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Abstract. Defining a divergence between the laws of continuous martingales is a delicate
task, owing to the fact that these laws tend to be singular to each other. An important idea,
put forward by N. Gantert in [31], is to instead consider a scaling limit of the relative en-
tropy between such continuous martingales sampled over a finite time grid. This gives rise
to the concept of specific relative entropy. In order to develop a general theory of diver-
gences between continuous martingales, it is only natural to replace the role of the relative
entropy in this construction by a different notion of discrepancy between finite dimensional
probability distributions. In the present work we take a first step in this direction, taking
a power p of the Wasserstein distance instead of the relative entropy. We call the newly
obtained scaling limit the specific p-Wasserstein divergence.

In our first main result we prove that the specific p-Wasserstein divergence is well-
defined, and exhibit an explicit expression for it in terms of the quadratic variations of the
martingales involved. This is obtained under vastly weaker assumptions than the corre-
sponding results for the specific relative entropy. Next we illustrate the usefulness of the
concept, by considering the problem of optimizing the specific p-Wasserstein divergence
over the set of win-martingales. In our second main result we characterize the solution of
this optimization problem for all p > 0 and, somewhat surprisingly, we single out the case
p = 1/2 as the one with the best probabilistic properties. For instance, the optimal martin-
gale in this case is very explicit and can be connected, through a space transformation, to
the solution of a variant of the Schrödinger problem.

1. Introduction

The aim of this paper is to introduce a novel notion of divergence between continuous
martingales, and thereafter to fully study and solve divergence optimization problems over
the set of win martingales (used as models for prediction markets [3]).

Identifying two real-valued continuous martingales as probability measures Q,P on the
continuous path space

C([0, 1];R),

a natural choice for divergence would be the relative entropy

H(Q||P) =
∫

dQ
dP

log
(dQ

dP
)

dP,

or its generalization, the f -divergence
∫

f ( dQ
dP ) dP. This naive approach leads to an imme-

diate difficulty, namely, that the laws of continuous martingales tend to be singular to each
other and hence have a trivial divergence in the above sense. As an example, the reader can
consider Q,P to be respectively the laws of Brownian motion and two times the Brownian
motion, and check that these measures are concentrated on disjoint sets.

A natural approach to circumvent this difficulty is to rather discretize the martingales in
time, compare them at the discrete-time level, and then consider a (scaling) limit in which
the time mesh-size goes to zero. This approach was introduced by Gantert in [31], and
more recently refined by Föllmer in [28], leading to the notion of specific relative entropy
between continuous martingales. The key in that construction is to use the conventional
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relative entropy when comparing the laws of the time-discretized martingales. In this ar-
ticle we introduce and study the specific Wasserstein divergence, obtained by considering
a power of the Wasserstein distance instead of the relative entropy in the aforementioned
scaling limit. This is hence a first step towards a general theory of divergences between
continuous martingales.

1.1. Specific Wasserstein divergence. Denote throughout by P(X) the space of probabil-
ity measures on a Polish space X.

Given a function F : P(R) × P(R) → R+ which only vanishes on the diagonal, we
may interpret D1

F(µ, ν) := F(µ, ν) as the discrepancy between µ and ν ∈ P(R). Inductively,
after having defined DN−1

F : P(RN−1) × P(RN−1) → R+, a discrepancy functional between
elements in P(RN−1), then a natural choice for a discrepancy functional between elements
in P(RN) is given by

DN
F (Q||P) := DN−1

F (Q1:N−1||P1:N−1) +
∫

F(Qx1:N−1
N ,Px1:N−1

N ) dQ1:N−1(x1:N−1), (1.1)

where Q1:N−1 is the projection ofQ on the first N−1 coordinates, x1:N−1 = (x1, . . . , xN−1) ∈
RN−1, Qx1:N−1

N is the conditional law of the N-th marginal given the previous trajectory
x1:N−1, with similar notations for P1:N−1 and Px1:N−1

N .
If now Q,P ∈ P(C([0, 1];R)), a natural choice for a discrepancy functional between Q

and P is to take
lim

N→∞
cF

N DN
F ((Q)N ||(P)N),

assuming that the limit exists and that a universal scaling sequence {cF
N}N ⊆ R+ has been

found. Here and throughout we use the notation (Q)N for the push-forward (i.e., image
measure) of Q under the map

C([0, 1];R) ∋ ω 7→ (ω1/N , ω2/N , . . . , ωN/N),

and likewise for (P)N .
We remark that (1.1) is akin to the time consistency property in the theory of dynamic

risk measures (see Remark 2.4 below), and is very natural given the temporal structure
of processes like martingales. Taking F to be the relative entropy H, the construction
described so far gives rise (with cF

N = N−1) to the specific relative entropy. Thus the
specific relative entropy can be understood as the rate of increase of the relative entropy as
the number of marginals taken into account increases.

In this paper, we will be concerned with the case

F =Wp
1 ,

whereW1 is the celebrated Wasserstein-1 distance and p is any positive real number. We
call the resulting object the specific p-Wasserstein divergence (though sometimes we omit
to mention the parameter p), and denote it by SWp. Moreover, we will only be concerned
with continuous martingale laws throughout. As a side note, we remark that taking a
different Wasserstein distance thanW1 would change very little the results in this paper.

We proceed to describe our first main result: Suppose Q is the law of a continuous
martingale starting wlog. at 0 and admitting an absolutely continuous quadratic variation
with density denoted by σ2. Suppose that P is the law of standard Brownian motion. In
Theorem 2.9 we obtain the existence of the specific Wasserstein divergence together with
its explicit formula

SWp(Q||P) := lim
N=2n

n→∞

N p/2−1DN,p
W

((Q)N ||(P)N) = (2/π)p/2EQ

[∫ 1

0
(|σt | − 1)p dt

]
.

In fact, in Theorem 2.9 we can allow the law P to be more general than the Wiener measure,
e.g. it can come from the law of a martingale diffusion with a well-behaved volatility
coefficient. One notable aspect of this result is that the assumptions needed are vastly
weaker than the ones needed for the corresponding result in the case of the specific relative
entropy. In particular, we can handle the situation where P is the constant martingale (i.e.,
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a Brownian motion with zero volatility), and more generally, certain cases where (Q)N

and (P)N may be singular to each other for every N. We consider this result a first step
towards building a general theory of divergences between continuous martingales, since
unlike the case of the specific relative entropy, the construction here gives a whole family
of divergences.

Related to the above main result, we recover in Proposition 2.16 a functional inequality
by Föllmer [28] concerning (in our terminology) the specific Wasserstein divergence, spe-
cific relative entropy, and an adapted Wasserstein distance. Our proof method is based on
Theorem 2.9 and different from the original approach by this author.

1.2. Optimization over win-martingales. The main application of the concept of specific
Wasserstein divergence that we want to put forward in this paper, concerns a problem of
optimization over the set of win-martingales. A continuous time martingale (Xt) over time
t ∈ [0, 1] is called a win-martingale if it starts with a deterministic position X0 = x0 ∈ (0, 1)
and ends up at time 1 on either 0 or 1. In other words, it transports δx0 at time 0 to
Bernoulli(x0) at time 1. Such martingales have been proposed as models of prediction
markets (cf. [3]) and optimization problems over the set of win-martingales were proposed
by Aldous [2].

Given a fixed initial position x0 ∈ (0, 1) and p > 0, our aim is to optimize the spe-
cific Wasserstein divergence SWp(Q||Pδ) among all continuous win-martingales Q started
at x0 and admitting an absolutely continuous quadratic variation, whereby Pδ denotes the
constant martingale. More specifically, we maximize SWp(Q||Pδ) for p ∈ (0, 2) and min-
imize SWp(Q||Pδ) for p ∈ (2,∞). These optimization problems are related to the one
in [7], wherein the specific relative entropy with respect to standard Brownian motion is
minimized over this set of martingales. Similarly to this reference, we employ first order
conditions to characterize in Proposition 3.3, via ordinary differential equations, the (Mar-
kovian) volatility coefficient of a candidate optimal martingale. Then, in Section 4, the
optimality of the candidate is verified by making use of the associated HJB equation and
stochastic analysis arguments. Hence we obtain semi-explicit solutions for a whole family
of continuous-time martingale optimal transport problems (which cannot be transformed
into an Skorokhod Embedding Problem), usually considered a difficult task.

We identify two cases where the solution to our problem is fully explicit. One is for
p = 1, where the solution is a so-called Bass martingale (see [8, 10]). As this object is well
studied we do not explore this case in any detail. The fully novel case is p = 1/2. In this
setting the unique optimal win martingale solves the SDE

dMt =

√
2

1 − t
Mt(1 − Mt) dBt.

In order to provide some intuition, we provide some numerical simulations of the Bass
martingale and (Mt). The reader may notice that the former tends to explore the space
relatively faster than the latter. Indeed Lemma 3.6 below justifies that for each moment of
time t ∈ [0, 1], the distribution of the Bass martingale is greater than that of Mt in the sense
of convex order.

Figure 1. Simulations of
Bass martingales (p = 1).

Figure 2. Simulations of
(Mt), i.e. case p = 1/2.
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If we stretch the time-index set from [0, 1] to [0,∞) in a natural way, the time-changed
martingale Yt := M1−e−t/2 admits the more amenable form

dYt = Yt(1 − Yt) dWt,

with W a suitable Brownian motion. In this form, it can be readily interpreted in terms of
filtering theory. Indeed, Yt is precisely the conditional probability of the drift being equal to
1 for a Brownian motion with an unobservable drift which can be either 0 or 1. Moreover
the marginal distributions of M and Y are fully explicit and simple to describe. This is in
stark contrast to the situation in [7].

If we then perform a change of space-scale

Ct := log(Yt/(1 − Yt)),

so that the resulting process has unit volatility coefficient, it turns out that this process
satisfies the SDE

dCt =
1
2

tanh
(Ct

2

)
dt + dWt.

This process can also be interpreted in a number of interesting ways. For instance the
marginal laws of C are a mixture between the marginal laws of a drifted Brownian mo-
tion with drift ±1/2. More interestingly, we have the following result, where we denote
by W0

T,x the law of the Brownian bridge from 0 at time 0 to x at time T , and we define

W0
T,±T/2 := 1

2

(
W0

T,T/2 +W
0
T,−T/2

)
:

For every t ∈ R+, the lawW0
T,±T/2 restricted to [0, t] converges as T → ∞ to the law of

C restricted to [0, t].

