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Abstract—O-RAN introduces intelligent and flexible network
control in all parts of the network. The use of controllers
with open interfaces allow us to gather real time network
measurements and make intelligent/informed decision. The work
in this paper focuses on developing a use-case for open and
reconfigurable networks to investigate the possibility to predict
handover events and understand the value of such predictions
for all stakeholders that rely on the communication network
to conduct their business. We propose a Long-Short Term
Memory Machine Learning approach that takes standard Radio
Access Network measurements to predict handover events. The
models were trained on real network data collected from a
commercial O-RAN setup deployed in our OpenIreland testbed.
Our results show that the proposed approach can be optimized
for either recall or precision, depending on the defined application
level objective. We also link the performance of the Machine
Learning (ML) algorithm to the network operation cost. Our
results show that ML-based matching between the required and
available resources can reduce operational cost by more than
80%, compared to long term resource purchases.

Index Terms—O-RAN, Machine Learning, Testbed, Handover,
User mobility

I. INTRODUCTION

The Radio Access Network (RAN) is moving towards a
more open, disaggregated and service-oriented architecture.
The main enablers of these changes are the shift from pro-
prietary protocols and closed systems to commodity hardware
and standardized interfaces, and the introduction of Fifth Gen-
eration (5G) New Radio (NR) functional splits [1]. Along these
lines, as shown in Figure 1, the 3rd Generation Partnership
Project (3GPP) defined a new flexible architecture for the
5G RAN in which the Base Stations (BSs) (i.e. gNodeBs)
are split into three logical parts (i.e., Central Unit (CU),
Distributed Unit (DU) and Radio Unit (RU)) [2], [3]. Each of
these parts is capable of hosting different functions of the 5G
NR stack. Further, 3GPP defines eight options for distributing
the functionality of the NR RAN stack across the fronthaul
network (i.e. eight functional splits). The functional splits
allow for different levels of distribution and centralization of
network functions, which enables the exploitation of the trade-
off between cooperation and coordination in the RAN [4], [5].
O-RAN focuses specifically on the 7.2x split [6], [7].

The O-RAN paradigm is an effort to achieve high flexibility,
intelligence, and openness in the next-generation of RANs
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Fig. 1: O-RAN architecture showing that the functional parts
of the CU/DU can be moved closer to and further from the
RU.

[7], [8]. Moreover, full interface specification allows different
vendors’ compatibility around an ecosystem of mobile net-
works. The intelligence is introduced by the RAN Intelligent
Controllers (RICs) that provide real-time (RT), near-RT and
non-RT control loops [9], [10]. The RT RIC is a logical
function that enables control and optimization on a 10ms
timescale. The near-Real Time (near-RT) RIC, enables control
and optimization of O-RAN elements and resources via fine-
grained data collection and actions over the E2 interface.
The near-RT RIC allows for a delay between 10ms up to 1s
[11]. Lastly, the non-Real Time (non-RT) RIC [12] allows
for control loop delays above 1s. With the control elements
in place, we can leverage the inherent flexibility provided
by the functional splits to extract valuable insights from
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the RAN. By capitalizing on the above-mentioned trade-off
between cooperation and coordination, we can fine-tune the
configuration to align with a wide range of objectives. For
example, multiple RUs can be connected to one or more DUs.
The same holds for the connection between the DUs and
CUs. Different configurations allow us to tweak the trade-off
between optimized central control/coordination and distributed
computation and resilience. The configurations can be updated
dynamically through the open interfaces. Figure 1 provides an
overview of the existing control loops and Machine Learning
(ML) workflows that can be mapped onto them. The non-RT
RIC supports model training and updates, and policy-based
guidance of applications in the near-RT RIC [13]. It also sup-
ports data pre-processing, storage and ML model performance
monitoring over time. The near-RT RIC is more constrained
due to its time limitations, and therefore it only performs
data collection, simple pre-processing and inference, or simple
policy-based actions.

The use of ML within these control loops allows us to
understand and enhance the network operation through intel-
ligence embedded in the network architecture. The authors
of [13] address the needed components and interfaces to
design, train and deploy such ML models. Recent publications
show that the use of RIC applications provides a data-driven
approach to network optimization [14], [15], which enables
efficient resources allocation [16]–[18], improves the spectrum
efficiency through intelligent resource orchestration at the
edge [19], [20], and optimizes the network configuration for
power consumption [21]. The authors of [22], [23] highlight
the scarcity of spectrum and the resulting high cost. They
also highlight that dynamic spectrum sharing will signifi-
cantly reduce the operational cost especially for small service
providers, and improve the spectrum utilization. We focus on
minimizing that cost by applying ML-based decision making
to resource acquisition. Unlike the theoretical approach to
discussing the potential of intelligent control aspects in O-
RAN, we have built a testbed based on commercial grade
hardware and software to test and study the effects that
intelligent control has on the network operation.

Considering the high mobility of User Equipments (UEs)
in wireless networks, their behavioral patterns, interference,
and noise conditions, predicting the resource requirements
in different coverage areas of the network remains a chal-
lenging task. Different approaches have been used to predict
user movement and prepare the mobile network for classic
handover triggers. In [24], [25], the authors take a statistical
approach to understand the Quality of Service (QoS) and
continuity of communication services. The authors of [24] pro-
pose an Information-theoretic mobility management algorithm
related to entropy and information content of the user’s move-
ment to reduce the signaling overhead by around 80%. The
work relies on data collected from a simulation environment.
The authors of [25] take advantage of Geographic Information
System (GIS) data to explore the handovers and analyze the
mobility in urban centers. A Markov chain is proposed in
[26] for mobility prediction based on mobile user trajectory.
The authors apply the weighting coefficients to the Markov
prediction to improve the model’s accuracy. The authors of

[27] rely on a distributed optimization algorithm that estimates
user mobility patterns to configure the association between
BSs and continues handover regions to minimize the signaling
overhead required during the handover procedure. Unlike these
approaches, our goal is to predict handovers on a higher
granularity level (i.e. on a multi-second time scale), to allow
dynamic resource acquisition for the purpose of network
operation cost optimization.

