
SpComm3D: A Framework for Enabling Sparse Communication
in 3D Sparse Kernels

Nabil Abubaker
nabubaker@inf.ethz.ch

ETH Zürich
Zürich, Switzerland

Torsten Hoefler
htor@inf.ethz.ch

ETH Zürich
Zürich, Switzerland

ABSTRACT
Existing 3D algorithms for distributed-memory sparse kernels suf-
fer from limited scalability due to reliance on bulk sparsity-agnostic
communication. While easier to use, sparsity-agnostic communi-
cation leads to unnecessary bandwidth and memory consumption.
We present SpComm3D, a framework for enabling sparsity-aware
communication and minimal memory footprint such that no un-
necessary data is communicated or stored in memory. SpComm3D
performs sparse communication efficiently with minimal or no
communication buffers to further reduce memory consumption.
SpComm3D detaches the local computation at each processor from
the communication, allowing flexibility in choosing the best ac-
celerated version for computation. We build 3D algorithms with
SpComm3D for the two important sparse ML kernels: sampled
dense-dense matrix multiplication (SDDMM) and Sparse matrix-
matrix multiplication (SpMM). Experimental evaluations on up to
1800 processors demonstrate that SpComm3D has superior scala-
bility and outperforms state-of-the-art sparsity-agnostic methods
with up to 20x improvement in terms of communication, mem-
ory, and runtime of SDDMM and SpMM. The code is available at:
https://github.com/nfabubaker/SpComm3D

1 INTRODUCTION
Large-scale sparse kernels such as SDDMM and SpMM are the
core operations in many scientific computing and machine learn-
ing applications. These kernels involve a sparse matrix with large
dimensions, usually an incidence matrix for a graph, and two tall-
and-skinny dense matrices. In scientific computing, SpMM is en-
countered in iterative solvers, when there are multiple right-hand
sides, such as block conjugate gradient [27], or blocked eigenvalue
algorithms, such as block Lanczos [18] and block Arnoldi [28]. In
machine learning and data science, both SpMM and SDDMM be-
came popular for their role in methods used to solve low-rank
matrix factorization problems used for recommender systems [24]
such as stochastic gradient descent and alternating least squares. A
recent survey by Besta et al. [10] demonstrated that SpMM and SD-
DMM are the backbone of all variants of Graph Neural Networks
(GNNs), including Convolutional GNNs and Attentional GNNs.
Therefore, improving the parallel scalability of these kernels is
pivotal for the feasibility and success of the underlying application.

Executing SDDMM and SpMM, as well as similar kernels, in par-
allel has been heavily studied and improved. The popular 2D [14, 32]
and 3D [3, 25, 30] parallelizations of Dense Matrix-Matrix Multiply
(GEMM) provide superior scalability through reduced communica-
tion volume and message counts compared to the 1D paralleliza-
tion. These algorithms inspired the design of parallel algorithms
for SpGEMM [13], SDDMM [11], and SpMM [29, 31] with high

success. 2D and 3D algorithms provide nice upper-bounds on the
communication bandwidth and latency by dividing the matrix in a
structured way leading to well-defined dependency relations that
could define the required communication.

Communication in parallel algorithms for sparse kernels is cate-
gorized into two categories: sparsity-agnostic bulk communication
and sparsity-aware communication. The former relies on commu-
nicating data in bulk, without prior knowledge if the receiving
processor does or does not require parts of the data communicated.
This approach’s advantages include easier implementation and uti-
lizing existing efficient algorithms for collective operations (e.g.,
MPI’s Broadcast, All-Reduce, and All-Gather). On the other hand,
it usually involves communicating unnecessary data that is not
used by the receiving processor, especially when the sparsity is
very high. The cost of communicating unnecessary data not only
affects the communication bandwidth by adding extra volume, but
also requires extra memory for storing this excess data. We empiri-
cally demonstrate that bulk communication becomes too expensive
with very large sparse matrices in terms volume and memory over-
heads. Figure 1 shows a simple instance of sparsity-agnostic 2D
SDDMM and how it stores and communicates data unnecessary for
the computation.

In this work, we present a novel framework that addresses the
scalability challenges of distributed-memory sparse kernels by per-
forming sparsity-aware communicationwhile harnessing the power
of 2D and 3D distributions. We take advantage of the relatively low,
and regular, number of messages in 2D and 3D algorithms to ad-
dress the latency side, and we perform the bare-minimum required
communication to address the bandwidth side of the communi-
cation overhead. The sparsity-aware communication also reduces
memory overhead as it enables the storage of only the necessary
data required for the computation, thereby improving scalability
on large HPC systems. While there exists 1D [2, 6], "1.5D" [26]
(communication-avoiding version of 1D), and 2D [21] algorithms
in the literature that utilize sparsity-aware communication, to our
knowledge, there exists no 3D algorithm that considers sparsity-
aware communication.

Our framework fits any 3D sparse kernel that have a compu-
tation phase preceded or followed, or both, by a communication
phase. SpComm3D does not change the communication based on
the sparsity pattern of the input matrix. In this paper we focus
on SDDMM and SpMM and we show how to build the sparsity-
aware 3D algorithms for these kernels with SpComm3D. Our major
contributions are summarized as follows:

1

ar
X

iv
:2

40
4.

19
63

8v
1

 [
cs

.D
C

]
 3

0
A

pr
 2

02
4

https://orcid.org/0000-0002-5060-3059
https://orcid.org/0000-0002-1333-9797
https://github.com/nfabubaker/SpComm3D

p1p3 p1p3p1

p1 p2

p3 p4

p2p2 p4p4p4

p1

p2

p2

p2

p1

p4

p3

p3

p3

p4

K

K
M

 =
 1

0
N = 10

p1 p2

p3 p4

a0, a2

a1, a3, a4

a6, a8, a9

 a5, a7

b 1
, b

3

b 0
, b

2,
 b

4

b 5
, b

8,
 b

9

b 6
, b

7

9

8

7

6

5

4

3

2

1

0

9876543210

(b) local processor views(a) 2D distribution on sample matrix (c) communication graph

p1

43210

4

3

2

1

0

p2

98765

4

3

2

1

0

p3

43210

9

8

7

6

5

p4

98765

9

8

7

6

5

:unrequired storage :unrequired communication:owned data

Figure 1: Unnecessary storage and communication in 2D sparsity-agnostic SDDMM. (a) shows a sample 2D SDDMM on a 2×2
processor grid. (b) shows the local view of the sub-problem at each processor; data stored locally but unrequired in computation
is marked. (c) shows the communication graph and the unrequired communicated data is marked.

• We design a framework that provide a general environment
for building large-scale sparse kernels with 2D and 3D dis-
tributions that perform sparse communication and require
minimal memory footprint (§ 5).

• Within the framework, we provide several options to per-
form the sparsity-aware communication revolving around
enabling true zero-copy communication in MPI to further
reduce memory footprint.

• Weoutline the communication andmemory inefficiencies of
the existing 2D and 3D algorithms for SDDMM and SpMM,
and we carefully define the minimum required communi-
cation to be performed for the correctness of the kernel
(§ 4).
• We utilize the new framework for building efficient sparsity-

aware 3D SDDMM and SpMM algorithms, and we provide
a bottom-up guide to doing so in order to pave the way to
build other kernels.

2 RELATEDWORK
2D and 3D algorithms impose upper bounds on communication
volume in parallel GEMM operation, and on the number of mes-
sages in parallel SpGEMM operation, compared to 1D algorithms.
3D algorithms, such as the work of Agarwal et al. [3], are consid-
ered the communication-avoiding version of 2D algorithms as they
create multiple copies of the input data to reduce communication.
“2.5D” algorithms, first introduced by Solomonik and Demmel [30]
and later improved by Kwasniewski et al. [25] are similar to 3D
algorithms but control the number of copies created according to
available memory. These classes of algorithms are later adapted to
SpGEMM: 2D algorithm in the work by Buluç and Gilbert [12, 13],
3D algorithm by Ballard et. al [9], and 2.5D algorithm by Azad
et al. [7]. The work by Koanantakool et al. [23] introduced a new
class of algorithms called "1.5D" (i.e., the communication avoiding
version of 1D) for the sparse-dense matrix-matrix multiplication
(SpDM3) operation by making redundant copies of the input ma-
trices on top of 1D distribution. The communication in all of these
algorithms is sparsity-agnostic.