This result, which we formalize in Theorem 5.4, says that C is precisely the law of
Brownian motion W conditioned on the event WT = ±T/2 as T → ∞. In other words, C
is a solution (more precisely, a limit of solutions) to the celebrated Schrödinger problem
(see [43]). To the authors’ best knowledge, this is the first instance that a solution to a
continuous martingale transport problem has been naturally connected to the solution of a
likewise continuous Schrödinger problem.

1.3. Connections to the literature. The specific relative entropy was introduced and in-
terpreted as a rate function by Gantert [31]. More recently [12] obtained an explicit formula
for this quantity (between time-homogeneous Markov martingales), and Föllmer [28] ex-
tended Gantert’s results and established a Talagrand-type inequality between semimartin-
gale laws using this object. In [7] the specific relative entropy was used to solve an open
question by Aldous (see [33] for an alternative point of view and solution).

The adapted Wasserstein distance, appearing in the aforementioned Talagrand-type in-
equality by Föllmer, is a metric between stochastic processes that incorporates their tem-
poral structure; see [6, 9, 13, 42] among others.

Win-martingales have been proposed as models for prediction markets (cf. [3]), and
optimization problems over the set of win-martingales were proposed by Aldous [2] in
connection to the aforementioned open question. Such optimization problems are partic-
ular instances of martingale optimal transport, a subject that has been extensively studied
in the recent years. Following [36, 16, 22, 30] martingale versions of the classical trans-
port problem (see e.g. [57, 58, 52, 27] for recent monographs) are often considered due to
applications in mathematical finance but admit further applications, e.g. to the Skorokhod
problem [15, 19]. In analogy to classical optimal transport, necessary and sufficient con-
ditions for optimality have been established for martingale transport (MOT) problems in
discrete time ([18, 20]) but not so much is known for the continuous time problem. Notable
exceptions are [38, 55, 8, 10, 7, 33, 45, 34].

The Schrödinger problem has its origin in [53, 54]. In a nutshell, it asks for the most
likely evolution for a large system of particles given initial and terminal configurations.
By they theory of large deviation, this amounts to an entropy minimization problem. If
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the initial configuration is a point mass and the particles are Markovian, its solution is a
Markov bridge [44]. We refer to Léonard’s survey [43] for a historical account and to the
more contemporary articles [4, 21, 23, 24, 49] for recent contributions.

Finally we mention the work of Lacker [41], extended e.g. in [11, 26], wherein the idea
of considering a scaling limit of problems in ever higher dimension is also considered.
This is more related to a large deviations principle for a particle system whose size goes
to infinity, rather than to our framework of a single process that we examine at ever finer
resolution.

2. SpecificWasserstein divergence between martingales

2.1. Specific Wasserstein divergence. For Borel probability measures µ, ν ∈ P1(X) on a
metric space (X, d) we define their 1-Wasserstein distance

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
d(x, y) dπ(x, y),

whereby P1(X) := {ρ ∈ P(X) :
∫

d(x, x0) dρ(x) < ∞, some x0} and Π(µ, ν) stands for the
set of probability measures on X×X with first marginal µ and second marginal ν. See [57,
Chapter 7] for background. In case X is Euclidean space we will always take d to be the
metric associated to the Euclidean norm.

In order to define a time-consistent divergence on P1(RN), with the aforementioned
one-dimensional Wasserstein distance as a building block, we proceed inductively. We
shall employ the following notation throughout: If x ∈ RN , then xi: j := (xi, xi+1, . . . , x j) for
i < j and xi:i = xi. Likewise if P ∈ P(RN), then Pi: j is the law of xi: j under P and we denote
Pi := Pi:i. We write Px1:i−1

i for the conditional law of xi under P given the information of
x1:i−1, and use the convention Px1:0

1 := P1.
We fix p > 0 and define:

Definition 2.1. Suppose Q,P ∈ P1(R), then D1,p
W

(Q||P) := Wp
1 (Q,P). For N > 1,

supposing that Q,P ∈ P1(RN) are such that Px1:i−1
i is well-defined Q1:i−1-a.s. for each

i ∈ {1, . . . ,N}, then we define inductively

DN,p
W

(Q||P) := DN−1,p
W

(Q1:N−1||P1:N−1) +
∫
W

p
1 (Qx1:N−1

N ,Px1:N−1
N ) dQ1:N−1(x1:N−1).

Unravelling the induction, we clearly have the equivalent expression

DN,p
W

(Q||P) =
∫
RN

 N∑
i=1

W
p
1 (Qx1:i−1

i ,Px1:i−1
i )

 dQ(x).

Remark 2.2. In the definition of DN,p
W

(Q||P), the assumption that Px1:i−1
i is well-defined

Q1:i−1-a.s. is necessary to integrate Wp
1 (Qx1:i−1

i ,Px1:i−1
i ) with respect to Q1:i−1. One suffi-

cient condition for this is that Q1:i−1 ≪ P1:i−1 for any i = 1, . . . ,N. Another sufficient
condition is when P is the law of a discrete-time Markov process which is uniquely defined
by transition kernels {Pxi−1

i : i = 1, . . . ,N, xi−1 ∈ R} which are defined everywhere.

Remark 2.3. For p ≥ 1, thanks to the convexity of Q 7→ W1(Q,P), it follows that
DN,p
W

(Q,P) is also convex in Q. To see this, take wlog. N = 2 and two probability dis-
tribution Q, Q̃ ∈ P1(R2). Letting t ∈ [0, 1], it can be seen that tQ + (1 − t)Q̃ has the
disintegration

(
tQ1 + (1 − t)Q̃1

)
⊗

 tQx1
2 dQ1(x1) + (1 − t)Q̃x1

2 dQ̃1(x1)

t dQ1(x1) + (1 − t) dQ̃1(x1)

 ,



6 JULIO BACKHOFF-VERAGUAS, XIN ZHANG

and hence∫
W

p
1

 tQx1
2 dQ1(x1) + (1 − t)Q̃x1

2 dQ̃1(x1)

t dQ1(x1) + (1 − t) dQ̃1(x1)
,Px1

2

 d(tQ1(x1) + (1 − t)Q̃1(x1))

≤

∫
t dQ1(x1)

t dQ1(x1) + (1 − t) dQ̃1(x1)
W

p
1 (Qx1

2 ||P
x1
2 ) d(tQ1(x1) + (1 − t)Q̃1(x1))

+

∫
(1 − t) dQ̃1(x1)

t dQ1(x1) + (1 − t) dQ̃1(x1)
W

p
1 (Q̃x1

2 ||P
x1
2 ) d(tQ1(x1) + (1 − t)Q̃1(x1))

= t
∫
W

p
p(Qx1

2 ||P
x1
2 ) dQ1(x1) + (1 − t)

∫
W

p
1 (Q̃x1

2 ||P
x1
2 ) dQ̃1(x1).

In the computation above, the crucial point is the convexity ofW1, or more precisely,
ofWp

1 . This is also the case forWp
q with 1 ≤ q ≤ p, withWq denoting the q-Wasserstein

distance1. In order to keep the convexity of DN,p
W

for any p ≥ 1 we choose in this work
q = 1 throughout, but we could have easily consideredWq instead ofW1.

Remark 2.4. The construction in Definition 2.1 is the exact analogue to the Bellman prin-
ciple for the conditional penalty functions of dynamic convex risk measures; see [29, The-
orem 4.5]. An example of the latter is the additive decomposition of the relative entropy.

In this article, we are interested in the divergence between the distributions of two con-
tinuous martingales taking real values. Hence we consider the classical Wiener space

Ω := C([0, 1];R)

equipped with its natural Borel σ-algebra. We will denote throughout by X the canonical
process

X(ω) = ω,
and by ⟨X⟩ its quadratic variation process. Since we will only be dealing with martin-
gale laws, we do not need to refer to a reference measure in order to define the quadratic
variation; see Remark 2.10 for more details.

Inspired by [31], we define the specific Wasserstein divergence as a scaling limit of the
finite dimensional discrepancy DN,p

W
. For any Q ∈ P(Ω) and N ∈ N, we denote by

(Q)N ∈ P(RN),

the law Q projected on the time-grid {k/N : k = 1, . . . ,N}.

Definition 2.5. For any Q,P ∈ P(Ω), we define the specific p-Wasserstein divergence as

SWp(Q||P) := lim inf
N=2n

n→∞

N p/2−1DN,p
W

((Q)N ||(P)N),

if DN,p
W

((Q)N ||(P)N) is well-defined for all large enough N = 2n. Otherwise we set it to +∞.

As the following lemma shows, if Wσx0
denotes the law of Brownian motion started at

x0 with instantaneous variance / volatility σ2 > 0, then we have

DN,p
W

((Wσ̃x0
)N ||(Wσx0

)N)) = N−p/2+1W
p
1

(
N(0, σ̃2),N(0, σ2)

)
= N−p/2+1(2/π)p/2(|σ̃| − |σ|)p

and hence
SWp(Wσ̃x0

||Wσx0
) = (2/π)p/2(|σ̃| − |σ|)p.

Importantly, this suggests that the scaling factor N−p/2+1 is the right one for our purposes.
We will need the following invariance property of the divergences DN,p

W
:

Lemma 2.6. Taking T : RN+1 → RN+1, (x1, x2, . . . , xN+1) 7→ (x1, x2 − x1, . . . , xN+1 − xN)
we have the following identity for any Q,P ∈ P(RN+1)

DN+1,p
W

(Q||P) = DN+1,p
W

(T (Q)||T (P)).

1Defined very much asW1, but with dq as the integrand and a power 1/q outside of the integral.
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Proof. Note that T can also be considered as a map from RN to RN when restricted to the
first N-coordinates, and hence T (x1:N) is defined as (x1, x2 − x1, . . . , xN − xN−1). Since T
is a bijection, it can be seen that

T (Q)T (x1:N )
N+1 = (xN+1 7→ xN+1 + xN)#Q

x1:N
N+1,

and therefore due to the translation invariant property of Wasserstein distance,

W
p
1 (T (Q)T (x1:N )

N+1 ,T (P)T (x1:N )
N+1 ) =Wp

1 (Qx1:N
N+1,P

x1:N
N+1).

Now by change of measure,∫
W

p
1 (T (Q)x1:N

N+1,T (P)x1:N
N+1) dT (Q)1:N(x1:N) =

∫
W

p
1 (T (Q)T (x1:N )

N+1 ,T (P)T (x1:N )
N+1 ) dQ1:N(x1:N)

=

∫
W

p
1 (Qx1:N

N+1,P
x1:N
N+1) dQ1:N(x1:N),

and our claim follows by induction. □

We will now fix a particular choice of martingale measure, P, playing the role of a
reference measure. The reader can think of P as the law of Brownian motion, however the
precise assumption that we need is as follows:

Assumptions 2.7. Admit the existence of a jointly measurable function η : [0, 1]×R→ R,
such that x 7→ η(t, x) is Lipschitz uniformly in t and supt∈[0,1] |η(t, 0)| < +∞. We denote by
Px0 the law of the solution of the SDE dXt = η(t, Xt)dBt starting from x0, and if x0 is fixed
from the context we simply write P.

