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Abstract. Hindman conjectured that any finite partition ofN has a monochro-
matic {x, y, x+ y, xy}. Recently, Bowen proved the result for all 2-partition.
In this paper, we extend Bowen’s result to any semiring (S,+, ·) such that
Ss is piecewise syndetic for all s ∈ S. As a method, we gave a combinato-
rial proof for a piecewise syndetic version of Bergerson and Glasscock’s IP∗

r

Szemerédi Theorem, and discussed the case when the operation is not com-
mutative.
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1 Introduction

Partition regularity is an important field in additive combinatorics, which is
old but still full of vitality. It dates back to Roth’s Theorem and van der
Waerden’s Theorem, which states that one can arithmetic progressions in
any finite partition of N. These results are quickly extended to arbitrary
semigroups and so are a lot of similar results.

One of the most famous conjectures in additive combinatorics, which is
conjectured by Hindman, asks whether for any finite partition of N, the set
of positive integers, there exists a monochromatic {x, y, x+ y, xy} (i.e. one
can find a subset in the partition, and elements x and y, such that all of
{x, y, x + y, xy} are in the subset). He proved in [9] that any 2-coloring of
{2, . . . , 990} contains a monochromatic set of such form. The conjecture is
still open and many works have been done recently. Moreira [12] proved
that one can find monochromatic {x, x + y, xy} in any finite partition of N
(and also similar patterns in LIDs). Bowen solved a special case when the
partition has size 2. The following theorem is proved by Bowen [4].
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Theorem 1.1 (Bowen). Given any 2-coloring of N and n ∈ N, there are

arbitrarily large and distinct x1, ..., xn ∈ N such that

{xi,
∏

j≤i

xj ,
n∑

i=1

xj : i ≤ n}

is monochromatic. Moreover, there are also monochromatic sets of the form

{x, y, xy, x+ ny}.

More recently, Bowen and Sabok [6] and Alweiss [1] independently proved
that one can find monochromatic {x, y, x+ y, xy} in Q, which turns out to
be very different from N since the multiplication in Q has its inverse. They
used different methods and obtained different generalizations of Hindman’s
Conjecture on Q.

One of the aims of our paper is to extend Bowen’s result on N to semir-
ings that are additively large in some way, as well as giving some ideas and
useful tools on how do do similar problems without the commutative law.
Recall that a semiring (S,+, ·) is a set S and two binary operations, with the
commutative law in + and the distributive law. We state one of our theorem
as follows.

Theorem 1.2. For any positive integer k and any 2-coloring of a semiring

S = (S,+, ·) such that Ss is piecewise syndetic in (S,+) for all s ∈ S, there
is either a monochromatic {x, y, x + y, xiy : i ≤ k}, or a monochromatic

{x, y, xy, x+ iy : i ≤ k}.

Recall that A ⊂ (S, ◦) is thick if ∀k ∈ N and s1, . . . , sk ∈ S, ∃x ∈ S such
that {x◦s1, . . . , x◦sk} ⊆ A, and is (right) multiplicatively syndetic if ∃k ∈ N

and s1, . . . , sk ∈ S such that S = s−1
1 A ∪ . . . ∪ s−1

k ◦ A, where x−1A denotes
the set {s ∈ S : x ◦ s ∈ A}. We also discuss whether we can expect to find
such a set in a sufficiently large subset of S.

Theorem 1.3. For any semiring S = (S,+, ·) and A ⊆ S, if A is both

multiplicatively thick and syndetic, then there is x, y such that {x, y, xy, x+
y} ⊂ A.

To prove these results in semirings, we first need to generalize a variant
of IP∗

r Szemerédi’s Theorem to semirings. Recall that for a muti-subset A
with elements in S, FS(A) denotes the set of all finite sums with elements in
A. We say that A ⊆ S is IP∗

r if for any B ⊆ S of r elements, A∩FS(B) 6= ∅.

We need the following theorem which was proved by Furstenberg and
Katznelson [8].
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Theorem 1.4 (Furstenberg). Let (X,B, µ) be a measure space with µ(X) <
∞, let T1, T2, . . . Tn be commuting measure preserving transformations of X
and let A ∈ B with µ(A) > 0. Then

lim inf
M→∞

1

M

M∑

m=1

µ

(
k⋂

i=1

T−m
n A

)
> 0.

In particular, for every finite partition X =
⋃k

j=1Cj, there is some j such

that µ(Cj) > 0, and hence there is some m such that
⋂k

i=n T
−m
n Cj 6= ∅.

