
PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 28 - 

FRI-2G.303-1-CCT1-05 

EXPERIMENTAL EVALUATION  

OF THE PHP'S CURL LIBRARY PERFORMANCE5 

 

Yordan Kalmukov, PhD  

Department of Computer Systems and Technologies,  

University of Ruse  

Е-mail: jkalmukov@uni-ruse.bg 

 
Abstract: cURL (libcurl) is a popular and widely used library distributed with the php interpreter. It allows php 

applications to connect to and communicate with external resources (servers) by using wide variety of communication 

protocols. In most cases it is the preferred way of consuming external REST web services. Programmers usually use it 

for granted without even thinking of any performance issues. During an experimental analysis of the Hadoop’s 

WebHDFS API throughput, it has been noted that read (download) speed from WebHDFS reduces with increasing the 

file size. However, this issue does not happen when writing to WebHDFS. Since the communication between the php 

application and the WebHDFS API is handled by the php’s cURL library, then the cause of the download speed 

decrease could be either the cURL library itself or the API.  

This paper presents a series of experimental analyses aiming to determine the cause of the download speed 

decrease in previous experiments – whether it is the WebHDFS API or the php’s cURL library. Both parties are tested 

in multiple ways separately and independently of each other. Results clearly prove (in two different ways) that the cause 

of the download speed decrease is the php’s cURL library itself, not the consumed API.  

Keywords: cURL, php, web services, performance and throughput analysis. 

JEL Codes: L86, C8, C9 

 

INTRODUCTION 

The cURL project (https://curl.se) is an important milestone in the IT industry. Started in 

1998, its aim is to provide free open source standalone tools and libraries for various languages that 

allow programmers and applications to connect to and communicate with external resources/ 

servers by using wide variety of (virtually all) communication protocols. Unix, Linux and MacOS 

integrate it in their operating systems by default. A cURL library is available for all popular 

programming languages, distributed together with the compiler/interpreter. The cURL libraries are 

used not only by server/desktop applications, but by any other Internet-connected devices such as 

cars, TV sets, printers, routers, audio equipment, phones, tablets, smart home appliances – fridges, 

air conditioners, toasters, irons, lights and other IoT devices. Just a small off-topic deviation here: 

In my personal opinion it is not a good idea that all electronic devices should be connected to the 

Internet, since most of the small, energy-efficient IoT gadgets have not enough processing power to 

implement and support reliable security protocols, so they are quite easily hacked and zombified to 

form a large distributed bot-nets that could be subsequently used to perform distributed denial of 

service (DDoS) attacks.  

When building distributed web applications and systems, cURL is the preferred way of 

communication between the separate web services, especially for REST-based services. Distributed 

computing is important not just for solving hard, computationally-intensive task, but it is crucial for 

heavy-loaded daily-life services such as Google, Facebook and etc., which have millions or billions 

of users. As the number of processors and the amount of memory are physically limited per single 

computer system, it is impossible for a single system to handle heavy load generated by millions of 

users. Since further vertical scaling is impossible, then the horizontal scaling by adding more 

machines remains the only feasible option. One of the most popular scalable systems/frameworks 

for distributed computing, big data processing and storage is the Apache Hadoop 

(https://hadoop.apache.org). It is an entire ecosystem of distributed applications that can run on 

 
5 The paper have been presented on 27.10.2023 in session Communication and Computer Technologies with 

original tittle: EXPERIMENTAL EVALUATION OF THE PHP'S CURL LIBRARY PERFORMANCE 

mailto:jkalmukov@uni-ruse.bg
https://curl.se/
https://hadoop.apache.org/


PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

- 29 - 

thousands of commodity servers and reliably store and process petabytes of data. Apache Spark 

(https://spark.apache.org) is just a single tool from this ecosystem that could be successfully used to 

process and analyze enormous amounts of batch data or streaming data in real time. It could be (and 

is) used in many applications, for example: document and text processing (Kalmukov, Y., 2020), 

(Kalmukov, Y., 2022); network traffic analysis (Aggarwal, S., 2023); data transformation, 

augmentation and enrichment (Aggarwal, S., 2023); profiling users (Aggarwal, S., 2023), 

(ProjectPro Team, 2023); and many others, in various industries such as finance, healthcare, media, 

e-commerce, retail, travel, gaming industries, government and corporate data processing and others 

(ProjectPro Team, 2023). 

