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The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent 

strategy for controlling the properties of a wide range of materials, particularly in the context of 

influencing their magnetic behavior. Here, we show that, contrary to common perception, the 

origin of phonon-induced magnetic activity does not stem from the motion of ions themselves; 

instead, it arises from the effect their motion exerts on the electron subsystem. Through the 

mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons 

generates substantial non-Maxwellian fields that disrupt time reversal symmetry, effectively 

emulating the behavior of authentic magnetic fields. Notably, the effective field can reach 

magnitudes as high as 100 T, surpassing by several orders of magnitude the Maxwellian field 

resulting from the circular motion of the ions. Because the light-induced non-reciprocal fields 

depend on the square of the phonon displacements, the chirality the photons transferred to the 

ions plays no role in magnetophononics.  
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The term helical- or chiral-phonon made its appearance in the literature in the mid-2010s, 

with the exploration of topological materials [1] and valley-phonon modes in monolayer 

transition-metal dichalcogenides [2,3]. In its strictest sense, an object is called chiral if it cannot 

be mapped to its mirror image by rotations and translations alone [4]. However, in the context of 

phonons, this term has transcended its usual definition. It now not only applies to the genuinely 

chiral modes found in gyrotropic solids such as quartz, distinguished by their linear wavevector 

shifts [5,6,7], but also extends to phonons for which the vibrational pattern and the wavevector 

are co-planar [2,3] as well as circularly-polarized states of zero wavevector [8,9]. 

Chiral vibrational modes offer a diverse range of possible applications [3], and one area that 

has garnered significant interest is their ability to manipulate the magnetic properties of a 

material [10,11]. Central to this domain are coherent states of circularly-polarized polar modes 

due to their inherent magnetic moment [12,13]. Unlike true chiral phonons [5,6,7] and valley-

modes [2,3], the modes of interest here are degenerate. The ions’ circular motion arises from the 

interaction with circularly polarized electromagnetic radiation, which typically generates 

magnetization due to the inverse Faraday effect [14,15,16]. The experimental data suggests that 

the intrinsic magnetic moment of the vibrations is too weak to account for the light-induced 

magnetization and, moreover, that this Faraday magnetization is too small to explain the 

magnetic effects of the phonons [17]. Here, we show that the root of magnetophononics is not 

the vibrations themselves, but their coupling to the electrons’ spin and orbital degrees of 

freedom, leading to an ion-induced non-Maxwellian electron field that breaks time-reversal 

invariance and is effectively larger than the Maxwellian magnetization by several orders of 

magnitude. We further show that the phonon chirality plays no role in defining the non-
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Maxwellian field, the behavior of which relies on the angular momentum but not on the 

wavevector of the vibrations.  

Consider a non-magnetic material that belongs to the cubic system and is described by the 

Hamiltonian  

 
2

2 2
0

ˆ ˆˆ ˆ ˆ
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involving a doubly-degenerate, transverse-optical (TO) mode of frequency 0Ω  (the discussion is 

also applicable to uniaxial substances). Here, Q̂  and P̂  are the phonon coordinate and associated 

momentum operators, which transform as vectors, m  is the phonon effective mass [18], ˆ
eH  is 

the Hamiltonian of the electron subsystem and ˆˆ ˆ.V = QΞ  represents the electron-phonon 

interaction [19]; ˆ ˆ ˆ ˆ( , , )x y z= Ξ Ξ ΞΞ  is a vector operator that depends only on electron variables. 

Assuming that the ion motion is driven by a classical electric field of frequency Ω that is 

polarized in the xy plane, and treating the phonon field as classical, we write 

 ( ) ( )* *ˆ ˆ ˆ ˆ ˆ( ) i t i t
R L R LV t Q Q e Q Q e− + Ω + − − Ω= Ξ + Ξ + Ξ + Ξ   . (2) 

