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The twist-and-turn dynamics of spin squeezing results from the interplay of the (nonlinear) one-
axis-twisting- and the (linear) transverse-field turning term in the underlying Hamiltonian, both
with constant (time-independent) respective coupling strenghts. Using the methods of shortcuts
to adiabaticity (STA) and their recently proposed enhanced version (eSTA), we demonstrate here
that dynamics of this type can be utilized for a fast and robust preparation of spin-squeezed states
in internal bosonic Josephson junctions – condensates of cold bosonic atoms in two different inter-
nal (hyperfine) states (single-boson modes). Assuming that the initial state of this system is the
coherent spin state with all the bosons in the equal superposition of the two single-boson modes
and that the nonlinear-coupling strength in this system remains constant, we set out to determine
the time-dependence of the linear-coupling strength using the STA and eSTA approaches. We then
quantitatively characterize the modified twist-and-turn dynamics in this system by evaluating the
coherent spin-squeezing- and number-squeezing parameters, as well as the fidelity of the target spin-
squeezed states. In this manner, we show that the eSTA approach allows for a particularly robust
experimental realization of strongly spin-squeezed states in this system, consistently outperforming
its adiabatic and STA-based counterparts, even for systems with several hundred particles.

I. INTRODUCTION

Recent years have witnessed tantalizing progress in
the realm of quantum-state engineering [1–17]. Be-
ing highly interwoven with the constant improvement of
methods for manipulation and control of quantum sys-
tems, this steady progress remains of pivotal importance
for further development of quantum-enhanced technolo-
gies in various physical platforms [18]. In particular,
prompted by the anticipated quantum-technology appli-
cations of highly entangled multiqubit states a large va-
riety of schemes for fast (compared to the relevant coher-
ence time of the underlying physical system) and robust
(against various system-specific sources of decoherence
and noise) generation of such states have been proposed
in recent years, especially for W [1–7], Greenberger-
Horne-Zeilinger (GHZ) [8–13], and Dicke [16, 17] states.
Another important example of highly-entangled quan-
tum many-body states of interest for quantum-enhanced
metrology is furnished by spin-squeezed states [20].

Proposed in the seminal work of Kitagawa and
Ueda [20], the concept of spin squeezing – i.e., that of
redistributing the spin fluctuations between two orthog-
onal directions – was demonstrated to allow an enhance-
ment in the precision of atom interferometers [21, 22].
Much like their photonic counterparts in optical interfer-
ometry [23], spin-squeezed states provide phase sensitivi-
ties beyond the standard quantum limit (SQL) for phase

uncertainty ∆ΘSQL = 1/
√
N , the latter being charac-

teristic of probes involving a finite number N of uncor-
related (or classically correlated) particles [24]. Owing
to the fact that they allow one to overcome this classi-
cal bound, spin-squeezed states established themselves as
a valuable resource for quantum metrology [25]. Subse-
quently, the important link between spin squeezing and

entanglement – the ingredient that spin-squeezed states
share with other types of states defying the SQL (for in-
stance, GHZ states [26]) – was also established [27, 28].

In their original work, Kitagawa and Ueda investi-
gated the preparation of spin-squeezed states based on
one-axis twisting (OAT) and two-axis-countertwisting
(2ACT) Hamiltonians, where “twisting” refers to terms
that are quadratic in the collective spin operators [20].
While both of these Hamiltonians permit the generation
of spin-squeezed states, they show qualitatively different
behavior. The OAT Hamiltonian does not saturate the
fundamental quantum-metrological bound of sensitivity
and leads to the maximal squeezing at a time that scales
as J1/µ, where J is the size of the collective spin and
µ > 0. In contrast to its OAT counterpart, the 2ACT
Hamiltonian does saturate the fundamental quantum-
mechanical limit on sensitivity and permits the gener-
ation of maximal spin squeezing in a time that is loga-
rithmic in the collective-spin size. Subsequently, a model
that in addition to the (nonlinear) OAT term involves
a linear term describing a transverse field was also in-
vestigated by Micheli et al. [29]. For this type of spin-
squeezing Hamiltonian, which gives rise to what became
known as twist-and-turn (TNT) dynamics [30, 31], they
demonstrated that it allows the preparation of highly en-
tangled metrologically-relevant states (cat-like states) at
times that are – similar to the 2ACT case – logarithmic
in the size of the collective spin [29]. Finally, in a study
complementary to that of Ref. [29], it was demonstrated
that this type of dynamics is optimal as far as the gener-
ation of spin squeezing is concerned [32], at least in the
absence of decoherence and losses.

The most natural physical setting in which to demon-
strate the TNT dynamics of spin squeezing and harness
the latter for generating strongly spin-squeezed states is
provided by Bose-Einstein condensates (BECs) of cold
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neutral atoms. Indeed, the generation of spin-squeezed
states was demonstrated more than a decade ago in
proof-of-principle experiments with interacting cold 87Rb
atoms in bosonic Josephson junctions (BJJs) [35–38];
these systems, where bosons within a condensate can be
restricted to occupy only two single-atom states (modes),
come in two varieties: internal BJJs [where the two rel-
evant modes correspond to two different internal (hy-
perfine) atomic states, with a linear, Rabi-type cou-
pling between them] and external ones (in which the
two modes correspond to bosons trapped in two spa-
tially separated wells of an external double-well poten-
tial) [39]. The TNT-type dynamics was experimentally
investigated in an internal BJJ, assuming a constant
linear-coupling strength and an abrupt change (i.e. a
quench) of a nonlinear-coupling strength from zero to a
finite value [40]. Finally, an alternative approach for gen-
erating spin squeezing in internal BJJs has quite recently
been theoretically proposed [41], which makes use of the
methods of shortcuts to adiabaticity (STA) [43–47] and
their recently proposed enhanced version (eSTA) [60–62].