In order to use the big data processing and analytical tools of the Hadoop ecosystem, a 

company (or any organization in general) should first share its data with the Hadoop cluster. 

Together with a colleague, we have proposed an architecture for integration of a company’s 

heterogeneous data to a remote Hadoop cluster (Kalmukov, Y., & Marinov, M., 2022). It allows 

storing and processing both streaming and batch data. In case of large amounts of batch data, the 

data files should be stored in the Hadoop Distributed File System (HDFS) first, then passed to 

Spark or other tools. There are several ways of saving data to HDFS from within the cluster, but 

from outside the most preferable way is the remote access through the WebHDFS API. It allows 

third-party applications to connect to remote HDFS file system and write/read files to/from it. Since 

WebHDFS is a REST-based API, the most common way of accessing it should be by using the 

cURL library from the chosen programming language. As we consider big data processing and 

analysis, the data files that should be stored in HDFS are supposed to be very large – in hundreds of 

megabytes or gigabytes. So the performance and the throughput of the cURL library really matters 

and could highly impact the processing time. 

This paper presents a series of experimental analyses aiming to determine the php’s cURL 

library performance and throughput. Both the WebHDFS API and the php’s cURL library are tested 

in multiple ways separately and independently of each other.  

EXPOSITION 

Motivation of performing experimental evaluation of the cURL library 

In previous experimental analysis of the WebHDFS API throughput (Kalmukov, Y., & 

Marinov, M., 2023), I noticed that read (download) speed from WebHDFS reduces with increasing 

the file size. Just to mention that the analysis was related to large amounts of data, i.e. files in 

hundreds of megabytes or gigabytes. The experimental application is built in PHP that is somehow 

atypical programming language for Hadoop, but since WebHDFS is a REST API, it could be 

accessed from any programming language or technology. The communication with the API is done 

through the PHP’s cURL library. Results also show another unexpected issue – download speed 

decreases with the increase of the file size, but the upload (writing) speed remains the same and 

very high. Common sense suggests that if there is a decrease in transfer speed, it rather should be in 

the writing speed as files are replicated on multiple nodes. But upload speed is constant while 

download speed highly decreases with increasing the file size. 

Since the communication between the PHP application and the WebHDFS API is handled by 

the PHP’s cURL library, then the cause of the download speed decrease could be either the cURL 

library itself or the API. That motives me to do some further experiments and to test both the client 

and the API independently, in order to determine the guilty part. 

Experimental description and architecture 

As already mentioned, the experimental application is built in PHP. The communication with 

the WebHDFS API is done through the PHP’s cURL library. The “PHP-Hadoop-HDFS” library 

does not perform any data processing at all, but just composes the necessary HTTP requests to 

access the WebHDFS API. The API could be accessed without PHP-Hadoop-HDFS library, but it 

facilitates the access, since the library frees the programmer from having to know the WebHDFS 

API itself. The architecture of the experimental system is presented on figure 1.  

https://spark.apache.org/


PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

- 30 - 

The Hadoop cluster consist of 10 rack-mounted servers - 1 name node (2x Intel Xeon Silver 

4110, 32 threads / 64 GB RAM) and 9 data nodes (1x Intel Xeon E-2124, 4 cores / 16 GB RAM), 

connected through a 24-port gigabit switch, supporting 1 gbit/s per port. For all experiments, the 

client application runs on the same laptop computer – Intel i7 (4 cores) / 12 GB RAM, Windows 10 

v1607, PHP 7.3.23, cURL library v7.70. 

Internet / www

Experimental 

Application

PHP-Hadoop-HDFS

Library

PHP Interpreter

cURL 

Library

WebHDFS API

Hadoop Distributed 

File System (HDFS)

Hadoop Cluster

HTTP
HTTP

Local File System 

Fig. 1. Architecture of the original system for experimental study of WebHDFS API. 

