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Abstract: A four-dimensional differential Euler-Lagrange equation for continuously 

distributed materials is derived based on the principle of least action, and instead of Lagrangian, 

this equation contains the Lagrangian density. This makes it possible to determine the density 

of generalized four-momentum in covariant form as derivative of the Lagrangian density with 

respect to four-velocity of typical particles of a system taken with opposite sign, and then 

calculate the generalized four-momentum itself. It is shown that the generalized four-

momentum of all typical particles of a system is an integral four-vector and therefore should be 

considered as a special type of four-vectors. The presented expression for generalized four-

momentum exactly corresponds to the Legendre transformation connecting the Lagrangian and 

Hamiltonian. The obtained formulas are used to calculate generalized four-momentum of 

stationary and moving relativistic uniform systems for the Lagrangian with particles and vector 

fields, including electromagnetic and gravitational fields, acceleration field and pressure field. 

It turns out that the generalized four-momentum of a moving system depends on the total mass 

of particles, on the Lorentz factor and on the velocity of the system’s center of momentum. 

Besides, an additional contribution is made by the scalar potentials of the acceleration field and 

the pressure field at the center of system. The direction of the generalized four-momentum 

coincides with the direction of four-velocity of the system under consideration, while the 

generalized four-momentum is part of the relativistic four-momentum of the system. 

Keywords: Euler-Lagrange equation; generalized four-momentum; relativistic uniform 

system; vector field; acceleration field; pressure field. 

 

1. Introduction 

The three-dimensional generalized momentum is an important quantity of any system, in 

which fields are taken into account, since in this case the generalized momentum contains 

vector field potentials and replaces momentum of classical mechanics. From the standpoint of 

Lagrangian formalism, the generalized momentum of one particle is calculated as the partial 
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derivative of Lagrangian with respect to velocity of this particle, and the generalized momentum 

of a system is equal to the sum of the generalized momenta of all system’s particles [1].  

In the flat Minkowski space and in curved spacetime, four-dimensional quantities are of 

primary importance, which requires introduction of concept of the generalized four-momentum. 

Unfortunately, the literature about this quantity is extremely limited. For example, in [2], a 

possible form of generalized four-momentum of a charged particle in external electromagnetic 

field is considered. The situation with calculation of generalized four-momentum, which should 

describe continuously distributed materials, is even worse, probably due to difficulties arising 

from the volume integration of physical quantities. Thus, the four-dimensional formalism for 

continuum mechanics is used in [3] in order to determine the relativistic stress-energy tensor 

and corresponding Euler-Lagrange equation in an ideal fluid. In this case, conservation laws 

are obtained approximately, in the form of an expansion in powers of ratio of particles’ velocity 

to the speed of light. 

In [4] it is assumed that covariant four-dimensional Euler-Lagrange equation, which is 

necessary to derive the generalized four-momentum, should have the following form: 

 

0
d L L

d u x 

  
− = 

  
, 

 

where L  is the Lagrangian; u
 is the four-velocity; x

 is the four-radius specifying the 

position of a particle; /d ds c = ; c  is the speed of light; ds  is the interval. The time   is 

metrical proper time of the particle, which does not coincide with the physical proper time pt . 

For differential of the time pt  there is a formula [1]:  
0

00

1
pdt g dx

c
= , where 

00g  is the time 

component of metric tensor, 0dx cdt= , and  t  is the coordinate time. 

The above equation should have a different form for the case of continuous materials, 

because instead of the Lagrangian L  it is necessary to use the Lagrangian density , the 

volume integral of which gives L . Indeed, in order to be able to find the quantities 
L

u




 and 

L

x




, L  must depend on u

 and x
 of each particle in the entire set of particles included in 

the system. In fact, in a continuous material with many particles, the Lagrange function L  

depends rather on the choice of observation point and on the four-velocity of typical particles 

at this point, than on the parameters of any specific particles, which cannot be determined due 
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to their large number. By definition, typical particles completely characterize a physical system 

and are ideal statistically averaged particles. Therefore, in the case of continuous materials, all 

physical quantities presented in equations are calculated for typical particles, and this should 

also apply to the density of the generalized four-momentum. 

However, we haven’t found anywhere such a formula, in which the density of generalized 

four-momentum would be determined directly through some four-dimensional derivative of  

for the system’s typical particles. Therefore, one of our tasks will be to find the corresponding 

Euler-Lagrange equation for the Lagrangian density  and covariant expression for the density 

of generalized four-momentum, which is also valid in the curved spacetime. 

Another of our tasks will be derivation of the generalized four-momentum in an explicit 

form, which would allow us to take into account all the fields of a system. In this case, we will 

consider four most frequently observed fields, such as electromagnetic and gravitational fields, 

acceleration field [5], and vector pressure field [6]. All these fields are represented as vector 

fields and components of a single general field [7], while gravitational field is described within 

the framework of covariant theory of gravitation (CTG) [8-9]. 

The approach used allows us to avoid difficulties that arise in the general theory of relativity 

(GTR) when describing motion [10]. In GTR, metric and gravitational field are merged 

together, so in any case it is necessary first to solve an equation for the metric in order to 

estimate the gravitation’s contribution to the physical quantities that characterize the motion. 

In CTG, gravitational field exists independently of the metric, therefore in flat Minkowski 

space, the gravitation’s contribution to material’s momentum and to the acting force is taken 

into account exactly without solving an equation for the metric. 