STA are a family of analytical control techniques that
mimic adiabatic evolutions, but are typically much faster
than their adiabatic counterparts [43–47]. Generally
speaking, analytical control approaches are highly de-
sirable because they are usually rather simple, in ad-
dition to providing greater physical insight and allow-
ing for superior stability under various experimental im-
perfections [48, 49]. STA have heretofore been utilized
in many different contexts, e.g. [50–53], including the
proposals for the generation of spin-squeezed states in
BJJs [54, 55]; besides, their use was also proposed for
engineering other types of entangled states (such as, e.g.,
NOON states [57, 58]). They proved to yield results
comparable to those originating from optimal-control
schemes [32, 59].

One typical limitation of STA methods is that they
often require non-trivial physical implementation (e.g.
counterdiabatic driving [45]); likewise, some STA tech-
niques can only be straightforwardly applied to small or
highly symmetric systems (e.g. methods based on Lewis-
Riesenfeld invariants) [45]. This served as the primary
motivation behind the development of Enhanced Short-
cuts to Adiabaticity (eSTA) [60–62], an approach that
allows one to perturbatively improve STA solutions in
an analytical fashion and, even more importantly, design
efficient control protocols for systems in which STA are
not directly applicable. The eSTA method was shown to
outperform its STA counterparts in nontrivial quantum-
control problems related to coherent atom transport in
optical lattices [60, 64, 65] and anharmonic trap expan-
sion [62]. Besides, it was demonstrated that eSTA-based
control schemes are more robust against various types of
imperfections than those based on STA methods [61].

In this paper, we revisit the problem of efficiently
preparing spin-squeezed states in internal BJJs by modi-
fying the underlying TNT-type dynamics of spin squeez-
ing in this system. In particular, we assume that the

initial state of the system under consideration is the co-
herent spin state (CSS) with all bosons occupying the
same single-particle state – namely, the equal superposi-
tion of the two single-boson modes. We also assume that
the nonlinear-coupling strength in this system remains
constant (i.e. time-independent) and subsequently deter-
mine the time-dependence of the linear-coupling strength
that allows the preparation of spin-squeezed states us-
ing the STA and eSTA methods; we also compare the
performance of the latter methods with their adiabatic
counterpart - a simple linear sweep of the linear-coupling
strength from a large initial- to a small final value. We
then quantify the state-preparation process for the de-
sired spin-squeezed states in this system by computing
the values of the coherent spin-squeezing- and number-
squeezing parameters, as well as the target-state fidelity.
In this way, we show that our proposed eSTA-based con-
trol scheme allows for a particularly robust experimen-
tal realization of strongly spin-squeezed states in inter-
nal BJJs. Importantly, we demonstrate that this ap-
proach consistently outperforms its STA-based and adia-
batic counterparts, even for particle numbers that are in
the range of several hundreds.
The remainder of this paper is organized in the fol-

lowing manner. In Sec. II, we set the stage for further
discussion by briefly reviewing the essential physics of
internal BJJs and introducing their underlying Lipkin-
Meshkov-Glick-type Hamiltonian; we also introduce the
relevant figures of merit for characterizing spin squeez-
ing. Section III is dedicated to the details of the eSTA
formalism as applied to the system at hand. In Sec. IV
we present the obtained results for the target-state fideli-
ties and spin-squeezing parameters computed within the
proposed eSTA-based scheme; we also compare those re-
sults with those corresponding to the conventional STA
approach. In this section, we also demonstrate the supe-
rior robustness of our proposed, eSTA state-preparation
scheme to the STA-based one. The paper is summarized,
with some concluding remarks and outlook, in Sec. V.

II. SYSTEM AND ENGINEERING OF
SPIN-SQUEEZED STATES

A. Internal BJJs and their underlying many-body
Hamiltonian

An internal BJJ is created with a trapped BEC that
consists of cold atoms in two different internal (hyperfine)
states [66] (for a pictorial illustration, see Fig. 1 below).
A typical example of such a system is a condensate of
87Rb atoms, where the role of the two relevant internal
states can, for example, be played by the |F = 1,mF = 1⟩
and |F = 2,mF = −1⟩ hyperfine sublevels of the elec-
tronic ground state of rubidium. Assuming that the ex-
ternal atomic motion in such a system is not affected by
internal dynamics, it is pertinent to use a single-mode
approximation for atoms in each of the two hyperfine
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states; these two single-boson modes will in the following
be denoted by |ψ1⟩ and |ψ2⟩. An internal BJJ is typically
prepared by trapping the atoms in the two internal states
within the wells of a deep one-dimensional optical lattice;
the depth of such a lattice ought to be sufficiently large
that coherent tunnelling of atoms between different wells
is suppressed [36].

The linear, Rabi-type, coupling of atoms in the two
relevant internal states of an internal BJJ is enabled by
an electromagnetic field that coherently transfers atoms
between those states by means of Rabi rotations [67].
At the same time, atoms interact through s-wave two-
body interactions (nonlinear coupling), both atoms in the
same internal state (intraspecies interaction) and those in
different states (interspecies interaction). As a result, an
internal BJJ is described by a two-state Bose-Hubbard
model. Using the Schwinger-boson formalism (see, e.g.,
[25]), the corresponding Hamiltonian can be written in
the form

HIBJJ(t) = ℏχJ2
z − ℏΩ(t)Jx , (1)

which represents a special case of the Lipkin-Meshkov-
Glick family of Hamiltonians [68]. Here ℏΩ is the
strength of Rabi-type coupling; in the problem at hand,
this linear-coupling strength is assumed to depend on
time, i.e., Ω = Ω(t). The nonlinear-coupling strength χ is
assumed to be constant and positive (corresponding to re-
pulsive two-body interactions between atoms) in the fol-
lowing. J ≡ {Jx, Jy, Jz} are pseudoangular-momentum
operators describing the collective spin of bosons, which

FIG. 1: Pictorial illustration of an internal BJJ, i.e. a con-
densate of bosons in two different hyperfine states (modes)
|ψ1⟩ and |ψ2⟩. An external electromagnetic field coherently
transfers atoms between these two modes (Rabi rotations);
the corresponding linear (Rabi-type) coupling strength ℏΩ
is assumed to depend on time. The intraspecies interaction
strengths U11 and U22, as well as their interspecies counter-
part U12, are assumed to be time-independent. The value of
U12 can be suppressed by means of an external magnetic field
in the presence of a Feshbach resonance, leading to an increase
in the nonlinear coupling strength χ = (U11 +U22 − 2U12)/ℏ.