Furthermore, the authors of [28] propose a multi-agent
LEarning based Smart handover Scheme (LESS) to minimize
the handover cost while ensuring the agreed user’s QoS
requirements. The authors of [29], proposes a hybrid handover
technique. They use Long-Short Term Memory (LSTM) and
Support Vector Machine (SVM) algorithms to predict the
parameters of a mobile device (e.g. location coordinates,
speed, reference signal received power, and reference signal
received quality). Instead of redesigning handover procedures,
we focus on the prediction of those events that can be used
by all network stakeholders to optimize various aspects of
their network configuration (e.g. latency, resilience, resource
utilization optimization). Our approach is agnostic to the
handover techniques and QoS models and rather focuses on
the handover prediction for the purpose of business level
decisions related to resource acquisition.

In [30], the authors use user mobility predictions to reduce
backhaul traffic in wireless networks. To do this, they predict
the user movement in a simulated environment, relying on
LSTM in three different scenarios: (i) a linear movement,
when the user walks in a straight line on the street; (ii) circular
movement, simulating a fixed path trajectory, and; (iii) random
movement, applying the irregular trajectory in an open area.
The results show significant performance improvement in all
scenarios, mainly when the mobility follows a deterministic
movement. Unlike the work in [30], we use realistic data col-
lected from the network deployed in our testbed. Additionally,
instead of predicting user mobility patterns directly, we focus
on the handover event prediction which allows us to extract
information about the user mobility through generic signal
measurements (e.g. Reference Signal Received Power (RSRP),
Reference Signal Received Quality (RSRQ) and Signal-to-
Interference & Noise Ratio (SINR)).

In summary, unlike the majority of the work proposed in the
literature our work relies on real data sets collected from a
real O-RAN deployment in our testbed. This approach allows
us to avoid unrealistic assumptions about the availability of
information used for various predictions, and allows us to
study the potential of predicting handover events based only
on the information that is available in the RAN. Additionally,
instead of focusing on improving handover procedures or op-
timizing the network for QoS, our goal is to predict handover
events for the purpose of network operation cost/performance
optimization. Despite advancements in ML-based mobility pre-
dictions and handover procedure optimization, there remains a
gap in understanding how ML performance metrics influence
application-level requirements specified by the communication
network. We address this gap and provide details about the
potential impact that such predictions can have on the different
network stakeholders.
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The main contributions of this work include:
• We provide a detailed description of a testbed setup that

combines open-source and commercial grade equipment,
with licensed spectrum and capabilities to integrate edge
and cloud and mirroring a wide variety of real-world
infrastructure/functional topologies;

• We introduce and assess a use-case that examines the
feasibility of a network control and optimization provider
in gathering performance measurements and forecasting
handover events;

• We propose a cost function for application level opti-
mization that links the cost of resource acquisition in
a dynamic network environment with ML performance
metrics (e.g. recall, precision).

II. PROBLEM DESCRIPTION AND EXPERIMENTAL SETUP

The new ecosystem that is powered by the flexible fronthaul
functional splits, open interfaces and intelligence in all parts
of the network enables the long promised open business
market in the telecommunication industry. We can finally
move on from simple infrastructure sharing to whole busi-
ness models being based on infrastructure providers, resource
providers/brokers, network control and optimization providers
and service providers. In such an ecosystem, each entity can
focus on optimizing its own part of the end-to-end system.
Each of them can also be creative in the interaction with the
other stakeholders to stay competitive with price and quality
of service.

Service providers can be as large as existing national tele-
com operators, but also very small (e.g. a small regional/local
or private service provider). Resource providers/brokers can
own resources (e.g. wireless spectrum, computing resources)
and offer it to service providers or other brokers for a limited
time period and a specific geographical location. Pricing can
be set depending on the location and the duration of use,
which would enable a ”stock market” like environment to buy,
sell and lease resources depending on the use-case. Network
control and optimization providers can focus on developing
intelligent mechanisms that can extract information from the
open networks and use these insights to dynamically optimize
the network for the desired use-cases. These mechanisms can
be offered to service providers to either optimize the end-
to-end network operation or to provide insights in specific
aspects of the network behavior that can further be used by the
service providers to optimize their own control mechanisms.
Finally, service providers can focus on the end-to-end network
operation and its optimization for specific use-cases.

This approach relaxes the existing ”optimize for all user
types” problem that current service providers are facing, and
will allow small/niche service providers to become feasi-
ble/profitable. For example, a service provider that provides
Internet of Things (IoT) connectivity in remote areas could
reduce its cost by leasing infrastructure from different infras-
tructure providers, i.e. in different remote areas, and lease
spectrum only during short periods of times during the day
(when the sensors transmit information). This approach re-
duces cost and removes the need for infrastructure deployment

and spectrum license for the time when the spectrum is
not actually needed. Similarly, a Vehicle-to-Everything (V2X)
service provider would not require nation-wide resources at all
times. To reduce cost, resources could be dynamically acquired
only for the locations in which vehicles move.