Our main attention will be paid to the study of possible form of generalized four-momentum 

arising from the Lagrangian formalism. Next, we will derive formulas for the generalized four-

momentum, as well as for the relativistic momentum of the system’s typical particles, and will 

show their relationship in the case of vector fields.  

These formulas will be used to calculate the generalized four-momentum of a stationary and 

moving relativistic uniform system in the continuous materials limit. The choice of such 

physical system is not accidental, since four-potentials of fields necessary for calculating the 

generalized four-momentum have already been found for it by solving wave equations. In 

particular, expressions for scalar field potentials (32) and corresponding references are 

presented below in Section 6. The study of properties of the relativistic uniform system is 

important because such a physical system is successfully used to introduce the results of the 

field theory into continuum mechanics [11-12].  
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2. Lagrangian structure and its variation 

By definition, the action function S  is integral of Lagrangian L  over the coordinate time t

. In turn, the Lagrangian for continuously distributed materials in curved space-time is integral 

of the Lagrangian density  over moving volume: 

 

1 2 3

sV

L g dx dx dx= − ,                                                   (1) 

 

where 
1 2 3dx dx dx  is product of differentials of the space coordinates, the quantity g  

represents determinant of metric tensor g , 
sV  denotes volume of the system. 

The Lagrangian density  is the sum of scalar terms, each of which has dimension of 

volumetric energy density and defines contribution to the Lagrangian density with the help of 

a certain energy function, associated with the corresponding field or with the four-current. 

In view of (1), the action function can be represented as follows: 

 

2 2

1 1

1 2 3

s

t t

t t V

S Ldt g dx dx dx dt
 

= = − 
 
 

   .                                        (2) 

 

Let us suppose that the Lagrangian density depends on coordinate time t , on the four-radius 

nx  and on the four-velocity 
nu  of each of N  system’s particles with the current number n , on 

the four-potentials and field tensors at each point of the field, as well as on the metric tensor: 

 

( )( )1 2 1 2, , ,... , , ,... , , , , , , , , , ,N Nt x x x u u u A D U F Φ u f g R g       

       = .       (3) 

 

In (3), the quantities , , ,A D U     are four-potentials of electromagnetic and gravitational 

fields, acceleration field and pressure field, respectively, and the quantities , , ,F Φ u f     

are tensors of these fields. The expression ( )R g   means that the Lagrangian density also 

depends on the scalar curvature R , which is a function of metric tensor and its partial 

derivatives. In the general case, we can assume that the invariant mass density 
0  and the 

invariant charge density 
0q  of some particle with the current number n  are functions of time 
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t  and of the four-radius 
nx  of this particle. This leads to the fact that the mass four-current 

0n nJ u = , as well as the charge four-current 
0n q nj u =  of a given particle, become functions 

of time t , four-radius and four-velocity. In the final notation, the scalar terms in Lagrangian 

density (3) appear, as a rule, in the form of tensor invariants of the form nA j , F F 

 , and 

also R R g

= , where R  is the Ricci tensor, which is a function of the metric tensor and its 

derivatives. 

Note that in (3) dependence of the Lagrangian density on the covariant derivatives of metric 

tensor is not included, since 0g

 = . 

The variation of action function (2) is written as follows: 

 

2 2

1 1

1 2 3 1 2 3 0

s s

t t

t V t V

S g dx dx dx dt g dx dx dx dt  = − + − =    .                      (4) 

 

The determinant g  of the metric tensor is a function of the metric tensor components. As a 

result, according to [13], the following relation holds true: 

 

1

2
g g g g 

 − = − − .                                                (5) 

 

Let us write the variation of the Lagrangian density (3) taking into account the standard 

equality to zero of variation of coordinate time 0t = : 

 

1

.

N

n n

n n n

x u A F D Φ
x u A F D Φ

U u f g
U u f g

 

    

   



    

   

      

    


=

         
= + + + + + +                  

       
+ + + + +   
          


 

(6) 

 

In (6) we wrote the variation   not in terms of covariant derivatives, but in terms of partial 

derivatives, using the fact that the Lagrangian density  is a scalar invariant, and not a four-

tensor or a four-vector. 
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The terms in each parenthesis of (6) consists of variation of associated quantities. For 

example, the variation 
nx  of the four-radius of a particle with the number n  is related to the 

variation 
nu  of the four-velocity of this particle, and the variation A  of the four-potential 

of electromagnetic field at an arbitrary point of the system is related to the variation F  of 

the electromagnetic field tensor. Let us substitute (5) and (6) into (4): 

 

2

1

1 2 3

1

1 2 3

s

s

t N

n n

n n nt V

V

S x u g dx dx dx dt
x u

A F D Φ
A F D Φ

g dx dx dx dt

U u f
U u f

 

 

   

   

   

   

  

   

   


=

  
= + − + 

  

       
+ + + +    

          
+ − 

       
+ + + +              

 


2

1

2

1

1 2 31
0.

2
s

t

t

t

t V

g g g dx dx dx dt
g






+

 
+ − − = 

 



 

 

(7) 

 

Since the variables of Lagrangian (3) are independent, each integral part of (7) must vanish. 

In particular, the last integral vanishes under the following condition: 

 

( )1
0

2

g
g

g g
 

 −
− = =

 
.                                            (8) 

 

The quantity 
g 




 is a derivative of the Lagrangian density with respect to the metric 

tensor, and Equation (8) is equation for determining the metric tensor both inside and outside 

the material. 

