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Towards Scenario- and Capability-Driven Dataset Development and
Evaluation: An Approach in the Context of

Mapless Automated Driving

Felix Grün, Marcus Nolte, and Markus Maurer

Abstract— The foundational role of datasets in defining the
capabilities of deep learning models has led to their rapid
proliferation. At the same time, published research focusing
on the process of dataset development for environment percep-
tion in automated driving has been scarce, thereby reducing
the applicability of openly available datasets and impeding
the development of effective environment perception systems.
Sensor-based, mapless automated driving is one of the contexts
where this limitation is evident. While leveraging real-time
sensor data, instead of pre-defined HD maps promises enhanced
adaptability and safety by effectively navigating unexpected
environmental changes, it also increases the demands on the
scope and complexity of the information provided by the
perception system.

To address these challenges, we propose a scenario- and
capability-based approach to dataset development. Grounded in
the principles of ISO 21448 (safety of the intended functionality,
SOTIF), extended by ISO/TR 4804, our approach facilitates
the structured derivation of dataset requirements. This not
only aids in the development of meaningful new datasets but
also enables the effective comparison of existing ones. Applying
this methodology to a broad range of existing lane detection
datasets, we identify significant limitations in current datasets,
particularly in terms of real-world applicability, a lack of
labeling of critical features, and an absence of comprehensive
information for complex driving maneuvers.

I. INTRODUCTION

Deep learning has revolutionized perception technologies
in automated driving, considerably advancing the interpre-
tation of complex vehicle environments. This transformative
impact is also evident in lane detection where the ability
to merge semantic scene understanding with detailed image
analysis has enabled the generation of highly accurate predic-
tions in diverse and challenging real-world conditions [1]–
[3]. This advancement, however, is heavily reliant on the
availability of extensive, relevant training data, which has
led to the creation of numerous lane detection datasets.
Despite this progress, the development and documentation
of these datasets lack a structured, standardized approach,
leading to a fragmented landscape of methodologies in
data collection and labeling. This affects the applicability
of developed datasets to real-world driving scenarios, and
hinders the assessment and comparison of datasets, posing
a significant challenge to researchers and industry profes-
sionals alike. Furthermore, many existing surveys on lane
detection datasets are limited in the number of considered
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datasets and narrowly focus on basic metrics such as dataset
size, which do not reflect the quality or relevance of the
data [4]–[7].

In the context of mapless driving, the role of perception
systems expands beyond lane assist functions to encompass
comprehensive environment modeling for automated driving
tasks. This extended role of perception systems amplifies
the need to understand the specific information required for
subsequent driving functions as well as the optimal way
to encode this data for training artificial neural networks.
Addressing these needs requires a coordinated effort from
experts in machine learning, dataset design, and engineering
of driving functions. The challenges include determining
the essential information to be extracted from the vehicle’s
environment, developing labeling specifications to minimize
ambiguities, and managing edge cases in input data.

Recognizing these challenges, Annex B of
ISO/TR 4804 [8] provides a framework for dataset
construction, emphasizing the need for datasets to match
attribute requirements defined in the initial stages of the
dataset development process. It provides lists of example
considerations, guiding questions, and typical artifacts of
what it calls the ‘Define phase’ [8, Annex B]. In addition
to this, ISO/TR4804 formulates basic capabilities necessary
for automated driving systems to fulfill the dynamic
driving task. However, the report stops short of discussing
methods for the derivation of these requirements. We
are approaching these challenges from the perspective of
ISO 21448 (SOTIF) [9] compliant development processes
for automated vehicles and propose the use of a scenario-
and capability-based development process [10]. This
approach aligns the development process with real-world
scenarios and the specific capabilities required by the
vehicle, providing a method to focus on the behaviors a
vehicle must exhibit to complete driving tasks rather than the
technical processes behind them. This abstract description
facilitates the identification of gaps in the capabilities of
the vehicle, reducing the likelihood of overlooking vital
safety-related considerations and ensuring that the vehicle
is equipped to handle a wide range of driving scenarios.
In previous work this approach has been applied to derive
requirements for automated driving systems (ADS) [10].
In this paper, we explore how it can help determine the
requirements for training and testing datasets early in the
development process, and how these can be used to aid in
the meaningful comparison of existing datasets.