Under Assumption 2.7, the conditional law ((P)N)x1:i−1
i is simply the distribution of Xi/N

where
dXt = η(t, Xt) dBt, X(i−1)/N = xi−1.

In this case, ((P)N)x1:i−1
i is well-defined for any x1:i−1 ∈ R

i−1, and for any Q ∈ P1(Ω) the
divergence DN,p

W
((Q)N ||(P)N) is well-defined .

Definition 2.8. We denote by Mc([0, 1]) the set of continuous martingale laws with an
absolutely continuous quadratic variation. The density of the quadratic variation will be
denoted by σ2(t, X).

Inspired by the developments on the particular case of the specific relative entropy [31,
12], we have our first main result:

Theorem 2.9. Suppose Q ∈ Mc([0, 1]) with σ ∈ Lp∨2(λ × Q). Suppose that P satisfies
Assumption 2.7 with bounded volatility coefficient η. Then the limit inferior in the definition
of SWp(Q||P) is an actual limit, and we have

SWp(Q||P) = (2/π)p/2EQ

[∫ 1

0
(|σ(t, X)| − |η(t, Xt)|)p dt

]
.

If both P,Q are time-homogeneous with Lipschitz and uniformly positive bounded volatility
(i.e., x 7→ (σ(x), η(x)) is Lipschitz and there exists a δ > 0 with σ(x), η(x) ∈ (δ, 1/δ) for all
x ∈ R ), then we have the Q-a.s. limit

lim
N=2n

N p/2−1
N∑

i=1

W
p
1

(
LQ

(
Xi/N |{Xk/N}

i−1
j=1

)
,LP

(
Xi/N |{Xk/N}

i−1
j=1

))
(2.1)

= (2/π)p/2
∫ 1

0
(|σ(Xt)| − |η(Xt)|)p dt.

Proof. Step 1: Let us first consider the case p ≥ 2. With some abuse of notation, we
denote by Qx1:k−1

k the conditional distribution of k-th marginal of (Q)N given the first (k − 1)
coordinates. Then we obtain that

DN,p
W

((Q)N ||(P)N) =
∫
RN

N∑
i=1

W
p
1 (Qx1:i−1

i ,Px1:i−1
i ) d(Q)N(x).
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Takingσ2
N = E

λ×Q[σ2 | PN], wherePN := σ ({(s, t] × A : s < t ∈ {1/N, . . . , 1}, A ∈ σ(X1:s)}),
it can be seen that

σ2
N((i − 1)/N, x) = NEQ[|Xi/N − X(i−1)/N |

2 | X1:i−1 = x1:i−1]

= NEQ
[∫ i/N

(i−1)/N
σ(s, X)2 ds | X1:i−1 = x1:i−1

]
,

and σ2
N((i − 1)/N, x) is only dependent on x1:i−1. Also we take ηN(t, x) := η((i − 1)/N, xi−1)

for t ∈ ((i − 1)/N, i/N]. Then by martingale convergence theorem and the continuity of η,
limN=2n (σN , ηN) = (σ, η) λ × Q-a.s.

We approximate Qx1:i−1
i and Px1:i−1

i by Gaussian distributions Q̃x1:i−1
i and P̃x1:i−1

i ,

Q̃x1:i−1
i = N

xi−1,
σ2

N((i − 1)/N, x)
N

 ,
P̃x1:i−1

i = N

xi−1,
η2

N((i − 1)/N, x)
N

 ,
and thenWp

1 (Q̃x1:i−1
i , P̃x1:i−1

i ) =
(

2
πN

)p/2
(|σN((i − 1)/N, x)| − |ηN((i − 1)/N, x)|)p. Supposing

that

lim
N=2n

N p/2−1
∫
RN

N∑
i=1

W
p
1 (Qx1:i−1

i ,Px1:i−1
i ) d(Q)N(x)

= lim
N=2n

N p/2−1
∫
RN

N∑
i=1

W
p
1 (Q̃x1:i−1

i , P̃x1:i−1
i ) d(Q)N(x), (2.2)

it can be seen that

SWp(Q||P) = lim
N=2n

N p/2−1
∫
RN

N∑
i=1

W
p
1 (Q̃x1:i−1

i , P̃x1:i−1
i ) d(Q)N(x)

= lim
N=2n

(
2
π

)p/2

EQ
 1

N

N∑
i=1

(|σN((i − 1)/N, X)| − |η((i − 1)/N, X)|)p


= (2/π)p/2EQ

[∫ 1

0
(|σ(t, X)| − |η(t, Xt)|)p dt

]
.

The last equality follows from Lp martingale convergence, the dominated convergence
theorem and the fact that (|σN |, ηN)→ (|σ|, η), λ × Q-a.s.

Step 2: It remains to verify (2.2), and we claim that

lim
N=2n

N p/2−1
∫ N∑

i=1

W
p
1 (Qx1:i−1

i , Q̃x1:i−1
i ) d(Q)N(x) = 0. (2.3)

Thanks to the martingale representation theorem, on an extended filtered probability space
(Ω̄, (F̄t)t∈[0,1], Q̄), there exists a Brownian motion (Bt) and an adapted process σ̄ such that
dXt = σ̄ dBt and σ̄(s, ω̄) = |σ(s, X(ω̄))| ≥ 0, Q̄-a.s. Now Qx1:i−1

i is the law

L

(
X(i−1)/N +

∫ i/N

(i−1)/N
|σ(s, X)| dBs | X1/N:(i−1)/N = x1:i−1

)
while Q̃x1:i−1

i can be represented by the distribution

L
(
X(i−1)/N + |σN((i − 1)/N, X)|(Bi/N − B(i−1)/N) | X1/N:(i−1)/N = x1:i−1

)
.

Therefore

L

((
xi−1 +

∫ i/N

(i−1)/N
|σ(s, X)| dBs , xi−1 + |σN((i − 1)/N, X)|(Bi/N − B(i−1)/N)

) ∣∣∣ X1/N:(i−1)/N = x1:i−1

)
(2.4)
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provides a natural coupling between Qx1:i−1
i and Q̃x1:i−1

i , and hence usingWp
1 ≤ W

p
p we get

the upper bound

W
p
1 (Qx1:i−1

i , Q̃x1:i−1
i ) ≤ EQ̄

(∫ i/N

(i−1)/N
|σ(s, X)| − |σN((i − 1)/N, X)| dBs

)p ∣∣∣ X1/N:(i−1)/N = x1:i−1

 .
Integrating the above inequality over Q, one gets that∫
W

p
1 (Qx1:i−1

i , Q̃x1:i−1
i ) d(Q)N(x) ≤ CEQ̄

(∫ i/N

(i−1)/N
|σ(s, X)| − |σN((i − 1)/N, X)| dBs

)p
≤ CEQ̄

(∫ i/N

(i−1)/N
(|σ(s, X)| − |σN((i − 1)/N, X)|)2 ds

)p/2
≤

C
N p/2−1E

Q̄

[∫ i/N

(i−1)/N
(|σ(s, X)| − |σN((i − 1)/N, X)|)p ds

]
,

where we use BDG and Jensen’s inequalities. Therefore, we obtain that

N p/2−1
∫ N∑

i=1

W
p
1 (Qx1:i−1

i , Q̃x1:i−1
i ) d(Q)N(x) ≤ CEQ

[∫ 1

0
(|σ| − |σN |)p ds

]
. (2.5)

Due to the Lp/2 martingale convergence theorem, σ2
N → σ

2 with respect to Lp/2 norm, and
hence σp

N is uniformly integrable. Therefore, it can be easily seen that |σN | → |σ| in Lp.
As a result, the right hand side converges to 0 as N → ∞, and thus we verify (2.3).

Similarly, according to BDG and Jensen’s inequalities, it can be seen that

N p/2−1
∫ N∑

i=1

W
p
1 (Qx1:i−1

i ,Px1:i−1
i ) d(Q)N(x) ≤ C

(
1 + EQ

[∫ 1

0
|σ(s, X)|p ds

])
, (2.6)

where C is a constant depending on ∥η∥∞. In the same way,

N p/2−1
∫ N∑

i=1

W
p
1 (Q̃x1:i−1

i ,Px1:i−1
i ) d(Q)N(x) ≤ C

(
1 + EQ

[∫ 1

0
|σN(s, X)|p ds

])
.

Therefore, applying the inequality |ap − bp| ≤ C|a − b|(|a|p−1 + |b|p−1) for a, b ∈ R, we get
that ∫

RN

N∑
i=1

(
W

p
1 (Q̃x1:i−1

i ,Px1:i−1
i ) −Wp

1 (Qx1:i−1
i ,Px1:i−1

i )
)

d(Q)N(x) (2.7)

≤ C
∫
RN

N∑
i=1

W1(Qx1:i−1
i , Q̃x1:i−1

i )Wp−1
1 (Qx1:i−1

i ,Px1:i−1
i ) d(Q)N(x)

+C
∫
RN

N∑
i=1

W1(Qx1:i−1
i , Q̃x1:i−1

i )Wp−1
1 (Q̃x1:i−1

i ,Px1:i−1
i ) d(Q)N(x).

Thanks to Hölder’s inequality, the first term on the right is bounded by

C

∣∣∣∣∣∣∣
∫
RN

N∑
i=1

W
p
1 (Qx1:i−1

i , Q̃x1:i−1
i ) d(Q)N(x)

∣∣∣∣∣∣∣
1/p ∣∣∣∣∣∣∣

∫
RN

N∑
i=1

W
p
1 (Qx1:i−1

i ,Px1:i−1
i ) d(Q)N(x)

∣∣∣∣∣∣∣
(p−1)/p

.

We have a similar estimate for the second term on the right, and hence due to (2.3) and
(2.6), we conclude that

lim
N=2n

N p/2−1
∫
RN

N∑
i=1

(
W

p
1 (Q̃x1:i−1

i ,Px1:i−1
i ) −Wp

1 (Qx1:i−1
i ,Px1:i−1

i )
)

d(Q)N(x) = 0.