is defined as J =
∑

k σ
(k), with σ(k) ≡ {σ(k)

x , σ
(k)
y , σ

(k)
z }

being the Pauli operators representing the pseudospin de-
gree of freedom of the k-th atom (k = 1, 2, . . . , N). These
pseudoangular-momentum operators, which satisfy the
standard commutation relation [Jk, Jl] = iℏ

∑
m ϵklmJm

of the su(2) algebra (where k, l,m = x, y, z and ϵklm is
the Levi-Civita symbol), are given by

Jx =
1

2
(J+ + J−) ,

Jy =
1

2i
(J+ + J−) , (2)

Jz =
1

2
(n1 − n2) . (3)

In terms of the creation and annihilation operators a†i and
ai (i = 1, 2) corresponding to the two relevant single-
boson modes, the operators J± are expressed as J+ =

a†2a1, J− = a†1a2, and n1,2 as n1 = a†1a1, n2 = a†2a2.
It is important to point out that in a system described

by the Hamiltonian with J2
z and Jx terms [cf. Eq. (1)],

the mean collective spin points in the direction of Jx
and the direction of minimal variance is that of Jz [cf.
Eq. (2)]; the length of the collective spin is J ≡ N/2.
The linear-coupling strength in the Hamiltonian

HIBJJ(t) [cf. Eq. (1)] is given by

Ω = ΩR

∫
d3r ψ∗

1(r)ψ2(r) , (4)

where ΩR stands for the Rabi frequency and ψi(r) ≡
⟨r|ψi⟩ (i = 1, 2) are the two internal states in the coor-
dinate representation (i.e. the mode functions of those
states). The time dependence of the linear-coupling
strength Ω = Ω(t) can be manipulated with a high degree
of control; for instance, this can be accomplished experi-
mentally by controlling the magnitude of the electromag-
netic field used. Importantly, the existing experimental
capabilities allow for making rapid changes in both the
amplitude and the phase of Ω(t) [40].
The nonlinear-coupling strength χ is given by

ℏχ = U11 + U22 − 2U12 , (5)

where Uij (i, j = 1, 2) are the (two-body) s-wave in-
traspecies (i = j) and interspecies (i ̸= j) interaction
strengths. The latter can be expressed as

Uij =
2πℏ2a(i,j)s

M

∫
d3r|ψi(r)|2|ψj(r)|2 , (6)

where a
(i,j)
s (i, j = 1, 2) are the corresponding s-wave

scattering lengths and M is the mass of a single atom. It
is important to stress that the interspecies s-wave scat-

tering length a
(1,2)
s for 87Rb atoms can be tuned using an

external magnetic field owing to the presence of Feshbach
resonance [38]; this mechanism can be utilize to reduce
the interspecies s-wave scattering length, given that for
87Rb atoms there is a nearly perfect compensation of
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intraspecies and interspecies interactions. Another ap-
proach for tuning the nonlinear-coupling strength U re-
lies on controlling the wave-function overlap between the
two internal states in a state-dependent microwave po-
tential [37]. The main advantage of the latter approach
is that it also works in magnetic traps and in the absence
of a convenient Feshbach resonance for the relevant pair
of internal atomic states.

The Hamiltonian of the system under consideration [cf.
Eq. (1)] is given by the sum of the nonlinear OAT term
ℏχJ2

z and the Rabi-coupling (turning) term −ℏΩ(t)Jx;
the latter describes a time-dependent rotation around
the Jx axis, with the rotation rate Ω(t). Therefore, this
Hamiltonian describes modified – due to the presence
of time-dependent Ω(t) – TNT-type dynamics of spin
squeezing in internal BJJs. The dimensionless param-
eter Λ ≡ Nχ/Ω is conventionally used to quantify the
relative importance of the nonlinear- and Rabi couplings
in an internal BJJ [19]. Because in the problem at hand
we assumed that Rabi coupling is time-dependent [i.e.
Ω = Ω(t)], the parameter Λ will also have a nontrivial
time-dependence in what follows.

Generally speaking, we can distinguish three different
regimes for a system described by the Hamiltonian in
Eq. (1). The Rabi regime corresponds to the noninter-
acting limit (Λ ≪ 1) of such a system, where its ground
state is a CSS with maximal mean collective-spin length
⟨Jx⟩ = N/2 and equal spin fluctuations in the orthogo-
nal directions (i.e. variances ∆J2

y = ∆J2
z = N/4). The

latter is a special case of more general CSSs |θ, ϕ⟩ ≡
e−iϕJze−iθJy |J, J⟩, where θ and ϕ are the spherical polar
angles (0 ≤ θ < π, 0 ≤ ϕ < 2π) and |J, J⟩ is the joint
eigenstate of J2 and Jz with the highest possible value
(equal to J = N/2) of Jz. This state corresponds to all
N atoms being in the same single-particle state – namely,
an equal linear combination of the two modes |ψ1⟩ and
|ψ2⟩ – and is characterized by the complete absence of
quantum correlations between particles; it is given by

|θ = π/2, ϕ = 0⟩ = 1√
2NN !

(a†1 + a†2)
N |vac⟩ , (7)

where |vac⟩ is the vacuum state.
In the presence of increased interactions (1 < Λ < N),

fluctuations in the relative atom number in the two
modes – which translates to fluctuations in Jz – become
energetically unfavorable. This is the Josephson regime,
in which the ground state is a coherent spin-squeezed
state, in which the spin fluctuations in the Jz direction
are reduced at the expense of increased fluctuations in the
Jy direction and reduced mean collective-spin length. Fi-
nally, in the strongly-interacting case (Fock regime), i.e.
for Λ ≫ N , the ground state of the system is a strongly
spin-squeezed state with vanishing mean collective-spin
length.