Several works provided 2D and 3D sparsity-agnostic algorithms
for SpMM and SDDMM. Tripathy et al. [31] provided and thor-
oughly analyzed and compared 1D, 1.5D, 2D, and 3D algorithms
for SpMM. Bharadwaj et al. [11] showed how to convert SpMM
algorithms to SDDMM, and provided several 2.5D algorithms for
SpMM, SDDMM, and FusedMM, a term they coined for the cascade
of SDDMM into SpMM, which appears in GNN training and infer-
ence. Kannan et al. [19] implemented 2D SpMMwithin the scope of
distributed-memory non-negative matrix factorization algorithm
called MPI-FAUN. Selvitopi et al. [29] provides thorough analysis
and efficient RDMA-based implementations of several configura-
tions of 2D SpMM.

Sparsity-aware communication, or communication that follows
the sparsity of the input matrix, has been previously implemented
and analyzed in the context of several 1D algorithms, promi-
nently present in works that utilize graph/hypergraph partitioning
for reducing communication overhead in kernels such as sparse
matrix-vector multiplication (SpMV) [15, 17, 20, 22], SpMM [2]
and SpGEMM [4–6]. Kaya et al. [21] implemented a 2D sparsity-
aware SpMM algorithm for non-negative matrix factorization on
distributed-memory systems. Abubaker et al. [1] implemented a 1D
SDDMM algorithm for asynchronous for asynchronous SGD used
in matrix factorization. In a recent technical report, Mukhopadhyay
et al. [26] utilize sparsity-aware communication for 1.5D SpMM
on GPUs. To our knowledge, our work is the first to implement
sparsity-aware communication in 2.5D/3D algorithms.

3 PRELIMINARIES
3.1 Notations
SpComm3D builds a logical 2D or 3D Cartesian processor grid
and distributes the input sparse matrix/matrices onto this grid in a
structured fashion. The number of processors in denoted by 𝑃 , the
set of all processor by P, and an arbitrary processor in P by 𝑝𝛼 .
For 2D grids, we use the notation 𝑃𝑥,𝑦 to indicate the processor at
location (𝑥 ,𝑦) of the grid. Similarly, for 3D grids, 𝑃𝑥,𝑦,𝑧 is located at
(𝑥 , 𝑦, 𝑧) in the grid. We use the Matlab notation to address a whole
row block, column block, or a slice of the processor grid (e.g., 𝑃𝑥,:,𝑧

2

means the 𝑥th row block {𝑃𝑥,1,𝑧 , 𝑃𝑥,2,𝑧 , . . . , 𝑃𝑥,𝑌,𝑧 } of the 3D grid
and 𝑃:,:,𝑧 means the 𝑧th slice (2D grid) of the 3D grid).

S andC always refer to sparse matrices, whereasA and B always
refer to dense tall-and-skinnymatrices. S(𝑖, :) and S(:, 𝑗) denotes the
𝑖th row and 𝑗 th column of S, respectively, and a nonzero element by
𝑠𝑖 𝑗 . The 𝑖th row inA or B is denoted by a𝑖 , b𝑖 . The functions 𝑛𝑛𝑧 (·),
𝑛𝑟𝑜𝑤𝑠 (·) and 𝑛𝑐𝑜𝑙𝑠 (·) are respectively used to denote the number
of nonzero elements, number of rows, and number of columns of
a (sub)matrix. We use 𝑋 , 𝑌 and 𝑍 as dimensions for the 2D or 3D
processor grid, and 𝑀 , 𝑁 , and 𝐾 are used as dimensions for the
matrices. 𝐾 ≪ (𝑀, 𝑁) is always the number of columns for the
tall-and-skinny matrices.

3.2 SDDMM and SpMM
Sampled Dense-Dense Matrix Multiplication (SDDMM)
C = S ⊙ AB𝑇 , where ⊙ means element-wise multiplication,
involves four matrices: S and C ∈ R𝑀×𝑁 are respectively the
sparse sampling and output matrices. A ∈ R𝑀×𝐾 and B ∈ R𝑁×𝐾
are the input dense tall-and-skinny matrices. For large 𝑀 and 𝑁
values, materializing the AB𝑇 product becomes prohibitive. Since
it will be sampled by the sparse S matrix, most of the elements
in this product are not required, and thus can be computer more
efficiently element-by-element as follows:

𝑐𝑖 𝑗 = 𝑠𝑖 𝑗 × ⟨a𝑖 , b𝑗 ⟩,∀(𝑖, 𝑗) ∈ {(𝑖, 𝑗) | 𝑠𝑖 𝑗 ≠ 0} (1)

Sparse times Dense Matrix Multiplication (SpMM) A = SB𝑇

involves S, B as input, and A as output, all of sizes described above.
SpMM can be computed row-by-row in serial execution as

a𝑖 =
∑︁

1≤ 𝑗≤𝑁
𝑠𝑖 𝑗 × b𝑗 . (2)

Both SDDMM and SpMM operate on one sparse matrix and
two dense tall-and-skinny matrices. Both operations require tak-
ing/outputting two dense vectors per nonzero element. In SDDMM,
both vectors are taken as input, whereas in SpMM b𝑗 is taken as
input and a𝑖 is given as output. Therefore, most of the analyses
and algorithms explained afterwords apply to both operations. Our
presentation, figures, and analyses will focus on SDDMM hereafter,
and we will explain the difference if required.

To parallelize (1) and (2), the fine-grain tasks are first identi-
fied, then the communication is determined following how these
fine-grain tasks are distributed to different processors and the de-
pendency between them. For SDDMM, we define the fine-grain
task as computing one scaled inner product. Each fine-grain task re-
quires two vectors (each of size 𝐾 words) and one scalar. For SpMM,
we define the fine-grain task as computing one vector scaling as
in (2). Each fine-grain task requires one vector of size 𝐾 words and
a scalar.

3.3 Sparsity-agnostic parallel algorithms for
SDDMM and SpMM

Parallel SDDMM and SpMM algorithms are categorized according
to how the input sparse matrix is partitioned among processors.
The partitioning can either be based on granularity or on structure.

Granularity-based categorization can be either fine-grain (nonzero-
based) or coarse-grain (row or column-based). Structure-based cat-
egorization relies on the dividing the computational iteration space
in a structured manner into 1D, 2D, or 3D shape, which mirrors a
partitioning on the dimensions of the matrix itself. We provide an
overview of such algorithms and provide a volume upper bound for
the best algorithm in each category. Figure 2 illustrates 1D, 2D, and
3D algorithms for SDDMM. Since our concrete goal is to reduce
the communication volume via sparsity-aware communication, we
analyze the communication of the sparsity-agnostic algorithms in
terms of the received volume per processor.

In 1D algorithms, the sparsematrix S is divided into 𝑃 parts either
row-wise or column-wise, necessitating the communication of one
of the dense matrices, not both. Assuming 1D division on rows, the
rows of the dense matrix A are also divided conformably with the
rows of S. Naturally, a processor 𝑝𝛼 is assigned the ownership of the
dense rows of A that align with its assigned row block of S, which
necessitates no communication on the rows of A. On the other
hand, the dense matrix B is likely to be used by all processors thus
necessitates communication. Assuming B is divided into 𝑃 parts,
and each part is assigned to a single processor, each processor will
communicate its part to 𝑃−1 processors, leading to approximately

B𝑠𝑖𝑧𝑒 ×
𝑃 − 1
𝑃

words of volume to be received per processor. The per-processor
memory requirement for storing the dense matrices is

A𝑠𝑖𝑧𝑒
𝑃
+ B𝑠𝑖𝑧𝑒 .

In 2D algorithms, the sparse matrix is divided into a
√
𝑃 ×
√
𝑃 2D

grid. Depending on how the dense matrices are divided, different
versions of the 2D algorithms emerged [29].We consider the version
where A and B are 1D divided row-wise into P parts, which is well-
suited for single-step SpMM and SDDMM algorithms [11, 19, 29].