Bergelson and Glasscock [3] gave a short proof for the following statement.
Recall that a left invariant mean on a semigroup S is a positive linear func-
tional λ of norm 1 which is left translation invariant, i.e. λ (s−1A) = λ(A)
for all s ∈ S and A ⊆ S. Especially, every commutative semigroup admits
an invariant mean. For detailed discussions on this topic, see [3].

Theorem 1.5 (Bergelson & Glasscock). Let n ∈ N and δ > 0. There

exists r ∈ N and β > 0 for which the following holds. For all commutative

semigroups (S,+) and (R,+), all homomorphisms ϕ1, . . . , ϕn from S to R,

all invariant means λ on R, and all A ⊆ R with λ(A) ≥ δ, the set

{
s ∈ S : λ

(
n⋂

i=1

(A− ϕi(s))

)
≥ β

}

is IP∗
r in S.

We shall derive the following version in piecewise syndetic version by a
combinatorial method. Recall that A ⊆ (R, ·) is piecewise syndetic if A is
the intersection of a thick set and a syndetic set.

Theorem 1.6. Let S = (S, ·) and R = (R, ·) be semigroups such that R
admits a left invariant mean, and A ⊆ R be piecewise syndetic. For homo-

morphisms ϕ1, . . . , ϕn from S to R, define

D(A;ϕ1, . . . , ϕn) =

{
d ∈ S :

n⋂

i=1

(ϕi(d)
−1A) is piecewise syndetic

}
,

where Aa−1 = {b ∈ R : ba ∈ A} Then we have

1. For any n ∈ N and ϕ1, . . . , ϕn such that ϕiϕj = ϕjϕi for all i, j, there
is some t ∈ R such that D(t−1A;ϕ1, . . . , ϕn) 6= ∅.

2. Suppose in addition that S and R are commutative. Then for any

n ∈ N, there is r ∈ N such that for any ϕ1, . . . , ϕn, D(A;ϕ1, . . . , ϕn) is
IP∗

r in S.
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In the proof of this theorem, we shall use a technique to derive a piecewise
syndetic set from a single element. This technique can also be used when
we extend Bowen’s result to semirings, finding a piecewise syndetic set of
patterns of {x, y, x+ y, xy} if the partition satisfies some property.

The rest of this paper is organized as follows. In section 2 we give some
definitions and background information for largeness in semigroups, which are
fundamental in the proof of our theorems. In section 3 we prove our variant
of IP∗

r Szemerédi’s Theorem, and also give a technique to find a large set of
certain patterns in non-commutative setting. In section 4 we prove Bowen’s
Theorem in semirings, and give some generalizations in certain cases. At last
we propose some conjectures relevant to our methods.

2 Large subsets

We are going to systematically define some kinds of largeness, some of which
rely on the algebraic structure of semigroup (βS, ◦) (here ◦ is any semigroup
operation on S). Recall that βS is the space of ultrafilters of S, equipped
with the topology generated by the clopen sets

Â = {p ∈ βS : A ∈ p}

through all A ⊆ S. The ultrafilter space is only an auxiliary tool and have
few appearances in our main results. One only need to bear in mind the we
can extend ◦ on βS2 to make (βS, ◦) a compact right topological semigroup.
If e ∈ L where L ⊆ βS is a minimal left ideal and e is an idempotent, then
we call e a minimal idempotent. For a thorough treatment of the ultrafilter
space and the algebra on it, see [10].

Now we are ready to define largeness of subsets of S. To be concise,
we denote Pf (S) the collection of finite muti-subsets with elements in S.
We will see why we use mutisets when we are defining IP system. Some of
the concepts have a connection between their conbinatorical definitions and
their definitions using the ultrafilter space, also see [3] for more background
information.

Definition 2.1. For a semigroup (S, ◦) and A ⊆ S, we say that

• A is thick if ∀F ∈ Pf (S), ∃x ∈ S such that F ◦ x ⊆ A. Equivalently, if

there is a minimal left ideal L ∈ βS such that L ∈ Â.

• A is syndetic if ∃F ∈ Pf (S) such that S =
⋃

s∈F s−1 ◦A. Equivalently,

if for all minimal left ideal L ∈ βS, L ∩ Â 6= ∅.
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• A is piecewise syndetic if ∃F ∈ Pf (S) such that
⋃

s∈F s−1 ◦ A is thick.

Equivalently, if there is a minimal left ideal L ∈ βS such that L∩Â 6= ∅.

• A is central if there is a minimal idempotent e ∈ βS such that A ∈ e.