It is pertinent to note that the Hamiltonian of the sys-
tem under consideration [cf. Eq. (1)] is invariant under
the exchange of the single-boson modes |ψ1⟩ and |ψ2⟩.
Namely, under the transformation a1 ⇆ a2, we have

that Jx → Jx and Jz → −Jz, thus the Hamiltonian in
Eq. (1) remains unchanged. Therefore, the system un-
der consideration possesses a parity symmetry, which in
turn guarantees the symmetry-protected adiabatic evo-
lution [69]. Indeed, in the χ > 0 case discussed here one
possible route towards generating spin-squeezed states is
the adiabatic evolution. By initially setting Ω(t = 0) to
be sufficiently large and adiabatically sweeping Ω(t)/χ
to zero, the state obtained from the original CSS will
remain an instant ground state of the Hamiltonian of
the system and spin-squeezed states (with the same par-
ity) are obtained when Ω(t)/χ is close to zero. The sim-
plest way to achieve this is to perform a linear sweep,
i.e. Ω(t) = Ω(0) + vΩt. Provided that the constant
sweeping rate vΩ < 0 is sufficiently small, such an adi-
abatic evolution of the ground state of the system can
be achieved with high fidelity. However, this adiabatic
approach for the preparation of spin-squeezed states re-
quires long preparation times, hence motivating one to
employ a different, more time-efficient, strategy.
In the following, we set out to determine the time-

dependence Ω(t) of the linear-coupling strength [or,
equivalently, that of the parameter Λ(t)] that allows the
preparation of a spin-squeezed state at the time t = tf ,
starting from the CSS in Eq. (7) as the initial (t = 0)
state. This state-control problem will in what follows
be addressed using the STA and eSTA approaches (see
Sec. III below). Importantly, both the initial- and fi-
nal states in our envisioned state-preparation scheme are
ground states of the total system Hamiltonian at the re-
spective times t = 0 and t = tf . While this is – in general
– not a requirement for the application of the STA- and
eSTA methods [45], this circumstance does away with
the need to freeze the system dynamics once the sought-
after spin-squeezed state is prepared, thus making our
state-preparation scheme more robust.

B. Figures of merit for spin squeezing

Because in the present work we will be concerned with
the preparation of spin-squeezed states, it is pertinent to
introduce the figures of merit that can be used to quan-
tify spin squeezing in the system at hand. Two important
figures of merit that can be used for this purpose are the
number-squeezing- and coherent spin-squeezing parame-
ters.
The number-squeezing parameter, also known as the

Kitagawa-Ueda spin-squeezing parameter, is defined
as [21]

ξ2N (t) =
∆J2

z

(∆J2
z )bin

=
∆J2

z

N/4
, (8)

with ∆J2
z ≡ ⟨J2

z ⟩ − ⟨Jz⟩2 being the variance of the op-
erator Jz; the time argument on the left-hand-side of
Eq. (8) reflects the fact that in the time-dependent state-
preparation problem under consideration the parameter
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ξ2N also depends on time. In Eq. (8), J/2 = N/4 (the
shot-noise limit) corresponds to the CSS with ⟨Jz⟩ = 0.
Accordingly, a many-body state is considered number-
squeezed (ξN < 1) provided that the corresponding vari-
ance of one spin component is smaller than the shot-noise
limit.

The coherent spin-squeezing parameter, which is often
referred to as the Wineland parameter and in the problem
at hand is time dependent, is given by [27]

ξ2S(t) =
N∆J2

z

⟨Jx⟩2
=
ξ2N (t)

α2(t)
, (9)

where α(t) ≡ ⟨Ψ(t)|2Jx/N |Ψ(t)⟩ quantifies the phase co-
herence of the many-body state |Ψ(t)⟩. The parameter ξS
serves to characterize the interplay between an improve-
ment in number squeezing and loss of coherence; it can be
used to quantify precision gain in interferometry, given
that for spin-squeezed states the interferometric precision
is increased to ∆Θ = ξS/

√
N [19]. Furthermore, when-

ever a many-body state satisfies the inequality ξ2S < 1
the state in question is entangled [27].

III. IMPROVED STA SCHEME AND
APPLICATION OF ESTA FORMALISM

In this section, we will present three different ap-
proaches to obtain the control function Ω(τ) with the
goal to drive the system from the initial ground state at
τ = 0 to the target ground state at τ = τf .
The basis of all three schemes is the well-known map-

ping of the system described by Eq. 1 to the continuum;
this mapping will be reviewed first in the following (see
Sec. III A below).

We will then review the results of [56] and the corre-
sponding STA control scheme Ω1. In the next subsection,
we will introduce an improved STA control scheme Ω2.
We will then apply the eSTA formalism, proposed and
developed by Whitty et al. in Ref. [60], to this improved
STA scheme to get an eSTA control scheme Ωe.

A. Mapping to the continuum

It is well-known that the two-site (or two-state) Bose-
Hubbard model of a BJJ can be mapped to a Schrödinger
equation in the continuum with approximately a har-
monic potential [70, 71]. We will briefly review the main
details of this mapping, which will be used frequently in
the remainder of this paper.

With {|m⟩} (m = −N/2, ..., N/2) being the eigenval-
ues of the operator Jz, the general state |Ψ⟩ of a BJJ can
be written as

|Ψ⟩ =
N/2∑

m=−N/2

cm |m⟩ . (10)

The coefficients cm in this expansion ought to satisfy the
coupled equations

iℏ
d

dt
cm(t)

= −ℏΩ(t)
2

[βmcm+1(t) + βm−1cm−1(t)] + ℏχm2cm(t) ,

(11)

where βm =
√(

N
2 +m+ 1

) (
N
2 −m

)
. We define now

h = 1
N/2 and zm = m

N/2 (the relative population differ-

ence between the two relevant hyperfine states). We also
switch to the continuum version for the relative popula-
tion difference (zm → z), introducing at the same time a
dimensionless time τ , such that t = τ/χ. In this manner,
we can recast Eq. (11) as

ih
∂

∂τ
ψ(τ, z)

= −Ω(t)

