [52, 53] bringing in an interplay between perturbation potential and kinetic energies
[54, 55]. In an upcoming work, the consequences of including viscous and diffusive effects in the full nonlinear setting
will be discussed. The results presented here will serve as a reference for studies that incorporate some of the factors
mentioned above.
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Appendix A: Computational method

The computational domain is taken to be y ∈ [−0.5Σ, 0.5Σ]. For this particular study, it is more desirable to have
more grid points around y = 0. For this purpose, we shall make use of a stretched grid [56, 57]:

y =
a

sinh (bY0)

{
sinh

[
b

(
Y

Σ
− Y0

)]
+ sinh (bY0)

}
− Σ

2
(A1)

where Y0 =
1

2b
log

[
Σ+

(
eb − 1

)
a

Σ+ (e−b − 1) a

]
In the above, we have introduced another coordinate Y ∈ [0,Σ] that has a one-to-one mapping to the y coordinate.
Gauss–Lobatto collocation points are defined to discretise Y as:

Yj =
Σ

2

(
1 + cos

πj

N

)
, j = 0, 1, . . . , N (A2)

In equation (A1), a is the location in the ξ coordinate where the density of points is made higher; for all the results
shown here, a = 0.5Σ. b is a stretching parameter, whose value is selected such that at least 3 grid points lie in each
of the mixing layers.

The discretised versions of the operators in equation (5) and (8) are obtained by employing the chain rule (using
equation (A1)) in conjunction the suitably scaled differentiation matrices for the collocation grid [58]. Homogeneous
boundary conditions are imposed on the normal velocity component at y = ±0.5Σ.
For both the modal and non-modal analysis, the numerical results were obtained with N = 401 and Σ = 11. It is

verified that the results do not change upon increasing the number of discretisation points. Likewise, the resulting
changes in the results are not significant when Σ is allowed to take on larger values.

Appendix B: Dispersion relations of piecewise continuous linear flows

Dispersion relations for piecewise continuous linear flows are derived by enforcing matching conditions of the per-
turbation pressure and the normal component of the perturbation velocity at the interfaces. In each layer of the
piecewise continuous linear flow, the Rayleigh equation (5) reduces to:(

d2

dy2
− α2

)
ṽ = 0. (B1)

Given the form of ṽ, the perturbation pressure p̃ is given by:

p̃ = − i

α
(U − c)

dṽ

dy
+
i

α
U ′ṽ. (B2)

In each layer, we seek a solution ṽ satisfying conditions at the boundary/interface in addition to the equation (B1).
For brevity, only the dispersion relations for the bounded and unbounded flows are given as the procedure to obtain

them is fairly standard [1, 35]. Also note that the phase speed c given below is with respect to a frame of reference
where U(0) = 0.

1. Two-layer flows

For the bounded flow, where the depths of the lower and upper layers are given by dl and du respectively, the
dispersion relation is:

c =
(1−m)

(
1− e−2αdl

) (
1− e−2αdu

)
α (1 +m)

(
1− e−2α(dl+du)

) . (B3)

In the current work, dl = du = 5.5. As dl, du → ∞, the dispersion relation reduces to:

c =
(1−m)

α (1 +m)
. (B4)

With dl = du = 5.5, the values of c obtained equations (B3) and (B4) are extremely close. Only real values of c exist,
and therefore all are neutral modes.
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2. Three-layer flows

For the flow in the bounded setting, the dispersion relation becomes:

Abc
2 + Bbc+ Cb = 0, (B5)

with Ab = 1,

Bb = −
[
1− eα(1−2dl)

] [
1− e−α(1+2du)

]
∆Sl +

[
1− e−α(1+2dl)

] [
1− eα(1−2du)

]
∆Su

2α
[
1− e−2α(dl+du)

] ,

and Cb = − 1

4
+

[
1− eα(1−2dl)

] [
1− e−α(1+2du)

]
∆Sl −

[
1− e−α(1+2dl)

] [
1− eα(1−2du)

]
∆Su

4α
[
1− e−2α(dl+du)

]
−
e−2α∆Sl∆Su

[
1− eα(1−2dl)

]2 [
1− eα(1−2du)

]2
4α2

[
1− e−2α(dl+du)

]2
+

∆Sl∆Su
[
1− eα(1−2dl)

] [
1− e−α(1+2dl)

] [
1− eα(1−2du)

] [
1− e−α(1+2du)

]
4α2

[
1− e−2α(dl+du)

]2 .

In the above, ∆Sl (≡ 1−m−1
l ) and ∆Su (≡ m−1

u − 1) are the jumps in the mean shear rate at the lower and upper
interfaces respectively. As dl, du → ∞, the dispersion relation reduces to:

Ac2 + Bc+ C = 0, (B6)

with A = 4α2, B = −2α (∆Sl +∆Su) , and C = −α2 + α (∆Sl −∆Su) + ∆Sl∆Su
(
1− e−2α

)
.

In the current study, where dl = du = 5, the differences in the values of c obtained equations (B5) and (B6) are not
significant.