(a) Scenario 1) (b) Scenario 2)

Fig. 1. Visualization of the example scenarios. The red automated vehicle is approaching a yellow mail van blocking its lane. To continue its mission,
it must perform a lane-change maneuver as visualized by the black example trajectory. Different infrastructure elements are highlighted as follows: The
ego-lane of the automated vehicle is shown in blue, the adjacent lane with unknown driving direction is shown in red, broken white lane boundaries are
marked in green, solid white lane boundaries are marked in yellow, and unmarked lane boundaries are marked in orange.

To summarize, the contributions of this paper are three-
fold: In Section III, we introduce a scenario- and capability-
based approach to the derivation of requirements for envi-
ronment perception datasets. In Section IV, we demonstrate
the efficacy of this approach in a small example scenario by
deriving a set of necessary infrastructure elements for label-
ing lane detection datasets for mapless driving. To complete
our discussion, in Section V, we provide a comprehensive
list of existing lane detection datasets and use the previously
derived elements for a meaningful assessment and compar-
ison, offering valuable insights into the current landscape
of existing lane detection datasets and their application to
mapless driving.

II. RELATED WORK

Current practices in the development, documentation, and
evaluation of lane detection datasets for automated driving
lack a standardized approach. Existing datasets, as docu-
mented by their authors, typically emphasize general needs
like scale and diversity, but often fall short in providing struc-
tured requirements, specific rationales for their approach to
labeling, or comprehensive evaluations. Common evaluation
metrics, while acknowledging the importance of dimensions
such as weather, time of day, or scene type, tend to be overly
simplistic and often reduce these complex variables to basic,
sometimes binary categories [1], [11]–[14].

Despite the critical role of dataset construction as the
foundation of machine learning, this area remains under-
researched in general [15]–[18]. Cha et al. [19] distill 19
interviews with machine learning experts into a six-step
dataset construction pipeline, where they emphasize early-
stage requirement identification in the first step. Vogelsang
and Borg [20] note the rising significance of data require-
ments in machine learning, suggesting the potential need for
a distinct class of data requirements. Hutchinson et al. [18]
propose a transparency framework for dataset development,
drawing parallels with software engineering practices to
stress the need for thorough documentation.

Literature specifically addressing lane detection datasets is
limited. Shirke and Udayakumar [4] provide a comparison
of six lane detection datasets within a review that includes
eight datasets in total. However, their brief four-page survey
uses only very general categories for comparison and lacks a
structured, in-depth analysis. Other papers offer overviews of
existing datasets within broader discussions on lane detection
methods [6], [7], [12], [21] or datasets for automated driving
in general [5], [22]–[24]. These comparisons typically focus
on basic attributes like dataset size, resolution, and specific
features like curve presence, but do not delve into the
nuances necessary for a comprehensive dataset evaluation.
For instance, they might note the inclusion of labels for lane
detection without specifying if these labels include detailed
type information for labeled lane boundaries [5], [12], [21]–
[24]. Moreover, even when the presence or absence of type
information is noted, descriptions of the provided types are
often omitted [6], [7], which impedes the evaluation of
particular datasets for specific applications.

In summary, while there is an emerging recognition of the
need for more structured approaches in dataset development
and evaluation, existing literature demonstrates gaps in both
standardization and depth of analysis.