Concepts here can be defined both for left and for right, but we will only
use left or right that corresponds to this definition in this paper and we will
omit these attributes.

It is natural to ask whether the homomorphism image of a large set is still
large. We will need the following theorem stated by Bergelson and Glasscock
[3].

The following theorem is also due to Hindman and Strauss [3].

Theorem 2.2 (Hindman & Strauss). Let (S, ·), (T, ·) be semigroups, ϕ :
(S, ·) → (T, ·) be a homomorphism, A ⊆ S, and r ∈ N. If A is piecewise

syndetic in S and ϕ(S) is piecewise syndetic in T , then ϕ(A) is piecewise

syndetic in T .

If we set T = S and ϕ(x) = xs for some s ∈ S, we know that ϕ maintains
the property of piecewise syndetic if Ss is piecewise syndetic in S.

Next we define the group of largeness including IP∗
r that appeared in the

introduction. One may see that we require some of the sets to be multisets,
which is necessary in some of our proofs. Actually, if we need some of the
properties of IPr, e.g. the image of IPr sets under homomorphisms are also
IPr, then mutiset is needed.

Definition 2.3. Suppose (S, ◦) is a semigroup and a multiset A with elements

in S.

• Given a total ordering of the index set I of A = {ai}i∈I , We denote

FP(A) the finite product of A as

FP(A) =
⋃

F⊆I

1≤|F |<∞

{ai1◦. . .◦ain}, where F = {i1, . . . , in}, i1 < · · · < in.

If the operation is written as “+”, as in semirings or sometimes in

commutative settings, we may use FS instead which abbreviates for

finite sum.

• We say that A is IPr if ∃F ∈ Pf (S), |F |= r such that FP(F ) ⊆ A.

• We say that A is IP∗
r if ∀F ∈ Pf (S), |F |= r,there is FP(F ) ∩A 6= ∅.
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Finally we need the concept of combinatorially rich, which is defined
originally by Bergelson and Glasscock [3] in commutative semigroups and
extended to arbitrary semigroups by Hindman et al [11]. We will only need
the commutative version here, and we will discuss more on it at the end of
the paper.

Definition 2.4. Let (S,+) be a commutative semigroup. A subset A ⊆ S is

combinatorially rich if for all n ∈ N, there exists an r ∈ N such that for all

M ∈ Sr×n, there exists a non-empty α ⊆ {1, . . . , r} and s ∈ S such that

s+Mα,j ∈ A, ∀j ∈ {1, . . . , n}.

The property combinatorially rich, piecewise syndetic and central are par-
tition regular, i.e. for any finite partition of a set with the property, one of
the subsets also have the property. See, for instance, [9].

The concepts we have defined have deep connections between each other,
and we will mention the connections that will be used in this paper. The fol-
lowing theorem is a property of combinatorially rich sets depicted by Bergel-
son and Glasscock [3]. Though the definitions on IP∗

r
sets are different, the

proof is the same.

Theorem 2.5. Let (S,+) be a commutative semigroup and A ⊆ S. Then A
is combinatorially rich if and only if For all n ∈ N , there exists r ∈ N such

that for all commutative semigroups T and all homomorphisms ϕ1, . . . , ϕn

from T to S, the set

{
d ∈ S :

n⋂

i=1

(A− ϕi(d)) 6= ∅

}

is IP∗
r in T .

It can be derived from the definition that thick sets are central, central
sets are piecewise syndetic, and syndetic sets are exactly the complement of
non-thick sets. We also need the following theorem, see, for instance, [3].

Theorem 2.6. Let (S,+) be a commutative semigroup and A ⊂ S is piece-

wise syndetic. Then A is combinatorially rich.

For semiring with two operations, there are some links between large-
ness with respect to each operation. It was shown in [5] and [7] that in N,
multiplicatively central sets are additively IPr for every r. Bergelson and
Glasscock [3] made a generalisation to multiplicatively piecewise syndetic
sets on arbitrary semirings.
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Theorem 2.7 (Bergelson & Glasscock). Let (S,+, ·) be a semiring. Suppose

that (R, ·) is a subsemigroup of (S, ·) which is additively large in the following

way: R is an IPr set in (S,+) for all r. If A ⊆ R is piecewise syndetic in

(R, ), then A is IPr in (S,+) for all r.

In particular, setting R = S, we have that multiplicatively piecewise
syndetic sets are additively IPr for every r.