Each of the inner
√
𝑃 parts of A along a row block of processors

𝑃𝑥,: is assigned ownership to one of the processors in that block,
similarly fo B. The 2D grid partitioning restricts the requirement of
a given dense matrix part to only

√
𝑃 processors along the same row

or column block. The communication in 2D algorithms is required
along both dimensions. Each processor receives an approximate of

(A𝑠𝑖𝑧𝑒 + B𝑠𝑖𝑧𝑒) ×
√
𝑃 − 1
𝑃

words of volume. The per-processor memory requirement for stor-
ing the dense matrices is

A𝑠𝑖𝑧𝑒 + B𝑠𝑖𝑧𝑒√
𝑃

.

3D algorithms, sometimes called 2.5D algorithms [11, 31], are
considered the communication-avoiding version of the 2D algo-
rithms. These algorithms add an additional dimension 𝑍 to the
2D algorithms by running 𝑍 instances of the sparse kernel con-
currently, where each instance is responsible for computing 𝐾/𝑍
columns of the dense matrix. This naturally means that the each
instance is resembled with a replica of the sparse matrix partitioned
according to the 2D scheme into

√︁
𝑃/𝑍 ×

√︁
𝑃/𝑍 grid. The columns

of the dense matrix are partitioned into 𝑍 parts, each part is used
3

1D (row-wise)

K

N

M

K

p1

p2

p3

p4

p1 p2 p3p4

C
o
n

fo
rm

a
l

w
it

h
 S

,
n

o
 c

o
m

m
u

n
ic

a
ti

o
n

Required by all processors,
Perform All-Gather

A S, C

BT

A S, C

BT

A S, C

BT

2D

K

N

M

K

p1 p2

p3 p4

p1 p3 p2 p4

p1

p2

p3

p4

Required by processors in P:, y

perform All-Gather on P:, y

P:, 1 P:, 2

P2, :

P1, :

R
e
q

u
ir

e
d

 b
y

p
ro

ce
ss

o
rs

 i
n

 P
x,

 :

p
e
rf

o
rm

 A
ll

-G
a
th

e
r

o
n

 P
x,

 :

3D

K
/2

N

K/2

p5 p6

p7 p8

Required by processors in P:, y, z

perform All-Gather on P:, y, z

R
e
q

u
ir

e
d

 b
y

p
ro

ce
ss

o
rs

 i
n

 P
x,

 :
,

z

p
e
rf

o
rm

 A
ll

-G
a
th

e
r

o
n

 P
x,

 :
,
z

p5 p6p7 p8

p5

p6

p7

p8

Perform Reduce-Scatter on Px, y, :

K
/2

M

K/2

p1 p2

p3 p4

p1 p3 p2 p4

p1

p2

p3

p4

P:, 1, 1 P:, 2, 1

P2, :, 1

P1, :,1

P2, :, 2

P1, :,2

P:, 1, 2 P:, 2, 2

Figure 2: Sparsity-agnostic 1D, 2D, and 3D SDDMM. The communication required stays the same whether S is dense or sparse.

exclusively by a separate instance.With this scheme, each processor
receives an approximate of

(A𝑠𝑖𝑧𝑒 + B𝑠𝑖𝑧𝑒) ×

√︃
𝑃
𝑍
− 1
𝑃

words of volume. See Figure 2 (right). The per-processor memory
requirement for storing the dense matrices is

A𝑠𝑖𝑧𝑒 + B𝑠𝑖𝑧𝑒

𝑍

√︃
𝑃
𝑍

.

4 SPARSITY-AWARE COMMUNICATION
ANALYSIS OF 3D SDDMM

In a row processor block 𝑃𝑥,:,𝑧 , let 𝜆𝑖 be the number of processors
at which row S(𝑖, :) has at least one nonzero element, and Λ𝑖 be
the set of such processors. Assuming that row a𝑖 of dense matrix
A is owned by one of the processors in Λ𝑖 , it is required by 𝜆𝑖 −
1 processors. A similar discussion holds for a column processor
block 𝑃:,𝑦,𝑧 and the dense matrix B. Then, the total communication
volume exchanged in sparsity-aware SDDMM is equal to∑︁

𝑖∈[[1,𝑛𝑟𝑜𝑤𝑠 (S)]]
(𝜆𝑖−1) +

∑︁
𝑗∈[[1,𝑛𝑐𝑜𝑙𝑠 (S)]]

(𝜆 𝑗 −1)

In the dense case, 𝜆𝑖 and 𝜆 𝑗 become equal to sizes of the 𝑋 and 𝑌

dimensions of the 3D grid (
√︃
𝑃
𝑍
) which leads to correct total volume.

The communication requirementmodelled by 𝜆 depends on three
factors: (i) the sparsity pattern of S, (ii) the number of processors and
(iii) how the matrix nonzero elements are distributed to processors.
While factor (i) is vital, we assume the sparsity pattern of S is
irregular (i.e., non-uniformly distributed) in order for (iii) to take
effect. With the sparsity-agnostic communication, a row/column of
S is divided into 𝑃 parts incurs 𝐾 (𝑃 − 1) words of communication
volume. This means that the communication volume scales with
how many parts a row/column partitioned into. With 𝜆, on the
other hand, the volume depends on how many of the 𝑃 parts has
at least one nonzero element. As 𝑃 grows larger, the probability
of a certain part of a row/column of S is empty becomes higher.
Therefore, the communication requirement according to 𝜆 is loosely
related to the growing 𝑃 .

9

8

7

6

5

4

3

2

1

0

9876543210

Figure 3: A sample matrix distributed onto 5×5 grid and the
𝜆 values of some rows/columns.

In order to define the received volume per processor, we define
two sets I𝛼 = {𝑖 | S𝛼 (𝑖, :) ≠ ∅ ∧ 𝑜𝑤𝑛𝑒𝑟 (a𝑖) ≠ 𝑝𝛼 } and J𝛼 =

{ 𝑗 | S𝛼 (:, 𝑗) ≠ ∅ ∧ 𝑜𝑤𝑛𝑒𝑟 (b𝑗) ≠ 𝑝𝛼 } as respectively the sets of
row and column indices such that 𝑝𝛼 has at least one zero in the
row/column of S in those indices and 𝑝𝛼 is not the owner of the
corresponding dense row. Then, the volume received by 𝑝𝛼 is equal
to 𝐾

𝑍
(|I𝛼 | + |J𝛼 |) words of volume.

Our goal in this work is to achieve the 𝜆-based communication
requirement defined in this section using efficient communication
without extra unnecessary volume. Building the structure of this
communication for most sparse kernels can be cumbersome, which
is why we introduce SpComm3D to provide a structured and con-
venient environment for building sparse kernels with minimum
communication.

5 THE SPCOMM3D FRAMEWORK
The framework has three design goals: (i) communicate only re-
quired data, (ii) minimal memory footprint, and (iii) communication-
agnostic local computation at each processor to allow utilizing
existing efficient algorithms/tools for sparse/dense kernels.

5.1 General structure and assumptions
SpComm3D assumes that the sparse kernel is used in a larger con-
text, and is repeated multiple times. The sparsity pattern of the
input sparse matrix/matrices remains fixed, while the values might

4

be updated. SpComm3D also works under the assumption that there
are other dense or sparse data that will be computed or used during
the sparse kernel, and this data is updated at each iteration either
before or after executing the sparse kernel.

SpComm3D revolves around a local computation, and communi-
cates/stores the minimum amount of data required for the overall
correctness of this computation. Therefore, computing a sparse
kernel with SpComm3D naturally involves three phases: PreComm,
Compute, and PostComm. PreComm gathers the data required for
computation from different processors, while PostComm communi-
cates partial results to the processors responsible for holding the
final value.

Compute is the local computation phase at each processor. The
assumption here is that the local computation is agnostic to the com-
munication and the general structure of the problem, thus should
be operating on local data with localized indices. The PreComm
phase ensures that the data used in the Compute phase is correct
and up-to-date, bridging the gap between the global and local views
of the problem.

Data communicated in PreComm and PostComm is represented
in local memory by a data segment, which may consist of one
or more data words and is identified globally using a unique ID
typically related to the sparse matrix’s global row/column indices.
We call such data segment Data Unit (DU) hereafter. A DU might
be required or updated by several processors but owned by only
one, which can be retrieved with 𝑜𝑤𝑛𝑒𝑟 (·).