The WebHDFS API is also tested in alternative way by using the built-in cURL command in 

MacOS and an external stand-alone cURL application for Windows. Results show that files are 

downloading (read) from HDFS with very high speed almost reaching the maximum throughput 

capacity of the relevant type of network, regardless of the file size.  

So, the causer of the read speed decrease in my previous experiments is, with a high degree of 

probability, the cURL library, distributed with the PHP interpreter. Thus, it should be separately and 

independently tested. To do so, the same data files are used, but they are uploaded to the file system 

of Apache HTTP server, rather than the distributed HDFS.  

The revised architecture, for testing the cURL library only, is presented on figure 2. The 

“PHP-Hadoop-HDFS” library is removed since the cURL will perform plain HTTP GET requests, 

with no parameters, directly to the file resources. The Hadoop cluster is replaced with a single web 

server (Intel i5-4570 @ 3.20GHz, 4 cores, 16 GB RAM), running Apache HTTP Server version 

2.4.41 on Windows 10 22H2. The server hardware is not of high importance since it is the same for 

all experiments and is powerful enough to handle very high speed communication. The client 

experimental application runs on the same laptop computer (Intel i7-7500U, 12 GB RAM, 

Windows 10 v1607, PHP 7.3.23, cURL library v7.70.) for all experiments in all types of networks. 

The client and the server are connected through a 1 gbit/s wired router. Experiments are performed 

on 1 gbit/s and 100 mbit/s connectivity. 

Internet / www

Experimental 
Application

PHP Interpreter

cURL
Library

Apache 
HTTP Server

Server s File System
(NTFS)

Test web server

HTTP
HTTP

Local File System
(NTFS)

Fig. 2. Revised architecture of the system for experimental study of php’s cURL performance. 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

- 31 - 

For the current experiments, I use the same data files as in our previous experiments for 

studying the WebHDFS API throughput – small to medium (from 10 to 100 MB, with a step of 

10MB), medium (from 100 to 300 MB, with a step of 50MB) and large (500 do 1500MB, with a 

step of 500MB). 

Results and discussion 

Results from the experimental study of the php’s cURL library only also show that download 

(read) speed rapidly decreases with the increase of the files size, especially for large files. Results 

for small to medium files are shown on figure 3. Figure 4 presents results for medium file sizes, and 

figure 5 – for large files up to 1.5 GB. 

Fig. 3. Download (read) speed from the server’s file system over HTTP, for files 10 to 100 MB. 

Fig. 4. Download (read) speed from the server’s file system 
over HTTP, for files 100 to 300 MB. 

Fig. 5. Download (read) speed from the server’s 
file system over HTTP, for files 500 to 1500 MB. 

It is obvious that the download speed rapidly decrease with increasing the files size. However 

it is interesting to directly compare these lines to the ones obtained during the experimental 

evaluation of the WebHDFS API. Thus, figures 6 and 7 present such a comparison for the medium 

and large files. 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

- 32 - 

a) Download speed from the server’s file system over HTTP b) Download speed from HDFS through WebHDFS API

Fig. 6. Download (read) speed from the server’s file system over HTTP 
and from HDFS through WebHDFS API, for files from 100 to 300 MB 

a) Download speed from the server’s file system over HTTP b) Download speed from HDFS through WebHDFS API

Fig. 7. Download (read) speed from the server’s file system over HTTP 
and from HDFS through WebHDFS API, for files from 500 to 1500 MB 

It is easily noticeable that the lines of reading data from the server’s file system over HTTP 

look quite similar to the lines of reading data from HDFS through the WebHDFS API. Especially 

on figure 7 (for large file sizes), lines are almost identical, so the absolute values of the read speed. 

It doesn't matter if files are read from the HDFS distributed file system via the WebHDFS API or 

from the HTTP server’s file system. If the reading is done using PHP's cURL library, the speed 

always decreases as the file size increases, and even at the same rate. This proves that the fault for 

the decreasing read speed is not in the WebHDFS API, but in the php’s cURL library. It should be 

stated here that it applies to the php’s cURL library only, not to the entire cURL project. The 

WebHDFS API was also tested by stand-alone command-line cURL tools (on both Windows and 

MacOS) and they achieve constant download speed for all file sizes. 