By the same reasoning, one can show that

lim
N=2n

N p/2−1
∫
RN

N∑
i=1

(
W

p
1 (Q̃x1:i−1

i ,Px1:i−1
i ) −Wp

1 (Q̃x1:i−1
i , P̃x1:i−1

i )
)

d(Q)N(x) = 0,
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and thus we verify (2.2).

Step 3: Now let us prove the result for p ∈ (0, 2). Thanks to the same coupling as in
(2.4), we get that∫
W

p
1 (Qx1:i−1

i , Q̃x1:i−1
i ) d(Q)N(x)

≤

∫
EQ

[(∫ i/N

(i−1)/N
(|σ(s, X)| − |σN((i − 1)/N, X)|)2 ds

) ∣∣∣ X1/N:(i−1)/N = x1:i−1

]p/2

d(Q)N(x)

≤

(∫ i/N

(i−1)/N
EQ

[
(|σ(s, X)| − |σN((i − 1)/N, X)|)2

]
ds

)p/2

where in the last inequality we use the concavity of x 7→ xp/2 over R+. Summing the above
inequality over i = 1, . . . ,N, and making use of

N∑
i=1

ap/2
i b(2−p)/2

i ≤

 N∑
i=1

ai

p/2  N∑
i=1

bi

(2−p)/2

,

we obtain that

N p/2−1
∫ N∑

i=1

W
p
1 (Qx1:i−1

i , Q̃x1:i−1
i ) d(Q)N(x) ≤

(
EQ

[∫ 1

0
(|σ| − |σN |)2ds

])p/2

,

where the right hand side converges to 0 since σ ∈ L2. Then by the same argument as in
the case p ≥ 2, we conclude the result.

Step 4: Finally, we prove (2.1) for the case p > 2 and the argument for p ∈ (0, 2] is the

same. It is sufficient to estimate EQ
[∫ 1

0 (|σ| − |σN |)p ds
]

and apply Borel-Cantelli. Without
loss of generality, we assume both σ and σN are nonnegative. For each i = 1, . . . ,N and
s ∈ ((i − 1)/N, i/N], we have

|σN((i − 1)/N, X) − σ(Xs)|p ≤2p−1
∣∣∣σN((i − 1)/N, X) − σ(X(i−1)/N)

∣∣∣p + 2p−1
∣∣∣σ(X(i−1)/N) − σ(Xs)

∣∣∣p
≤C

∣∣∣σ2
N((i − 1)/N, X) − σ2(X(i−1)/N)

∣∣∣p + 2p−1
∣∣∣σ(X(i−1)/N) − σ(Xs)

∣∣∣p ,
where in the last inequality we use the fact that σ,σN > 1/δ. For the first term on the right,
it follows from the definition of σ2

N that

C
∣∣∣σ2

N((i − 1)/N, X) − σ2(X(i−1)/N)
∣∣∣p ≤ CN

∣∣∣∣∣∣EQ
[∫ i/N

(i−1)/N
σ2(Xt) − σ2(X(i−1)/N) dt

]∣∣∣∣∣∣p
≤ CN

∣∣∣∣∣∣E
[∫ i/N

(i−1)/N
|Xt − X(i−1)/N | dt

]∣∣∣∣∣∣p ≤ CN

∣∣∣∣∣∣
∫ i/N

(i−1)/N
E[|Xt − X(i−1)/N |] dt

∣∣∣∣∣∣p
≤ CN

∣∣∣∣∣∣
∫ i/N

(i−1)/N

√
t − (i − 1)/N dt

∣∣∣∣∣∣p ≤ C
N3p/2−1 ,

where we use boundedness and Lipschitz property of σ. Together with the inequality

E
[∣∣∣σ(X(i−1)/N) − σ(Xt)

∣∣∣p] ≤ E [
|Xt − X(i−1)/N |

p] ≤ (t − (i − 1)/N)p/2,

we get the estimate

EQ
[∫ 1

0
(|σ| − |σN |)p ds

]
≤

C
N3p/2−1 +

C
N p/2 .

Thanks to (2.5) and (2.7), we have

N p/2−1
∫
RN

N∑
i=1

∣∣∣Wp
1 (Q̃x1:i−1

i ,Px1:i−1
i ) −Wp

1 (Qx1:i−1
i ,Px1:i−1

i )
∣∣∣ d(Q)N(x) ≤

C
N1/2 .
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Applying Borel-Cantelli to the sequence N = 2n, we conclude that

lim
N=2n

N p/2−1
N∑

i=1

W
p
1 (Q̃x1:i−1

i ,Px1:i−1
i ) = lim

N=2n
N p/2−1

N∑
i=1

W
p
1 (Qx1:i−1

i ,Px1:i−1
i ).

By the same token,

lim
N=2n

N p/2−1
N∑

i=1

W
p
1 (Q̃x1:i−1

i ,Px1:i−1
i ) = lim

N=2n
N p/2−1

N∑
i=1

W
p
1 (Q̃x1:i−1

i , P̃x1:i−1
i ).

Therefore we get that

lim
N=2n

N p/2−1

 N∑
i=1

W
p
1 (Qx1:i−1

i ,Px1:i−1
i )

 = ∫ 1

0
(|σ(x)| − |η(x)|)p dt for Q-a.e. x

□

Remark 2.10. Thanks to [39], there exists an adapted increasing stochastic process which
is a.s. equal to the quadratic variation of X under any martingale measure. With some abuse
of notation we still denote by ⟨X⟩ this process. Then we have

Q 7→ SWp(Q||P) = (2/π)p/2EQ

[∫ 1

0

(
|
√

d⟨X⟩t/dt| − |η(t, X)|
)p

dt
]

is linear on the space of martingale measures considered in Theorem 2.9.

Remark 2.11. Taking η to be a non-negative constant, say η = σ̄ ≥ 0, Theorem 2.9 says

SWp(Q||P) = (2/π)p/2EQ

[∫ 1

0
(|σ(t, X)| − σ̄)p dt

]
,

as promised in the introduction. Particularly natural are the choices σ̄ = 1, corresponding
to standard Brownian motion, and σ̄ = 0, corresponding to the constant martingale.

Remark 2.12. If we had taken Wp
q instead of Wp

1 in Definition 2.1, then Theorem 2.9
would remain true but in the r.h.s. of 2.9 we would get the factor E[|Z|q]p/q with Law(Z) =
N(0, 1), instead of (2/π)p/2 .

Let us discuss in detail how Theorem 2.9 relates to the literature. The only precursor
that we are aware of is the case of the specific relative entropy. In that case, that a scal-
ing limit of relative entropies is greater or equal than an explicit function of the quadratic
variation, was already obtained by Gantert in [31, Satz 1.3] and subsequently refined in
recent times by Föllmer in [28]. That equality can occur in that case, was obtained under
strong assumptions in [12]. Compared to these results, we obtained the equality in Theo-
rem 2.9 under assumptions that are vastly weaker. This is possible because controlling the
error caused by approximating conditional distributions of Q,P over short time-intervals,
by Gaussians measures with the same mean and variance, is significantly more demanding
in the case of the relative entropy.

2.2. Relation between specific relative entropy and adapted Wasserstein distance. Let
us provide the definition of specific relative entropy and adapted Wasserstein distance.

Definition 2.13. Let H be the relative entropy defined via H(µ||ν) :=
∫

log(dµ/dν) dµ with
µ, ν ∈ P(X). Then the specific relative entropy is defined as the limit

h(Q||P) := lim inf
N=2n

n→∞

1
N

H((Q)N ||(P)N).

With our methodology of defining divergences between processes in the introduction, h
is exactly equal to the limit of cH

N DN
H with cH

N := 1
N . Suppose Q,P are martingale measures

with volatility σ, η respectively. Then some strong conditions [12] obtains explicit formula

h(Q||P) =
1
2
EQ

[∫ 1

0

{
σ(Mt)2

η(Mt)2 − 1 − log
σ(Mt)2

η(Mt)2

}
dt

]
,
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while in general the l.h.s. is the greater one ([31, Satz 1.3]).

Definition 2.14 (Bicausal coupling). Let Q, P be two probability distributions over Ω =
C([0, 1];R). Then a probability measure π ∈ P2(Ω × Ω) is said to be a bicausal coupling
between Q and P if2

(1) π(A ×Ω) = Q(A), π(Ω × B) = P(B) for all A, B ∈ B(Ω).
(2) Causal from Q to P: under π, F X

1 |= F X
t
F Y

t for all t ∈ [0, 1].
(3) Causal from P to Q: under π, F Y

1 |= F Y
t
F X

t for all t ∈ [0, 1].
We denote the set of all bicausal couplings between Q and P by Πbc(Q,P).

The concept of bicausal coupling is a natural extension of coupling between proba-
bility distribution to the framework of stochastic processes, in which the filtration is a
crucial component. See [42, 1] and the references therein for more on this concept. With
this notion, one can define the so-called adapted Wasserstein distance between stochastic
processes, which has been used in stability analysis for various stochastic optimization
problems [51, 50, 9, 1, 5, 14].

Definition 2.15 (AW2). Letting Q,P ∈ P2(Ω) be two distributions of martingales, define

AW2(Q,P)2 := inf
π∈Πbc(Q,P)

Eπ
[
|X1 − Y1|

2
]

With these ingredients we can state a chain of (in)equalities recently derived by Föllmer
in [28]. Our proof method, based on time discretization, differs from that author’s ap-
proach.

Proposition 2.16. Suppose p = 2 and Q ∈ Mc([0, 1]) with σ ∈ L2(λ × Q). Then we have
the (in)equalities

1
2
AW2(Q,W)2 =

1
2
SW2(Q||W) ≤ h(Q||W).

Proof. To prove the first equality, it suffices to show that

AW2(Q,W)2 = EQ

[∫ 1

0
(|σ(t, X)| − 1)2 dt

]
.

Suppose π ∈ Πbc(Q,W). Thanks to the bicausal condition, (Xt,Yt)0≤t≤1 is a martingale
with respect to the filtration

(
F

X,Y
t,t

)
0≤t≤1

under π. Then due to the martingale representation
theorem, there exists two independent Brownian motions W1,W2 (perhaps in an enlarged
probability space) such that

dXt = σ̃
1
t dW1

t + σ̃
2
t dW2

t ,

dYt = η̃
1
t dW1

t + η̃
2
t dW2

t ,

with constraints |σ̃1
t |

2 + |σ̃2
t |

2 = |σ(t, ·)|2, |η̃1
t |

2 + |η̃2
t |

2 = 1 π-a.e. Then by Itô’s isometry,

Eπ
[
|X1 − Y1|

2
]
=Eπ

[∫ 1

0
|σ̃1

t − η̃
1
t |

2 + |σ̃2
t − η̃

2
t |

2 dt
]

=Eπ

[∫ 1

0
|σ(t, X)|2 + 1 − 2σ̃1

t η̃
1
t − 2σ̃2

t η̃
2
t dt

]
≥Eπ

[∫ 1

0
|σ(t, X)|2 + 1 − 2|σ(t, X)| dt

]
= EQ

[∫ 1

0
(|σ(t, X)| − 1)2 dt

]
,

where we use Cauchy-Schwartz in the last inequality. Moreover, it is clear that the equality
is obtained when σ̃1

t = σ(t, ·), η̃1
t = 1, and σ̃2

t = η̃
2
t = 0.