As per our assumption that the sparse kernel will be executed
multiple times with the same sparse matrix, we minimize the
amount of work to be done during the PreComm and PostComm
phases by introducing a setup phase that is executed once. This
phase builds all the communication structures, buffers, and meta
information that are used in the communication. Then, the Pre-
Comm and PostComm phases are used to merely move data between
processors. A similar philosophy is followed in MPI’s persistent
communication.

5.2 Data distribution
We assume that the input matrices S is distributed onto the 2D/3D
processor grid as follows: the matrix is partitioned into 𝑋×𝑌 in the
row/column dimension spaces. Each block S𝑥,𝑦 of the partitioned
matrix is assigned to processor 𝑃𝑥,𝑦 in a 2D grid, and then parti-
tioned into 𝑍 parts in the nonzero space. That is, S𝑥,𝑦 is distributed
equally among 𝑍 processors in 𝑃𝑥,𝑦,: as S1𝑥,𝑦, · · · , S𝑍𝑥,𝑦 in a 3D grid.
We refer to this distribution as Dist2D or Dist3D depending on the
grid used.

Each matrix block S𝑧𝑥,𝑦 is localized to its processor by localiz-
ing row/column indices and removing empty rows/columns. In
order to keep the global information of the local sparse matrix,
SpComm3D stores two arrays along the rows and the columns:
𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑝 and 𝑙𝑜𝑐𝑎𝑙𝑀𝑎𝑝 . 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑝 stores the global index of
each local row/column and 𝑙𝑜𝑐𝑎𝑙𝑀𝑎𝑝 stores local indices of the
rows/columns in the sub-matrix.

Apart from the local sparse matrix, each processor might hold
additional local data assigned to it. This data can be another sparse
matrix, a dense matrix, or a vector of elements. The local data can
be abstracted as DUs.

p3

3

2

1

0

9

8

6

5

3210

4310Global indices

Local indices

Alocal

B
local

Figure 4: Local SDDMM view of processor 𝑝3 (cf. Figure 1)
after applying SpComm3D localization. The global and lo-
cal indices are mapped to each other with globalMap and
localMap.

5.3 Sparse communication model
Sparse communication can be very irregular, and is best defined
with a point-to-point (P2P) communication graph 𝑐𝑜𝑚𝑚𝐺 =

(P,M). While P is the set of all processors as defined previously,
M is the set of all messages between these processors. A message
𝑚𝛼→𝛽 ∈ M exists if there is at least one DU that either owned by
𝑝𝛼 and required by 𝑝𝛽 , or partially computed by 𝑝𝛼 and owned by
𝑝𝛽 .

During PreComm, the messages typically constitute DUs that are
owned by one processor and required by others (broadcast). During
this phase, a DU can appear in several outgoing messages, whereas
incoming messages contain unique DUs. This is because each DU
is owned by a single processor, and it is not possible to receive it
from multiple processors.

During PostComm, the messages are typically partial results of
DUs that will be sent to their respective owners (reduce). During
this phase, a DU can appear in several incoming messages, whereas
outgoing messages contain unique DUs.

The distinction whether incoming/outgoing messages contain
unique, or otherwise non-unique, DUs is important for the discus-
sion on how to we enable true zero-copy sparse communication in
SpComm3D.

The messages are exchanged using either point-to-point com-
munication (MPI_Send/MPI_Recv or their non-blocking equiva-
lents). We propose to exchange these messages without relying
on send/receive buffers. For the sake of completeness, we propose
three versions of handling buffers in sparse communication where
the first method assumes the use of send/receive buffers.

5.3.1 Method1: Sparse Communication with Both Buffers
(SpC-BB). The straight forward way to build the messages in
𝑐𝑜𝑚𝑚𝐺 , given that global IDs to be in the message are known, is
to go over each global ID and copy its associated DU to a buffer.
Similarly, at the receiver’s end, copy the received DU one by one to
their correct location in memory according to their global ID. This
approach adds extra costs when compared to the sparsity-agnostic
bulk communication approach, which are the cost of extra memory
resembled in the send and receive buffers, as well as the cost of
data movement while copying to/from the local data. This method
works regardless of the uniqueness of DUs in outgoing/incoming
messages.

5

local datalocal data

appears in both messagesno common data in both messages

local datalocal data

Each DU is linked with relative
displacement for MPI_Type_Indexed

local data re-arranged according to
outgoing messages

@1@2@4 @0@2@3

Copy Required Copy Required

No Copy No Copy

Figure 5: Zero-copy techniques based on DU uniqueness
within incoming/outgoing message.

5.3.2 Method2: Sparse Communication with Send/Recv Buffer
Only (SpC-SB/SpC-RB). Our first improvement over SpC-BB it to
get rid of either the send or the receive buffers by re-arranging how
the local data is stored to align with the order of the sent/received
data. In other words, assume processor 𝑝𝛽 sends/receives from
𝑛 processors, 1 ≤ 𝑛 ≤ 𝑌 , in 𝑃𝑥,:,𝑧 in the following sequence
⟨𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑛 ⟩ and the set of DUs received by 𝑝𝑖𝑛 is denoted
by D𝑖𝑛 . Then, the local data at the processor is stored as[

D𝑖1 ,D𝑖2 , . . . ,D𝑖𝑛
]

and the messages are directly sent/received at the position starting
from the first index of D𝑖1 .

With this method, it is only possible to remove the buffers for
either the outgoing or incoming messages, whichever has unique
DUs. This is because, if the messages have non-unique DUs the
relation between the duplicates of the DUs in several messages and
their unique location in local memory becomes many-to-one rather
than one-to-one, hence making the local data alignment impossible.

5.3.3 Method3: Sparse Communication withNo Buffers (SpC-NB).
For messages with non-unique DUs, we utilize MPI_Type_Indexed
to address the multiple copies of the same DU without the need
to explicitly moving them to a buffer. MPI_Type_Indexed creates
a new datatype by aligning blocks of pre-defined datatype. The
MPI_Type_Indexed type is initialized with the starting address
of a contiguous memory chunk, and each block is defined with
length and displacement from the starting address. It is possible to
create two (or more) copies/projections of the same local DU in two
messages𝑀𝛼→𝛽 and𝑀𝛼→𝛾 (or more) by simply adding the DU as
a block in the MPI_Type_Indexed object of each message with the
same displacement.

We consider a DU to be the minimum block in
MPI_Type_Indexed. If multiple DUs appear consecutively
in memory, we merge them into a single block in order to minimize
the data required to build the MPI_Type_Indexed object.

SpComm3D takes the communication graph from the user in
the init phase. Based on this graph, the SpComm3D framework
internally handles all the steps necessary to perform efficient com-
munication during the PreComm phase, including the zero-copy
implementations. SpComm3D returns a communication object per
communication graph in the setup phase. Assuming the PreComm
communication object is called precomm, then during the PreComm
phase the user simply calls precomm.communicate() to perform
the efficient sparse communication.

6 BUILDING 3D SDDMM AND SPMM
ALGORITHMSWITH SPCOMM3D

We begin by showing in detail the steps to build 3D SDDMM algo-
rithm with SpComm3D, and later we reuse some of these steps for
3D SpMM. Using Dist3D, we can formulate the 3D parallel SDDMM
algorithm as follows: theA andBmatrices are partitioned row-wise
into 𝑋 and 𝑌 parts conformably with the rows and columns of S,
respectively. Then, A and B are partitioned column-wise to 𝑍 parts
A1, · · · ,A𝑧 , · · · ,A𝑍 . Here, a part A𝑧𝑥 is used by processors in 𝑃𝑥,:,𝑧 .
Similarly, a part B𝑧𝑦 is used by processors in 𝑃:,𝑦,𝑧 We assume each
processor in 𝑃𝑥,:,𝑧 owns almost equal number of rows of A𝑧𝑥 . This
naturally means that A𝑧𝑥 is further divided into 𝑌 parts. We abuse
the 2D notation of matrix blocks to refer to 1D internal parts of a
dense 1D matrix block. For instance, A𝑧𝑥,𝑦 refers to the 1D block
A𝑧
𝑥𝑋+𝑦 . The processor that owns a row a𝑧

𝑖
is retrieved with the

𝑜𝑤𝑛𝑒𝑟 (a𝑧
𝑖
).