Here, ( ) / 2R x yQ Q iQ= +  and ( ) / 2L x yQ Q iQ= −  are, respectively, the right and left 

circularly polarized amplitudes and ˆ ˆ ˆ( ) / 2x yi±Ξ = Ξ ± Ξ . Within the conventional framework of 

quantum perturbation theory, ˆ( )V t  introduces time-dependent corrections involving both 

harmonics of Ω  as well as static terms to any given eigenfunction of ˆ
eH . The second-order 

correction has time-dependent terms at twice the driving frequency as well as the lowest-order 

static correction  
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where (0) (0)ˆ
e n n nH Ψ = ω Ψ  and mp m pω = ω −ω . This expression contains a symmetric term and, 

central to magnetophononics, the antisymmetric contribution 
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which vanishes at 0Ω = . Had we considered instead of the electron-phonon the electron-

radiation interaction ˆ.E d , where E(t) is a classical electric field and d̂  stands for the electron 

dipole-moment operator, the perturbation expansion would be the standard one of nonlinear 

optics, with the second-order symmetric correction to the ground state leading to second 

harmonic generation and optical rectification in non-centrosymmetric materials [20], and the 

antisymmetric contribution to the inverse Faraday effect [14]. Building on this analogy, it follows 

that the circular motion of the ions will induce a magnetization along the z direction, given by 

 ( )2 2
2 ( )z R L

c

M Q Q S
v
Ω

= − Ω


  (5) 

with 

 2 2
,

ˆ ˆ ˆ ˆ( ) 0
( ) . .

( )
gm mn gm mn z

n m ng mg

n m
S c c

+ − − +Ξ Ξ −Ξ Ξ
Ω = +

ω ω −Ω∑   . (6) 

Here, cv  is the unit cell volume, ˆ zm  is the z component of the electron magnetic dipole operator, 

c.c. denotes the complex conjugate, and we have assumed that the ground state 0  is not 

degenerate and the temperature is T = 0. Since Q and E are related through [12] 
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where 0ε ( ∞ε ) is the low (high) frequency permittivity and (1) ( )χ Ω  is the linear optical 

susceptibility, the well-known relationship between the inverse Faraday and the conventional 

Faraday effect [15] can be used to obtain the angle of rotation Fθ  of a linearly-polarized beam in 

the presence of a magnetic field B oriented along z  
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Here,   is the beam path length, c is the speed of light and rn  is the refractive index. The ratio 

F /θ B  gives the (Ω-dependent) Verdet constant. When setting T = 0, the paramagnetic term, 

which is usually dominant in substances featuring ions with unfilled orbitals, is effectively 

eliminated from consideration. Provided the Zeeman splittings are small compared to Bk T  ( Bk  is 

Boltzmann constant), this term manifests itself as a 1/T contribution to the Verdet constant [15]. 

It is instructive to compare Eqs. (5) and (8) with the corresponding expressions for the direct 

coupling of the magnetic field to the phonon magnetic moment, which can be written as 

P ( ).g m ×Q Q B , where Pg  is the phonon gyromagnetic ratio [12,13]. This interaction gives  
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P 0
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( )16 ( / )
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And, thus, ( )2 2
P( / )z c R LM g m v Q Q′ = Ω − . For insulators, one gets the crude estimate 

2/3 2 2 2 3
ave G/ / / 10 10z z F F cM M v E′ ′= θ θ Ξ −   using typical values of the TO deformation potential 

[21] and a gap of GE = 1 eV. This ratio is also the extent by which 0 / B∂Ω ∂  is greater for the 
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indirect, electron-mediated mechanism of phonon-magnetic field coupling. In its many forms, 

this mechanism accounts for the large magnetic-field dependence of phonon frequencies 

observed in rare-earth compounds like CeF3, which closely follow the average magnetic moment 

of the rare-earth ions [22,23], topological semimetals [24], incipient ferroelectrics [25] and polar 

antiferromagnets [26].  

Equation (4) can be seen as arising from an effective, static perturbation effV̂  that acts on the 

electrons, with matrix elements 

 ( ) ( )(0) (0) *
eff 2 2
ˆ ( ) ( ) .