In the general case, Lagrangian density (3) could also depend on the first- and even second-

order partial derivatives of metric tensor with respect to coordinates and time, and these 

derivatives must be present in (6), (7) and (8). As a rule, all these derivatives are found only in 

one term of the Lagrangian density for the curved spacetime, namely in the term 

R ckR ckR g

= = , where c  is the speed of light, k  is a constant, R  is the scalar curvature, 



7 

 

R
 is the Ricci tensor. However, the scalar curvature has such a property that the variation of 

the action function, associated with the curvature, is equal to [8], [14]: 

 

( ) ( )

( )

2 2

1 1

2

1

1 2 3 1 2 3

1 2 3 .

s s

s

t t

R R

t V t V

t

t V

S g dx dx dx dt ck R g g dx dx dx dt

ck R g g dx dx dx dt









  



= − = − =

= −

   

 

 

 

From this relation we can see that the Ricci tensor R
, during variation of the action 

function with respect to the metric tensor and its first- and second-order derivatives, behaves as 

if it is equal to a constant, and the variation 
RS  depends only on the variation ( )g g −  

with respect to the metric tensor. This justifies the form of (6), (7) and (8), and then it turns out 

that R ckR
g




=


, while 

R
 is one of the terms, which are part of the Lagrangian density  

in (8). 

For the electromagnetic field, the next condition follows from (7): 

 

2

1

1 2 3 0

s

t

t V

A F g dx dx dx dt
A F

 

 

 
  

+ − = 
   

  . 

 

The variation F  should be expressed in terms of the variation A , and after some 

transformations A  should be taken outside the parentheses. What remains inside the 

parentheses must be equated to zero. This leads to the standard equation of electromagnetic 

field in the curved spacetime, which allows us to calculate the field tensor components both 

inside and outside the materials. Similarly, from (7) we obtain field equations for the remaining 

three fields. 

Since in the Lagrangian density (3) the metric tensor g  should not directly depend on the 

four-radii 
nx  of particles, it should be assumed that g  depends on 

nx  indirectly, through 

other physical variables, for example, through x
 of observation point. The difference between 

nx  and x
 here is that the metric tensor can be calculated at such points x

 where there are no 

particles and therefore 
nx  is not applicable. 
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According to an assumption in [13], in this case the four-potentials, as well as the products 

j g −  and J g − , where j  and J 
 denote charge and mass four-currents, respectively, 

do not depend directly on the metric tensor. Then, in the Equation (8) for the metric, the terms 

containing the products of four-potentials by four-currents and usually included in the 

expression for , disappear.  

If in the Lagrangian density (3) the metric tensor directly depends on the four-radii 
nx  of 

particles, then the variation g  in (7) must be expressed through the variations 
nx  of the 

particles. Then one should transform the last integral in (7), single out 
nx  separately and 

connect this integral to the first integral in (7) to find the equation of motion. 

Another equivalent approach assumes [5] that Lagrangian density (3) instead of four-radii 

nx  and four-velocities 
nu  of individual particles directly depends on four-currents j  and J 

 

in the following form:  

 

( ) ( ) ( ), , , , , , , , , , , , , ,t j x u J x u A D U F Φ u f g R g       

        =
 

,        (9) 

 

where x  specifies the observation point, u  is the four-velocity of a typical particle at that 

point. 

This leads to the fact that instead of equation of motion with a generalized momentum, the 

equation of motion of particles with field tensors and four-currents appears, while the Equation 

(8) for the metric and the equations for determining the field tensors remain valid. From this it 

follows that the Equation (8) for metric should be fulfilled regardless of how the metric tensor 

depends on physical variables, including dependencies on 
nx  and 

nu  of individual particles, 

or dependence on x
 of observation point.  

 

3. Four-dimensional Euler-Lagrange equation 

We can assume that all the arguments in the previous section refer to typical particles, the 

set of which continuously fills a certain volume and represents the material of a physical system. 

In this case, the difference between observation point given by the four-vector x
 and the four-

radius 
nx  of a typical particle at this point disappears, and the four-velocity u  of a typical 

particle at observation point is equal to 
nu . According to expression (9) of the Lagrangian 

density, only the charge and mass four-currents j  and J 
, which are present in each 
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Lagrangian density for continuous materials, can be direct functions of the observation point 

x
 and the four-velocity u  of a typical particle of material at this point. As for the four-

potentials and the field tensors, as well as the metric tensor, they become functions of x  and 

u  only after the corresponding field equations are solved. Let us denote the sum of Lagrangian 

density terms, containing the four-currents, by 
p
. The first integral in (7) must be equal to 

zero irrespectively of the other integrals, and we should substitute 
p
 into it as a part of 

Lagrangian density, containing dependence on x  and u  of typical particles: 

 

2

1

2 2

1 1

1 2 3

1

1 1

1
0,

s

s n

t N
p p

p n n

n n nt V

t N N
p p p p

n n n n n n n

n nn n n nt V V

S x u g dx dx dx dt
x u

x u d x u dV d
c x u x u

 

 



   

   



  

    

=

= =

  
= + −  

  

      
 +  = + =   

      

 

    

 

(10) 

 

where the element of covariant four-volume 0 1 2 3

n n ng dx dx dx dx cdV d d− = =   with the 

current number n  is present, 0dx cdt= , c  is the speed of light, 
n  is the proper time of typical 

particle with the number n , 
ndV  is the particle’s proper volume. 