Let us now prove the second inequality involving specific relative entropy invoking the
well-known Talagrand inequality for standard Gaussian distribution [32, Theorem 1.5]

W1(µ,N(x, σ2)) ≤ σ
√

2H(µ||N(x, σ2)) for all x ∈ R, µ ∈ P(R).

2We denote by (X,Y) the canonical process on Ω ×Ω.
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Recall that (Q)N is the projection of Q on the time-grid {k/N : k = 1, . . . ,N}, and Qx1:k−1
k

the conditional distribution of the k-th marginal of (Q)N given the first (k − 1) coordinates.
Then it is straightforward that

DN,2
W

((Q)N ||(W)N) =
∫
RN

N∑
i=1

W2
1(Qx1:i−1

i ,Wx1:i−1
i ) d(Q)N(x)

=

∫
RN

N∑
i=1

W2
1(Qx1:i−1

i ,N(xi−1, 1/N)) d(Q)N(x)

≤
2
N

∫
RN

N∑
i=1

H(Qx1:i−1
i ||N(xi−1, 1/N)) d(Q)N(x) =

2
N

H((Q)N ||(W)N).

Letting N → ∞ and using Theorem 2.9, we get that SW2(Q||W) ≤ 2h(Q||W).
□

3. Optimal win-martingales

Win-martingales appear naturally as (idealized) models for prediction markets (cf. [3]).
A win-martingale is supposed to track the probability of an event happening at time 1.
Hence they are supposed to start with a known value in (0, 1) and terminate distributed as
a Bernoulli random variable.

Optimization problems over the set of win-martingales were proposed by Aldous [2],
and two such problems were solved in [7, 33].

3.1. Specific Wasserstein divergence optimization over win martingales. Given µ, ν ∈
P1(R) in convex order, martingale optimal transport problems in continuous-time often
take the form:

inf / sup
{
EQ

[∫ 1

0
c (t, Xt,Σt) dt

]
: Q ∈ Mc([0, 1]), X0(Q) = µ, X1(Q) = ν

}
, (3.1)

where Mc([0, 1]) denotes the set of continuous martingale laws with an absolutely con-
tinuous quadratic variation, X stands for the canonical process, and Σt = d⟨X⟩t/dt for the
density of its quadratic variation. Martingale optimal transport problem is a variant of
optimal transport in mathematical finance and is an essential tool for robust pricing and
hedging; see e.g. [17, 25, 45, 34].

In this paper, we consider optimization problems among an important subclass of mar-
tingales, the so-called win-martingales. We write Mc

x0
for the set of laws of continuous

martingales with time-index set [0, 1] which have absolutely continuous quadratic varia-
tion and start in x0. The subset Mc

x0,win of win-martingales consist of those martingales
in Mc

x0
which terminate in either 0 or 1. It is clear that the terminal distribution of such

win-martingales is Bernoulli(x0).
Let x0 ∈ (0, 1). In (3.1), taking µ = δx0 , ν = Bernoulli(x0), and c(t, x,Σ) := Σp/2, the

martingale optimal transport problem can be interpreted as a specific Wasserstein diver-
gence optimization problem. We are interested in solving for all3 p > 0:

OPT(p, x0) = inf / sup
{
SWp(Q||Pδ) : Q ∈ Mc

x0,win

}
= inf / sup

{
EQ

[∫ 1

0
Σ

p/2
t dt

]
: Q ∈ Mc

x0,win

}
, (3.2)

whereby we recall that Pδ stands for the constant martingale (see Remark 2.11).
First we observe that the maximization problem is trivial in the case of p > 2 (and the

same for the minimization problem when p ∈ (0, 2)) as the following example reveals.
Therefore when referring to OPT(p, x0), we solve the minimization problem if p > 2 and
the maximization problem if p ∈ (0, 2).

3Except for the case p = 2, which is trivial in that every feasible martingale is optimal.
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Example 3.1. Fix x0 ∈ (0, 1), p > 2, and take an arbitrary P ∈ Mc
x0,win. We construct a

sequence of Pn ∈ Mc
x0,win which is the distribution of

Xn
t =

x0, t ∈ [0, 1 − 1/n]
Xn(t−1+1/n), t ∈ [1 − 1/n, 1],

where (Xt)t∈[0,1] is a continuous time process with distribution P. Then it can be easily seen
by Jensen’s inequality

EP
n
[∫ 1

0
Σ

p/2
t dt

]
= EP

n
[∫ 1

1−1/n
Σ

p/2
t dt

]
≥ np/2−1EP

n
[∫ 1

1−1/n
Σt dt

]p/2

= np/2−1(1 − x0)p/2xp/2
0 ,

and hence

sup
{
EQ

[∫ 1

0
Σ

p/2
t dt

]
: Q ∈ Mc

x0,win

}
= +∞.

3.2. Ansatz for the optimizer. In this subsection, we propose a candidate optimizer, and
verify that it is indeed the unique optimizer in the next section. The key ingredient is a first
order condition for MOT obtained in [7] but that we recall here for the convenience of the
reader:

Lemma 3.2. [First order condition for MOT on the line] Consider the MOT problem (3.1),
and suppose that c is differentiable in its last variable, that Q is an optimizer, and that

t 7→ Lt := Σt∂Σc(t, Xt,Σt) − c(t, Xt,Σt),

is a continuous Q-semimartingale. Then (Lt)t∈[0,1) is a martingale under Q.

Suppose that the optimizers of OPT(p, x0) are Markov diffusions with volatility function
σ : [0, 1] × [0, 1] → R. Applying Lemma 3.2 to our case c(t, Xt,Σt) = Σ

p/2
t , being an

optimizer implies that Σp/2
t = σp(t, Xt) is a martingale, and hence due to Itô’s formula we

get an equality

0 = ∂tσ
p +

1
2
σ2∆σp, (3.3)

which is then equivalent to

0 = ∂tσ̃ +
p − 2
2p
∆σ̃

p
p−2 ,

where we take σ̃ = σp−2. This is precisely the porous media equation, and its explicit
solutions can be found by separation of variables according to [56, Chapter 4]. This obser-
vation motivates us to consider σ(t, x) of the form 1

√
1−t

h(x). The first order condition of
σ(t,Mt)p being martingale yields that

0 = ∂t
hp(x)

(1 − t)p/2 +
1
2

h2(x)
1 − t

∂2
xx

hp(x)
(1 − t)p/2

=
php(x)

2(1 − t)(p+2)/2 +
h2(x)∂2

xxhp(x)
2(1 − t)(p+2)/2 ,

which implies that 0 = php−2(x) + ∂2
xxhp(x). Denoting y(x) := hp(x), we get that an au-

tonomous ODE

0 = y′′(x) + py
p−2

p (x). (3.4)

Solving (3.4) with boundary conditions y(0) = y(1) = 0, we obtain the following result

Proposition 3.3. Fix p ∈ (0,∞), p , 2. With the boundary condition σ(0) = σ(1) = 0,
(3.3) has a nonnegative solution such that for (t, x) ∈ (0, 1] × [0, 1/2]

∂xσ(t, x) = −∂xσ(t, 1 − x) =


1

p
√

1−t

√
p2

1−p −Cp(1 − t)1−pσ2−2p(t, x), if p ∈ (0, 1),

1
p
√

1−t

√
Cp(1 − t)1−pσ2−2p(t, x) − p2

p−1 , if p ∈ (1,∞),
1
√

1−t

√
−2 lnσ(t, x) − ln(1 − t) −C1, if p = 1,
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where Cp is a unique positive constant (in particular C1/2 =
√

2, C1 = log(2π)). Further-

more we have that σ(t, x) ≤ 1
√

1−t

(
|2p−2|Cp

2p2

) p
2p−2 if p , 1, that σ(t, x) ≤ 1

√
1−t

e−C1/2 if p = 1,
and that σ(t, x) = 0 only at x = 0, 1.

Proof. It is sufficient to solve (3.4). Multiplying (3.4) by 2 dy
dx and integrating w.r.t. x, in

the case that p , 1 we obtain a new equation(
dy
dx

)2

= −2
∫

y
p−2

p dy ±C =
2p2

2 − 2p
y

2p−2
p ±C,

Thanks to the boundary condition y(0) = y(1) = 0, we could guess that y(x) = y(1 − x) for
all x ∈ (0, 1) and hence dy

dx

∣∣∣
x=1/2 = 0.

In the case that 0 < p < 1, 2p2

2−2p > 0 and therefore dy
dx = 0 at y0 =

(
(2−2p)C

2p2

) p
2p−2 . Noting

that dx
dy =

1√
2p2

2−2p y(2p−2)/p−C
, we choose C so that

1
2
=

∫ y0

0

1√
2p2

2−2p y(2p−2)/p −C
dy =

y0
√

C

∫ 1

0

1
√

z(2p−2)/p − 1
dz

=

(
2 − 2p

2p2

) p
2p−2

C
1

2p−2

∫ 1

0

1
√

z(2p−2)/p − 1
dz,

where we change the variable z = y/y0. Since
∫ 1

0
1

√
z(2p−2)/p−1

dz is finite, there exists a
unique Cp > 0 so that the above equality holds, and in the case of p = 1/2 one can easily
get C1/2 =

√
2. Therefore, we obtain that

x =
∫ y

0

1√
2p2

2−2pλ
(2p−2)/p −Cp

dλ, y ∈ [0, y0],

which implicitly provides a solution to (3.4) over x ∈ [0, 1/2], and we can extend the
solution symmetrically to [0, 1].

In the case that p > 1, 2p2

2−2p < 0, and by a similar argument the solution is implicitly
given by

x =
∫ y

0

1√
Cp −

2p2

2p−2λ
(2p−2)/p

dλ, y ∈ [0, y0],

where y0 =
( (2p−2)Cp

2p2

) p
2p−2 and Cp is the unique positive solution of

1
2
=

(
2p − 2

2p2

) p
2p−2

C
1

2p−2

∫ 1

0

1
√

1 − z(2p−2)/p
dz.