The open business market is not a new concept and it has
been discussed for a long time [31]. However, there was no
push from the telecomms community to open its interfaces end
embrace an environment in which large and small businesses
compete against each other in a fair strategy game. The Over-
The-Top (OTT) service providers slowly changed the game
and operators started losing revenue and became data pipelines
[32]. This accelerated the process of opening the industry
to new ideas that would allow it to grow into niche areas
(e.g. vehicular networks, Unmanned Aerial Vehicle (UAV)
networks, IoT). Nevertheless, flexibility and openness bring
many new challenges in terms of technology development,
performance optimization, interoperability, control and sta-
bility of the network. Therefore, it is necessary to build
testbed-like infrastructure projects that allow large scale testing
and integration of multi-vendor equipment, different RAN
functional splits and a variety of different node placements. As
an example of a testbed that offers functionalities that enable
future end-to-end network research, we will provide a detailed
description of our OpenIreland testbed.

A. Problem Description

Considering the rich business ecosystem described above, a
wide range of problems can be addressed, e.g. radio resource
sharing, infrastructure sharing, coverage optimization, mobility
prediction, power consumption optimization and many others.

The problem addressed by our research focuses on handover
prediction to minimize the network operation cost through
dynamic resource allocation. The problem can be formulated
as an optimization problem with equation (1).

minimize
∑
t

cpt
· pt · (1− rt) + cnt

· rt · (1− pt)

s.t. pt ∈ {0, 1} , ∀t ∈ T

rt ∈ {0, 1} , ∀t ∈ T

0 ≤ cnt
≤ 1 , ∀t ∈ T

0 ≤ cpt
≤ 1 , ∀t ∈ T

(1)

The cost function in equation (1) consists of two distinct
costs: Cp - the cost of paying for resources when they are not
required by the UE, which can be defined as:

Cp =
∑
t

cpt
· pt · (1− rt) (2)

, and Cn - the cost of not paying for resources when they are
required by the UE, which can be expressed as:

Cn =
∑
t

cnt
· rt · (1− pt) (3)

rt is a binary variable that indicates whether resources are
required in time step t. cpt

and cnt
represent the normalized

cost of paying and not paying for a resource in the cases when
the resource is indeed not required and when it is required by
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Fig. 2: Overall architecture of the OpenIreland testbed.

the UE in time step t, respectively. Finally, pt is a binary
variable that indicates whether the resource was purchased in
time step t.

As highlighted earlier, depending on the business model,
different stakeholders define different costs, i.e. cpt and cnt .
The services providers can optimize the cost defined by either
equation (2) or (3). For example, for an IoT provider that
collects temperature measurements from remote locations the
cost cnt is low due to the fact that the information collected
can be buffered and doesn’t have a strict latency requirement.
Therefore, such a provider would optimize for Cp.

However, businesses with many mobile users will require
highly reliable and constantly available access to the network.
Therefore, a V2X provider would define cnt

as high due to the
fact that all information transmitted through the network have
strict latency requirements and the failure to provide service at
any point of time has a great impact on the provided service.
Therefore, such providers would optimize for Cn.

In equation (1) rt depends on the user behavior (e.g. user
mobility or handover events occurring). In other words, it is
not a variable that can be controlled. Similarly, as previously
highlighted, the cnt and cpt are defined according to the
application objective. Therefore, pt is the only variable that can
be controlled by an intelligent algorithm, and it corresponds
to the decision made to acquire a resource in time step t. This
decision was traditionally made by defining coverage areas
and buying resources for longer periods of time (e.g. days,
months or longer). However, the flexibility introduced by O-
RAN allows us to make those decisions at finer granularity.

Therefore, our goal is to design a ML algorithm that predicts
handover events, which will be used for decision making in
acquiring resources in a given coverage area, with the goal
to minimize the cost defined in equation (1). In other words,

the decision to acquire resources pt in time step t directly
relates to the handover prediction made by the ML algorithm.
If a handover is predicted, that indicates that resources will be
required in the new coverage area and therefore pt = 1. On
the other hand, if a handover is not predicted, the assumption
is that resources will not be required and therefore pt = 0.

Section III will provide more details on how to design an
algorithm that considers near-RT RAN data in the decision
making process and how to optimize it for Cp and Cn.

B. Testbed facilities

OpenIreland (http://www.openireland.eu) is state-funded
multi-million research infrastructure, which, as shown in Fig-
ure 2, brings together O-RAN infrastructure (indoor and out-
door, open-source and commercial implementations), optical
transmission infrastructure (access and metro network) and
computing infrastructure. It is open both because it supports
new open interfaces for the network control, and because
it’s accessible by researchers outside our research group, in
industry and academia.

The testbed includes technology that spans optical transmis-
sion in access and metropolitan areas (several Reconfigurable
Optical Add-Drop Multiplexers (ROADMs) and over 1, 700
km of fiber), 5G new radio systems, both indoor and outdoor
and cloud computing technology. It is based on open source
software (Openstack, Open-Source MANO, Open Network
Operating System, Goldstone, OpenAirInterface and srsRAN)
and implemented over open interfaces (i.e., O-RAN, Open
and Disaggregated Transport Network), although it can also
provide proprietary solutions. All wireless, optical network and
computing elements are connected through a reconfigurable
optical switch, allowing us to quickly create different network

http://www.openireland.eu
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topologies and scenarios, to study for example the effect that
different architectures,latency, data rates and impairments have
on the operation of different functional splits in the RAN.