In (10) the sum must be integrated over the entire volume 
sV  of the system, while each term 

of the sum is associated with only one particle. This means that in (10) we can go from the 

integral over the entire volume 
sV  to the sum of the integrals over the volumes of individual 

typical particles, while leaving the integrand unchanged. We reflected this with the help of last 

two terms in (10). 

The proper time 
n  of any particle in (10) is not equal to the proper time of any other particle 

in the system. Based on this, it is believed that it is possible to derive the Euler-Lagrange 

equation in a covariant form only for one particle, but for a system of particles it is impossible. 

Probably, this explains the absence in literature of a covariantly defined four-vector of the 

generalized momentum density for a continuous material. Thus, we come to conclusion that it 

is necessary to change the procedure of variation and adapt it to the case under consideration. 

Let's do it as follows.  

The variations x  can be considered as small acceptable deviations from the true trajectory 

of a particle under consideration, moving in space and time between two given points. We will 
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take into account definition of the four-velocity 
d x

u
d





= , and will define its variation as 

follows: 
( ) ( )d x d x

u
d d

 
  


 

= = . Despite the fact that the proper time   in each particle flows 

at different speeds, further we will assume synchronization of variation with respect to proper 

time for all particles. To do this, it suffices to synchronize the origin of the particles’ proper 

time and perform variation at this moment. The entire time interval 
2 1t t− , within which the 

time integration is performed in (10), corresponds to a certain time interval 
2 1 −  for the 

particle with the current number n , and the interval 
2 1 −  will be different for different 

particles. The interval 
2 1t t−  during integration in (10) is divided into a set of time differentials 

dt , similarly, for each particle the corresponding interval 
2 1 −  is divided into a set of time 

differentials d . Since the four-velocity u  of each particle is constantly changing, within each 

differential d  at the time point   the particle would have a different four-velocity u  and a 

different time component of the four-velocity 0u . Thus, in order to sufficiently accurately cover 

all the trajectories of the system’s particles during the action variation with respect to the proper 

time, it is necessary to synchronize the origin of the proper time   of all the particles many 

times, within each of the corresponding time differentials d . 

On the other hand, in view of the relation 0 dt
u c

d
=  we can write the following: 

 

0 0 0 ( )u d x d x u u d x
u

c dt dt c c dt

  
 

  
   

= = +   
   

. 

 

If we assume 0 0u =  here, then variation of the four-velocity will reduce to the value 

( )d x
u

d


 




=  provided above. Thus, we will assume that within each time differential with 

the duration dt  neither the time t , nor the time component 0u  of four-velocity is varied, 

behaving as a constant value within this differential. In this case, the component 0u  within 

different differentials dt , that is, at different time points, may differ in value, changing its value 

in a stepwise fashion during transition to a new time differential. 

With this in mind, we will transform the last expression in (10) by parts for each particle: 
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2 2

1 1

2 2

1 1

1 1

1

( )

n n

n n

N N
p p p p n

p n n n n n n n

n nn n n n nV V

N
p p p

n n n n n n

n nn n n n nV V

d x
S x u dV d x dV d

x u x u d

d d
x dV d x dV d

x d u d u

  
  

   

 

 

 

  

 


     



   
 

= =

=

      
 + = + =   

      

      
= − +    

      

    

    
1

0.
N

=

=

 

(11) 

 

Let us now transform the last term in (11): 

 

2
2

1 1
1 1

0

n n

N N
p p

n n n n n

n nn n nV V

d
x dV d x dV

d u u



 

 

 

  
= =

    
= =   

    
    . 

 

In this equation inside the volume integral of particle with the number n , the variations 

1( )nx   at the initial time points 
1t  and 

1 , and the variations 
2( )nx   at the final time points 

2t  and 
2  are equal to zero by the condition of variation. As a result, the last term in (11) 

vanishes and the following remains: 

 

2

1
1

0

n

N
p p

p n n n

n n n nV

d
S x dV d

x d u





 



  
=

   
 − =  

   
  . 

 

In the general case, the variations 
nx  are different for different particles, do not depend on 

each other, are arbitrary and non-zero. In order for the above relation to hold, the expression in 

the square brackets under the summation sign must be equal to zero. Hence, we obtain the four-

dimensional Euler-Lagrange equation for each of the particles: 

 

0
p p

n n n

d

x d u 

  
− = 

  
.                                                   (12) 

 

On the other hand, within volume of one particle and during the time differential 
nd , the 

time component 0

n

n

dt
u c

d
=  of four-velocity of the particle remains constant, according to the 

condition of variation that we have accepted, and it can be introduced under the derivative sign 
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p

nx




. Let us multiply and at the same time divide by 0

nu  the expression inside the integral for 

pS : 

 

2

1

2

1

0

0 0
1

0

0
1

1

1
0.

n

n

N
p p

p n n n n

n n n n n nV

N
p p

n n n n

n n n nV

d
S u x dV d

x u u d u

d
u x dV d

x u c dt u





 







 



  


 

=

=

    
 − =    

     

    
= − =    

     

 

  

 

 

Since in this expression the quantities 0

nu  and 
nx  in the general case are arbitrary and non-

zero, the following relation must hold true in the first approximation: 

 

0

1
0

p p

n n n

d

x u c dt u 

   
− =   

    
. 