III. CAPABILITY GRAPHS FOR REQUIREMENT
GENERATION

Given the identified need for more structured approaches,
the creation of underlying datasets is recognized as a pivotal
factor in the development of deep learning-based perception
systems for automated driving. Developing effective per-
ception systems and arguing the safety of the developed
systems therefore necessitates a systematic derivation of
dataset requirements, including a detailed specification of
the characteristics of inputs and outputs. A significant step
in this process is the identification of relevant objects for
recording and labeling. This step is essential to ensure that
perception modules based on the dataset can later effectively
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Fig. 2. Visualization of a relevant subsection of the capability graph for
the example scenarios with the overall mission goal in gray, visible external
behavior in orange, high-level capabilities in blue, low-level capabilities in
green, and relevant infrastructure elements in red.

inform decision-making processes and support the driving
task. Previous literature has proposed capability graphs as
a tool for the structured derivation of system requirements,
capturing the required properties to safely complete the
dynamic driving task, as well as their dependencies [10].

The use of capability graphs in the early stages of
the development process for automated vehicles was orig-
inally proposed by Reschka et al. [25], based on earlier
works of Maurer [26], Pellkofer and Dickmanns [27], and
Bergmiller [28]. Reschka et al. use capability graphs to
visualize the dependencies between different capabilities and
system requirements during the concept phase as outlined
in ISO 26262 [29]. This approach also aligns with the
guidelines provided in Section 5, Specification and Design,
of ISO 21448 (SOTIF) [9]. To construct capability graphs,
they begin with a maneuver-based description of the de-
sired external behavior as defined in functional scenarios.
By progressively detailing the necessary capabilities (which
form the nodes of the graph) and their dependencies (which
form the edges), a directed acyclic graph is created. This
graph visually represents the connections between broad
high-level capabilities and specific low-level capabilities,
assisting in the aforementioned structured derivation of re-
quirements [25], [30].

For learning-based systems, the resulting capabilities sig-
nificantly depend on the datasets used during the training pro-
cess. We therefore transfer the idea of using capability graphs
for deriving system requirements to deriving requirements
for datasets. Our methodology employs a layered approach
that begins with a representative set of operational scenarios.
It proceeds by partitioning these scenarios into individual
maneuvers, each requiring specific capabilities. These are
further refined within the construction of a capability graph,
which serves as a methodical tool for mapping the transition
from broad, high-level capabilities to specific, low-level ones.

This structured approach facilitates the systematic derivation
of detailed technical requirements and aids in the identifica-
tion of distinct semantic elements that the perception system
must perceive and distinguish. A more formal and com-
prehensive exploration of the capability graph development
process is detailed in [31]. This includes a discussion on
how capability graphs could be automatically generated from
representations of the Operational Design Domains (ODDs).
An example of a capability graph is displayed in Figure 2.

We will next describe the example scenarios that we use
in the remainder of this paper and which served as the
foundation for this graph.

IV. SCENARIO DESCRIPTION AND REQUIREMENT
DERIVATION

Within the development process for automated vehicles,
scenarios are introduced during the concept phase as a way
to handle the complexities of real-world environments [32].
They can summarize large numbers of variations into hu-
manly understandable descriptions that facilitate expert dis-
cussions, requirements engineering, and safety case develop-
ment.

The scenarios we use as an example for our comparison
of lane detection datasets are depicted in Figure 1. While
a typical development process would feature the compre-
hensive exploration of a broad set of scenarios and the
creation of a detailed scenario catalog, we focus on these two
examples for clarity and brevity. They consider an automated
vehicle approaching a parked mail van blocking its lane.
As it approaches, the vehicle must determine the feasibility,
legality, and safety of a lane change. To add additional detail
to our analysis, we examine two variations of this basic
scenario: The first contains clearly marked lanes and an
empty adjacent lane, providing unobstructed visibility of the
outer lane boundary. In the second scenario, the outer lane
boundaries are delineated only by curb stones, while traffic
in the adjacent lane occludes the road surface and outer lane
boundary.

We assume that the main source of information regarding
road characteristics is the vehicle’s own environment percep-
tion system, and we will focus our analysis on this particular
perception module. Other functions, like those for detecting
and classifying road users, are outside the scope of this paper
and are presumed to perform robustly within the example
scenarios.