If p = 1 we have instead(
dy
dx

)2

= −2
∫

y−1 dy −C = −2 ln y −C.

Solving ln y = −C/2, we get y0 = e−C/2, and therefore

x =
∫ y

0

1
√
−2 ln λ −C1

dλ, y ∈ [0, y0],

where C1 = log(2π) is the unique positive solution of

1
2
=

∫ e−C/2

0

1√
−2 ln y −C

dy =
e−C/2

√
2

∫ 1

0

1√
− ln y

dy.

In the end, noticing that σ(t, x) = 1
√

1−t
y1/p(x) and ∂xσ(t, x) = 1

p
√

1−t
y(x)(1−p)/p∂xy(x),

we obtain the results by direct computation.
□
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So for every p > 0, p , 2, we have a candidate win martingale

dM̄s,x
t = σ̄(t, M̄s,x

t ) dBt, (3.5)
Ms = x,

where σ̄ is the unique solution in Proposition 3.3 for the given parameter p. Applying [40,
Theorem 5.5.7] to the time-scaled martingale M̄0,x

1−e−s with s ∈ [0,∞), the above SDE admits
a unique weak solution on [0, 1). Observe that, for y ∈ {0, 1}, if Ms,x

ℓ
= y then also Ms,x

t = y
for all t ∈ (ℓ, 1) since σ̄(0) = σ̄(1) = 0. In particular then we have 0 ≤ inft∈[s,1) M̄s,x

t ≤

supt∈[s,1) M̄s,x
t ≤ 1 a.s. Hence the martingale is bounded in Lp for every p and in particular

M̄x,s
1 := limt→1 M̄x,s

t exists a.s. and in L2. Thus M̄x,s
1 ∈ [0, 1] and E[⟨M̄x,s⟩1] < ∞, hence

also

E

[∫ 1

s
σ̄2(t, M̄s,x

t ) dt
]
< ∞,

and in particular
∫ 1

s σ̄
2(t, M̄s,x

t ) dt < ∞ a.s. We conclude that the event {M̄s,x
1 ∈ (0, 1)} is

negligible since on this event
∫ 1

s σ̄
2(t, M̄s,x

t ) dt = +∞.
Let us also take Lt := σ̄p(t, M̄s,x

t ). According to (3.3), Lt is a local martingale. Due to
Proposition 3.3, Lt is uniformly bounded over [0, 1 − ε) and hence is a true martingale for
any ε > 0.

We summarize the discussion above:

Lemma 3.4. M̄s,x is well-defined on the whole interval [s, 1], it is a continuous martingale
bounded in every Lp, and it satisfies M̄s,x

1 ∈ {0, 1} a.s. (implying that M̄s,x
1 ∼ Bernoulli(x)).

Furthermore, the process Lt := σ̄p(t, M̄s,x
t ) is also a martingale on [0, 1).

Remark 3.5. For p ∈ (0, 1), given any ε > 0, thanks to Proposition 3.3, x 7→ σ̄(t, x) is
uniformly Lipschitz for t ∈ [0, 1 − ε). Therefore, we have a strong solution to (3.5).

Let us discuss some explicit solutions, end how these compare to each other. As we

discuss in detail in Section 5, one can verify that σ̄(t, x) =
√

2
1−t x(1 − x) satisfies (3.3) and

Proposition 3.3 with p = 1
2 , which gives rise to the SDE

dM̄t =

√
2

1 − t
M̄t(1 − M̄t) dBt.

In the case of p = 1, the volatility function σ̃ given by Proposition 3.3 yields a win mar-
tingale M̃, which is a particular case of a so-called Bass martingale [8, 10]. Indeed, these
authors consider the problem of maximizing E[

∫ 1
0 σt dt] over martingales satisfying initial

and terminal distributional constraints. Explicitly, M̃t = Φ1−t(Bt) with Φ1−t the cdf of the
centred Gaussian with variance 1 − t.

At the end of this section, we justify a claim in the introduction: At each moment of
time t ∈ (0, 1), the distribution of the Bass martingale M̃t, is more spread out in space than
the distribution of M̄t. Actually, we can say more. Recalling the Aldous martingale M̂
defined in [7] through the SDE

dM̂t = σ̂(t, M̂t) dBt =
sin(πM̂t)

π
√

1 − t
dBt,

we prove that

Law(M̂t) < Law(M̄t) < Law(M̃t) in the convex order. (3.6)

The Aldous martingale is characterized by the fact that ∂t(log σ̂) + 1
2 σ̂

2∆(log σ̂) = 0, and
this can be obtained as the formal limit of (3.3) as p→ 0. Hence it can be considered as a
limiting optimal win-martingale in our context. We proceed to justify (3.6).

A few computation yields that the volatility function of M̂ is bounded from above by

that of M̄, i.e., sin(πx)
π
√

1−t
<

√
2

1−t x(1 − x) over (t, x) ∈ [0, 1) × (0, 1). Then thanks to [37,
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Theorem 2.1], the first inequality follows. In the following lemma, we prove the second
inequality:

Lemma 3.6. For (t, x) ∈ [0, 1) × (0, 1), it holds that

σ̄(t, x) < σ̃(t, x).

It follows that Law(M̄0,x0
t ) is dominated by Law(M̃0,x0

t ) in the convex order for any x0 ∈

(0, 1), t ∈ [0, 1).

Proof. Recall that σ̄(t, x) = 1
√

1−t
h̄(x) and σ̃(t, x) = 1

√
1−t

h̃(x) for some functions h̄, h̃ :

[0, 1] → R+. It suffices to show that h̄(x) ≤ h̃(x) for x ∈ [0, 1]. By Proposition 3.3, we
obtain derivatives of h̄, h̃

h̄′(x) = 2
√

1/2 −
√

2h̄(x) and h̃′(x) =
√
−2 log(h̃(x)) − log(2π).

Equivalently, consider x̄ and x̃ as inverse functions of h̄ and h̃,

dx̄
dh
=

1√
2 − 4

√
2h
, h ∈

(
0,

1

2
√

2

]
and

dx̃
dh
=

1√
−2 log(h) − log(2π)

, h ∈
(
0,

1
√

2π

]
.

Notice that 1
2
√

2
< 1
√

2π
, and thus the domain of x̄ is contained in that of x̃. Therefore

in order to show h̄(x) < h̃(x) for fixed x ∈ (0, 1), it is equivalent to prove that x̄(h) > x̃(h)

for fixed h ∈
(
0, 1

2
√

2

]
. Given the explicit derivatives above, it can be easily verified that

dx̄
dh >

dx̃
dh for h ∈

(
0, 1

2
√

2

]
. Since x̄(0) = x̃(0) = 0, we conclude x̄(h) > x̃(h), which together

with [37, Theorem 2.1] completes the proof.
□

4. Verification of optimality

In this section, we verify that the candidate martingale (M̄0,x
t )t∈[0,1] is the optimizer for

OPT(p, x) in (3.2) (maximizer for p ∈ (0, 2) and minimizer for p > 2). Associated to the
martingale M̄ we define its cost

v̄(s, x) := E
[∫ 1

s
σ̄p(t, M̄s,x

t ) dt
]
= (1 − s)σ̄p(s, x), (4.1)

where the second equality is due to Lemma 3.4 and Fubini’s theorem.

Lemma 4.1. For p ∈ (0, 2) (p ∈ (2,∞) respectively), σ̄(t, x) is the unique maximizer
(minimizer respectively) of the function

[0,∞) ∋ σ 7→
1
2
σ2∂2

xxv̄(t, x) + σp.

Proof. We only prove the result for the case p ∈ (0, 2), and the argument for p > 2 is
similar. Due to (3.4) and σ̄p(t, x) = 1

(1−t)p/2 y(x), it can be seen that

∂2
xxv̄(t, x) =

(1 − t)
(1 − t)p/2 ∂

2
xxy(x) = −

p
(1 − t)(p−2)/2 y

p−2
p (x) < 0.

As F(σ) := 1
2σ

2∂2
xxv̄(t, x)+σp is regular, local maximums are obtained at either boundaries

0,∞ or stationary points. Then the first order condition yields that

0 = σ∂2
xxv̄(t, x) + pσp−1.

Solving the equality above, we get the stationary pointσ =
(
−∂2

xx v̄(t,x)
p

)1/(p−2)
= 1
√

1−t
y1/p(x) =

σ̄(t, x). Noticing that F(σ̄(t, x)) = (1 − p/2)(1 − t)−p/2y(x) > 0, lim
σ→0

F(σ) = 0, lim
σ→∞

F(σ) =

−∞, F(σ) obtains its unique maximizer at σ = σ̄(t, x).
□



18 JULIO BACKHOFF-VERAGUAS, XIN ZHANG

With the result above, we can now verify that the function v̄ satisfies the HJB equation
of optimization problem (3.2) strictly before time 1.

Lemma 4.2. On [0, 1) × [0, 1], we have that for p ∈ (0, 2),

∂tv̄(t, x) + sup
σ≥0

{
1
2
σ2 ∂2

xxv̄(t, x) + σp
}
= 0,

and in the case that p ∈ (2,∞),

∂tv̄(t, x) + inf
σ≥0

{
1
2
σ2 ∂2

xxv̄(t, x) + σp
}
= 0.

Proof. By (4.1) and the Markovian property of M̄, we have that

t 7→ v̄(t, M̄0,x
t ) +

∫ t

0
σ̄p(u, M̄0,x

u ) du

is a martingale. Thanks to Itô’s formula, this means that

∂tv̄(t, z) +
1
2
σ̄2(t, z)∂zzv̄(t, z) + σ̄p(t, z) = 0.

But then by Lemma 4.1 the l.h.s. above is equal to ∂tv̄(t, x) + supσ≥0

{
1
2σ

2 ∂2
xxv̄(t, x) + σp

}
when p ∈ (0, 2), and equal to ∂tv̄(t, x) + infσ≥0

{
1
2σ

2 ∂2
xxv̄(t, x) + σp

}
when p ∈ (2,∞). □

Before implementing the verification argument. We would like to mention that the proof
for p > 2 is subtler than for p < 2.