One of the key aspects is that the testbed enables re-
search and experimentation across three domains (i.e. access,
transport and core), as well as the convergence of optical,
wireless and cloud computing. In addition it can make real
data available to researchers, which is a key factor for the
development and testing of new ML algorithms. It also links to
other universities in Ireland, such as Dublin College University
(dark fiber) and abroad, for example the RARE European
testbed and the COSMOS testbed in the US (10G data links).

OpenIreland also comes with two key and unique advantage
points (see Figure 2):

1) It enables to carry out research using commercial radio
systems (we are in possession of a 100MHz 5G band
test license from the Irish telecomms regulator, Com-
Reg) and end-to-end networking (i.e., including optical
transmission to include fronthaul/backhaul connectivity).

2) It can provide different types of connectivity (from direct
fibre, to VPN over the Internet) to a metro public cloud
in Dublin, where the cloud experimentation is carried
out. This enables exploration of the effect of different
latency and jitter experience through different realistic
fronthaul and backhaul connectivity modes.

C. Experimental setup

In the OpenIreland testbed described in the previous section,
we have a working commercial setup of the 7.2 split with
1 CU, 4 DUs and 4 RUs. On top of the RAN, our testbed
hosts a commercial core network implementation. This setup
also includes a commercial 5G spectrum license for 100MHz
of spectrum between 3850MHz - 3950MHz. The 4 RUs are
deployed in and near the Trinity College Dublin campus,
situated in Dublin’s city center, Ireland. Figure 3 depicts the
coverage areas of all 4 RUs. Our setup also includes a com-
mercial near-RT RIC. All functional elements were provided
by different vendors, allowing us to test the interoperability
and open interfaces.

The commercial setup is used to demonstrate the interop-
erability between different infrastructure providers, but also
to understand the role resource brokers and network control
and optimization providers can have on the service design
carried out by service providers. More precisely, we rely on a
spectrum sharing approach proposed by one of our commercial
partners (Rivada Networks) that allows service providers to
buy/lease spectrum in different regions and assign their users
to the allocated spectrum resources.

Figure 3 shows 4 different resource allocation areas. Each
area has spectrum allocated to it and a service provider can
lease that spectrum for its own users. The same spectrum can
(but does not have to) be shared between different service
providers depending on the user allocation. A service provider
can dynamically allocate its users to different coverage areas
or restrict users from accessing parts of the spectrum. This
allows the service provider to only pay for the spectrum when
it is needed and to reduce cost by providing access only to

users that require coverage in specific geographical regions.
This setup allows us to demonstrate the full business potential
of O-RAN as discussed in Section II.

The above-mentioned approach allows small service
providers that focus on a niche technology to enter the mar-
ket and reduce cost by intelligently requesting infrastructure
and spectrum resources. However, in order to optimize its
operation, a control plane is required to collect information
from the network and to dynamically reconfigure the network
resources. As previously highlighted, we will focus on the
mobility use-case. In other words, we are envisioning a service
provider that offers connectivity to users that move through the
network. However, instead of deploying its own infrastructure
and buying expensive annual spectrum licenses, the service
provider will collect information from the network to make
predictions about location-based resource requirements and
reduce cost by paying only for resources it predicts the users
will need. Instead of opting for an extreme use-case, focusing
on either the optimization of Cp or Cn, our approach will
be more generic and discuss both options as well as hybrid
approaches.

The O-RAN architecture with its various control planes and
open interfaces offers the required network programmability
and data collection capability to build intelligent algorithms
that can predict resource needs before they arise. Consider-
ing the described mobility use-case, we will propose a ML
approach to predict handovers based on the data collected
from the RAN over the open interfaces within our OpenIreland
testbed. The ML predictions provide important insights to the
service providers for decision making tasks related to leasing
resources.

III. XAPP DESIGN

An xApp is an extended application that runs on the near-RT
RIC. It relies on Service Models (SMs) to collect performance
metrics and sends control messages to the RAN. SMs can
be viewed as interfaces that are used for the communication
between E2 endpoints. Our xApp runs on a commercial
setup available in our testbed and relies on the E2SM-KPM
[33] SM for data collection. Besides the availability of SMs,
there are multiple steps involved in the process of building
an xApp that uses ML to provide valuable information to
network stakeholders: (1) Data collection (E2SM-KPM); (2)
ML workflow; and (3) Stakeholder adaptation. These steps
have to be mapped on the correct nodes in the architecture
and incorporated in the ML workflow described in Section I.

A. Data Collection

As shown in Figure 3, our network consists of 4 BSs
(i.e. 1 indoor and 3 outdoor). More precisely, the network
architecture includes 4 RUs, 4 DUs (1 per RUs) and 1 CU.
All RUs have a 40MHz band of spectrum assigned to them
from the 100MHz available to our OpenIreland testbed. The
network architecture also includes a near-RT RIC, which hosts
our xApp that was used for data collection. As previously
shown in Figure 1, our xApp communicates with the DU and
CU through the E2 interface.
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Fig. 3: Resource allocation areas, located around the Trinity College Dublin campus.

In general, the handover process is divided into three steps:
measurement, judgment, and execution. The measurement
process is the crucial step, since it informs the other two. For
the purpose of making a handover decision, the RSRP and
RSRQ are the most important measurements. The judgment
process considers these two measurements and compares the
serving cell measurements to the neighboring cells. In case
the serving cell measurements are lower than the neighboring
cell measurements by a defined margin, the handover process
will be triggered.