We identify two key maneuvers within these scenarios, as
shown in Figure 2: lane following and lane changing. Lane
following requires that the vehicle estimates its distance to
the lane center line with reasonable accuracy. In our simple
scenario it is sufficient to recognize just one of the two lane
boundaries to do this, though this is not always the case.

The lane-change maneuver is more complex, requiring
the vehicle to assess the existence of an adjacent lane,
allowed driving direction, dimensions, and the legality of the
maneuver. Recognizing the outer boundary of an unoccupied
lane is crucial, as it differentiates a vehicular lane from other
infrastructure entities like bike lanes.



TABLE I
LANE DETECTION DATASETS - OVERVIEW

CATEGORIES: “ENVIRONMENT URBAN”, “ENVIRONMENT HIGHWAY”, “VARIATION IN WEATHER AND TIME OF DAY”, “CONTAINS LANE
BOUNDARIES”, “ALSO THOSE MARKED BY CURB”, “ALSO FOR TEMPORARILY OCCLUDED AREAS”, “CONTAINS CLASS INFORMATION”,

“CONTAINS LANE AREAS”, “CONTAINS ROAD AREA”, “CONTAINS DRIVING DIRECTION”
“ENVIRONMENT URBAN”: ◦ ONLY INNER-CITY HIGHWAYS AND LARGE AVENUES, ✓ ALSO SMALLER ROADS

“LANE BOUNDARIES”: ◦ ONLY EGO-LANE BOUNDARIES, ✓ MULTIPLE/ALL LANE BOUNDARIES

“DRIVING DIRECTION”: ◦ ALTERNATIVELY DRIVABLE AREAS SHARE THE SAME DRIVING DIRECTION AS THE EGO-LANE

Name & Reference Release Date # Images Environment Weather & Lane +Curb +Occluded Classes Lane Road Driving
Urb. Hwy. Time Var. Boundaries Areas Area Direc.

Caltech Lanes [33] 06/2008 1,225 ◦ ✓ ✓
KITTI [11] 10/2013 579 ✓ ego only ✓
TuSimple [34] 07/2017 6,408 ✓ ✓
VPGNet [1] 10/2017 20,836 ✓ ✓ ✓ ✓ ✓
ELAS [35] 12/2017 16,992 ◦ ✓ ◦ ✓ ✓
CULane [36] 12/2017 133,235 ✓ ✓ ✓ ✓ ✓ ✓
BDD100k [12] 05/2018 100,000 ✓ ✓ ✓ ✓ ✓ ✓ ego+altern. ◦
Five AI [13] 07/2018 23,979 ✓ ✓ ✓ ✓ ego+parallel ✓
DET [37] 06/2019 5,424 ◦ ✓
Unsup. LLAMAS [38] 10/2019 100,042 ✓ ✓ ✓
Jiqing Expwy. [39] 12/2019 210,610 ✓ ✓
3D Lane Syn. [40] 03/2020 7,498 ◦ ✓ ✓ ✓ ✓ all ✓
CurveLanes [21] 07/2020 150,000 ✓ ✓ ✓ ✓ ✓ ✓
VIL-100 [41] 08/2021 10,000 ◦ ✓ ✓ ✓

It is important to note that some characteristics, such as
driving direction, could also be inferred in subsequent non-
perception stages, for example, by analyzing the movement
of other vehicles in the modeled vehicle environment. How-
ever, we argue that this inference should ideally be included
as part of the perception tasks. Many environmental cues,
like the overall visual appearance of a scene, are abstracted
away in later processing steps but could be utilized by a deep
learning-based perception system.

Based on these considerations, a perception system for our
simple scenario would have to be able to reliably identify
and classify features like solid and broken white lines, and
curb stones, as shown in the bottom row of Figure 2. It
should distinguish a regular traffic lane from similar looking
infrastructure like bike lanes, bus lanes, or parking spots.
The system must be able to infer lane existence and position
when occluded by other traffic participants and predict the
driving direction for both occupied and unoccupied lanes.