CONCLUSION 

After performing dozens of experiments, it could be concluded that: 

1. WebHDFS API allows data exchange with the Hadoop Distributed File System (HDFS)

at very high speeds, and in general it is not the limitation factor, but the speed of the

network itself.



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 33 - 

2. The speed of writing files to the HTTP server’s file system, and also to the distributed 

HDFS, through the WebHDFS API, by using cURL library for php does not depend on 

the files size, but remains constant and is limited only by the network capacity. 

3. The speed of reading files from the HTTP server’s file system, and also from the 

distributed HDFS, through the WebHDFS API, by using cURL library decreases rapidly 

as the file size increases. 

4. The reason for the decreasing read (download) speed is not the server side itself, but the 

implementation of the cURL library, distributed together with the PHP interpreter. 

5. When reading files from the server’s file system over HTTP or from WebHDFS API by 

using PHP and cURL, it is mandatory that the PHP interpreter is configured to use a 

larger amount of RAM memory than the size of the files being read. This is expected 

since the data transfer happens in multiple small network packets, but in order to 

reconstruct the file from them, they must be stored and arranged in a common buffer 

(located within the RAM memory). 

 

 

ACKNOWLEDGEMENTS 

This paper is supported by project 23-FEEA-01 “Development of models and simulations 

with different application areas”, funded by the Research Fund of the “Angel Kanchev” University 

of Ruse. 

 

 

REFERENCES 

Aggarwal, S. (2023). Apache Spark Use Cases. First edition July 2015. Last updated: spring 

2023, https://www.qubole.com/blog/apache-spark-use-cases (Accessed on 26.11.2023) 

Kalmukov, Y. (2020). Automatic Assignment of Reviewers to Papers Based on Vector Space 

Text Analysis Model. Proceedings of the 21st International Conference on Computer Systems and 

Technologies, CompSysTech 2020, Association for Computing Machinery, NY, USA, 2020, pp. 

229–235, DOI: https://doi.org/10.1145/3407982.3408026 

Kalmukov, Y. (2022). Comparison of Latent Semantic Analysis and Vector Space Model for 

Automatic Identification of Competent Reviewers to Evaluate Papers. International Journal of 

Advanced Computer Science and Applications (IJACSA), No 13(2), pp. 77-85, ISSN 2156-5570, 

2022. DOI: http://dx.doi.org/10.14569/IJACSA.2022.0130209  

Kalmukov, Y., & Marinov, M. (2022). Hadoop as a Service: Integration of a Company’s 

Heterogeneous Data to a Remote Hadoop Infrastructure. International Journal of Advanced 

Computer Science and Applications (IJACSA), 2022, No 13(4), pp. 49-55, ISSN 2156-5570, DOI: 

http://dx.doi.org/10.14569/IJACSA.2022.0130406  

Kalmukov, Y., & Marinov, M. (2023). Experimental Analysis of WebHDFS API Throughput. 

International Journal of Advanced Computer Science and Applications, 2023, No 14(4), pp. 44-50, 

ISSN 2156-5570, DOI: http://dx.doi.org/10.14569/IJACSA.2023.0140407  

ProjectPro Team. (2023). Top 5 Apache Spark Use Cases, ProjectPro, Nov 2023, 

https://www.projectpro.io/article/top-5-apache-spark-use-cases/271 (Accessed on 26.11.2023) 

Schrenk, M. (2012). Webbots, spiders, and screen scrapers: A guide to developing Internet 

agents with PHP/CURL. No Starch Press. 

 

 

  

https://www.qubole.com/blog/apache-spark-use-cases
https://doi.org/10.1145/3407982.3408026
http://dx.doi.org/10.14569/IJACSA.2022.0130209
http://dx.doi.org/10.14569/IJACSA.2022.0130406
http://dx.doi.org/10.14569/IJACSA.2023.0140407
https://www.projectpro.io/article/top-5-apache-spark-use-cases/271