3 Variant of the Szemerédi Theorem

In this section we are to prove a piecewise syndetic form of the IP∗
r Szemerédi

Theorem. Recall that we have defined in the introduction that

D(A;ϕ1, . . . , ϕn) =

{
d ∈ S :

n⋂

i=1

(ϕi(d)
−1A) is piecewise syndetic

}
.

First we need the following finite Szemerédi’s Theorem, which is from The-
orem 1.4 together with a standard compactness argument.

Lemma 3.1. Let S = (S, ·) and R = (R, ·) be semigroups such that R admits

a left invariant mean. For any n, k and homomorphisms ϕ1, . . . , ϕn from S
to R such that ϕiϕj = ϕjϕi for all i, j, there is G ∈ Pf (S) and H ∈ Pf (R)

such that for any k-partition H =
⋃k

j=1Cj, there is d ∈ G and j ∈ [k] such

that
⋂n

i=1 (ϕi(d)
−1Cj) 6= ∅.

Proof. We first prove the case without the finiteness limitation, i.e. the case
when G = S and H = R. Pick an s ∈ S arbitrarily. Denote transformations

Ti(a) = ϕi(s)a, 1 ≤ i ≤ n.

Then
T−1
i (A) = ϕi(s)

−1A

and thus Ti’s are measure preserving, and

TiTj(a) = ϕj(s)ϕi(s)a = ϕi(s)ϕj(s)a = TjTi(a),

i.e. (Ti)
n
i=1 are commuting. By Theorem 1.4, there is some j ∈ [k] and m ∈ N

such that
n⋂

i=1

(
ϕi (s

m)−1Cj

)
=

n⋂

i=1

T−m
n Cj 6= ∅.

Therefore, for any k-partition R =
⋃k

j=1Cj, we can find d = sm ∈ S

and j ∈ [k] such that
⋂n

i=1 (ϕi(d)
−1Cj) 6= ∅. We identify each k-partition
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to a function (element) in [k]R, equipped with the product topology ([k] =
{1, . . . , k} equipped with the discrete topology). By the Tychonoff Theorem,
[k]R is compact. For d ∈ S, a ∈ R, Define

C(d, a) =

{
c ∈ [k]R : ∀j ∈ [k], a /∈

n⋂

i=1

(
ϕi(d)

−1c−1(j)
)
}
,

(here c−1(j) is identical with Cj .) One can see it is closed in [k]R. What we
have already proved says that

⋂

(d,a)∈S×R

C(h) = ∅,

and by the property of compactness, there is some I ∈ Pf (S ×R) such that

⋂

(d,a)∈I

C(d, a) = ∅.

Find G ∈ Pf (S), H
′ ∈ Pf (R) such that I ⊆ G×H ′. Then for all k-partition

c ∈ [k]R, there is a d ∈ G and j ∈ [k] such that

H ′ ∩
n⋂

i=1

(
ϕi(d)

−1c−1(j)
)
6= ∅.

Set
H =

⋃

d∈G

⋃

i∈[n]

ϕi(d)H
′,

then

H ′ ⊆
n⋂

i=1

(
ϕi(d)

−1H
)
,

hence

n⋂

i=1

(
ϕi(d)

−1H
)
∩

n⋂

i=1

(
ϕi(d)

−1c−1(j)
)
=

n⋂

i=1

(
ϕi(d)

−1
(
H ∩ c−1(j)

))
6= ∅.

This completes the proof.

Now we prove the first half of the piecewise syndetic Szemerédi Theorem,
which is a generalisation of the lemma above, and is also needed while proving
the second half. The basic idea is that if there is s such that the intersection
is not empty, then with the property of partition regularity we can require
the intersection to be piecewise syndetic.

8



Theorem 3.2. Let S = (S, ·) and R = (R, ·) be semigroups such that R
admits a left invariant mean, and A ⊆ R be piecewise syndetic. Then for

any n and commuting homomorphisms ϕ1, . . . , ϕn from S to R, there is some

t ∈ R such that

D(t−1A;ϕ1, . . . , ϕn) 6= ∅.

Proof. We add, if there is none, an identical element 1 to the semigroup R,
that is, 1r = r1 for all r ∈ R, and denote R′ = R ∪ {1}. Though R may
have identical element (left or right) itself, there is no contradiction because
it need not to be identical in R′.

We claim that A is still piecewise syndetic in R′. Recall that a set is
piecewise syndetic if it is the intersection of a syndetic set and a thick set,
and a set is thick if and only if its complement is syndetic. Thus it suffices
to prove that if M is syndetic in R, then M (and hence M ∪ {1} as well) is
syndetic in R′. But that is trivial, as we can write by definition

R =
m⋂

i=1

s−1
m M,

and pick a ∈ M , then 1 ∈ a−1M , hence

R′ = a−1M ∩
m⋂

i=1

s−1
m M.