χ
[bh(z − h)ψ(τ, z − h) + bh(z)ψ(τ, z + h)]

+
N

2
z2ψ(τ, z)

= HSψ(τ, z) (12)

with

bh(z) =
1

2

√
(1 + z + h) (1− z) , (13)

and

HS = −Ω(t)

χ

[
e−ih∂zbh(z) + bh(z)e

ih∂z
]
+
N

2
z2. (14)

We set at this point bh(z) = 0 for all z ≤ −1 − h and
z ≥ 1, as well as ψ(t, z) = 0 for z ≤ −1−h and z ≥ 1+h.
It is worthwhile noting that if this equation is satisfied
for z ∈ [−1 − h, 1 + h] (note that it is trivially satisfied
outside of this interval) then it is evidently also satisfied
for all zm (m = −N/2, ...N/2) in the previously employed
discrete description.
It is interesting to note that if one rewrites the above

equation with a different dimensionless time τ̄ = Nτ ,
then the above equation using τ̄ would only depend on

the dimensionless quantity 1/Λ(t) = Ω(t)
Nχ . We will come

back to this fact at a later point in the paper.
We now proceed to derive an approximated version of

Eq. (12). For small h and by assuming that z is small (i.e.
the population difference between the two states is small
compared to the total particle number N) and neglecting
a constant energy shift, we obtain a Schrödinger equation
with an approximated Hamiltonian of a harmonic oscil-
lator

H1 = −h2Ω(t)
2χ

∂2

∂z2
+

[
N

2
+

Ω(t)

2χ

]
z2 . (15)
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We can make an additional approximation by assuming

that N
2 ≫ Ω(t)

2χ , which leads to

H0 = −h2Ω(t)
2χ

∂2

∂z2
+
N

2
z2 . (16)

Note that this last Hamiltonian has been the point of
departure for deriving the STA scheme in Ref. [56].

B. STA scheme for harmonic approximation H0

The STA formalism for the case of internal BJJs is
outlined in Ref. [56]. By employing Lewis-Riesenfeld in-
variants, we can design a solution of the time-dependent
Schrödinger equation for the harmonic oscillator Hamil-
tonian H0. By making use of Fourier transform and
Lewis-Riesenfeld invariants (for details, see Ref. [56]), we
find that the wave function

χn(τ, z) =

√
b(τ)

π1/4
√
2nn!

in
√
k0√

1− iβ

(
1 + iβ

1− iβ

)n/2

× exp

(
iφ(τ)− z2b(τ)2

2

k20
1− iβ

)
×Hn

[
zb(τ)k0√
1 + β2

]
, (17)

satisfies the time-dependent Schrödinger equation for the
harmonic oscillator Hamiltonian H0. Here, we have k0 =
4
√
Λ0

√
N
2 and β = 1

2
√
Λ0
b(τ)b′(τ). The auxiliary function

b(τ) must be a solution of the Ermakov equation

b′′(τ)− N2

Λ0b(τ)3
+ b(τ)

Ω(τ)

Ω0
= 0 .

We have here also φ(t) = −
∫ t

0
ds (1 + 2n)

√
Λ0

b(t)2 . We

now employ inverse engineering to first fix a function
b(τ) that satisfies the boundary conditions b(0) = 1,

b(τf ) = 4
√
Ω0/Ωf , b

′(0) = b′(τf ) = b′′(0) = b′′(τf ) = 0.
We choose here a polynomial of degree 6 that satisfies
these conditions. By inverting the above equation, we
obtain an explicit expression for the sought-after physi-
cal control function Ω(τ):

Ω(τ) = Ω0

[
1

b(τ)4
− Λ0

N2

1

b(τ)

∂2b

∂τ2

]
, (18)

where Λ0 ≡ χN/Ω0. We will call this the first STA
scheme in the remainder of this paper and we denote
the corresponding control function with Ω1.

C. Improved STA scheme for harmonic
approximation H0

We now proceed to introduce an improved STA
scheme. The idea is that while the above approximation

is still used for the time evolution, we consider the exact
initial and final stated without this approximation for
designing the boundary condition of the auxiliary func-
tion. In detail, we calculate the exact ground state of
the Hamiltonian (15) at initial and final time. For the
ground state at initial time τ = 0, we get the function of
the form of (17) with

b(τ) = 4
√
1 + 1/Λ0 , b′(0) = 0 . (19)

For the ground state at final time τ = τf , we get the
function of the form of (17) with

b(τf ) =
4

√
Ω0

Ωf

(
1 +

Ωf

Ω0Λ0

)
, b′(τf ) = 0 . (20)

We choose now a polynomial satisfying the boundary
conditions (19) and (20). In addition, we demand that
(18) is also satisfied at the initial- and final times with
these new boundary conditions. This leads to two addi-
tional boundary conditions

b′′(0) = − 4

(1 + 1/Λ0)
3/4

,

b′′(τf ) = − 4Ωf/Ω0

(Ω0/Ωf + 1/Λ0)
3/4

. (21)

We choose here again a polynomial of degree 6 that sat-
isfies the fix conditions (19),(20) and (21). We will then
use (18) with this polynomial to calculate the control
function. We will call this the improved STA scheme in
the following and will denote the corresponding control
function with Ω2.