V. LANE DETECTION DATASETS

In this section, we will evaluate various lane detection
datasets, based on the relevant road surface elements that
we derived in the previous section. For this review, we
define lane detection datasets as collections of near-ground
level, non-aerial images of street scenes that provide either
lane boundaries or lane areas. According to this definition,
we include datasets such as TuSimple [34], which offers
polyline representations of lane boundaries, and KITTI [11],
which provides semantic segmentation masks of the ego lane
and road area. However, we exclude datasets like Mapillary
Vistas [42], which only contains pixel-wise segmentations of
individual road markings, CeyMo [43], which contains road
markings but does not feature lane boundaries, and object
detection datasets such as Waymo [44], even if they include
maps of data acquisition areas, like nuScenes [45]. This

is due to the additional complexities associated with map
projection onto sensor images which fall outside the scope
of this paper, such as handling of foreground and background
occlusions, and encoding of map elements.

For each dataset, we will provide general information and
assess its utility in allowing a perception system to provide
the necessary information for the two scenarios. A summary
of the datasets under review is presented in Table I.

A. Caltech Lanes

Caltech Lanes [33] was released in 2008 to enable au-
tomatic scoring of model-based lane detection techniques.
It contains just 1,225 images captured on just two roads in
Pasadena, California on a single clear and sunny day around
noon.

It features annotations for all marked lane boundaries
in the form of Bézier curves, classified into one of five
classes, such as “broken white” or “solid yellow”. However,
it lacks labels for curbstones. A perception system trained
on the Caltech Lanes dataset could therefore recognize all
lane boundaries in the first scenario but would only detect
a singular broken white line in the second scenario. It also
lacks the concept of a lane and consequently annotations for
driving directions. Together, these limitations would hinder
the system’s ability to fully understand lane dimensions or
to facilitate safe lane changes.

B. KITTI

The widely recognized KITTI dataset, first introduced in
2012 [46] and subsequently expanded in 2013 to incorporate
a road and lane detection benchmark [11], is even smaller
than the Caltech Lanes, containing only 579 images divided
between training and test set. All images were captured under
sunny conditions in and around Karlsruhe, Germany.



KITTI is distinguished by its approach of labeling the
visible portion of the “ego-lane” and the “road area” through
semantic segmentation masks, rather than annotating individ-
ual lane boundaries—an approach similar to the BDD100k
dataset presented below. While this allows for effective lane
keeping, its limitations include an inability to provide infor-
mation on types of lane boundaries, the presence and size
of adjacent lanes, or permissible driving directions, thereby
restricting its usefulness for lane-changing assistance.

C. TuSimple

Released in 2017, the TuSimple dataset [34] features 6,408
images recorded on U.S. highways under sunny conditions,
split into a training and test set. This makes it considerably
larger than both the Caltech Lanes and KITTI datasets, yet it
remains smaller than any of the other three datasets released
in the same year. The dataset offers annotations for the
location of up to five lane boundaries. However, it does not
include class labels for lane boundaries or information on
unmarked lanes. Foreground occlusions from other vehicles
are disregarded, so that annotations are provided for lane
boundaries even behind other vehicles, with some lines
clearly constituting a best guess of the labeler.

A perception system trained on this dataset could support
basic lane following functions even though it would only
perceive the location of the central lane boundary in the
second scenario. However, it lacks the necessary data for
assessing the legality of lane changes since the dataset does
not provide the type of lane boundaries. Furthermore, without
the concept of a lane, it would be impossible for the system to
identify if the space between two lane boundaries constitutes
a physical lane or estimate its permissible driving direction.

D. VPGNet

Published alongside the Vanishing Point Guided Network
in 2017, the VPGNet dataset [1] is notable for its size and
variety, containing 20,836 images recorded over three weeks
in Seoul, South Korea. It provides detailed annotations for
visible road markings, categorized into seven types of lane
boundaries and ten types for other road markings. However,
there is no class for curbs or other unmarked lane boundaries.