We start by defining the requirements of the Compute phase, and
then move to explain how to fulfill these requirements in the init,
PreComm, and PostComm phases.

6.1 The Compute phase
In 3D SDDMM, the responsibility of a processor 𝑃𝑥,𝑦,𝑧 is to compute
partial results of inner products for all nonzeros inC𝑥,𝑦 , and then be
responsible for holding the final results of nonzeros in C𝑧𝑥,𝑦 . Here,
the two vectors in the inner product ⟨a𝑖 , b𝑗 ⟩ that take place for
each nonzero element in S𝑥,𝑦 are of size 𝐾

𝑍
. This clearly resembles

the shift from 2D to 3D algorithms as dividing the fine-grain tasks
of computing the inner product of two dense vectors of size 𝐾 into
𝑍 sub-tasks each of size 𝐾

𝑍
.

Initially, 𝑃𝑥,𝑦,𝑧 owns S𝑧𝑥,𝑦 only. Therefore, it requires S𝑥,𝑦 \ S𝑧𝑥,𝑦
as well as all (sub)rows of A and B required for the computation of
C𝑥,𝑦 . With the assumption that the values and sparsity patter of
S𝑥,𝑦 are constant during multiple iterations of computing SDDMM,
the gathering of S𝑥,𝑦 can be done at the init phase. On the other
hand, the values in A and B will change at each iteration, therefore
they should be communicated at the PreComm phase.

The local compute phase at each processor is stand-alone by
the design of the framework. A processor 𝑃𝑥,𝑦,𝑧 has a localized
version of S𝑥,𝑦 as well as all required A and B rows by the end of
the PreComm phase. Figure 4 shows an example of the state of local
SDDMM. The Compute phase is performed following (1), either
on CPU, GPU or any accelerator for sparse computations using
state-of-the-art sequential or shared-memory-parallel codes.

6

6.2 The PreComm phase
In this phase, the dense A- and B-matrix rows are communicated.
Computing partial C𝑥,𝑦 by 𝑃𝑥,𝑦,𝑧 requires dense rows from A𝑧𝑥 and
B𝑧𝑦 . Since A𝑧𝑥 is required by all processors in 𝑃𝑥,:,𝑧 , we assume that
𝑃𝑥,𝑦,𝑧 owns an equal part of A𝑧𝑥 . Similar discussion hold for B𝑧𝑦 .

Since the core goal of SpComm3D is to perform sparse com-
munication, we follow the 𝜆-based communication discussed in
Section 4. A message 𝑚𝛼→𝛽 from processor 𝑝𝛼 to processor 𝑝𝛽 ,
where 𝑝𝛼 , 𝑝𝛽 ∈ 𝑃𝑥,:,𝑧 is formed as

𝑚𝛼→𝛽 = {a𝑖 | 𝑝𝛼 , 𝑝𝛽 ∈ Λ𝑖 ∧ 𝑜𝑤𝑛𝑒𝑟 (a𝑖) = 𝑝𝛼 }. (3)

Similarly, a message 𝑚𝛾→𝛿 from processor 𝑝𝛾 to processor 𝑝𝛿 ,
where 𝑝𝛾 , 𝑝𝛿 ∈ 𝑃:,𝑦,𝑧 is formed as

𝑚𝛾→𝛿 = {b𝑗 | 𝑝𝛾 , 𝑝𝛿 ∈ Λ 𝑗 ∧ 𝑜𝑤𝑛𝑒𝑟 (b𝑗) = 𝑝𝛾 }. (4)

6.3 The PostComm phase
Gathering the partial results of C𝑥,𝑦 requires that processor 𝑃𝑥,𝑦,𝑧
receives all partial results of the nonzero elements it owns from
the other 𝑍 − 1 processors in 𝑃𝑥,𝑦,:. This amounts to receiving
(𝑍 − 1) × 𝑛𝑛𝑧 (S𝑥,𝑦,𝑧) words of data. With highly sparse matrices,
the cost of this phase is very low compared to PreComm. We perform
this operation with a Reduce-Scatter rather that converting it to
sparse communication primitives.

6.4 The Setup phase
All the configurations required for the PreComm, Compute, and
PostComm phases are performed in this phase. These configurations
are performed once and used multiple times. The first is gathering
S𝑥,𝑦 at each processor in 𝑃𝑥,𝑦,:. This is done with an All-Gather
operation on S𝑧𝑥,𝑦 by all processors in 𝑃𝑥,𝑦,:.

The second configuration is distributing the dense A and B
among processors. In Section 6.2 we stated our assumption that
the dense rows are distributed equally (owned) to the processors
that use them. However, without careful attention, a random equal
distribution will invalidate the 𝜆-based communication discussed
in Section 4.

The 𝜆-based communication of a dense row a𝑖 is accurate only
if the processor that owns a𝑖 is part of Λ. Otherwise, a dense row
a𝑖 that is assigned to a processor outside of Λ𝑖 will incur an extra
unnecessary communication and storage of size 𝐾 words.

We propose Algorithm 1 to efficiently distribute the dense rows
to processors in their respective Λ sets in parallel. The algorithm
starts by dividing the work to be done by each processor. Each
processor is responsible for finding an owner of a set of rows, and
these rows can be assigned randomly in a load balanced manner
(lines 1-2). Then, each processor loops over the rows it uses and send
their global index to the processor responsible for their assignment
(lines 4-13). After each processor receives the list of candidates to
each row, it loops over the candidates and picks one processor
at random to assign it as the owner of the corresponding row
(lines 14-22). The candidates that each processor receives for each
row index are the processors that actually use that index in their
local computation, i.e., they have at least one nonzero element
with such an index. For this reason, the processor that is picked at
random here will certainly be one of the processors involved in the
communication of the target row, thus not incurring any additional

Algorithm 1 Parallel 𝜆-aware random distribution on 𝑝𝛼
Input 𝑛𝑟𝑜𝑤𝑠 (S) or 𝑛𝑐𝑜𝑙𝑠 (S) as 𝑔𝑠𝑖𝑧𝑒 , 𝑛𝑟𝑜𝑤𝑠 (S𝛼) or

𝑛𝑟𝑜𝑤𝑠 (S𝛼) as 𝑑𝑠𝑖𝑧𝑒 , 𝑃 , globalMap
Output owner array 𝑜𝑤𝑛𝑒𝑟

Require:
1: 𝑚𝑦𝑟𝑜𝑤𝑠 ← the𝑚𝑦𝑟𝑎𝑛𝑘 chunk of 𝑑𝑠𝑖𝑧𝑒/𝑃
2: candidates← array of lists of size |𝑚𝑦𝑟𝑜𝑤𝑠 |
3: sendInfo← array of lists of size 𝑃
4: for 𝑖 in range (1, 𝑙𝑑𝑠𝑖𝑧𝑒) do
5: 𝑔𝑖 ← globalMap[𝑖]
6: 𝑝 ← processor responsible for assigning 𝑔𝑖
7: if 𝑝 =𝑚𝑦𝑟𝑎𝑛𝑘 then
8: candidate[𝑔𝑖]← candidates[𝑔𝑖] ∪ 𝑝
9: else
10: sendInfo[𝑝]← sendInfo[𝑝] ∪ 𝑔𝑖
11: end if
12: end for
13: recvInfo← Exchange sendInfo
14: for 𝑝 in range (1, 𝑃) do
15: for row ID 𝑟𝑖𝑑 in recvInfo[𝑝] do
16: candidates[𝑟𝑖𝑑]← candidates[𝑟𝑖𝑑] ∪ 𝑝
17: end for
18: end for
19: 𝑚𝑦𝑜𝑤𝑛𝑒𝑟 ← empty array of size |𝑚𝑦𝑟𝑜𝑤𝑠 |
20: for row ID 𝑟𝑖𝑑 in𝑚𝑦𝑟𝑜𝑤𝑠 do
21: 𝑚𝑦𝑜𝑤𝑛𝑒𝑟𝑠 [𝑟𝑖𝑑] ← pick a random 𝑝 ∈ candidates[𝑟𝑖𝑑]
22: end for
23: All-Gather(𝑚𝑦𝑂𝑤𝑛𝑒𝑟 , 𝑜𝑤𝑛𝑒𝑟)

unnecessary communication. Finally, an All-Gather operation is
performed in order to gather the ownership information from all
processors (line 23).