We also add a homomorphism ϕ0(s) = 1 for all s ∈ S if there is none.
Then it suffices to prove that

D(A;ϕ0, ϕ1, . . . , ϕn) 6= ∅.

Therefore, we may suppose without loss of generality that, R bears a
identical element 1 and that ϕ1(s) = 1 for all s ∈ S.

From the definition, we know that there is F ∈ Pf (R) such that

T =
⋃

t∈F

t−1A

is thick in R. Find G and H that satisfy the conditions in Lemma 3.1, then
there is some x ∈ R such that

Hx ⊆ T.

Note that when considering the set
⋂n

i=1 (ϕi(s)
−1Cj), it does not affect

if we right multiply the sets with a constant x, and hence if H satisfies the
condition in Lemma 3.1, then so is Hx as well. Since

Hx =
⋃

t∈F

(
Hx ∩

(
t−1A

))
,

9



there is some d ∈ G and t ∈ F such that
n⋂

i=1

(
ϕi(d)

−1
(
Hx ∩

(
t−1A

)))
6= ∅.

Next we consider the set

A′ =

{
a ∈ R : ∃t ∈ F, ∃d ∈ G, a ∈

n⋂

i=1

(
ϕi(d)

−1t−1A
)
}
.

We claim that ⋃

h∈H′

h−1A′

is thick, which implies that A′ is piecewise syndetic. Following the definition,
for any F ′ ∈ Pf (R), the set HF ′ is also finite, so by the thickness of T , there
is some x such that

HF ′x ⊆ T.

We are going to show that

F ′x ∈
⋃

h∈H′

h−1A′,

which suffices if for all c ∈ F ′, there is some a ∈ A′ and h ∈ H ′ such that
cx = h−1a. Note that G and Hc also satisfy the conditions in Lemma 3.1,
so by the same analysis, there is some d ∈ G and t ∈ F such that

n⋂

i=1

(
ϕi(d)

−1
(
Hcx ∩ t−1A

))
6= ∅.

Pick a from the above intersection. Then a ∈ A′. Moreover, since ϕ1(d) = e
by the assumption in the beginning, we also know that a ∈ Hcx, which
implies that there is some h ∈ H ′ such that cx = h−1a. Therefore, A′ is
piecewise syndetic.

Finally, since

A′ =
⋃

t∈F

⋃

d∈G

n⋂

i=1

(
ϕi(d)

−1A
)
,

from the finiteness of F ,G and the partition regularity of piecewise syndetic
property, there is some t ∈ F and d ∈ G such that

⋂n

i=1 (ϕi(d)
−1t−1A) is

piecewise syndetic, i.e.

D(t−1A;ϕ1, . . . , ϕn) 6= ∅.

This completes the proof.

Note that one cannot require D(A;ϕ1, . . . , ϕn) to be nonempty. For ex-
ample, let R be the free semigroup generated by two elements x and y, S be

10



the sub-semigroup generated by only x (without the empty word), and φ be
the identical homomorphism. We set A = yR, which is syndetic in R, but
for all s ∈ S, the set φ(s)−1A is empty.

Now we are ready to prove the second half, which is based on the proof
of the above Theorem together with properties of combinatorially rich sets.
We will omit some details.

Theorem 3.3. Let S = (S,+) and R = (R,+) be commutative semigroups

and A ⊆ R be piecewise syndetic. Then for any n, there exists r such that

D(A;ϕ1, . . . , ϕn)

is IP∗
r in S for all homomorphisms ϕ1, . . . , ϕn from S to R.

Proof. By Theorem 2.6, A is combinatorially rich in R. Then Theorem 2.5
states that, the set of d such that

n⋂

i=1

(A− ϕi(d)) 6= ∅

is IP∗
r in S, which implies that for every IPr set G ⊆ S and any finite

partition R =
⋃k

j=1Cj , some Cj is combinatorially rich in R by partition
regularity, and in turn there is d ∈ G such that

n⋂

i=1

(
ϕi(d)

−1Cj

)
6= ∅.