The xApp has access to various measurements from the
RAN, ranging from node status updates to UE specific
measurements. For the purpose of our experiments, we are
interested in the UE measurements related to signal and
interference levels. More precisely, we are interested in the
measurements of the RSRP, RSRQ and SINR for the serving
cell and all neighboring cells within range. The RSRP is the
average received power of Resource Elements (REs) that carry
cell specific Reference Signals (RSs) over the entire band-
width. The RSRQ is defined as the ratio of the carrier power
to the interference power. In other words, it is a signal to noise
ratio measured using a standard signal. Equation (4) shows the
relationship between the RSRQ, RSRP and Received Signal
Strength Indicator (RSSI).

RSRQ =
N ·RSRP

RSSI
, (4)

where N is the number of Resource Blocks (RBs) per channel
bandwidth.

The RSRP is reported in the range from −140dBm to
–44dBm with 1dB resolution, and the RSRQ from −3dBm
to −19.5dBm with 0.5dB resolution. A minimum of −20dB
SINR (of the S-Synch channel) is needed to detect the
RSRP/RSRQ.

TABLE I: LSTM model details.

Layer Type Size Dropout Recurrent Dropout
Input NA 12 NA NA
1st hidden LSTM 32 10% 50%
2nd hidden LSTM 64 10% 50%
3rd hidden LSTM 32 10% 50%
Output Softmax 2 NA NA

Our dataset consists of 40, 000 samples, each containing
a timestamp, RSRP, RSRQ, SINR measurements for the
serving cell and 3 neighboring cells and indications whether
a handover happened or not. Out of all these samples only
4, 350 contain handovers, which is approximately 10% of the
total dataset. It is important to notice that this will have an
impact on the ML model design and training decisions. The
time granularity is 1s, meaning that every second we would
collect one sample. Therefore, our dataset contains 11 hours
worth of data.

B. ML workflow

Considering that the handover procedures are well defined,
we would expect that a simple threshold would be enough to
predict if a handover is about to happen. This is true only if we
have a simple model with two BSs and a single UE moving in
a straight line between them. Once the system is more complex
and obstacles are added to the environment, predicting the
handovers involves extracting user mobility patterns from a
limited set of features (i.e. RSRP, RSRQ and SINR) structured
in a sequential dataset (i.e. the dataset that was collected in
Section III-A).

A sequential learning model that takes time distributed
data as inputs and predicts handover events fits the problem
description very well. However, we have only a limited set
of features describing the signal quality and we have no
information about the environment in which the UEs move.
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This makes the prediction challenging. However, we extract
the correlation between short and long term historical measure-
ments to predict the likelihood of handover events happening.
For example, if the serving cell signal strength starts going
down and then it increases for a short period of time, this
might be an indication of the UE approaching an obstacle that
faces the neighboring cells. While the user was far away from
the obstacle, it was within line of sight of the neighboring cell,
but once it got closer, shadowing from the obstacle affected
its signal strength, resulting in the UE remaining connected to
the existing serving cell. This is only one example showing
that it is not enough to look at thresholds being approached
by a UE to make predictions about handovers.

Recurrent Neural Networks (RNNs) are the obvious choice
for the problem described above. However, due to the require-
ment to correlate long and short term memory, LSTMs are a
better choice. Additionally, LSTMs remove the issues related
to vanishing and exploding gradients. As shown in Table I,
our model consists of an input layer, 3 hidden LSTM layers,
and a softmax output layer. All hidden layers are trained with
10% dropouts and 50% recurrent dropouts for regularization
purposes.

Table I also shows that the output layer is a softmax
layer with 2 nodes. Therefore, our model is a sequence-to-
vector model. In other words, the model takes a sequence of
measurements and predicts one value for the future. This can
be defined as follows:

f1...
fk

 −→ Model −→
[
P1

P2

]
, (5)

where f1, . . . , fk are feature vectors sorted chronologically,
and P1 and P2 are the two possible predictions, i.e. handover
will or will not occur in the next t time steps. A time step
in our dataset is equal to 1s, meaning that we are trying to
predict whether a handover will happen in the next t number
of seconds. The prediction horizon (i.e. how many seconds
we look into the future) is a parameter that depends on the
performance of our prediction and the specific requirements
of the service level. Both, k and t (i.e. the history and horizon
parameters) will be further discussed in Section IV.

In case of a correct prediction, both Cp = 0 and Cn = 0.
However, if a handover is predicted in time step t, but it does
not happen in reality, i.e. pt = 1 and rt = 0, then:

Cp =
∑

t,pt=1,rt=0

cpt

Cn = 0

(6)

Considering that the prediction of handovers in this case
is a binary classification problem defined by equation (5),
equation (6) clearly shows that the overall cost will be equal
to the sum of individual cpt for every t in which our prediction
results in a False Positive (FP). Therefore, for a constant cpt

,
equation (6) can be written as: Cp = FP · cp.