The third configuration that will be used multiple times during
the parallel SDDMM is building the communication graph of the
PreComm phase. Based on this graph, the SpComm3D framework
internally handles all the steps necessary to perform efficient com-
munication during the PreComm phase, including the zero-copy
implementations.

6.5 Building SpMM with SpComm3D
The process to building SpMM is similar to that of SDDMM. The
distribution of the sparse matrix is the same as that of SDDMM. In
the Compute phase, a processor 𝑃𝑥,𝑦,𝑧 is responsible for computing
partial results of dense rows in 𝐴𝑧𝑥,𝑦 . For that, 𝑃𝑥,𝑦,𝑧 also needs the
whole S𝑥,𝑦 , which is gathered during the init phase. The SpMM
requires B-matrix rows in the PreComm phase. The communication
graph is built with (4). After the Compute phase, 𝑃𝑥,𝑦,𝑧 sends partial
results for all the dense rows that it does not own to their respective
owners during the PostComm phase. The communication graph in
this phase is constructed with (3) but replacing 𝑜𝑤𝑛𝑒𝑟 (a𝑖) = 𝑝𝛼 by
𝑜𝑤𝑛𝑒𝑟 (a𝑖) = 𝑝𝛽 . This is because the owner is the receiving party
not the sending party as this is a reduce operation. The communi-
cation cost of the PreComm phase of SDDMM can be thought of as
distributed among both PreComm and PostComm phases in SpMM.

7

In other words, both PreComm and PostComm phases in SpMM are
of equal importance, unlike SDDMM.

7 EXPERIMENTAL EVALUATION
Our evaluation goal is to empirically assess the theoretical aspects
of SpComm3D in terms of reducing communication and memory
footprint, and how they reflect on actual runtime and scalability,
compared to sparsity-agnostic 3D algorithms.

In line with the presentation of the paper, we consider parallel
SDDMM and SpMM in our experiments. We use real-world sparse
matrices with at least 100M nonzero elements, and we vary three
variables, 𝐾 , 𝑍 , and 𝑃 to study their effect on both SpComm3D and
the sparsity-agnostic 3D algorithms. Unless stated otherwise, all
runtime results reported in this section are result of averaging five
different runs per experiment.

For the sparsity-agnostic 3D algorithm (§ 3.3), we provide our
own implementation (referred to as Dense3D hereafter), and also
compare against the state-of-the-art framework Half-and-Half
(HnH) by Bharadwaj et al. [11] that provides the same algorithm
under the name "2.5D sparse replicating" (referred to as HnH here-
after). This existing framework is compared against PETSc [8] and
shown to outperform it significantly. For this reason, we refrain
from comparing against PETSc. We use the abbreviations in Sec-
tion 5.3: SpC-BB, SpC-R/SB, and SpC-NB to refer to the specific
implementation in SpComm3D, and we use the framework’s name
when comparing metrics irrelevant to the implementation such as
communication volume.

7.1 Dataset and Experimental Setting

Table 1: Sparse matrices used in our experiments

Matrix #rows/cols #nonzeros Density

arabic-2005 22,744,080 639,999,458 1.24×10−06
delaunay_n24 16,777,216 100,663,202 3.58×10−07
europe_osm 50,912,018 108,109,320 4.17×10−08
GAP-kron 134,217,726 4,223,264,644 2.34×10−07
GAP-road 23,947,347 57,708,624 1.01×10−07
GAP-web 50,636,151 1,930,292,948 7.53×10−07
kmer_A2a 170,728,175 360,585,172 1.24×10−08
twitter7 41,652,230 1,468,365,182 8.46×10−07
uk-2002 18,520,486 298,113,762 8.69×10−07
webbase-2001 118,142,155 1,019,903,190 7.31×10−08

We evaluate with ten real-world sparse matrices that represent
graphs, obtained from the The SuiteSparse Matrix Collection1 [16].
The properties of the sparse matrices are detailed in Table 1. All our
matrices have between 100 million and 4.2 billion nonzero elements.

We implemented SpComm3D as well as Dense3D using C++ and
used MPI for inter-process communication. All our experiments
are taken on CSCS Piz Daint HPC system based in Switzerland.
We use the CPU partition of the Cray XC40/XC50 system, which
is equipped with 1813 dual-socket Intel Xeon E5-2695 processors
clocked at 2.10GHz and has 64GiB of DD3 RAM memory. The
1https://sparse.tamu.edu/

nodes are connected with a Cray Aries network that uses a dragon-
fly network topology. All the codes are compiled with a Cray-clang
compiler and a system-provided Cray-MPICH on SUSE Linux En-
terprise Server 15-SP2 operating system.

7.2 High-level total runtime comparison with
sparsity-agnostic algorithms

We begin by comparing SpComm3D against Dense3D and HnH
in terms of total runtime of five iterations of SDDMM followed by
SpMM. The reason for this comparison is that HnH is designed to
perform fused SDDMM and SpMM operations, and has restrictions
when it comes to choosing 𝑍 and 𝐾 values. Also, the 𝑋 and 𝑌
dimensions of the 3D mesh should be equal in HnH. SpComm3D
does not have such restrictions, and works with any 𝑋 , 𝑌 , 𝑍 , and 𝐾
values as long as the trivial restrictions hold:𝐾/𝑍 ≥ 1 and𝑋×𝑌×𝑍 =𝑃 .
For this reason, we set 𝑍 and 𝐾 parameters to values that work for
HnH, which are respectively 4 and 60. We later vary these values
in experiments that do not include HnH.

ar
ab

ic-
20

05

de
la
un

ay
n2

4

eu
ro

pe
os

m

G
A
P-ro

ad

G
A
P-w

eb

km
er

A
2a

tw
itt

er
7

uk
-2

00
2

web
ba

se
-2

00
1

Matrices

0.0

20.0

40.0

60.0

80.0

100.0

S
D

D
M

M
+

S
p

M
M

R
u

nt
im

e
(s

)

33
.7

9.
2

21
.6

10
.5

75
.1

17
.4

68
.4

10
.5

8.
3

26
.0

11
.1

24
.6

75
.0

22
.1

8.
3

59
.2

7.
1

4.
7

4.
8

2.
2

19
.8

14
.7

21
.9

4.
6

24
.5

HnH Dense3D SpComm3D

Figure 6: Comparing SpComm3D, Dense3D, and HnH in
terms of five SDDMM followed by SpMM operations run-
time.

Figure 6 compares SpComm3D, Dense3D, and HnH in terms
of runtime of five SDDMM followed by SpMM operations on 900
processors. HnH as is without any modifications by selecting the
proper 2.5D algorithm “2.5D sparse replicating”. As the figure shows,
SpComm3D significantly outperforms both Dense3D and HnH. Al-
though theoretically the same algorithm, HnH and Dense3D show
different runtimes on different matrices. While most instances show
that both methods perform similarly, or slightly in favor of one
of them, three instances show significant difference in favor of
Dense3D. This behavior could be explained by the fact that HnH
uses multiple blocking send/recieve calls (MPI_Sendrecv) per pro-
cessor to realize the All-Gather operation required for the first phase
of communication, whereas Dense3D uses non-blocking broadcasts
(MPI_Ibcast) to realize the same communication.