( )
nm mp

n p
m mp

V
Ω Ξ ×Ξ

Ψ Ψ = Ω × Ω
ω −Ω∑Q Q

 



   . (10) 

The behavior of vector products closely mimics that of a magnetic field, for they are even under 

inversion and odd under time reversal. Consequently, the product *×Q Q  displays characteristics 

of a non-Maxwellian magnetic-esque field, inducing the splitting of Kramers doublets and 

modifying the electron energy spectrum in a manner reminiscent of an actual field. Unlike true 

magnetic fields, however, the non-Maxwellian field is undetectable outside the material. 

Understanding the time reversal properties of effV̂  is easiest in the absence of spin-orbit 

coupling. In such instances, it suffices to consider the orbital component of the electron magnetic 

dipole Lˆ ˆ ˆ( ) / 2 ee m c= − ×m r p . Since Ξ̂  transform like r̂ , the exact relationship 

 Lˆ ˆ ˆ( )
2 mt sm mt

m

es t i
c

= ω ×∑m r r  (11) 

can be used to obtain the approximate expression 
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  , (12) 
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which applies when transitions between two particular electron states or two bands dominate. 

Here ∆ is the energy separation between the two states while 2
aveΞ  and 2

aver  are average values of 

the corresponding matrix elements. Within this approximation, the factor multiplying Lˆ . zm e  

plays the role of an effective magnetic field oriented along z. An order-of-magnitude estimate 

indicates that the ratio between this field and the magnetization, Eq. (5), is 2−≈ α , where 

1/137α ≈  is the fine structure constant. Drawing from the analogy with ˆ.E d  coupling [14], one 

can further show that the effective interaction for paramagnetic ions is of the form 

 2 2( ) ( )R L Q zQ Q A S− Ω     , (13) 

where QA  depends linearly on the spin-orbit interaction (this presupposes that the orbital angular 

momentum of the ground state multiplet is quenched). As for the spinless case, the magnitude of 

QA  is such that the splittings due to effV̂  are on the order of 2−α  times larger than B4 zMπµ ; Bµ  

is the Bohr magneton. 

The result that effV̂ -induced splittings surpass those of the light-induced magnetization by a 

factor of approximately 2−α  is a key outcome of this work. This becomes readily understandable 

when considering that the magnetic field strength needed to produce M is M/ χM  where Mχ  is 

the static magnetic susceptibility, the values of which typically fall around 2α , give or take one 

order of magnitude in variation. The estimated values of the effective field are quite large. 

Taking, as previously, GE =1 eV and using representative values for the electron-phonon 

coupling [21], one gets 2| | −αM = 50-100 T for | |Q  = 0.2 Å and a driving frequency of 10 THz. 

Needless to say, the actual effV̂  splittings and those due to M/ χM  may differ considerably and, 
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moreover, our continuous wave approach requires refinement to better suit the analysis of pulsed 

experiments.  

Even though effV̂  is associated with a non-Maxwellian field and, as such, hidden to the 

outside world, its impact inside the material has been well documented across experiments 

encompassing the polarization rotation of a linearly-polarized probe beam (optical Faraday effect 

[17]) and the phonon-induced generation of coherent magnons [10]. Concerning the former, it 

should now be clear that the field responsible for the probe polarization rotation is not the 

Maxwellian field derived from the magnetization, namely, 4= πB M , as sometimes assumed, but 

the much larger non-Maxwellian field associated with effV̂ . Additionally, Eq. (13) indicates that 

the sudden onset of coherent phonon oscillations can coherently drive a magnetic precession 

provided the spin magnetization axis is perpendicular to the light-induced magnetic-like field. In 

this regard, it is worth noting that the experiments on ErFeO3 are consistent with our findings; 

both the coupling related to the magnetization, as per Eq. (5), and the magnetic moment 

attributed solely to ion motion fail to account for the notably larger values of the effective 

magnetic field responsible for driving the magnon oscillations [10].   

The preceding discussion centered on the behavior of the antisymmetric component of the 

nonlinear susceptibility (2)χ  at far infrared frequencies, close to those of polar modes. 