Similarly, if a handover is not predicted for the next t time
steps, but it happens in reality, i.e. pt = 0 and rt = 1, then:

Cp = 0

Cn =
∑

t,pt=0,rt=1

cnt
(7)

Again, for a binary classification problem defined by equa-
tion (5), the cost will correspond to the sum of individual cnt

for every t in which our prediction results in a False Negative
(FN). Therefore, the cost in equation (7) for a constant cnt

can be written as: Cn = FN · cn.
Whenever a ML problem is posed as a classification prob-

lem, it is important to analyze its performance in terms of
precision, recall and F1-score. Additionally, equations (6)
and (7) indicate that depending on the application level cost
optimization choice, the ML model should be optimized for
either recall or precision in order to optimize the model for
either FPs or FNs. Recall (R) and precision (P ) are defined in
terms of True Positive (TP), FN, and FP predictions as follows:

R =
TP

TP + FN

P =
TP

TP + FP

(8)

The F1-score is defined with:

F1 = 2 · P ·R
P +R

=
2 · TP

2 · TP + FP + FN
(9)

The relationship between recall and precision for the pur-
pose of these kinds of predictions depends on the application
level objective. For example, a service provider can choose
to optimize the network configuration overall. In other words,
they choose similar costs cpt

and cnt
(e.g. both being equal

to 0.5). This means that instead of optimizing for recall
or precision, they want to optimize for both (i.e. F1-score),
resulting in minimal values for both, recall and precision,
combined. According to equation (9), this results in minimal
combined FP and FN and accordingly minimal cost as defined
in equation (1).

On the other hand, a different type of service provider that
focuses on non-critical mobility use-cases that are service
quality oriented would focus on recall while keeping the
precision at a predefined level. The reason is that even though
high recall and lower precision would result in resources
being leased and paid for and sometimes not being used, this
increases the probability that resources are available when
needed, thus delivering a higher quality of experience. Our
evaluation in Section IV will focus on this use-case.

Please note that for the problem at hand, mission critical
use-cases, for which the overall cost is not an issue, are easier
to optimize for by simply reaching recall of 100% (e.g. leasing
resources in all areas surrounding the current coverage area).

In Section III-A, we highlight that the dataset is not
balanced, favoring the no handover class. Therefore, besides
the common ML issues related to the trade-off between bias
and high variance, due to the fact that only 10% of the
samples represent handover events, we have to consider the
class imbalance while training the model. For that purpose,
we compute the class weight for both handover (”HO”) and
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xAPPs 

SERVICE PROVIDER

Service Level Optimization;
Intelligent Decision Make;
Service Level ML.

INFRASTRUCTURE PROVIDER

Optimized Network Configuration;
High performance;
High reliability;
High resource utilization.

END USER

Improved service level performance.
Improved Network performance.

Fig. 4: The benefits various stakeholders gain from the use
of information provided by an O-RAN intelligent control
mechanism (i.e. xApp).

no handover (”No-HO”) classes. The imbalance and therefore
the weights depend on the horizon parameter. The longer the
horizon the higher the probability of seeing a handover.

wl =
n

L · ln
, (10)

where wl is the weight of class l, n is the overall number
of samples, L is the number of classes and ln is the number
of samples that belong to class l. This allows us to assign
higher weights to the minority class, which helps the model
to pay more attention to its patterns and reduce bias towards
the majority class.

To summarize, the decision of which ML model to use for
enforcing network policies is a high-level strategic decision
made by the service provider, while the training of the models
and the inference over network traffic takes place in the non-
RT and near-RT RICs, respectively. This separation of respon-
sibilities allows for a clear distinction between the strategic
decision-making process and the operational execution of
network policies (see Figure 1):

1) (non-RT RIC): At a strategic level, factors such as the
desired network performance and cost constraints are
considered when selecting the appropriate ML model.
Once a model is chosen, it is trained in the non-RT RIC,
which has sufficient resources and processing power to
handle the complex training process.

2) (near-RT RIC): After training, the ML model is sub-
mitted to the near-RT RIC, which is responsible for
enforcing network policies in near real time. The near-
RT RIC analyzes incoming traffic and applies the ML
model to make decisions about resource acquisition in
neighboring coverage areas.

C. Stakeholder adaptation

An xApp as described in the previous section provides
valuable information to all stakeholders that rely on com-
munication networks to conduct their business. As shown
in Figure 4, users benefit from an improved network and

service level experience, while infrastructure providers benefit
from an optimized network configuration resulting in high
performance, reliability, and resource utilization. Lastly, ser-
vice providers benefit from the information for the purpose
of service optimization, on-demand resource leasing decisions
and by feeding the information from various xApps to their
own service level learning algorithms.

This opens a new marketplace for network control and
optimization providers. The fact that the open interfaces allow
them to integrate with different vendors, and that the informa-
tion they provide are valuable to multiple entities allow them
to offer their services at scale. Unlike the traditional approach
to network optimization, where expert knowledge has to be
applied to the equipment of different vendors, and datasets
have to be exported and analyzed before reconfiguration
decision can be made, the new approach that relies on ML
and open interfaces adapts to the environment it operates in.

Depending on the use-case, the xApps can be implemented
to: (1) extract and pre-process information from the network;
(2) make valuable predictions about network processes (e.g.
user behavior, traffic load, traffic classes); and (3) reconfigure
different network nodes. However, an xApp does not have
to implement all three steps to provide value. For example,
an xApp that just extracts information from the network and
presents it in a meaningful way can be used as a replacement
for the majority of the network monitoring tools (e.g. alarm
monitoring, Key Performance Indicator (KPI) monitoring).
The extracted information can also be fed to other learning
algorithms (e.g. other xApps or rApps). Once the loop is
closed with the reconfiguration of different network nodes,
the xApp can be used as a standalone entity that monitors and
improves the network/service level performance.

In line with the above-mentioned xApp implementation
types, the handover prediction proposed in this paper imple-
ments the first and second steps, i.e. information extraction
and pre-processing, and ML-based handover predictions that
can be shared with all interested stakeholders. The predictions
are further used to make resource acquisition decisions, which
similarly to our approach can further be optimized to acquire
resource for the long/short term, for a larger/smaller area, from
one/multiple vendors.