8

36 72 18
0

36
0

54
0

90
0

18
00

1024

2048

4096

ti
m

e
(m

s)

arabic-2005

36 72 18
0

36
0

54
0

90
0

18
00

512

1024

2048

4096

delaunay n24

36 72 18
0

36
0

54
0

90
0

18
00

256

512

1024

2048

4096

8192

europe osm

36 72 18
0

36
0

54
0

90
0

18
00

4096

8192

16384

GAP-kron

36 72 18
0

36
0

54
0

90
0

18
00

256

512

1024

2048

4096

GAP-road

36 72 18
0

36
0

54
0

90
0

18
00

number of processors

2048

4096

8192

ti
m

e
(m

s)

GAP-web

36 72 18
0

36
0

54
0

90
0

18
00

number of processors

1024

2048

4096

8192

16384

kmer A2a

36 72 18
0

36
0

54
0

90
0

18
00

number of processors

2048

4096

8192

16384

twitter7

36 72 18
0

36
0

54
0

90
0

18
00

number of processors

512

1024

2048

4096

uk-2002

36 72 18
0

36
0

54
0

90
0

18
00

number of processors

2048

4096

8192

webbase-2001

Dense3D SpC-BB SpC-NB

Figure 7: Strong Scaling (log-log) of SDDMM with 𝐾=120 and 𝑍=4. A missing value means infeasible run (out-of-memory).

7.3 Strong Scaling
In order to study the scaling of SDDMMwith SpComm3D compared
to Dense3D, we run SDDMM on 36, 72, 180, 360, 540, 900, and 1800
processors. Within SpComm3D, we compare two implementations
of sparsity-aware communication: SpC-BB and SpC-NB. We fixed
𝐾 value to 120 and 𝑍 value to 4. Figure 7 shows the strong scaling
results for all matrices in our dataset. In the figure, there are some
missing values that we were unable to obtain due to high memory
demand (out-of-memory errors). Most of such missing values are
from the Dense3D method, and/or with experiments taken on small
number of processors (𝑃=180 or below).

As seen in the figure, sparsity-aware communication is superior
to Dense3D in terms of runtime and memory scalability. There is
a significant gap between Dense3D and the other sparsity-aware
methods in terms of runtime, especially as 𝑃 becomes higher. When
comparing sparsity-aware methods against each other, it is clear
that SpC-BB is inferior to SpC-NB in all cases when 𝑃 < 900. When
𝑃 grows larger than 900, SpC-BB performs similar to SpC-NB in six
out of ten matrices.

7.4 Harnessing Sparsity: evaluation of memory
and communication

As demonstrated in this paper, using sparsity-aware communication
in SpComm3D not only reduces the actual volume of communica-
tion between processors, but also enables reducing the overall mem-
ory footprint by avoiding the storage of any unnecessary dense
A or B rows. We have measured the total memory required for
storing dense A and B on 1800 processors when 𝐾 value is set to
240. We used three matrices from our dataset, and varied the 𝑍
dimension between 2, 4, and 9, leading to three different 3D mesh
configurations. Figure 8 shows that the overall memory consump-
tion of SpComm3D is significantly lower than that of Dense. On
“arabic-2005”, the memory is reduced by 2.5x to 3.5x, depending
on the value of 𝑍 . On “kmer_A2a”, the memory is reduced by 5x
to 10x, effectively saving 4TB to 10TB of overall memory. Similar
ratios appear with “webbase-2001”. The memory consumption of
Dense3D is reduced with increasing 𝑍 value, an expected behavior

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0.0

0.2

0.4

0.6

0.8

1.0

1.2
T

ot
al

M
em

or
y

(T
B

)

arabic-2005

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0

2

4

6

8

10

T
ot

al
M

em
or

y
(T

B
)

kmer A2a

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0

1

2

3

4

5

6

7

T
ot

al
M

em
or

y
(T

B
)

webbase-2001

Dense3D Sparse3D

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
ot

al
V

ol
u

m
e

(T
B

)

arabic-2005

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0

2

4

6

8
T

ot
al

V
ol

u
m

e
(T

B
)

kmer A2a

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0

1

2

3

4

5

6

T
ot

al
V

ol
u

m
e

(T
B

)

webbase-2001

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0.0

0.5

1.0

1.5

2.0

2.5

S
D

D
M

M
R

u
nt

im
e

(s
) arabic-2005

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S
D

D
M

M
R

u
nt

im
e

(s
) kmer A2a

30×
30×

2

25×
18×

4

20×
10×

9

Mesh size

0

2

4

6

8

10

12

14

S
D

D
M

M
R

u
nt

im
e

(s
) webbase-2001

Figure 8:Memory, volume, and SDDMMruntimes of Dense3D
vs. SpComm3D on three matrices on 1800 processors (with
𝐾 = 120).

following the theoretical analysis. The memory consumption of
the sparsity-aware algorithm also decreases in a slower rate with
increasing 𝑍 compared to Dense3D.

7.5 Overall communication volume and
runtime improvements

In order to assess SpComm3D more thoroughly, we report our SD-
DMM runs using Dense3D, SpC-BB, SpC-RB, and SpC-NB with
𝑍 = {2, 4, 9} and 𝐾 = {60, 120, 240} on 900 and 1800 processors.

9

Table 2: Comparing Dense3D vs all methods of SpComm3D
in terms of max receive volume and total SDDMM runtime
on 900 processors with different 𝑍 and 𝐾 values.

Max. Recv
Volume

(𝐾-normalized)

SDDMM runtime (ms)

𝑍 Method 𝐾= 60 120 240

𝑍=2

Dense3D 2,129,152 3,021 6,063 7,798
SpC-BB

328,264
795 1,600 3,597

SpC-RB 720 1,434 2,702
SpC-NB 714 1,295 2,587
Improvement 6.5x 4.2x 4.7x 3.0x

𝑍=4

Dense3D 1,453,978 2,569 5,065 7,506
SpC-BB

289,876
902 1,773 3,772

SpC-RB 732 1,407 2,958
SpC-NB 785 1,374 2,771
Improvement 5.0x 3.3x 3.7x 2.7x

𝑍=9

Dense3D 981,686 1,818 3,863 6,759
SpC-BB

250,387
902 1,820 3,723

SpC-RB 811 1,626 2,718
SpC-NB 750 1,395 2,872
Improvement 3.92x 2.42x 2.77x 2.35x

Table 2 summarizes the runs on 900 processors. A value in the table
represents the geometric average of runs along all matrices in the
dataset for the respective metric, method, 𝐾 , and 𝑍 values. The
metrics we consider are maximum receive volume and SDDMM
running time. Since the different sparse communication methods
within SpComm3D perform the same communication, all of them
share the same max receive volume. We report volume values nor-
malized with respect to 𝐾 . We also report the improvement of
SpC-NB with respect to Dense3D for each different 𝑍 value.

As seen in the table, SpComm3D improves the maximum receive
volume by 4.0x to 6.5x, depending on 𝑍 . This reduction directly
impacts the actual runtime, with improvements from 2.35x up to
4.7x, depending on 𝐾 and 𝑍 . Compared against each other, SpC-BB,
SpC-RB, and SpC-NB show expected behaviour. SpC-NB performs
best overall, followed by SpC-RB. The gap between SpC-BB and the
other two methods is clear, especially when 𝐾 gets higher, whereas
SpC-NB and SpC-RB are comparable.

Figure 9 shows a breakdown of the SDDMM running times of
SpC-NB on 1800 processors with different 𝐾 and 𝑍 values. The
figure shows that PreComm phase dominates the running time. The
Compute phase’s share increase as 𝐾 increases, whereas the share
of PostComm phase increase as 𝑍 increases.

8 CONCLUSIONS
SpComm3D provides a high-level and flexible environment to run
different types of 2D and 3D sparse kernels utilizing sparse commu-
nication. With extensive experimental evaluations on up to 1800
processors, we showed that SpComm3D has superior scalability
compared to the state-of-the-art sparsity-agnostic SDDMM and
SpMM algorithms. The communication and memory required to

60 60 6012
0

12
0

12
0

24
0

24
0

24
0

Z = 2 Z = 4 Z = 9
K size, Z size

0

250

500

750

1000

1250

1500

1750

S
D

D
M

M
ru

n
ti

m
e

(m
s)

P =1800

PreComm Comp PostComm

Figure 9: Runtime breakdown of SDDMMwith SpC-NB of all
matrices on 1800 processors (averaged with geometric mean)
categorized according to 𝐾 and 𝑍 .

run the same algorithm are reduced by an average of 5.0x, leading
to saving up to 10TB of bandwidth and RAM on 1800 processors, by
effectively utilizing sparse communication. The overall runtime of
SDDMM is also reduced by 5.0x on average. The low memory and
communication overheads of SpComm3D compared to the sparsity-
agnostic counterparts make it a better candidate for performing
large-scale sparse computations especially with very large sparse
matrices.