D. eSTA-corrected control function

We will now derive an eSTA correction to the improved
STA scheme from the last subsection. The principal idea
behind the eSTA formalism is to modify the STA con-
trol function by taking into account that the approxi-
mated Hamiltonian H0 is different from the exact sys-
tem Hamiltonian HS [cf. Eq. (16)]. Let ∆H = HS −H0

be the difference between these two Hamiltonians and
λ = (λ1, λ2). We consider now the modified control func-
tion Ωe(τ) = Ω2(τ)+Pλ(τ). Here, Pλ(τ) is a polynomial
of degree 4 that fulfills the following conditions:

Pλ(0) = Pλ(τf ) = 0,

Pλ(τf/3) = λ1, Pλ(2τf/3) = λ2 . (22)

These corrections λ are calculated by using the formalism
of enhanced STA [60, 62].
To begin with, we define the auxiliary functions Gn,

Kn, and H that will be used to evaluate λ. In terms of the
STA wave functions χn of the approximated Hamiltonian
[cf. Eq. (17)] the scalar auxiliary function Gn is given by

Gn =

∫ tf

0

dt ⟨χn|∆H|χ0⟩ . (23)
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The correspionding expression for the vector auxiliary
function Kn reads

Kn =

∫ tf

0

dt ⟨χm|∇HS |χ0⟩ , (24)

with ∇H being the gradient of the Hamiltonian H with
respect to the control parameter λ. Finally, the matrix
elements of H are given by

Hl,k =

N∑
n=1

[Gn(Wn)l,k + (K∗
n)k (Kn)l] , (25)

where (Wn)l,k = ⟨χn|∂λl
∂λk

HS |χ0⟩ stands for a matrix of
second derivatives with respect to the control parameter;
here N is the number of STA wave functions that are
taken into account.

Having defined the relevant auxiliary functions, we
now proceed to compute the correction parameters λ us-
ing Gn and Kn, assuming that a unit fidelity can be
achieved for the exact Hamiltonian [60]. The same cor-
rection parameters can be obtained in an alternate fash-
ion – namely, by employing the above expressions for Gn,
Kn, and Hl,k [62]. By making use of the latter procedure,
the correction parameters λ are given by

λ = −v∥v∥2
vTHv

, (26)

where

v =

N∑
n=1

Re(G∗
nKn) . (27)

Here, we have now HS given by Eq. (14) and H0 given
by Eq. (16). Therefore, the resulting expression for ∆H
reads as

∆H = −Ω(t)

χ

[
e−ih∂zbh(z) + bh(z)e

ih∂z +
h2

2

∂2

∂z2

]
.

(28)
Note that Ωs(τ) with the above defined Pλ is only

linear in λ, and therefore Hs is only linear in λ such
that it follows Wn = 0. In this approach, the correction
parameters λ are thus given by Eq. (26). In what follows,
we set N = 2 and we will denote the resulting control
function by Ωe(t).

In the following section, we will compare the three con-
trol schemes introduced in the last three subsections: the
control scheme Ω1(τ) originating from the STA scheme
introduced in [56], the control scheme Ω2(τ) originat-
ing from the impoved STA scheme introduced above and
Ωe(τ) originating from the enhanced STA scheme. For
better comparison with existing experiments, we will also
switch back from the dimensionless variables used in this
section to the general dimensional quantities in the fol-
lowing part of the paper.

IV. RESULTS AND DISCUSSION

In the following, we discuss the results for the spin-
squeezing parameters and the target-state fidelity ob-
tained using the original STA scheme, the improved STA
scheme, simple linear adiabatic sweep and our eSTA
scheme.
The adiabatic scheme is a linear change of Ωad(t) =

Ω0 + t/tf (Ωf − Ω0) as also used in [56] for comparison.
We will use 1/χ as the characteristic time scale in the
following; note that Λ(t) = Nχ/Ω(t). In what follows,
we will always use the ratio Ωf/Ω0 = 1/10 resp. Λf/Λ0 =
10.

A. Target-state fidelity in different control schemes

We start by discussing the results for the target-state
fidelity obtained using different control schemes. This fi-
delity is defined as F = |⟨ΨT |Ψ(tf )⟩|2, where ΨT is the
target spin-squeezed state (i.e. the ground state of the
Hamiltonian HIBJJ in Eq. (1) for t = tf ) and |Ψ(tf )⟩
the actual state of the system at t = tf obtained through
the time evolution governed by the Hamiltonian HIBJJ(t)
[cf. Eq. (1)], whose time dependence originates from
the time-dependent linear-coupling strength Ω(t). As al-
ready mentioned, we use the ratio Ω0/Ωf = 1/10. We
will consider different particle numbers N and initial val-
ues Ω0 resp. Λ0 in the following.
As an example, Fig. 2 shows the time evolution of dif-

ferent quantifies with N = 50 particles and the final time
χtf = 0.15. In detail, in Fig. 2(a) we can see the dif-
ferent control functions. We compare here the adiabatic
control Ωad(t), original, the STA scheme Ω1(t), the im-
proved STA scheme Ω2(t) and the eSTA scheme Ωe(t).
The remaining figures are the time evolution of the co-

herent spin-squeezing parameter ξ2S (9) expressed in dB
[Fig. 2(b)] as well as the fidelity F [Fig. 2(c)] when the
four different control functions are applied. We can see
that the improved STA scheme Ω2 gives already higher
fidelity than the first STA scheme Ω1. The eSTA scheme
Ωe gives even higher fidelity than the improved STA
scheme Ω2, without compromising the squeezing.

We want to examine this in more detail and therefore
we plot the fidelity for different final times tf and for the
different control schemes (Ωad,Ω1,Ω2,Ωe). The results
are summarized in Fig. 3, for N = 50, N = 200 and
N = 400 particles. From the figures, we can see that
generally the eSTA protocol outperforms its STA coun-
terpart, especially for shorter final times χtf . Another
important feature that we like to point out is the fact
that the improved version of the STA protocol, charac-
terised by Ω2 is consistently better than the non improved
STA Ω1. This result shows improvements can be achieved
even without applying the eSTA formalism, but using the
correct boundary conditions for the system under consid-
eration. Moreover, the fidelity of the three protocols tend
to converge to 1 as the final time increases. It is also in-
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FIG. 2: Time evolution of (a) control function Ω(t), (b) co-
herent squeezing ξ2S(t) in dB, (d) fidelity F (t). Enhanced STA
(Ωe: red, solid lines), improved STA (Ω2, orange,small dashed
lines), first STA scheme (Ω1, black, dashed lines) and as a
reference linear adiabatic scheme (Ωad, green, dashed-dotted
lines). The parameter values used are N = 50, χtf = 0.15,
Λ0 = 10, Ωf/Ω0 = 0.1.

teresting to see how increasing the interaction strength χ
(i.e. moving up a column in the figure grid), corresponds
to an improvement in the performance of the protocols.
This can be explained by the fact that the approximation
Λ0 >> 1 gets increasingly more accurate as the value of
Λ0 grows. On the other hand, we can see how keep-
ing constant the interaction strength and increasing the
number of particles (this amounts to move along a row
on the figure grid) does not change the overall behaviour
of the fidelity, only the intrinsic time of the system scales
with the number of particles.