IV. ML MODEL PERFORMANCE EVALUATION

In this section we will evaluate the performance of our
models and explain the reasoning behind the chosen features,
the prediction history and horizon as well as the importance of
understanding the value of recall vs precision for the purpose
of predicting handovers depending on the xApp user.

As previously highlighted in Section III, in addition to the
handover margin defined by the service provider, the RSRP,
RSRQ and SINR are the most important measurements that
determine when a handover should happen. In Section III we
also explain that when operating in a real environment, the
handover prediction is not as straight forward as learning the
threshold and margin values and that it also depends on the
environment in which the user moves, obstacles the user faces
and the user mobility patterns.
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Fig. 5: Recall, precision and F1-score depending on the
prediction horizon. The prediction history is fixed at 10s.
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Fig. 6: Recall, precision and F1-score depending on the
prediction history. The prediction horizon is fixed at 9s.

We take these measurements and feed them to the LSTM
network presented in Section III-B. The measurement and
horizon time-step resolution is 1s, meaning that having a
horizon prediction of 10 time-steps is equivalent to predicting
whether a handover will happen in the next 10s. We use a
60 − 20 − 20 split of the dataset to train, validate and test
the model. The results of the prediction are evaluated on the
testing dataset. The model performs a classification tasks to
distinguish between HO and No-HO in the prediction horizon
time frame.

Time series forecasting models, such as LSTMs, require the
specification of both prediction history and prediction horizon.
Prediction history includes the data points that will be fed into
the model to generate future predictions. In essence, prediction
history determines the number of time steps we will examine
in the past. The prediction horizon, on the other hand, specifies
how far into the future we are attempting to predict. It refers
to the number of time steps in the future for which we will
attempt to make a prediction based on the historical data
utilized.

According to 3GPP recommendations, the average coverage
radius in the urban environment is 500m [34]. For the purpose
of handover prediction, we are not interested in the whole

coverage area. Our main focus is on the 10% of the radius
(approx. 50m) that is close to the border with another cell.
Considering that the average walking speed is around 1.4m/s
and that the average driving speed in the city is around 1.4m/s
(i.e., 40km/h), the average time it takes a user moving at
approx. 6m/s (which is the arithmetic mean between these
two extremes) to move across the distance of 50 − 60m is
10s. Therefore, we first start by fixing the prediction history
to 10s and analyzing different prediction horizons.

As highlighted earlier in Section III-B, we examine a use-
case which includes optimizing an ML model for non-critical
mobility services. In other words, our focus is on optimizing
the model for recall, with a predefined minimum precision
threshold equal to 75%.

Figure 5 shows how the recall, precision and F1-score
change depending on the chosen prediction horizon. Our goal
is to acquire resources only if we predict that a handover will
happen. Figure 5 shows that by choosing a prediction horizon
that is too short, precision will be very low, while recall is very
high. This is due to the fact that predicting the exact moment of
a handover event is very hard and that in a networking dataset
handovers are rare events. Therefore, when the measurements
change and suggest that a handover will happen soon, the
model starts predicting handovers before they actually happen,
which results in a large number of FPs. By extending the
horizon, we are relaxing the constraints of the prediction and
instead of predicting the exact moment of the handover event,
we are predicting a time range within which a handover will
occur. If the prediction horizon is very long, it is easy to predict
a handover event. The longer the prediction horizon the higher
the probability of a handover event occurring. Therefore, the
precision increases with an increasing horizon. However, if
the prediction horizon is too long, we are paying the cost of
acquiring resources that are not being used. Therefore, the
goal is to have a horizon that is long enough to allow us
to acquire resources and to improve the precision, and short
enough to avoid paying for resources while they are not in
use. A closer look at Figure 5 shows that the horizon of 9s
results in high precision and recall. Therefore, we choose this
prediction horizon for our model.

Now that the horizon is chosen, we re-examine the history
timescale to ensure best prediction performance. Figure 6 pro-
vides additional information about how the prediction history
affects the performance metrics. The figure depicts the recall,
precision and F1-score for a fixed prediction horizon equal to
9s and prediction histories ranging from 1s to 20s. Reducing
the history down to 5s does not affect the performance of our
predictions, but further reduction decreases the performance
significantly. On the other hand, increasing the prediction
history above 10s will not result in improved prediction
performance. This is due to the fact that ”old” measurements
are becoming irrelevant for the prediction about the user
mobility. The value that maximizes recall is 10s.

In ML, a good approach to choose a good trade-off between
precision and recall is to use a precision-vs-recall curve. The
precision-vs-recall curve for our models is shown in Figure 7.
The Figure was created by computing recall and precision
values of all models trained with different prediction horizons.
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To choose the best model that optimizes both metrics, we
choose a model that corresponds to a point on the right side
of the graph, just before the recall values drops significantly.
This allows us to choose a model with high recall, that will
also result in acceptably high precision. The red star indicates
the chosen model and its corresponding recall and precision
values. Please note that this analysis has been done on the
validation set. As shown in Figure 7, the precision value for
the chosen recall is very close to 80%.

Besides the obvious trade-off between recall and precision,
Figure 7 indirectly provides information on the trade-off
between Cp and Cn. Therefore, depending on the relative
importance of the individual costs, the ML models can be
chosen to accommodate the specific need of a service provider.
Since precision directly affects the cost of acquiring resources
- Cp, according to Figure 7 further increase of the recall makes
it costly for the service provider due to the significant precision
drop. On the other hand, recall affect the cost of resources
not being available when they are required - Cn. Figure 7
suggests that models resulting in higher precision values will
significantly increase that cost by reducing recall.