By a similar compact argument as in the proof of Lemma 3.1, for every finite
IPr set G ⊆ S, there is H ∈ Pf (R) such that for any finite partition of H ,
the above is also true. Following the proof of Theorem 3.2, for every such G,
there is some t ∈ F and d ∈ G such that the intersection of all A− t−ϕi(d)
is not only nonempty but also piecewise syndetic in R. From the definition,
we know that

n⋂

i=1

(A− ϕi(d)) =

n⋂

i=1

(A− t− ϕi(d)) + t

is piecewise syndetic in R for such d ∈ G, and hence

D(A;ϕ1, . . . , ϕn) ∩G 6= ∅.

From the definition, we know that D(A;ϕ1, . . . , ϕn) is IP
∗
r in S.

Remark 3.4. In the definition of D, we used the expression
⋂n

i=1(ϕi(d)
−1A).

However, as we stated in the proof of Theorem 3.2, since adding an identical
element does not affect the property of piecewise syndetic, one can change
the expression into

A ∩
n⋂

i=1

(ϕi(d)
−1A),

which is sometimes the form we need in practise.
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4 Products and sums in semirings

To extend Bowen’s results to semirings, we need to make use of following
lemma that Bowen proved in [4]. Although Bowen proved it only on N, the
proof do not need the commutative law for multiplication and hence holds
on arbitrary semiring. We need to modify the expression a bit to fit for the
semiring setting. As naturally defined, for two subsets A and B in semigroup
(S, ·), their product AB represents the set {ab : a ∈ A, b ∈ B}.

Theorem 4.1 (Bowen). Let S = (S,+, ·) be a semiring, L ⊆ (βS, ·) be

a minimal left ideal, e ∈ L be an idempotent, and p ∈ L. Then for any

A ∈ p, B ∈ e, and f : ω → ω there is a sequence of sets F0, F1, ... ⊆ S with

|Fi|= f(i) such that for any n and I = {i1, . . . , in}, the set

FS(Fi0)FS(Fi1) . . .FS(Fin)

is in A if 0 ∈ I and is in B otherwise.

We shall illustrate what it mean if we just want two sets F0, F1, which is
the case we need if we want to find a monochromatic {x, y, x + y, xy}. By
standard result of ultrafilter method, one can find as large as desired (but
finite) subsets F0, F1 such that FS(F0) ⊆ A and FS(F1) ⊆ B (recall that
multiplicatively piecewise syndetic means additively IPr for all r, see, for
instance, [3]). This theorem tells us that, one can in addition require that
the set FS(F0)FS(F1) is also contained in A, which is the key ingredient in
finding {x, y, x+ y, xy} patterns.

We split the result into two theorems, whose proofs are both based on
Bowen’s proofs in [4].

Theorem 4.2. Let S = (S,+, ·) be a semiring such that Ss is piecewise

syndetic in (S,+) for all s ∈ S. Let T be thick in (S, ·), M0,M1 be syndetic

in (S, ·), and S = C0 ∪ C1 be a bipartition such that C0 ∈ T ∩ M0 and

C1 ∈ T ∩M1. Then for all k ∈ N, there is some y ∈ S and i ∈ {0, 1} such

that {
x : {x, y, xy, x+ y, x+ 2y, . . . , x+ ky} ⊆ Ci

}

is also piecewise syndetic in (S,+).

Proof. The assupmtion ensures that there is minimal left ideal L ⊆ βS and
idempotent e ∈ L and p ∈ L such that C0 ∈ p ∈ L and C1 ∈ e ∈ L. Then
the condition of Theorem 4.1 is satisfied and there is as large as desired sets
F0, F1 ∈ Pf (S) such that

FS(F0) ⊆ C0, FS(F1) ⊆ C1, FS(F0)FS(F1) ⊆ C0.
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We first consider the case when C0 is not additively piecewise syndetic. Then
by the partition regularity, we know that C1 is piecewise syndetic in (S,+).
Using Theorem 3.3 and Remark 3.4 on C1 and F1, we find y ∈ FS(F1) such
that

A =

k⋂

i=0

(C1 − iy)

is piecewise syndetic in (S,+). By Theorem 2.2, Ay is piecewise syndetic in
(S,+). Since C0, and hence C0 ∩Ay is not piecewise syndetic, we know that
Ay ∩ C1 is piecewise syndetic. For y and all x′ ∈ Ay ∩ C1,

{
x′y−1, y, x′, x′y−1 + iy : i ∈ [k]

}
∈ C1.

Moreover, by Theorem 2.2 we know that

x = x′y−1 ∈ (Ay ∩ C1)y
−1,

which is also piecewise syndetic in (S,+), and hence we are done.