Despite its comprehensiveness, it shares some limitations
of the Caltech Lanes dataset, such as the neglect of unmarked
lane boundaries like curbstones. While a perception system
trained on the VPGNet dataset could identify the legality
of crossing specific boundaries by the lane boundary type,
it would fall short in providing information on the driving
direction in adjacent lanes, which is crucial for executing
safe lane changes.

E. ELAS

Introduced in 2017, the Ego-Lane Analysis System
(ELAS) database [35] comprises roughly 17,000 images,
captured exclusively during daytime and predominantly on
multi-lane inner-city roads in and around the cities of Vitória,
Vila Velha, and Guarapari, Brazil. It only provides the
position and class of the ego lane boundaries limited to a

length of approximately 15 to 20 meters in front of the
vehicle, which might restrict its utility at higher speeds.
Notably, the ELAS dataset was, to our knowledge, the first
lane detection dataset to provide a label and annotations
for unmarked, faded or otherwise invisible lane boundaries,
enhancing lane-keeping capabilities under these challenging
conditions. However, the absence of information on areas be-
yond the immediate lane boundaries precludes more complex
maneuvers, like lane changes, from being executed safely.

F. CULane

The CULane dataset [36] was introduced in 2017 with the
explicit goal of providing a large dataset for deep learning
applications. Comprising a total of 133,235 images split into
a training and test set, it remains one of the largest datasets.
Images were captured by six vehicles in Beijing, China
mostly on large multi-lane roads and inner-city highways
under varying conditions. It includes annotations for up to
four lane boundaries, even unmarked ones, allowing for the
realization of a lane-keeping assist. However, it lacks classifi-
cations for lane boundaries and other critical information like
driving directions, severely limiting its utility in supporting
lane-change maneuvers.

G. BDD100k

The BDD100k dataset [12] released in 2018, is notable
for its extensive collection of 100,000 video sequences, each
40 seconds in length. The image frame at the 10th second of
each video is annotated for ten distinct tasks including lane
detection and drivable area segmentation. It includes classi-
fications for lane boundaries and markers in eight categories,
notably including a “road curb” class. Additionally, it marks
the current lane as directly drivable up to the first obstacle,
with adjacent lanes marked as alternatively drivable, also up
to the first obstacle. While all of this provides detailed infor-
mation for lane following and lane-change maneuvers into
empty lanes with the same driving direction, its limitations
become evident in scenarios requiring information beyond
the first obstacle or with opposite driving directions, which
restricts its utility for safe lane-changing decisions.

H. Five AI

Launched in 2018, the Five AI dataset [13] encompasses
nearly 24,000 images from diverse locations across Great
Britain. Similarly to KITTI, the Five AI dataset uniquely
segments road areas into discrete lanes. Unlike KITTI, it
includes all parallel and even occluded lanes. This approach
has several advantages. It negates the need for converting
lane boundaries into lane areas, eliminates ambiguities con-
cerning the existence of lanes within lane boundaries, and
enhances robustness against perception errors. However, the
dataset omits specific labels for lane boundaries which poses
challenges in determining the legality and safety of lane
changes.

Although the dataset supports lane-keeping functions, even
when lane boundaries are unclear or invisible, it falls short
in assisting with lane-change maneuvers. The absence of



lane boundary labels and indications of permissible driving
directions means it cannot reliably determine the legality or
safety of changing lanes.

I. DET

The DET dataset [37], released in 2019, is unique for
using 5,424 black and white images captured with a Dynamic
Vision Sensor (DVS). This sensor differs from traditional
cameras by recording changes in light intensity at the pixel
level, leading to ultra-fast response times. The authors com-
piled individual images by integrating data from the raw
event stream over 30 milliseconds intervals. The dataset
contains the location of the closest lane boundaries as pixel-
wise semantic segmentation maps without specific class
information. The treatment of occlusions and the handling of
curbs are inconsistent, posing challenges for estimating the
performance of a perception system in real-world scenarios.