 

Let us denote volumetric density of the generalized four-momentum by 
p

u
 


= −


. Taking 

this into account, removing the particle’s number n , we arrive at a relation, which corresponds 

by its form to the differential equation of motion of a typical particle: 

 

0

pd
c

dt x u





 
= − = 

  
.                                               (13) 

 

The Euler-Lagrange Equation (12) was obtained under the condition that the time 

component 0

n

n

dt
u c

d
=  is constant, which corresponds to motion of particles at a constant speed, 

the value of which depends on selected time differential dt  within the time interval 
2 1t t− . In 

the limit of continuously distributed materials, particles cannot move in such way due to 

continuous interactions with each other, therefore instead of (12) we will use (13) as the most 

appropriate expression in this case.  

A feature of Equations (12) and (13) is that they are expressed in terms of derivatives of the 

Lagrangian density , and not in terms of derivatives of the Lagrangian L . It should be noted 

that Equations (12) and (13) are valid to the same extent, since they used the same condition 
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for the constancy of time component 0

n

n

dt
u c

d
=  of typical particles upon variation of 

Lagrangian density. The less the differences 
2 1t t−  and 

2 1 −  are in (10), the better the 

condition 0

nu const=  is satisfied during variation, and the more precisely we can state that 

Equations (12) and (13) are valid, including in curved spacetime. 

The structure of Equations (12) and (13) is such that they represent one of the possible forms 

of four-dimensional equations of motion of typical particles. In this case, on the left side of (13) 

there is a full rate of change with time of the density of generalized four-momentum, 

respectively, on the right side there is the volume density of generalized four-force  .  

The equation of motion can be written in at least three more equivalent forms, for example, 

in terms of field tensors, in terms of field four-potentials, and in terms of energy-momentum 

tensors of fields [5]. Thus, in [11] a covariant equation of motion, valid in a curved space-time, 

was derived from the principle of least action, taking into account dissipation vector field, 

pressure field, acceleration field, gravitational and electromagnetic fields. This equation, 

expressed in terms of field tensors and four-currents, accurately reproduces the Navier-Stokes 

equation in the limit of weak field. 

 

4. Generalized four-momentum 

Let us suppose now that all the system’s particles are simultaneously shifted by a certain 

constant four-vector x const  = = , which is a variation of the four-radius x . Since 

 

0 0 0 0 0u d x d x u u d x d x u u d
u

c dt dt c c dt c dt c dt

    
  

   
     

= = + = +     
     

, 

 

then if 0u const= , 0 0u = , const = , 0d  = , here 0u =  will be. In this case, the 

variation x  leads in (10) to the variation of action function of the following form: 

 

2 2

1 1

2 2

1 1

1

1 1

0 0

1 1

1 1
0.

n n

n n

N N
p p

n n n n

n nn n nV V

N N
p p

n n n n n n

n nn nV V

d
S x dV d dV d

x d u

d d
u dV d u dV d

c dt u c dt u

 

 

 

 

 

 

 

 

    


   

= =

= =

  
 = = 

  

    
=  =   

    

    

    

            (14) 
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In order to transform the sum in (14), we used (12) and the expression 01
n

n

dt
u

d c
= . It is also 

assumed that when integrating over proper time and over volume of one particle, the value 0

nu  

is constant and, on the average, does not depend on the time, just as in an equilibrium system, 

so that 0

nu  can be introduced under the time derivative sign. In the limit of continuous materials 

we can go over from the sum of integrals over the volume of individual particles to one integral 

over the entire system’s volume, for which in the right-hand side of (14) we can replace the 

product of differentials 
n ndV d  by 1 2 3g dx dx dx dt− , similarly to (10), and remove the 

particles’ number n : 

 

2

1

0 1 2 3

1

1
0

s

t

p

t V

d
S u g dx dx dx dt

c dt u




 

  
 − = 

  
  .                              (15) 

 

Let us now introduce for consideration the generalized four-momentum of the system’s 

particles: 

 

0

0 1 2 3 0 1 2 3

0

1 1

s s s

p

V V V

p u g dx dx dx u g dx dx dx dV
c u c

  


= − − = − =

   .            (16) 

 

In (16), we used definition of the density of generalized four-momentum 
p

u
 


= −


 from 

(13) and the relation from [1]: 

 

0
1 2 3 1 2 3

0

dt u
g dx dx dx g dx dx dx dV

d c
− = − = ,                               (17) 

 

where 
0dV  is the differential of the proper volume of any of particles, calculated in the 

particle’s comoving reference frame. 

 

We should note that by its construction method 

0

0

sV

p dV =   is a four-vector, as well as 

 . Besides, it is assumed that at the time of calculation of both four-vectors, the time 

components of four-velocities of all the particles either do not change or are averaged over time.  
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The fact that the density of generalized four-momentum is a four-vector is obvious from the 

covariant definition 
p

u
 


= −


. In the limit of continuously distributed materials, we can 

assume that typical particles almost completely fill entire volume of the system. Then the 

generalized four-momentum p  in (16) is obtained equal to the integral sum of the products 

of   of individual particles by the invariant volumes of these particles. Since the product of a 

scalar by a four-vector gives a four-vector, and the sum of four-vectors is a four-vector, the 

generalized four-momentum p  in (16) is a four-vector. 

A relation for the generalized four-momentum follows from (15) and (16): 

 

0
dp

dt


= .                                                              (18) 

 

According to (18), if shifting of all the system’s particles by the constant four-vector 

x  =  does not change physical properties of the system, then hence it follows that the 

generalized four-momentum p  is conserved. A closed system does not depend on 

environment and on fields from external sources, and for it the condition of the system’s 

constancy during the particles’ transfer is satisfied. Therefore, for a closed system the relation 

p const =  will be valid. 