Otherwise, C0 is additively piecewise syndetic, and we find y0 ∈ FS(F0)
such that

A0 =

k⋂

i=0

(C0 − iy0)

is piecewise syndetic in (S,+). If A0y0∩C0 is piecewise syndetic then we are
done as before. Otherwise, C ′

1 = A0y0 ∩ C1 is piecewise syndetic in (S,+).
Again using Theorem 3.3 and Remark 3.4 on C ′

1 and F1, we find y1 ∈ FS(F1)
such that

A1 =
k⋂

i=0

(C ′
1 − iy1) ∩

k⋂

i=1

(C ′
1 − iy0y1y0)

is piecewise syndetic in (S,+), and hence A1y1 is piecewise syndetic in (S,+).
If A1y1∩C1 is piecewise syndetic then again we are done as before. Otherwise,
A1y1 ∩ C0 is piecewise syndetic in (S,+). Here,

y = y0y1 ∈ FS(F0)FS(F1) ⊆ C0.

For all
x′ ∈ A1y1 ∩ C0 ⊆ C0,

we have

x = x′y−1 ∈ (A1y1 ∩ C0)y
−1 ⊆ C ′

1y0y1y
−1 = A′

0 ⊆ C0,

and for all 0 ≤ i ≤ k,

x+ iy = x′y−1
1 y−1

0 + iy0y1y0y
−1
0 ∈ A1y

−1
0 ⊆ C0.
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Similarly, the set of x that satisfies the condition is piecewise syndetic.

We have proved the case when C0 and C1 are both multiplicatively syn-
detic, whose reversed side is that one of the Ci’s is not syndetic, i.e. the
other is multiplicatively thick.

Theorem 4.3. Let S = (S,+, ·) be a semiring, S = C0 ∪C1 be a bipartition

such that C0 is multiplicatively thick. Then for all k, l ∈ N, there is i ∈ {0, 1}
and x, y ∈ S such that

{x, y, kx+ y, xy, x2y, . . . , xly} ⊆ Ci.

Proof. For every n, we denote F [x1, . . . , xn] to be the free semigroup on n ele-
ments, i.e. elements in F [x1, . . . , xn] are words of finite length (a1, a2, . . . , am)
such that aj ∈ {x1, . . . , xn} for all 1 ≤ j ≤ m. We denote F2[x1, . . . , xn] to be
the subset of F with all words such that xi appears no more than 2l2 times
for all 1 ≤ i ≤ n, and F2,k[x1, . . . , xn] all linear combinations with elements
in F2[x1, . . . , xn] and coefficients in N which sum up to no more than k3nkl2.

The set F2,k[x1, . . . , xn] is finite, and since C0 is multiplicatively thick, we
can find a1, a2, a3, a4, a5 such that a1 ∈ C0, and

F2,k[a1, . . . , ai−1]ai ∈ C0, ∀ 2 ≤ i ≤ 5.

Suppose by contrary that there are no such patterns. Since

{ka1, ka2, k
2a1a2, . . . , k

l+1al1a2} ⊆ C0,

there must be
k2a1 + ka2 ∈ C1.

Similarly, ka3 + a4, ka4 + a5 ∈ C1. Moreover, for x = (k2a1 + ka2)
i
a3 and

y = (k2a1 + ka2)
i
a4, 1 ≤ i ≤ l, we have x, y ∈ A, and

xjy =
(
k2a1 + ka2

)i(j+1)
aj3a4 ∈ C0, ∀ 1 ≤ j ≤ l,

hence
kx+ y =

(
k2a1 + ka2

)i
(ka3 + a4) ∈ C1, ∀ 1 ≤ i ≤ l.

For x = k2a1 + ka2 and y = ka3 + a4, we have illustrated that x, y ∈ C1 and
for all 1 ≤ i ≤ l, xiy ∈ C1, hence

kx+ y = k3a1 + k2a2 + ka3 + a4 ∈ C0.

For x = k2a1 + ka2 + a3 and y = a4 ∈ C0, we have kx + y ∈ C0 by above,
and xiy ∈ C0 for all 1 ≤ i ≤ l by the way we find a4. Hence

x = k2a1 + ka2 + a3 ∈ C1.
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For x = k3a1+ k2a2+ ka3+ a4 and y = a5, they are both in C0 and xiy ∈ C0

for all 1 ≤ i ≤ l. Hence

kx+ y = k4a1 + k3a2 + k2a3 + ka4 + a5 ∈ C1.

For x = k2a1+ka2+a3 and y = ka4+a5, we have showed that both of them
are in C1, and kx+ y ∈ C1. Hence there is some i ∈ [l] such that

xiy =
(
k2a1 + ka2 + a3

)i
(ka4 + a5) ∈ C0.