B. Robustness of the STA- and eSTA-based
control schemes

It is important to ensure that a control scheme does not
only provide high fidelity but that it is also robust against
errors. Therefore, we will now compare the robustness of
the above control schemes against systematic errors, i.e.
an unknown, constant error in the experimental setup.
First, we consider a systematic error in the amplitude
of the control function Ω(t) of the form Ωδ,m(t) = (1 +
δ)Ω(t) for t ∈ [0, tf ] and for an unknown constant value
of δ. To quantify the sensitivity of the control scheme to
systematic errors of this type, we evaluate numerically

the sensitivity

Sm =

∣∣∣∣∂F∂δ
∣∣∣∣
δ=0

. (29)

for each control scheme used. Note that the lower this
sensitivity is, the more stable the protocol is. The ob-
tained results for Sm are displayed in Fig. 4 (upper inset)
for N = 400 and Λ0 = 5 [see the upper inset of Fig. 4(a)]
and Λ0 = 20 [see the upper inset of Fig. 4(b)].
We also consider a second type of systematic error.

This second case is the systematic error in the time of
the control function Ω(t) of the form Ωδ̄,t(t) = Ω(t+ tf δ̄)

for t+ tf δ̄ ∈ [0, tf ] and Ωδ̄,t = Ω(t) otherwise. Similar to
Eq. (30) above, we compute numerically the correspond-
ing systematic error sensitivity

St =

∣∣∣∣∂F∂δ̄
∣∣∣∣
δ̄=0

. (30)

The results obtained for St are illustrated in Fig. 4 (lower
inset) for N = 400 and Λ0 = 5 [see the lower inset of
Fig. 4(a)] and Λ0 = 20 [see the lower inset of Fig. 4(b)].
It is pertinent to also incorporate the fidelity and these

sensitivities in a single figure of merit, which will be re-
ferred to as imperfection in what follows. This quantity
is given by

η =
√
(1− F )2 + S2

m + S2
t , (31)

where F is the fidelity and Sm, St are the sensitivities
defined above. Therefore, a small value of η corresponds
to low infidelity (i.e. high fidelity) and small sensitivities
(i.e. high degree of robustness) to the both systematic
errors, i.e. the lower the value of η, the better the con-
trol scheme. The results are illustrated in Fig. 4 (outer
figures) for N = 400 and Λ0 = 2.5 [see Fig. 4(a)] and
Λ0 = 10 [see Fig. 4(b)]. What can be inferred from these
results is that the best performance is achieved using the
eSTA method.

C. Comparison of various approaches for
engineering spin-squeezed states in internal BJJs

In order to quantitatively assess our proposed eSTA-
based scheme for engineering spin-squeezed states in in-
ternal BJJs, it is pertinent to compare the achievable
spin squeezing obtained using this scheme with the ones
obtained with previously known schemes [36, 37].. Gen-
erally speaking, for different total evolution times tf , the
eSTA-based scheme slightly outperforms its STA-based
counterpart in terms of achievable spin squeezing, as
quantified by the previously introduced parameters ξ2S
and ξ2N [cf. Sec. II B]. However, the primary advantage
of the eSTA approach, which makes it much more pow-
erful than STA, lies in its superior robustness against
systematic errors.
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FIG. 3: Fidelities F versus final time tf for the different control schemes: eSTA (Ωe: red, solid lines), improved STA (Ω2,
orange, small dashed lines), first STA scheme (Ω1, black, dashed lines) and as a reference linear adiabatic scheme (Ωad, green,
dashed-dotted lines) with different particle numbers N = 50 (left column), N = 200 (middle column), N = 400 (right column)
as well as different initial values of Λ0 resp. Ω0 = χN/Λ0: Λ0 = 10.0 (first row), Λ0 = 5.0 (second row), Λ0 = 2.5 (third row).
Ωf/Ω0 = Λ0/Λf = 1/10.

For the sake of illustration, it is instructive to consider
a system with N = 400 particles, with the same value of
the nonlinear-coupling strength χ = 2π × 0.063 Hz used
in an experimental study of Ref. [36]. While in [36] the
linear-coupling strength Ω was fixed to the constant value
Ω = 2π × 2 Hz – leading to a ratio χ/Ω = 0.03 – in the
present work we consider a significant variation of the
linear-coupling strength with time. As a result of this

variation, the control parameter Λ(t) is changed from
Λ(0)/N = χ/Ω(0) = 1/160 to Λ(tf )/N = χ/Ω(tf ) =
1/40 (N = 400); in this manner, we demonstrate that
our proposed eSTA-based scheme for the generation of
spin-squeezed states is applicable even far away from the
adiabatic regime. Importantly, the total squeezed-state
preparation time that we obtain here [cf. Fig. 3] is then
tf = 0.006χ−1 ≈ 15 ms for the largest value of Λ0/N used



10

0.002 0.003 0.005 0.006
0

0.2

0.4

0.6

0.8

χtf

η

(b)

0

0.5

S
t

0.003 0.006
0

0.5

χtf

S
m

0.002 0.003 0.005 0.006

0.2

0.4

0.6

0.8

η

(a)

0

0.5

S
t

0.003 0.006
0

0.5

χtf
S
m

FIG. 4: Imperfection η (outer figures); sensitivity Sm for
systematic amplitude error and sensitivity St for systematic
time-shift (insets). Enhanced STA (Ωe: red, solid lines), im-
proved STA (Ω2, orange,small dashed lines) and first STA
scheme (Ω1, black, dashed lines). N = 400, (a) Λ0 = 2.5, (b)
Λ0 = 10.

(1/40) and tf = 0.0015 χ−1 ≈ 3.75 ms for its smallest
value (1/160); the longer of these two times is around
25% shorter than the squeezed-state preparation time of
20 ms found in Ref. [36].