It should be noted that this transfer by the constant four-vector x  =  should be 

considered as part of process of variation of variables, and not as a real process of the particles’ 

motion, in which the periods of acceleration and emission of charged particles are inevitable, 

which leads to a change in balance of energy and momentum, changes physical properties of 

the system, and violates conditions of variation. 

In (14), we assumed that 0

nu  is a constant value when integrated over volume of each typical 

particle and, on the average, does not depend on time. But this is precisely what is characteristic 

of an equilibrium system described with the help of typical particles and the procedure of 

averaging physical quantities, and this fully justifies our approach. 

In this case, we can go further and introduce 0

nu  under the partial derivative sign in (14), 

taking into account x  =  and then replacing the product of differentials 
n ndV d  by 

1 2 3g dx dx dx dt− , similarly to (10), and going over to the approximation of continuous 

materials: 
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( )
( )

( )
( )

2 2

1 1

2

1

0

0 0

1 0
1 1

0

0 1 2 3

0

1 1

1
0.

n n

s

N N
p np

n n n n n n

n nnV V n n

t
p

t V

ud d
S x u dV d x u dV d

c dt u c dt u u

ud
x u g dx dx dx dt

c dt u u

 

 

 
 





    



= =

 
   

  

  
 − = 

  

    

 

        (19) 

 

Let us define a new four-dimensional quantity: 

 

( )
( )

0

0 1 2 3

0

1

s

p

V

u
u g dx dx dx

c u u
 


 = − −


 .                                     (20) 

 

The relation 0
d

dt


=  follows from (19) and (20), that is, const =  for an equilibrium 

closed system. 

In the general case,   is not a four-vector, but becomes it on condition that 0u  for each 

particle does not change at the moment of calculating  . Indeed, in this case the relation 

( )
( )

0

0

p p
u

uu u


 
=


 will be satisfied, and then   becomes equal to the generalized four-

momentum p  in (16). 

The significance of   in (20) lies in the fact that its space component up to a sign equals 

the relativistic momentum of system’s particles. In order to see this, we will take into account 

the following relations: ( , )x ct = r , 01dt
u

d c
= , 0 01 1

( , )
dx dx

u u u c
d c dt c

 



= = = v . If we set 

0( , ) =  − , then for   from (20) it follows: 

 

( )0

0 1 2 3

s

p

V

u
u g dx dx dx


= −

 v
 .                                         (21) 

 

In [1], the three-dimensional generalized momentum of a system, which takes into account 

all the acting fields and actually represents the total relativistic momentum of the system’s 

particles, is determined as follows: 
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1

N

n n

L

=


=


p

v
. 

 

We must again take into account our reasoning in Section 3 about dependence of the 

Lagrangian density on time, coordinates, and the particles’ velocities. Only the part of the 

Lagrangian density, which we have denoted by 
p
 and which contains the four-currents, can 

directly depend on the particles’ velocities. With this in mind, and in view of relations (1) and 

(17), we find: 

 

0

1 2 3

00 0
1

s s n

N
p p

p p n

n nV V V

L g dx dx dx c dV c dV
u u=

= − = =    , 

 

( )0

0 1 2 3

0 0
1 1 1

.

n n s

N N N
pp p p

n n

n n nn n n n nV V V

uL
c dV c dV u g dx dx dx

u u= = =

     
= = = = −         
    p

v v v v
 

(22) 

 

The obtained expression coincides with   in (21), so that =p  . If we denote the 

generalized four-momentum in the form 
0( , )p p = −p  and take into account the coincidence 

p  and 
0( , ) =  −  provided that for each particle 

0u  does not change at the moment the 

momentum is calculated, then p  will be both the total relativistic momentum of the particles of 

the system in (22) and the total generalized momentum of the particles included in p  (16). 

As for the obtaining procedure and physical meaning of the four-vectors   and p , a few 

remarks should be made. First of all, the displacement of all the system’s particles, without 

exception, to a certain constant four-vector x  =  in one direction, which leaves the 

physical system unchanged and is presented in (14), is closely related to Noether’s theorem. 

Only with such a displacement, it is guaranteed that the system would preserve its form, relative 

position of the particles and their velocities, as well as the fields’ magnitudes, which would lead 

to the momentum conservation. In symmetric systems other displacements are possible, for 

example, inversion of the coordinates of all the particles (parity transformation) or substitution 

of the opposite particles with each other. According to Noether’s theorem, each continuous 

symmetry corresponds to its own transformation of the particles’ coordinates and its own 

conservation law of one or another physical quantity. 
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Secondly, in the approximation of continuous materials, in the equations, instead of the 

Lagrangian L , it is convenient to use its volumetric density , which allows us to refuse from 

integration in (1). Thirdly, due to the large number of interacting particles, the four-potentials 

and tensors of fields acting in the material no longer depend on coordinates and velocities of 

individual particles, they are determined only by the properties of the system as a whole, and 

in the center-of-momentum frame they depend mainly on coordinates of the observation point. 

As for the charge (electromagnetic) and mass four-currents that are also part of the 

Lagrangian density, it is believed that these four-currents are associated with the motion of the 

so-called typical particles of the system. The characteristic of typical particles is that they define 

the basic features of the physical system and allow it to be described in the most complete way. 