Nevertheless, these findings extend their significance to Faraday-related experiments performed 

at higher frequencies [27,28], where the phonons play no role. As alluded to earlier, the formulas 

governing light-induced magnetization, Eq. (5), and the effective static perturbation, Eq. (10), 

align precisely with standard nonlinear optics equations when Q is exchanged for the electric 

field E and Ξ̂  for the electron dipole operator d [15]. Whether at infrared or higher frequencies, 
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the fact that Faraday-related effects depend on the quadratic combination *×Q Q  (or *×E E ) 

indicate that the chiral properties inherent in circularly-polarized electromagnetic radiation, 

which are transferred to the material, become entirely inconsequential. Furthermore, since the 

group velocity of optical modes vanishes at the center of the Brillouin zone and the chiral pitch is 

orders-of-magnitude larger than the lattice parameter, it becomes evident that any effects 

stemming from the phonon wavevector will be negligible. This strongly suggests that chirality is 

not a factor in the generation of magnetic-like fields, as commonly proposed [29,30,31,32].  

To summarize, our findings highlight the pivotal role of electron-phonon coupling in 

elucidating the magnetic effects arising from the excitation of polar phonons. The circular 

motion of ions induces a nonreciprocal and achiral static perturbation. Its impact on the electrons 

mirrors that of a magnetic field, reaching magnitudes we estimate can be as large as 100 T, 

markedly surpassing the fields generated by the ion motion alone. These results promise 

magnetic fields that exceed current experimental limitations, achievable within a table-top setup, 

which could pave the way for delving into novel optical phenomena, advancing spin control 

crucial for quantum computing, and investigating quantum-Hall-related effects dependent on 

broken time reversal symmetry. 

 

 

.    



10 | P a g e  
 

 
 

REFERENCES 

[1] R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical 

topological insulator, Science 349, 47 (2015).  

[2] L. Zhang and Q. Niu, Chiral Phonons at High-Symmetry Points in Monolayer Hexagonal 

Lattices, Phys. Rev. Lett. 115, 115502 (2015). 

[3] H. Zhu, J. Yi, M -Y. Li, J. Xiao, L. Zhang, C-W. Yang, R. A. Kaindl, L-J. Li, Y. Wang and X. 

Zhang, Observation of chiral phonons, Science 359, 579 (2018).  

[4] Sang-Wook Cheong and Xianghan Xu, Magnetic chirality, npj Quantum Mater. 7, 40 (2022).  

[5] A. S. Pine and G. Dresselhaus, Linear Wave-Vector Shifts in the Raman Spectrum of α-

Quartz and Infrared Optical Activity, Phys. Rev. 188, 1489 (1969).  

[6] K. Ishito, H. Mao, Y. Kousaka, Y. Togawa, S. Iwasaki, T. Zhang, S. Murakami, J. Kishine and 

T. Satoh, Truly chiral phonons in α-HgS, Nat. Phys. 19, 35 (2022).  

[7] H. Ueda, M. García-Fernández, S. Agrestini, C. P. Romao, J. van den Brink, N. A. Spaldin, 

K-J. Zhou and U. Staub, Chiral phonons in quartz probed by X-rays, Nature 618, 946 (2023).  

[8] S-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, Helicity-Resolved Raman Scattering of MoS2, 

MoSe2, WS2, and WSe2 Atomic Layers, Nano Lett. 15, 2526 (2015). 

[9] X. Chen, X. Lu, S. Dubey, Q. Yao, S. Liu, X. Wang, Q. Xiong, L. Zhang and A. Srivastava, 

Entanglement of single-photons and chiral phonons in atomically thin WSe2, Nat. Phys. 15, 221 

(2019).  

[10] T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. 

Kimel, R. Merlin and A. Cavalleri, An effective magnetic field from optically driven phonons, 

Nat. Phys. 13, 132 (2017). 



11 | P a g e  
 

 
[11] D. Afanasiev, J. R. Hortensius, B. A. Ivanov, A. Sasani, E. Bousquet, Y. M. Blanter, R. V. 

Mikhaylovskiy, A. V. Kimel, and A. D. Caviglia, Ultrafast control of magnetic interactions via 

light-driven phonons, Nat. Mater. 20, 607 (2021).  

[12] Yu. T. Rebane, Faraday effect produced in the residual-ray region by the magnetic moment 

of an optical phonon in an ionic crystal, Sov. Phys. JETP 57, 1356 (1984).  