While the dataset might be adequate for basic lane-
keeping functions, it falls short in assisting with lane-change
maneuvers, particularly due to insufficient information about
adjacent lanes and the inconsistency in handling occlusions.

J. Unsupervised LLAMAS

The Unsupervised Labeled Lane Markers Using Maps
(Unsupervised LLAMAS) dataset [38], released in 2019,
comprises 100,042 images sourced from 14 highway record-
ings across the United States. The dataset offers pixel-
wise segmentation of individual road markings, but unlike
the Mapillary Vistas or Apollo datasets, lane markings are
grouped by lane boundaries. It shares limitations with other
datasets like TUSimple and Jiqing Expressway, such as a
narrow operational focus and absence of class labels for
different types of road markings.

Like the TUSimple dataset, the provided information
would allow for the design of a lane-keeping assist. A lane-
change maneuver on the other hand would be inhibited by
the lack of provided information in the first scenario and be
entirely impossible in the second scenario.

K. Jiqing Expressway

By raw numbers the Jiqing Expressway dataset [39],
published in 2019, stands as the largest currently available
dataset. It consists of 40 video clips with 210,610 images
recorded, as the name suggests, on the Jiqing Expressway
in China on a single day in August around noon to early
afternoon under largely clear, sunny skies and low traffic
density, which greatly limits the diversity of the recorded
scenes. All marked lane boundaries are labeled with simple
poly-lines without class information.

Like TUSimple and Unsupervised LLAMAS, the provided
information would allow for the design of a lane-keeping
assist though the system would only provide the location of
the central lane boundary in the second scenario. The lane-
change maneuver on the other hand would be inhibited by
the lack of provided information in the first scenario and be
entirely impossible in the second scenario.

L. 3D Lane Synthetic Dataset

The 3D Lane Synthetic Dataset [40], published in 2020,
is notable for its use of entirely computer-generated data,
which comes at the advantage of providing precise labels
even for occluded parts of the image. It also offers range
images with the same size and format as the original color
images. Disadvantages include a considerable gap between
rendered and real data and substantial costs associated with
crafting realistic synthetic images as the authors rely entirely
on still images with hand-placed vehicles. The ground truth
consists of lane boundaries and a set of lanes defined by lane
boundaries. Lane boundaries and lanes are assigned a type
from a list of four classes for lane boundaries like “single
solid” or “curb” and three classes for lanes.

The availability of labels for marked lane boundaries
and curb stones facilitates safe lane keeping. Lane-change
maneuvers are enabled by lane boundary types and explicitly
modeled lanes. An advantage of the simulated environment
is the availability of accurate labels for occluded elements,
which could allow the perception system to predict lane pro-
gression beyond the visible ground area based on contextual
clues from the environment.

M. CurveLanes

The CurveLanes dataset [21] was published in 2020 to
correct the bias in existing datasets that predominantly fea-
ture straight roads. It comprises around 150,000 images, with
over 90% depicting curved roads in various Chinese cities,
captured under diverse weather conditions and times of day.
This makes it one of the largest and most varied datasets
available.

Similar to other large datasets, size comes at the cost of
labeled information. Like CULane, TuSimple, and the Jiqing
Expressway dataset, CurveLanes only provides the location
of lane boundaries, omitting details about boundary types.
Nevertheless, locations are also provided for curb stones and
occluded lane boundaries.

While this dataset supports reliable lane keeping, espe-
cially in scenarios with curved roads, it falls short in aiding
lane-change maneuvers due to insufficient data on the type
of lane boundaries and the characteristics of the road area
beyond these boundaries.

N. VIL-100

VIL-100 (short for “Video Instance Lane Detection-
100”) [41] is a dataset for the detection of lane boundary
instances in videos. It is one of the smallest datasets, com-
prising 100 videos with 100 frames, each collected mostly
on highways and large inner-city avenues in China. It is
noteworthy that the videos are created by splitting longer
sequences. Different videos from the same sequence are then
distributed across the test and training sets, failing to ensure
the necessary independence of both sets. In each frame all
marked lane boundaries are labeled and classified into one of
ten classes. However, it does not include labels for unmarked
lane boundaries such as curb stones.