Let us introduce the value function of the minimization problem

v(t, x) := inf
{
E

[∫ 1

t
Σ

p/2
u du

]
: Q ∈ Mc

t,x,win

}
,

where Mc
t,x,win denotes the set of distributions of continuous win-martingales over time

[t, 1] that starts with x at time t. Similarly as in Example 3.1, by Jensen’s inequality we
have v(t, x)→ ∞ as t → 1 for x ∈ (0, 1). Therefore the terminal condition of value function
v(t, x) at t = 1 is irregular. It implies that the natural terminal condition for its HJB equation

0 = ∂tv(t, x) + inf
σ≥0

{
1
2
σ2∂2

xxv(t, x) + σp
}

is given by  0 = v(1, x) x ∈ {0, 1},
∞ = v(1, x) x ∈ (0, 1).

Although it is degenerate parabolic, little is known, to the authors’ knowledge, due to the
irregular boundary condition.

To carry out the verification argument, we want to show that for any feasible martingale
(Mt)t∈[0,1] with volatility (σt)t∈[0,1], the process v̄(t,Mt)+

∫ 1
0 σ

p
t ds is a sub-martingale. Since

∂xv̄(t, x) is uniformly bounded for t ∈ [0, 1 − ε], it is a sub-martingale before time 1 as
shown in Lemma 4.3. So it reduces to the question whether E[v̄(t,Mt)] → 0 as t → 1 for
all admissible martingales M. The answer is affirmative due to the estimate in Lemma 4.4.

In the rest of this section, we first provide two technical lemmas for the case p > 2, and
then prove the main result in both cases.

Lemma 4.3. Fix p > 2. Let M be feasible for our minimization problem (started from x0
at time 0), and denote by σt the square root of the density of its quadratic variation. Then
the process

t 7→ RM
t := v̄(t,Mt) +

∫ t

0
σ

p
s ds

is a submartingale on [0, 1).



SPECIFIC WASSERSTEIN DIVERGENCE BETWEEN CONTINUOUS MARTINGALES 19

Proof. By Lemma 4.2 we have

∂tv̄(t,Mt) +
1
2
σ2

t ∂
2
xxv̄(t,Mt) + σ

p
t ≥ 0,

from which, thanks to Itô formula, the local submartingale property of RM follows. The
local martingale part of RM

t is given by the stochastic integration∫ t

0
∂xv̄(s,Ms)σs dBs.

Thanks to Proposition 3.3, ∂xv̄(s,Ms) is uniformly bounded over [0, t] for t < 1 and hence
∂xv̄(s,Ms)σs is square-integrable over [0, t]. Therefore the stochastic integral is indeed a
martingale and it concludes the result. □

Lemma 4.4. Fix p > 2. Let us introduce

ṽ(t, x) := (1 − t)1−p/2 ((1 − x)px + (1 − x)xp) .

Then there exist two positive constants c1, c2 such that

c1ṽ(t, x) ≥ v̄(t, x) ≥ v(t, x) ≥ c2ṽ(t, x), ∀ (t, x) ∈ [0, 1) × [0, 1]. (4.2)

Proof. Given any feasible martingale M starting from x at time t, we have by Jensen’s
inequality that

E

[∫ 1

t
σ

p
s ds

]
≥ (1 − t)1−p/2E

(∫ 1

t
σ2

s ds
)p/2 = (1 − t)1−p/2E

[
(⟨M⟩1 − ⟨M⟩t)p/2

]
.

Thanks to Doob’s martingale inequality and BDG inequality, the last term on the right is
bounded from below by

c2(1 − t)1−p/2E[(M1 − Mt)p] = c2(1 − t)1−p/2 ((1 − x)xp + x(1 − x)p) ,

where c2 is some positive constant. Therefore due to the definition of value function, we
obtain the last inequality of (4.2).

It remains to show that

sup
(t,x)∈[0,1)×(0,1)

v̄(t, x)
ṽ(t, x)

< +∞.

Thanks to Proposition 3.3 and (4.1), v̄(t, x) = (1 − t)1−p/2y(x) , where y(x) is a solution to
(3.4) that given implicitly in Proposition 3.3. According to L’ Hospital rule,

lim
x→0

v̄(t, x)
ṽ(t, x)

= lim
x→0

y′(x)
((1 − x)px + (1 − x)xp)′

=
√

Cp.

By the same token, lim
x→1

v̄(t,x)
ṽ(t,x) =

√
Cp, and hence v̄(t,x)

ṽ(t,x) is uniformly bounded over [0, 1]. □

We can now carry on the verification argument, showing the optimality of M̄:

Theorem 4.5. For p ∈ (0, 2) ∪ (2,∞), the unique optimizer of (3.2) is M̄.

Proof. Step 1: p ∈ (0, 2). Given any feasible martingale M (started from x0 at time 0),
denote by σt the square root of the density of its quadratic variation. Due to Lemma 4.2,

∂tv̄(t,Mt) +
1
2
σ2

t ∂
2
xxv̄(t,Mt) + σ

p
t ≤ 0,

and therefore t 7→ v̄(t,Mt) +
∫ t

0 σ
p
s ds is a local super-martingale. Since it is also nonnega-

tive, thanks to Fatou’s lemma is a true super-martingale. Therefore we conclude that

E

[∫ 1

0
σ

p
t ds

]
= E

[
v̄(1,M1) +

∫ 1

0
σ

p
t ds

]
≤ v̄(0, x0).
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Step 2: p ∈ (2,∞). Let M be any feasible martingale that starts from x0 at time 0 and
E[

∫ 1
0 σ

p
t dt] < +∞. Invoking Lemma 4.4, we get that

E

[∫ 1

0
σ

p
s ds

]
≥ E

[∫ t

0
σ

p
s ds

]
+ E[v(t,Mt)]

≥ E

[∫ t

0
σ

p
s ds

]
+ c2E[ṽ(t,Mt)],

which indicates that lim
t→1
E[v̄(t,Mt)] = lim

t→1
E[ṽ(t,Mt)] = 0. According to Lemma 4.3, for

any t < 1 we have

E

[
v̄(t,Mt) +

∫ t

0
σ

p
s ds

]
≥ v̄(0, x0) = E

[∫ 1

0
σ̄p(s, M̄0,x0

s ) ds
]
,

and hence we conclude the result by letting t → 1 .

Step 3: Uniqueness. We close this theorem by showing the uniqueness of optimizers to
Problem (3.2): As the previous proofs show, the only way for σ to be optimal is by making

∂tv̄(t,Mt) +
1
2
{σ2

t ∂
2
xxv̄(t,Mt) + σ

p
t }

be equal to zero. By Lemma 4.1 this is only achieved by σ̄.
□

Remark 4.6. In the case of p ∈ (0, 2), we observe that the optimal win martingale (M̄t,x
s )s∈[t,1]

is also the unique solution of the maximization problem

w(t, x) := sup
{
EQ

[∫ τ∧1

t
Σ

p/2
u du

]
: Q ∈ Mc

t,x, τ := inf{u ≥ t : Xu < (0, 1)}
}
,

where Mc
t,x denotes the set of laws of continuous martingale over time [t, 1] which have

absolutely continuous quadratic variation and start at x at time t. Compared with (3.2), this
problem relaxes the constraint of the terminal distribution being Bernoulli(x), by allowing
early termination before time 1 in case the martingale tries to leave the interval [0, 1], and
otherwise permitting an arbitrary distribution at time 1.

Indeed, by a standard argument, it can be verified that the value function w : [0, 1] ×
[0, 1]→ R+ is the unique bounded viscosity solution of its corresponding HJB equation

0 = ∂tw(t, x) + sup
σ≥0

{
1
2
σ2∂2

xxw(t, x) + σp
}
,

0 = w(t, 0) = w(t, 1) = w(1, x), (t, x) ∈ [0, 1] × [0, 1],

which is solved by the value of the optimal win martingale v̄ : [0, 1] × [0, 1] → R+.
Therefore the same argument as in Theorem 4.5 completes our claim.

Actually, this maximization problem is an analogue of [33], i.e., we take σp
t as the

objective function instead of the cost log(σ2
t ) + 1 considered in [33]. Moreover given the

logarithm as objective function, results of [33] imply that allowing early termination τ
makes the optimization problem different. Precisely, the maximizer of

sup
{
EQ

[∫ τ∧1

0
log(σ2

t ) + 1 dt
]

: Q ∈ Mc
x,win, τ := inf{s ≥ t : Xs < (0, 1)}

}
is different from that of

sup
{
EQ

[∫ 1

0
log(σ2

t ) + 1 dt
]

: Q ∈ Mc
x,win.

}
In contrast, as justified above, when the objective function is σp

t , our win martingale
(M̄t,x

s )s∈[t,1] is optimal no matter if possible early termination is allowed or not.
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The verification argument of this section follows the lines of the corresponding argu-
ment in [7]. We stress here some differences: Due to the different choice of cost function-
als, the candidate value function ū in [7] tends to ∞ near the boundary x = 0, 1 and in our
framework (p > 2) v̄ explodes near terminal time t = 1. Therefore in order to finish the
verification argument, [7] estimated E[ū(τε,Mτε )] with τε = inf{t ≥ 0 : Mt < (ε, 1 − ε)}
uniformly for all admissible martingales M, while we make use of a uniform estimate of
E[v̄(t,M)] for t → 1.

5. The intriguing case of 4√
Σ

In this section, we discuss an intriguing case when p = 1
2 . Recall that σ(t, x) =√

2
1−t x(1 − x) in the case p = 1

2 , and hence according to Theorem 4.5 the SDEdMt =

√
2

1−t Mt(1 − Mt) dBt,

M0 = x0,

is the unique maximizer of

sup
{
EQ

[∫ 1

0
Σ

1/4
t dt

]
: Q ∈ Mc

x0,win

}
.

Remark 5.1. Applying Feller’s test as in [7, Lemma 5.2], it can be verified that Mt stays
in the interior (0, 1) for t < 1, and hits the boundary at terminal time 1. Together with
Remark 4.6, it gives a full picture of the maximization problem with possible early termi-
nation in the case of p = 1/2.

Now we scale time so that instead of [0, 1] we work on [0,∞). Defining Yt := M1−e−t/2

we find that

dYt = Yt(1 − Yt) dWt, (5.1)

where W is a Brownian motion on [0,∞). In the following, we will give two interpretations
of (Yt) through the lenses of the Schrödinger problem and filtering theory.