[13] D. M. Juraschek, M. Fechner, A. V. Balatsky and N. A. Spaldin, Dynamical multiferroicity, 

Phys Rev. Mater. 1, 014401 (2017).  

[14] P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, Theoretical Discussion of the Inverse 

Faraday Effect, Raman Scattering, and Related Phenomena, Phys. Rev. 143, 574 (1966).  

[15] P. W. Atkins and M. H. Miller, Quantum field theory of optical birefringence phenomena IV. 

The inverse and optical Faraday effects, Mol. Phys. 15, 503 (1968). 

[16] M. Battiato, G. Barbalinardo, and P. M. Oppeneer, Quantum theory of the inverse Faraday 

effect, Phys. Rev. B 89, 014413 (2014). 

[17] M. Basini, M. Pancaldi, B. Wehinger, M. Udina, T. Tadano, M. C. Hoffmann, A. V. 

Balatsky, S. Bonetti, Terahertz electric-field driven dynamical multiferroicity in SrTiO3, Nature 

(2024) https://doi.org/10.1038/s41586-024-07175-9.   

[18] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954), 

p. 82.  

[19] F. Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 

(2017).   

[20] R. W. Boyd, Nonlinear Optics, 4th. Ed. (Elsevier, San Diego, 2020), Ch. 3. 

[21] W. Pötz and P. Vogl, Theory of optical-phonon deformation potentials in tetrahedral 

semiconductors, Phys. Rev. 24,2025 (1981). 

https://doi.org/10.1038/s41586-024-07175-9


12 | P a g e  
 

 
[22] G Schaack, Observation of circularly polarized phonon states in an external magnetic field, 

J. Phys. C: Solid State Phys. 9, L297 (1976).  

[23] P. Thalmeier and P. Fulde, Optical Phonons of Rare-Earth Halides in a Magnetic Field, Z. 

Physik B 26, 323 (1977).  

[24] B. Cheng, T. Schumann, Y. Wang, X. Zhang, D. Barbalas, S. Stemmer, and N. P. Armitage, 

A Large Effective Phonon Magnetic Moment in a Dirac Semimetal, Nano Lett. 20, 5991 (2020).  

[25] A. Baydin, F. G. G. Hernandez, M. Rodriguez-Vega, A. K. Okazaki, F. Tay, G. T. Noe II, I. 

Katayama, J. Takeda, H. Nojiri, P. H. O. Rappl, E. Abramof, G. A. Fiete and J. Kono, Magnetic 

Control of Soft Chiral Phonons in PbTe, Phys. Rev. Lett. 128, 075901 (2022).  

[26] F. Wu, S. Bao, J. Zhou, Y. Wang, J. Sun, J. Wen, Y. Wan and Q. Zhang, Fluctuation-

enhanced phonon magnetic moments in a polar antiferromagnet, Nat. Phys. 19, 1868 (2023).  

[27] R. V. Mikhaylovskiy, E. Hendry and V. V. Kruglyak, Ultrafast inverse Faraday effect in a 

paramagnetic terbium gallium garnet crystal, Phys. Rev. B 86, 100405(R) (2012).   

[28] M. S. Wismer, M. I. Stockman and V. S.  Yakovlev, Ultrafast optical Faraday effect in 

transparent solids, Phys. Rev. B 96, 224301 (2017).   

[29] D. M. Juraschek and N. A. Spaldin, Orbital magnetic moment of phonons, Phys. Rev. Mater. 

3, 064405 (2019).   

[30] G. Xiong, H. Chen, D. Ma and L. Zhang, Effective magnetic fields induced by chiral 

phonons, Phys. Rev. B 106, 144302 (2022).   

[31] R. M. Geilhufe and W. Hergert, Electron magnetic moment of transient chiral phonons in 

KTaO3, Phys. Rev. B 107, L020406 (2023).  

[32] J. Luo, T. Lin, J. Zhang, X. Chen, E. R. Blackert, R. Xu, B. I. Yakobson and H. Zhu, Large 

effective magnetic fields from chiral phonons in rare-earth halides, Science 382, 698 (2023).   