While the labeled information would enable effective lane
keeping, the lack of information regarding driving direction
or the existence of a lane would inhibit safe lane changes
in the first scenario. Additionally, in the second scenario no
information outside the current ego lane would be available
precluding a safe lane change entirely.

O. Summary

The examination of various lane detection datasets pro-
vides critical insights into the current state of data avail-
ability and its suitability for automated driving applications,
particularly in mapless scenarios.

Many datasets, such as TuSimple, KITTI, and CULane,
offer valuable information for basic lane following functions.
However, they often fall short in representing the diversity of
real-world driving scenarios and there is a notable trade-off
between dataset size and the quality and depth of labeling.
Larger datasets, such as CULane and Jiqing Expressway,
offer extensive data but often lack detailed information like
lane boundary types and driving direction. Smaller, more
focused datasets like Caltech Lanes and VPGNet, though
limited in size, provide more detailed annotations. Given
that effective deep learning-based perception systems often
require large datasets, there arises a need for improved
tooling and more efficient processes to minimize manual
efforts in dataset creation.

For complex driving maneuvers like lane changes, datasets
need to provide more than just basic lane boundary infor-
mation. This includes data on adjacent lanes, permissible
driving directions, and types of lane boundaries. Datasets
such as BDD100k and Five AI, which provide segmented
road areas and include adjacent lanes, partially meet these
requirements. However, the absence of specific labels for lane
boundaries and indications of permissible driving directions
in the case of Five AI, as well as the handling of occlusions
and lanes with opposite driving directions in the case of
BDD100k limit their utility for safe lane-changing decisions.
In contrast, the CULane and CurveLanes datasets attempt to
offer accurate labels for occluded elements. However, these
efforts are impeded by the lack of an objective ground truth
behind obstructions. Projecting accurate map information
into the sensor image could help to overcome this drawback.

In summary, there is a growing recognition of the need for
datasets to encompass a wider range of real-world driving
scenarios, but despite the wealth of information provided by
some datasets reviewed here, no single dataset fully satisfies
all the requirements for mapless automated driving. The de-
velopment of datasets that accurately represent the diversity
of real-world scenarios while at the same time providing
comprehensive information for advanced automated driving
tasks remains a key area for future research.

VI. CONCLUSION

In this paper, we introduced a scenario- and capability-
based approach as an initial step toward establishing struc-
tured and effective dataset development processes for map-
less automated driving. Through the integration of capability

graphs, this approach offers a systematic framework for
identifying dataset requirements and ensuring that datasets
align closely with the specific needs of automated driving
technologies.

Our exploration into current lane detection datasets has
revealed the pressing need for new datasets. Current datasets,
while beneficial for certain aspects of lane detection, often
do not provide the comprehensive and detailed information
necessary for complex decision-making processes in mapless
driving scenarios. This highlights an opportunity for future
dataset development endeavors to focus on creating more
nuanced and detailed datasets, encompassing a wide array
of real-world scenarios and driving conditions.

While we concentrated on the scope and labeling aspects
of these datasets, it is important to acknowledge that our
study did not address other critical factors such as dataset
bias, coverage, and labeling quality. These elements are
crucial for assessing the overall effectiveness and reliability
of datasets in real-world applications. The necessity for
a comprehensive exploration of these aspects continues to
represent a significant area for future research.

To conclude, the scenario- and capability-based approach
presented in this paper marks a vital step toward more
sophisticated dataset development processes in the realm
of automated driving. However, it is just the beginning
of a journey toward refining these processes and creating
datasets that truly meet the evolving demands of this field. As
the technology progresses, the continued advancement and
innovation in dataset development processes will be critical
to the success and safety of automated vehicles. The future
of self-driving systems is contingent on our collective efforts
to produce datasets that truly mirror the multifaceted nature
of the real world.
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