Some additional insight may be obtained directly by analysing the dispersion for the unbounded flow (equation
(B6)). In this regard, it is useful to define:

ml = 1 + δl,mu = 1 + δu. (B7)

As ml,mu > 0, it follows that −1 < δl, δu <∞. The discriminant D of equation (B6) is given by:

D =
4α2(δl − δu)

2

m2
lm

2
u

+ 16α4 − 16α3(δlmu + δu)

mlmu
+

16α2δlδu(1− e−2α)

mlmu
(B8)

Exponentially unstable modes exists when D < 0; also note that as α > 0, (1− e−2α) > 0. When 0 < ml,mu < 1, or
equivalently when −1 < δl, δu < 0, it can be seen that D > 0 for all values of α.

Appendix C: Direct-adjoint looping procedure

When the forward equation is given by equation (8), the adjoint equation is given by:

F†ξ̂ ≡ ∂t(∂
2
y − α2)ξ̂ + iαU(∂2y − α2)ξ̂ + 2iαU ′∂y ξ̂ = 0 (C1)

The adjoint variable ξ̂ satisfies the same boundary conditions as v̂.
At the outset, we define two inner products of functions q̂1 and q̂2 that will be useful for subsequent calculations:

⟨q̂1, q̂2⟩ = ⟨q̂2, q̂1⟩ =
1

2

∫ yu

yl

dy (q̂∗2 q̂1 + q̂∗1 q̂2) , (C2)

[[q̂1, q̂2]] = [[q̂2, q̂1]] =
1

2

∫ T

0

dt

∫ yu

yl

dy (q̂∗2 q̂1 + q̂∗1 q̂2) . (C3)

If q̂1 and q̂2 that satisfy homogeneous boundary conditions at y = yl and y = yu, it can be shown that:

⟨q̂1,Mq̂2⟩ = ⟨Mq̂1, q̂2⟩ (C4)
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The perturbation energy, using the form given in equation (9), can be written as:

E =
1

4α2
⟨Mv̂, v̂⟩ (C5)

The objective functional for this study is the gain in perturbation energy at t = T for a given set of base flow and
perturbation parameters. This can be defined as follows:

J (T ) =
E(T )

E(0)
=

⟨Mv̂(T ), v̂(T )⟩
⟨Mv̂(0), v̂(0)⟩

=
⟨Mv̂(T ), v̂(T )⟩

⟨Mv̂0, v̂0⟩
(C6)

v̂0 is the initial condition, and we wish to find the initial condition that maximises the gain J . It is also to be noted
that the dependence on the spatial coordinate y is not explicitly stated when it appears in the inner products of the
form defined in equation (C2). For the sake of brevity, only its temporal argument is specified explicitly.

We define the Lagrangian as follows:

L = J − [[ξ̂,F v̂]]− ⟨ĝ, v̂(0)− v̂0⟩

⇒ L =
⟨Mv̂(T ), v̂(T )⟩

⟨Mv̂0, v̂0⟩
− ⟨ξ̂(T ), v̂(T )⟩+ ⟨ξ̂(0), v̂(0)⟩+ [[F†ξ̂, v̂]]− ⟨ĝ, v̂(0)− v̂0⟩ (C7)

The adjoint state vector ξ̂ and ĝ serve as Lagrange multipliers.
To extremize L (and hence J ), we have to take variations of L with respect to different quantities. When the

variations with respect to ξ̂ and ĝ are taken, the constraints are recovered (that is zero). In order to take variations
with respect to v̂ and v̂0, we define the following:[

∂L
∂v̂

, δv̂

]
≡ lim
ϵ→0

L (v̂ + ϵδv̂)− L (v̂)

ϵ
(C8)〈

∂L
∂v̂0

, δv̂0

〉
≡ lim
ϵ→0

L (v̂0 + ϵδv̂0)− L (v̂0)

ϵ
(C9)

After taking variations with respect to v̂ and v̂0, the conditions for extrema are:

ξ̂(T ) =
2

⟨Mv̂0, v̂0⟩
Mv̂(T ), (C10)

ξ̂(0) = ĝ =
2⟨Mv̂(T ), v̂(T )⟩

⟨Mv̂0, v̂0⟩2
Mv̂0. (C11)

We attempt to find the initial condition v̂0 that gives an extrema for J at a specified target time T in an iterative

manner. With an initial guess for v̂0, v̂(T ) is obtained by marching forward in time the direct equation (8). ξ̂(T )

can then be defined using equation (C10). In the next step, ξ̂(0) by evolving ξ̂(T ) backward in time using equation
(C1). The initial condition v̂0 can be then updated using equation (C11). The steps are repeated until criteria
for terminating the iterations are satisfied. The ideal criterion for stopping the iterative procedure is when (C11)
is satisfied (up to a specified tolerance); this implies a global extrema has been found. However, it is not always
guaranteed that this condition can be satisfied. Our stopping criteria is based on whether J undergoes significant
change between iterations: the looping is terminated when the change in J in subsequent iterations is less than 0.1%.
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