5.1. Connection with the Schrödinger problem. Let G(x) := log(x/(1 − x)) and define
Ct := G(Yt) with Y as above. Then according to Itô’s formula, (Ct) solves the SDE

dCt =
1
2

tanh
(Ct

2

)
dt + dWt,

and the drift process 1
2 tanh

(
Ct
2

)
= 1

2 (2Yt−1) is a martingale. The latter is the first order con-
dition of the Schrödinger problem of entropy minimization w.r.t. Wiener measure subject to
fixed initial and terminal distributions; see [4, Proposition 3.2] with the potential function
W = 0. We can in fact justify that the law of C is precisely the law of Brownian motion
conditioned to WT ∼ ±T/2 as T → ∞. This is, to the best of our knowledge, the first
time that a natural connection between continuous-time MOT and the Schrödinger prob-
lem appears. By contrast, the works [35] in continuous-time, and [48, 47] in discrete-time,
also deal with martingale transport and so-called Schrödinger bridges, but the connection
between the two subjects is forced by design.

Lemma 5.2. Let (Ct)t∈[0,∞) be the unique strong solution with C0 = c of the SDE

dCt =
1
2

tanh(Ct/2) dt + dWt,

where W is a Brownian motion started likewise at c. Then for t ∈ (0,∞) we have

dLaw(Ct)
dLaw(Wt)

(z) =
cosh(z/2)
cosh(c/2)

e−t/8, z ∈ R.
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Proof. We denote by W the canonical process and by P the probability measure so that W
is a Brownian motion started at c. Let

ZT := exp
{∫ T

0

1
2

tanh(Ws/2) dWs −
1
2

∫ T

0

1
4

tanh2(Ws/2) ds
}
.

Since (log cosh)′ = tanh, and (tanh)′ = cosh−2, we also have by Ito’s formula

ZT = exp
{

log cosh(WT /2) − log cosh(W0/2) −
1
8

∫ T

0
[tanh2(Ws/2) + cosh−2(Ws/2)] ds

}
=

cosh(WT /2)
cosh(c/2)

e−T/8,

where we used that tanh2 + cosh−2 = 1. By Girsanov theorem and the uniqueness of the
SDE for C, we have that the law of (Ct)t∈[0,T ] is equal to the law of (Wt)t∈[0,T ] under QT ,
where dQT := ZT dP. □

Remark 5.3. It follows from this lemma that, if c = 0, then

dLaw(Ct)
dz

=
1

2
√

2πt

{
exp

(
−

(z − t/2)2

2t

)
+ exp

(
−

(z + t/2)2

2t

)}
,

i.e. that C has the same marginal laws as the simple mixture of two Brownian motions with
drifts ±1/2. This connection had already been observed in [46]. We can readily get the
explicit density of Y (and M) from this.

For simplicity of presentation we assume here that C0 := c = 0, corresponding to the
case x0 = 1/2. Fixing t ∈ (0,∞) and T > t, we considerW0

T,±T/2 the law of the Brownian
bridge starting at 0 at time 0 and finishing at ±T/2 at time T with equal probabilities.
On [0,T−) this law is absolutely continuous w.r.t. Wiener measure started at 0, which we
have denoted W0. In fact, if ZT

t is the density of W0
T,±T/2 w.r.t. W0 restricted to Ft, i.e.

ZT
t =

dW0
T,±T/2

dW0

∣∣∣
Ft

, then ZT
t = f T (t, Xt) where after a few calculations we find

f T (t, x) :=

√
T

T − t
· exp−

x2
2(T−t) · exp−

T2
8 {

1
T−t−

1
T } · cosh

(
xT

2(T − t)

)
. (5.2)

Indeed, one can justify that

f T (t, x) =
(e−(x−T/2)2/2(T−t) + e−(x+T/2)2/2(T−t))/

√
2π(T − t)

(e−(T/2)2/(2T ) + e−(T/2)2/(2T ))/
√

2πT
,

from which (5.2) follows. Hence, if we send T → ∞, we obtain

ZT
t → cosh(Xt/2) exp−t/8 .

According to Lemma 5.2 this is precisely the density of Ct w.r.t. Xt(W0). In words:

The law of Ct is the limit, as T → ∞, of the law at time t of Brownian motion condi-
tioned to be ±T/2 at time T .

In fact more is true. We first compute

∂x log( f T (s, x)) =
T

2(T − s)
· tanh

(
xT

2(T − s)

)
−

x
T − s

,

and remember that s 7→ ∂x log( f T (s, Xs)) is the drift of X under W0
T,±T/2. Indeed, since

Zt = f T (t, Xt) is a martingale underW0, we have

dZt = ∂x f T (t, Xt) dXt = Zt ∂x log( f T (t, Xt)) dXt,

and hence Zt = exp (Mt − ⟨M⟩t) where Mt :=
∫ t

0 ∂x ln f T (s, Xs) dXs. Therefore by Gir-

sanov’s theorem Xt − ⟨X,M⟩t = Xt −
∫ t

0 ∂x log( f T (s, Xs)) ds is a Brownian motion under
W0

T,±T/2, i.e., the drift of X is given by s 7→ ∂x log( f T (s, Xs)). We notice that this drift
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converges to s 7→ 1
2 tanh(Xs/2) as T → ∞, which is precisely the drift of X under the law

of C. In this sense we can say, as already mentioned in the introduction, that

On every fixed interval [0, t], the law ofW0
T,±T/2 restricted to [0, t] converges as T → ∞

to the law of C restricted to [0, t].

More precisely, we prove the following:

Theorem 5.4. Fix t > 0. Let us denote the law of C and W0
T,±T/2 restricted to [0, t] by Q

and PT respectively. Then we have H(Q||PT )→ 0 as T → ∞. As a corollary, PT converges
to Q in total variation.

Proof. According to the discussion above, Q and PT are distributions of SDEs

dXs =
1
2

tanh(Xs/2) ds + dWQs and dXs = ∂x log( f T (s, Xs)) ds + dWP
T

s ,

where WQ, WP
T

are Brownian motions under Q and PT respectively. Then according to
Girsanov’s theorem,

dQ
dPT = E

(∫ ·

0

(
1
2

tanh(Xu/2) − ∂x log( f T (u, Xu))
)

dWP
T

u

)
,

and hence

H(Q||PT ) =
1
2
EQ

∫ t

0

(
1
2

tanh(Xu/2) − ∂x log( f T (u, Xu))
)2

du


=

1
2
EQ

∫ t

0

(
1
2

tanh(Xu/2) −
T

2(T − u)
· tanh

(
XuT

2(T − u)

)
+

Xu

T − u

)2

du

 .
Noting that tanh is bounded, (Xu) is square integrable under Q, so an application of the
dominated convergence theorem completes the first claim. The second claim follows by
Pinsker’s inequality. □

Now we are ready to explain the connection to the classical Schödinger problem. A
simple version of the latter is as follows: Given ν ∈ P(R), the Schödinger problem looks
for minimizers of

inf
{
H(Q||W0) : Q0 = δ0,QT = ν

}
.

Recall the tensorization property of relative entropy H, i.e., H(Q||W0) = H(ν||N(0,T )) +∫
H(Qx

T ||W
0
T,x) ν(dx) where Qx

T is the disintegration w.r.t. the time T marginal and W0
T,x

is the conditioning law of Brownian motion that ends up with x at time T . Hence in the
case that H(ν||N(0,T )) < +∞, the minimizer of corresponding Schödinger problem is
uniquely given by Q(A) :=

∫
W0

T,x(A) ν(dx) for A ∈ B(Ω). Therefore the conditioning
of Brownian motion is akin to the classical Schrödinger problem, and this points to an
intriguing connection between martingale optimal transport and Schrödinger problems.
Indeed taking ν = 1

2 (δ−T/2+δT/2) and νε = ν∗N(0, ε), thenW0
T,±T/2 is the limit of solutions

Qε(A) :=
∫
W0

T,x(A) νε(dx) as ε→ 0. Another way to stress this is to recall that the drift of
C, namely 1

2 tanh(Ct/2) = 2Yt−1
2 , is a martingale, and recalling that this would be precisely

the first order optimality condition for the optimizer of the Schrödinger problem.

5.2. Y and a filtering problem. Recall that Y fulfills

dYt = Yt(1 − Yt)dWt,

for t ∈ [0,∞) and Y0 = x0 ∈ (0, 1). In fact Y can be interpreted from the lens of filtering
theory as we now explain.

LetW denote Wiener measure, i.e. the law of Brownian motion, while W̄ is the law of
Brownian motion with drift 1. Now denote P(du, dω) = (1 − x0)δ0(du)W + x0δ1(du)W̄
on {0, 1} × C([0,∞);R). In other words this is the law of a process that can be either
Brownian motion without drift or with drift equal to 1, depending on an independent
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Bernoulli(x0) random variable. Finally denote by Xt(u, ω) = ωt the canonical process
on {0, 1} ×C([0,∞);R), and (Ft) its filtration. Then the stochastic process

Pt := P(u = 1|Ft)

satisfies the SDE of Y , i.e. is equal in law to Y . Indeed, Girsanov theorem shows that

Pt =
x0dW̄|Ft

x0dW̄|Ft + (1 − x0)dW|Ft

=
x0eXt−t/2

x0eXt−t/2 + (1 − x0)
.

So Pt = f (Xt − t/2) with f (x) = x0ex

x0ex+(1−x0) . A few computations show that f ′ = f − f 2 and
f ′′ = f − 3 f 2 + 2 f 3. Thus

dPt = (Pt − P2
t )(dXt − dt/2) +

1
2

(Pt − 3P2
t + 2P3

t )dt

= (Pt − P2
t )(Ptdt + dBX

t − dt/2) +
1
2

(Pt − 3P2
t + 2P3

t )dt

= Pt(1 − Pt)dBX
t +

1
2

(2P2
t − 2P3

t − Pt + P2
t + Pt − 3P2

t + 2P3
t )dt

= Pt(1 − Pt)dBX
t ,

where for the second equality we used that dXt = Ptdt + dBX
t , where BX is some Brownian

motion adapted to (Ft) under P. Indeed, this follows from the fact that E[Xt − Xr |Fr] =
(t − r)Pr = E[

∫ t
r Ps ds|Fr], valid for r ≤ t, which shows that Xt −

∫ t
0 Psds is a martingale in

the aforementioned filtration.
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[18] M. Beiglböck and N. Juillet. Shadow couplings. Trans. Amer. Math. Soc., 374(7):4973–5002, 2021.
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[29] H. Föllmer and I. Penner. Convex risk measures and the dynamics of their penalty functions. Statistics &

Risk Modeling, 24(1):61–96, 2006.
[30] A. Galichon, P. Henry-Labordère, and N. Touzi. A stochastic control approach to no-arbitrage bounds given

marginals, with an application to lookback options. Ann. Appl. Probab., 24(1):312–336, 2014.
[31] N. Gantert. Einige grosse Abweichungen der Brownschen Bewegung. Bonner mathematische Schriften.

Mathematischen Institut der Universität, 1991.
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