The independence of field functions from the coordinates of individual particles and the 

emergence of typical particles take place during averaging of motions of individual particles 

and gauging of the properties of these particles. As a result of such averaging, we can assume 

that at a certain point in the stationary equilibrium system, typical particles move at a certain 

averaged four-velocity u
, depending on the coordinates of observation point. The time 

component 
0u  of four-velocity of typical particles can also be considered averaged, moreover, 

in the stationary system as a whole, 
0u  will be constant, although it will differ in value in 

different parts of the system. It is this constancy of 
0u  of typical particles that can be implied 

in the derivation of Equations (12) and (13), and (12) and (13) can be considered as equations 

for averaged physical quantities. Another way to imagine the constancy of 
0u , necessary to 

derive the generalized four-momentum density   in (13), is to assume that 
0u  is calculated as 

an instantaneous value per short time, during which the velocities of typical particles do not 

have enough time to change significantly. Thus, we can consider our approach to be valid at 

least for systems that are in equilibrium and consist of a continuously distributed material. In 

Section 8, we will also show that the generalized four-momentum concept presented by us is 

consistent with both Hamiltonian mechanics and Lagrangian mechanics. 

The peculiar feature of the generalized four-momentum p  in (16) is unusual method of its 

determination in terms of volume integral. Indeed, the standard four-vectors are defined locally 

or in a point volume, which allows us to make transitions from the form with a covariant index 

to the form with a contravariant index using the metric tensor at a given point, for example, 

A g A 

= , A g A

 = . However, p  defines the generalized four-momentum for all the 

particles and is calculated as the integral over a sufficiently large volume. Such four-vectors are 

not local and should be called integral four-vectors. For such four-vectors, the equality of the 
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type p g p 

=  in the general case will not hold true, since the metric tensor g  can have 

different values at each point of the system. In order to obtain the contravariant form of p , 

we should turn to definition of the integral four-vector in (16): 

 

0

0 1 2 3

0

1

s sV V

p dV g u g dx dx dx
c

  

= = −  . 

 

5. Lagrangian density for vector fields 

In order to calculate the generalized four-momentum, we will use the Lagrangian density 

for four vector fields in a curved space-time, according to [5], [11]: 

 

2

0

2 2

1

4 16

2 ,
16 16

c
A j D J U J J F F Φ Φ

G

c c
u u f f c k R ck

     

     

 

 


 

  

= − − − − − + −

− − + − 

             (23) 

 

where ,A
c



 
= − 
 

A  is the four-potential of electromagnetic field, defined by the scalar 

potential   and the vector potential A  of this field, 

0qj u =  is the charge four-current, 

0q  is the charge density in the particle’s comoving reference frame, 

u
 is the four-velocity of a point particle, 

,D
c



 
= − 
 

D  is the four-potential of gravitational field, described by the scalar potential 

  and the vector potential D  of this field within the framework of the covariant theory of 

gravitation, 

0J u =  is the mass four-current, 

0  is the mass density in the particle’s comoving reference frame, 

,U
c



 
= − 
 

U  is the four-potential of acceleration field, where   and U  denote the scalar 

and vector potentials, respectively, 
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,
c


 

= − 
 

Π  is the four-potential of pressure field, consisting of the scalar potential  

and the vector potential Π ; if inside the particle the vector potential of pressure field is equal 

to zero, then 0

2

0

p
u

c
 


= , where 0p  is the pressure in the particle’s comoving reference frame, 

0  is the magnetic constant, 

F A A A A        = − =  −  is the electromagnetic tensor, 

G  is the gravitational constant, 

Φ D D D D        = − =  −  is the gravitational tensor, 

  is the acceleration field coefficient, 

u U U U U        = − =  −  is the acceleration tensor, calculated as the four-curl of 

the four-potential of acceleration field, 

  is the pressure field coefficient, 

f           = − =  −  is the pressure field tensor, 

3

16

c
k

G 
= − , where   is some coefficient of the order of unity to be determined, 

R  is the scalar curvature, 

  is the cosmological constant. 

The charge density 0q  and mass density 
0  included in the corresponding four-currents 

are not constants and they defined as covariant scalar functions of four-radii and four-momenta 

of typical particles of a system. This means that when the Lagrangian density (23) is varied in 

principle of least action, 0q  and 
0  must also be varied, such as, for example, the scalar 

curvature R . 

According to [5], in order to gauge the relativistic energy of a system, the cosmological 

constant is defined in such a way that the condition 2R =   arises. In this case, the energy will 

not depend on R  and   and becomes uniquely defined. The same applies to the generalized 

four-momentum. Therefore, when calculating it, we will assume that in (23) 2R =  . Then 

from (23) the expression follows for 
p
 as that part of the Lagrangian density, which contains 

four-currents as functions of the four-radius x  and four-velocity u  of an arbitrary typical 

particle: 
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p A j D J U J J   

   = − − − − .                                      (24) 

 

In the simplest case, when the global four-potentials and field tensors do not depend on four-

velocities of individual system’s particles, the density of generalized four-momentum for 
p
 

(24) will be equal to: 

 

0 0 0 0

p

q A D U
u

    
    


= − = + + +


.                                  (25) 

 

From (16) the expression follows for the generalized four-momentum in this case: 

 

( ) 0 1 2 3

0 0 0 0

1

s

q

V

p A D U u g dx dx dx
c

        = + + + − .                      (26) 

 

Since 
0( , )p p = −p , for the generalized momentum we find: 

 

( ) 0 1 2 3

0 0 0 0

1

s

q

V

u g dx dx dx
c

   = + + + −p A D U Π .                          (27) 

 

For   (21), in view of (24), we obtain the following: 

 

( )
( )

0

0 1 2 3 0 1 2 3

0 0 0 0

1

s s

p

q

V V

u
u g dx dx dx u g dx dx dx

c
   


= − = + + + −

  A D U Π
v

 . 