Our numerical calculations indicate that the two
schemes for engineering spin-squeezed states – STA- and
eSTA-based ones – are quite comparable in terms of of
achievable spin squeezing. For example, in a system with
N = 50 particles and Λ0/N = 0.2 the eSTA control
scheme allows one to attain a value of ξ2S < −18 dB while
the adiabatic scheme only yields a value of ξ2S > −14 dB,
see Fig. 2.

The effects of the application of the eSTA protocol get
increasingly less prominent as the number of particles

increases. For instance, for a system with N = 400 par-
ticles, tf = 0.1/χ and Λ0/N = 10 both the eSTA-based
scheme and the STA-based one, yield ξ2S = −19 dB. It is
useful to recall that the eSTA protocol is designed with
the aim to maximize the fidelity of the system. The fact
that the squeezing obtained via eSTA protocol is compa-
rable, if not better, than the one obtained using the STA
approach is another argument in favor of eSTA.

On the other hand, the eSTA-based protocol has a
lower sensitivity Sm than the STA and improved STA
protocols against systematic errors as it can straightfor-
wardly be inferred from the sensitivities shown in the
insets of Fig. 4; thus, the eSTA scheme is significantly
less sensitive (i.e. more robust) to systematic errors in
the amplitude of Ω than the STA-based one. In the in-
sets of the same figure, similar behavior is found for the
systematic error pertaining to the timing of the control
scheme Ω; for the above choice of parameter values, the
sensitivity St is again lower for the eSTA scheme than
for the STA scheme and its improved version.

The observed superiority of the eSTA-based approach
over its STA-based counterpart in the system under con-
sideration is more prominent for shorter times tf . Im-
portantly, this superiority of the eSTA-based approach is
not dependent upon the particle number; it persists even
for a system with several hundred (or even thousand)
particles. The fact that the eSTA method allows one to
attain a rather strong spin squeezing in internal BJJs –
being at the same time much more robust against sys-
tematic errors than STA – makes this method a highly
promising candidate for the experimental realization of
spin-squeezed states in this type of systems.

The TNT dynamics of spin squeezing in internal BJJs
has so far been demonstrated experimentally by abruptly
switching the nonlinear coupling to a finite value (i.e. by
performing a nonlinear-coupling quench) in the presence
of constant linear coupling Ω [40]; in this case a Feshbach
resonance was used as an enabling physical mechanism
for increasing the nonlinear coupling strength. This in-
vestigated scenario of TNT dynamics, with a fixed ratio
of the nonlinear- and linear coupling strenghts, has al-
ready also been shown – in the absence of decoherence
and losses – to be locally optimal as far as the generation
of spin squeezing is concerned [32]. However, there are
several reasons that make it quite plausible to expect that
in the realistic experimental scenario (i.e. in the presence
of decoherence and losses, as well as various experimen-
tal imperfections) the eSTA-based approach proposed
here could yield comparable – or, perhaps, even better
– results. To begin with, the eSTA method [60] has al-
ready been demonstrated to yield results approaching the
relevant quantum speed limits in some other quantum-
control problems [61, 65]. In addition, the extraordinary
robustness to various experimental imperfections that is
inherent to the eSTA method – compared to its parent
STA methods and other control approaches – also fa-
vors our envisioned approach. Finally, our scheme may
turn out to be more robust to atomic losses (most promi-
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nently, two-body spin-relaxation losses for F = 2 hyper-
fine states); in the existing experimental realization [40],
for the same range of particle numbers as discussed here
the combined effect of two- and three-body losses led to a
substantial (above 20%) decrease of the maximal achiev-
able spin squeezing.

V. SUMMARY AND CONCLUSIONS

In summary, in this paper we revisited – from
the quantum-control perspective – the problem of ro-
bust, time-efficient engineering of spin-squeezed states
in internal bosonic Josephson junctions with a time-
dependent linear (Rabi) coupling. Unlike earlier stud-
ies in which this state-engineering problem was treated
using adiabatic- or STA methods, we addressed it here
using the recently proposed eSTA approach. Taking
the standard Lipkin-Meshkov-Glick-type Hamiltonian of
this system – which in addition to the standard one-
axis twisting term includes the transverse-field (turning)
term – as our point of departure, we designed a robust
eSTA-based state-preparation scheme. To characterize
the twist-and-turn-type quantum dynamics underlying
the preparation of spin-squeezed states in this system in
a quantitative fashion, we computed the corresponding
(time-dependent) target-state fidelity. We also evaluated
two of the most relevant figures of merit of spin squeez-
ing – namely, the coherent spin-squeezing- and number-
squeezing parameters – in a broad range of the relevant
parameters of the system.

Importantly, we showed that our eSTA-based scheme
for engineering spin-squeezed states outperforms – in
terms of achievable state fidelities and the attendant
state-preparation times – not only the previously pro-
posed STA protocols, but also their improved version;
this superiority of our eSTA-based approach is not
limited only to relatively small particle numbers, but
persists even in systems containing several hundred par-
ticles. In particular, we demonstrated that the increased
robustness of the eSTA approach, compared to its parent
STA method, renders our proposed state-preparation
scheme more amenable to experimental realizations
than the previously suggested schemes for engineering
spin-squeezed states in bosonic Josephson junctions. In
order to further facilitate the envisioned experimental
realizations, a future theoretical work should be devoted
to discussing other possible decoherence effects (other
than those already discussed here) in this system, most
prominently that of atomic losses [73].
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Res. 4, 033087 (2022).
[6] G. Q. Zhang, W. Feng, W. Xiong, Q. P. Su, and C. P.

Yang, Phys. Rev. A 107, 012410 (2023).
[7] G. Q. Zhang, W. Feng, W. Xiong, D. Xu, Q. P. Su, and

C. P. Yang, Phys. Rev. Appl. 20, 044014 (2023).
[8] M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Nat.

Photon. 12, 759 (2018).
[9] T. Haase, G. Alber, and V. M. Stojanović, Phys. Rev. A
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