REFERENCES
[1] Nabil Abubaker, Orhun Caglayan, M Ozan Karsavuran, and Cevdet Aykanat.

2023. Minimizing staleness and communication overhead in distributed SGD for
collaborative filtering. IEEE Trans. Comput. (2023).

[2] Seher Acer, Oguz Selvitopi, and Cevdet Aykanat. 2016. Improving performance
of sparse matrix dense matrix multiplication on large-scale parallel systems.
Parallel Comput. 59 (2016), 71–96.

[3] Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, Mahesh Joshi, and
Prasad Palkar. 1995. A three-dimensional approach to parallel matrix multiplica-
tion. IBM Journal of Research and Development 39, 5 (1995), 575–582.

[4] Kadir Akbudak and Cevdet Aykanat. 2014. Parallel Sparse Matrix-Matrix Mul-
tiplication Library. Technical Report. Technical report BU-CE-1402, Computer
Engineering Department, Bilkent University.

[5] Kadir Akbudak and Cevdet Aykanat. 2014. Simultaneous input and output ma-
trix partitioning for outer-product–parallel sparse matrix-matrix multiplication.
SIAM Journal on Scientific Computing 36, 5 (2014), C568–C590.

[6] Kadir Akbudak, Oguz Selvitopi, and Cevdet Aykanat. 2018. Partitioning models
for scaling parallel sparse matrix-matrix multiplication. ACM Transactions on
Parallel Computing (TOPC) 4, 3 (2018), 1–34.

[7] Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Oded
Schwartz, Sivan Toledo, and Samuel Williams. 2016. Exploiting multiple levels
of parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing 38, 6 (2016), C624–C651.

[8] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,
Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro Dalcin, Alp Dener,
Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin
Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley,
Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran
Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan,
Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and
Junchao Zhang. 2024. PETSc/TAO Users Manual. Technical Report ANL-21/39 -
Revision 3.21. Argonne National Laboratory. https://doi.org/10.2172/2205494

[9] Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz,
Oded Schwartz, and Sivan Toledo. 2013. Communication optimal parallel multi-
plication of sparse random matrices. In Proceedings of the twenty-fifth annual
ACM symposium on Parallelism in algorithms and architectures. 222–231.

[10] Maciej Besta and Torsten Hoefler. 2024. Parallel and distributed graph neural
networks: An in-depth concurrency analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2024).

[11] Vivek Bharadwaj, Aydın Buluç, and James Demmel. 2022. Distributed-memory
sparse kernels for machine learning. In 2022 IEEE International Parallel and

10

https://doi.org/10.2172/2205494

Distributed Processing Symposium (IPDPS). IEEE, 47–58.
[12] Aydin Buluc and John R Gilbert. 2008. Challenges and advances in parallel sparse

matrix-matrix multiplication. In 2008 37th International Conference on Parallel
Processing. IEEE, 503–510.

[13] Aydin Buluç and John R Gilbert. 2012. Parallel sparse matrix-matrix multiplica-
tion and indexing: Implementation and experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170–C191.

[14] Lynn Elliot Cannon. 1969. A cellular computer to implement the Kalman filter
algorithm. Montana State University.

[15] Ümit V Çatalyürek, Cevdet Aykanat, and Bora Uçar. 2010. On two-dimensional
sparse matrix partitioning: Models, methods, and a recipe. SIAM Journal on
Scientific Computing 32, 2 (2010), 656–683.

[16] Timothy A. Davis and Yifan Hu. 2011. The university of Florida sparse matrix
collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[17] Gunduz Vehbi Demirci and Hakan Ferhatosmanoglu. 2021. Partitioning sparse
deep neural networks for scalable training and inference. In Proceedings of the
ACM International Conference on Supercomputing. 254–265.

[18] Roger G Grimes, John G Lewis, and Horst D Simon. 1994. A shifted block
Lanczos algorithm for solving sparse symmetric generalized eigenproblems.
SIAM J. Matrix Anal. Appl. 15, 1 (1994), 228–272.

[19] Ramakrishnan Kannan, Grey Ballard, and Haesun Park. 2017. MPI-FAUN: An
MPI-based framework for alternating-updating nonnegative matrix factorization.
IEEE Transactions on Knowledge and Data Engineering 30, 3 (2017), 544–558.

[20] Kamer Kaya, Bora Uçar, and Ümit V. Çatalyürek. 2014. Analysis of Partitioning
Models and Metrics in Parallel Sparse Matrix-Vector Multiplication. In Parallel
Processing and Applied Mathematics (PPAM, Sep. 2013) (Lecture Notes in Computer
Science), Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy
Waśniewski (Eds.). Springer Berlin Heidelberg, Warsaw, Poland, 174–184.

[21] Oguz Kaya, Ramakrishnan Kannan, and Grey Ballard. 2018. Partitioning and
communication strategies for sparse non-negative matrix factorization. In Pro-
ceedings of the 47th International Conference on Parallel Processing. 1–10.

[22] Enver Kayaaslan, Cevdet Aykanat, and Bora Uçar. 2018. 1.5 D parallel sparse
matrix-vector multiply. SIAM Journal on Scientific Computing 40, 1 (2018), C25–
C46.

[23] Penporn Koanantakool, Ariful Azad, Aydin Buluç, Dmitriy Morozov, Sang-Yun
Oh, Leonid Oliker, and Katherine Yelick. 2016. Communication-avoiding parallel
sparse-dense matrix-matrix multiplication. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 842–853.

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[25] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raffaele
Solcà, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal par-
allel matrix-matrix multiplication. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–22.

[26] Ujjaini Mukhopadhyay. 2023. Sparsity-aware communication for distributed
graph neural network training. Master’s thesis. EECS Department, University of
California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-
2023-253.html

[27] Dianne P O’Leary. 1980. The block conjugate gradient algorithm and related
methods. Linear algebra and its applications 29 (1980), 293–322.

[28] Miloud Sadkane. 1993. A block Arnoldi-Chebyshev method for computing the
leading eigenpairs of large sparse unsymmetric matrices. Numerische mathematik
64 (1993), 181–193.

[29] Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and
Aydın Buluç. 2021. Distributed-memory parallel algorithms for sparse times
tall-skinny-dense matrix multiplication. In Proceedings of the ACM International
Conference on Supercomputing (Virtual Event, USA) (ICS ’21). Association for
Computing Machinery, New York, NY, USA, 431–442. https://doi.org/10.1145/
3447818.3461472

[30] Edgar Solomonik and James Demmel. 2011. Communication-optimal parallel 2.5
D matrix multiplication and LU factorization algorithms. In European Conference
on Parallel Processing. Springer, 90–109.

[31] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing Commu-
nication in Graph Neural Network Training. In SC20: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 1–14.
https://doi.org/10.1109/SC41405.2020.00074

[32] Robert A Van De Geijn and Jerrell Watts. 1997. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience 9, 4 (1997),
255–274.

11

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-253.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-253.html
https://doi.org/10.1145/3447818.3461472
https://doi.org/10.1145/3447818.3461472
https://doi.org/10.1109/SC41405.2020.00074

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notations
	3.2 SDDMM and SpMM
	3.3 Sparsity-agnostic parallel algorithms for SDDMM and SpMM

	4 Sparsity-aware Communication Analysis of 3D SDDMM
	5 The SpComm3D Framework
	5.1 General structure and assumptions
	5.2 Data distribution
	5.3 Sparse communication model

	6 Building 3D SDDMM and SpMM Algorithms with SpComm3D
	6.1 The Compute phase
	6.2 The PreComm phase
	6.3 The PostComm phase
	6.4 The Setup phase
	6.5 Building SpMM with SpComm3D

	7 Experimental Evaluation
	7.1 Dataset and Experimental Setting
	7.2 High-level total runtime comparison with sparsity-agnostic algorithms
	7.3 Strong Scaling
	7.4 Harnessing Sparsity: evaluation of memory and communication
	7.5 Overall communication volume and runtime improvements

	8 Conclusions
	References