Figure 8 shows the confusion matrix for the chosen model.
The figure clearly shows that the model is able to predict
the handovers with high precision and recall, making only a

small number of prediction errors. Considering that the model
was optimized for recall, the fact that the number of False
Negatives is smaller compared to the number of False Positives
is to be expected.

Figure 9 depicts the network operation cost associated with
resource acquisition depending on the service requirements.
These are based on the concept that service providers outline
the cost models based on Service Level Agreements (SLAs),
and these models are then translated into cost parameters for
equation (1). We analyze three alternative use cases:

1) The case of a service provider that wants to compromise
between the risk of over-booking resources (i.e., booking
when they are not needed) and the risk of lacking
resources when they are required by the users. This is
translated on setting the cost parameters cpt = 1 and
cnt = 1 and this corresponds to the surface plot on the
top left of Figure 9;

2) The case of a service provider aiming for high availabil-
ity, which penalizes the lack of resources but does not
penalize over-booking , i.e. cpt

= 0 and cnt
= 1 and

this corresponds to the surface plot on the top right of
Figure 9;

3) The case of a service provider aiming for minimize
cost of resources (e.g. IoT provider for non real-time
services), which penalizes the acquisition of resources
when they are not required, but does not penalize lack
of resources when they are required, i.e., cpt = 1 and
cnt = 0, which corresponds to the surface plot on the
bottom of Figure 9.

While in the figures we present these three extreme cases,
any combination of cpt

and cnt
could be chosen to fine tune the

trade-off between availability of resources and cost of network
operation. Considering the direct relationship between these
costs and precision/recall, ML models can be optimized to
support any cost model outlined in the SLA. The surface plots
in Figure 9 show the possible costs for all viable combinations
of recall and precision, based on the cost definition introduced
in equation (1). In other words, these surface plots represent
the feasible solution space for the chosen SLA. Obviously,
precision and recall are not completely independent values.
For example, equations (8) show that both values will be equal
to 0 if the number of TP is equal to 0. The connection over
the TPs will inform the viable precision values for any chosen
recall value. The shape of the surfaces depends on the penalty
definitions, which might be outlined on SLAs.

The overall cost of operation as defined in equation (1)
will then only depend on the performance of the ML model.
Therefore, we overlay (blue line) the cost of all models trained
in our evaluation on top of the three surface plots shown in
Figure 9. This line shows the cost associated with all models
corresponding to different precision-recall values depicted in
Figure 7. The overall cost in Figure 9 is normalized, resulting
in values from [0 − 1]. All three plots in Figure 9 confirm
that the overall cost is equal to 0 when precision and recall
are both equal to 1. Similarly, they all confirm that the overall
cost is equal to 1 when precision and recall are both equal
to 0. The blue line illustrates the cost associated with each
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of the evaluated models. The arrow points at the cost of the
selected model, allowing us to understand the cost relative to
the theoretical range of feasible costs which are represented
by the surface plot. The graph demonstrates that, despite the
fact that the ML prediction cannot perfectly anticipate all
requirements, the selected cost model closely approximates
the theoretical optimum.

The traditional approach to resource acquisition involves a
long term resource purchase. Therefore, pt = 1 for each time
step t. This results in a cost as proposed in equation (1) that
can be calculated as follows:

Ctrad =
∑
t

cpt · (1− rt) (11)

We compare this traditional approach to our adaptive resource
acquisition mechanism. The comparison was done on the test
set of our dataset. As shown in equation (11), traditionally
we would acquire resources long term and then the cost only
depends on the actual resource requirements over time, i.e.
rt. In contrast, our method employs the ML models outlined
in Section III-B to dynamically match the required - rt and

available resources - pt, achieving a cost reduction by over
80% compared to the traditional approach.

V. CONCLUSIONS

In this paper we propose and study the application of ML
to carry out cost optimisation based on handover predictions
in 5G mobile cells, for use cases where different service
providers might target different trade-offs between cost of
network resource over-booking and potential lack of resources
when required.

We propose and evaluate an intelligent algorithm that pre-
dicts handover events based only on parameters measured in
a commercial O-RAN system using outdoor licensed bands
at 3.9 GHz, running on the OpenIreland open networking
testbed infrastructure. Our results show that an LSTM model
can be optimized for both recall and precision depending on
the optimization objective. Specifically, in our evaluation, after
setting the minimum precision to 75%, a recall of 88% was
achieved. The studied models have also been evaluated in
terms of their effect on the cost of false resources acquisitions,
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and show a reduction in cost by more than 80%, when
compared to a traditional long term resource purchase.

We also argue that different network stakeholders will have
different objectives depending on their business models. We
provide examples of conflicting optimization objectives that
can be achieved on top of the same shared infrastructure by
taking advantage of virtualization, slicing, functional splits and
the availability of intelligent control loops proposed by the O-
RAN community.

In terms of future work on this topic, we believe that it
is important to understand the applicability of federated and
transfer learning techniques. Federated learning would allow
us to reduce the amount of information shared through the
network and to conserve privacy of information through local
learning. It would also allow us to specialize the local models
for the local environment covered by a small subset of BSs.
Transfer learning on the other hand would allow us to speed
up the training and deployment of such models in on-demand
and in real time. Additionally, since the price of resources can
vary over time depending on the demand, we believe that a
study should be conducted in which the costs of false resource
acquisitions (cnt and cpt ) are not constant either.
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