Now for x = (k2a1 + ka2 + a3)
i
a4 and y = (k2a1 + ka2 + a3)

i
a5, we have

{x, y, kx+ y, xy, x2y, . . . , xly} ⊆ Ci,

a contradiction.

The above are Bowen’s results on 2 variants. The result on n variants
can also be extended to semirings. The proof is similar to the original proof
in [4] together with our discussion to fit for semiring settings.

Theorem 4.4. Given any semiring (S,+, ·) such that Ss is piecewise syn-

detic in (S,+) for all s ∈ S, any 2-coloring of S and n ∈ N, there are

x1, ..., xn ∈ S such that

{xi, x1x2 . . . xi,
n∑

j=1

xj : i ≤ n}

is monochromatic.

The above theorems all rely on discussions on both color class, and we
cannot expect on finding the wanted pattern in a certain subset, which seems
to be the core difficulty when considering any finite partition rather than only
2-partitions. If we use the thick property in a different way, we may obtain
the following theorem.

Theorem 4.5. For any n ∈ N, any semiring S = (S,+, ·) and A ⊆ S, if A
is both multiplicatively thick and syndetic, then there is x1, . . . , xn such that

{xi, x1x2 . . . xn,

n∑

i=1

aixi : 1 ≤ i ≤ n, 0 ≤ ai ≤ k} ⊆ A

Proof. Since A is syndetic in (S, ·), we can find s1, s2, . . . , sm ∈ S such that

s−1
1 A ∩ s−1

2 A ∩ . . . ∩ s−1
m A = S.
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For a set A, denote kA the multiset that each element in A appears k times
in kA. Pick arbitrarily sm+1, . . . , sm+n−1 ∈ S, and denote

F = FS(k{s1, . . . , sm, . . . , sm+n−1}),

Then F ∈ Pf (S). Since A is thick in (S, ·), we can find x ∈ S such that

Fx ⊆ A

Now we consider the element xsm+1xsm+2x . . . sm+n−1x. Since A is syndetic,
we know that there is some i ∈ [n] such that

sixsm+1xsm+2x . . . sm+n−1x ∈ A.

Set x1 = six, xj = sm+j−1x for 2 ≤ j ≤ n, then xi are in A, there product is
in A, and there linear combination is in A from Fx ⊆ A and the definition
of F .

5 Concluding remarks

We first proved in section 3 that given suitable semigroups (S, ·) and (R, ·)
and homomorphisms ϕ1, . . . , ϕn, for all piecewise syndetic A ⊆ R one can find
d ∈ S and a piecewise syndetic set a ∈ R such that {a + ϕi(d) : 1 ≤ i ≤ n}
is in t−1A for some t ∈ R. We also showed that if the semigroups are
commutative, then one can find a IP∗

r set of d that satisfies the property.
We used the property of combinatorially rich which was originally defined in
commutative groups.

However, Hindman et al [11] has extended the concept of combinatorially
rich to arbitrary semigroups. The definition agrees on the commutative case,
and combinatorially rich sets in arbitrary semigroups have similar properties
with those in commutative semigroups. For instance, piecewise syndetic sets
are combinatorially rich. However, the method in proving Theorem 2.5 is not
valid in the general setting, and we wonder whether there are other methods
to deal with the problem.

Conjecture 5.1. Let S = (S, ·) and R = (R, ·) be semigroups such that R
admits a left invariant mean, and A ⊆ R be piecewise syndetic. Then for all

n, there is t ∈ R and r ∈ N such that

D(t−1A;ϕ1, . . . , ϕn)

is IP∗
r in S for all commuting homomorphisms ϕ1, . . . , ϕn from S to R.
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Especially, if Theorem 2.5 still holds for arbitrary semigroup, then the
conjecture is true with the same method in proving Theorem 3.3.

In section 4, we extended Bowen’s result to semirings (S,+, ·) that Ss
is piecewise syndetic for all s ∈ S, showing that essentially, one can find a
monochromatic {x, y, x+ y, xy} in all bipartition of S. If S does not satisfy
the property itself but some subsemiring R ⊆ S satisfies, then the method is
also valid. It is natural to ask what the case is when there is no such R. An
example is the polynomial semiring N[x].

Conjecture 5.2. For all bipatition of the polynomial semiring N[x] = C0 ∪
C1, there is some i ∈ {0, 1} and f, g ∈ N[x] such that {f, g, f + g, fg} ⊆ Ci.
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