(28) 

 

From comparison of (27) and (28) it follows that the three-dimensional quantity   and the 

generalized momentum coincide: p = . The same equality was found at the end of the 

previous section using Lagrangian in (22). Thus, the Lagrangian density (23) and its part (24) 

allow us to calculate the generalized momentum of particles p , which coincides with the 

relativistic momentum of the particles. 

From (26), at 0 = , we find the time component of the generalized four-momentum: 
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( ) 0 1 2 3

0 0 0 0 02

1

s

q

V

p u g dx dx dx
c

      = + + +  − .                         (29) 

 

It can be seen from the above that the four-vectors   and p  characterize the volumetric 

density and the total generalized four-momentum of all the particles, respectively, that is, they 

are calculated over the entire system’s material. The contribution to these four-vectors is made 

by all the fields acting in the system. However, the fields are present not only in the material, 

but some of them also act outside of the material. Typical examples are electromagnetic and 

gravitational fields. If the system moves as a whole, then the fields outside the system acquire 

an additional four-momentum, which must be added to the generalized four-momentum p , if 

we want to find the total four-momentum of the system of particles and fields. Thus, the 

generalized four-momentum p  is only part of the total four-momentum of the system, while 

the time component 
0p  defines the energy of particles and fields in the system’s material, and 

the space component 
ip  with the index 1,2,3i =  defines the relativistic (generalized) 

momentum of these particles and fields. 

According to (18), in the equilibrium and closed system p  is conserved, and the same can 

be said about the four-momentum of electromagnetic and gravitational fields of the system 

outside the material, as well as about the total four-momentum of the system. The reason for 

conservation of the total four-momentum of a closed system is impossibility of the four-

momentum’s changing due to the lack of interaction with the environment, while it is assumed 

that the internal interactions are not able to change the system’s four-momentum. The condition 

of equilibrium system implies that the proportions of energy and momentum for the particles 

and fields remain unchanged all the time, which ensures conservation of the generalized four-

momentum p , as well as of the four-momentum of fields outside the material. 

 

6. Relativistic uniform system at rest 

We will consider within the framework of special theory of relativity (STR) a relativistic 

uniform system, which is closely filled with a multitude of particles and is held in equilibrium 

by four vector fields. For macroscopic bodies, the main acting force is the gravitational force, 

which gives the bodies a spherical shape. 

Let us suppose that all the system’s particles move randomly and independently of each 

other, and there are no directed fluxes of material and general rotation in the system. We will 

also assume that in the particles’ comoving reference frames both the proper vector field 
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potentials and the particles’ solenoidal vectors vanish. Then, in the rest system, the potentials 

and field tensors will not depend on the four-velocities of individual particles and formulas (26-

29) will be applicable. 

For electromagnetic field, for example, this means that charged particles do not have their 

intrinsic magnetic moment in their comoving reference frames. As for acceleration field, the 

particles must have proper rotation close to zero. Under such assumptions, it is easy to show 

that as a result of solving wave equations for individual particles and for a great number of 

randomly moving particles in the system under consideration, the global vector potentials A , 

D , U , Π , as well as the solenoidal field vectors in the system tend to zero. This leads to the 

fact that p  in (27) and   in (28) become equal to zero, and it suffices for us to determine only 

the time component 
0p  in (29). Within the framework of STR, in (29) 1g− = , the sphere’s 

volume element 
1 2 3

sdx dx dx dV=  and taking into account the time component of   in (25) we 

can write: 

 

( )0 0 0 0 0 0 0 0 0 0 0 0 0

1
q qA D U

c
           = + + + = + + +  .                  (30) 

 

0

0 0

1

s

s

V

p u dV
c

=  .                                                      (31) 

 

The scalar potentials of fields inside a sphere in the case 0q const =  and 
0 const =  were 

determined in [15-17]: 
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2 3 2

0
0

0

2
sin 4 .

34

c c c
c c

c c rr

cr

      
 

   

 
= − +  − 

 
               (32) 

 

In (32) 
0  is the electric constant, 

c  is the Lorentz factor of particles at the center of sphere, 

a  is the sphere’s radius, 
c  is the scalar potential of pressure field at the center of the sphere. 

For the charge four-current we have: 0qj u = , while the four-velocity of the particles 

( , )u c    = v , 0u c = , where 
2 2

1

1 v c
  =

−
 is the Lorentz factor for the particles, v  is 

the root-mean-square velocity of the particles. 

The appearance of sines and cosines in (32) is associated with taking into account the 

Lorentz factor of the proper chaotic motion of particles. If we neglect the internal motion of the 

particles, then the field potentials will become equal to the potentials inside an ideal solid 

sphere. Such potentials are indicated as approximate expressions on the right-hand sides in (32). 

In [12], when analyzing equation of motion, it was shown that in the system under 

consideration the following relation between the field coefficients held true: 

 

2

0

2

0 04

q
G


 

 
+ = − .                                                    (33) 

 

Let us substitute potentials (32) into (30) and take into account (33): 

 

( )
2

0 0
0 0cos 4c c

c

c ca

c c

    
   

 

  
= + +  −  

   
.                       (34) 

 

We can write the density of generalized four-momentum in terms of components as follows: 

0( , ) = − , where  is the density of three-dimensional generalized momentum and space 

component of the four-vector. In the case under consideration, it turns out that 0= , and 

according to (34) 
0 const=  in the entire volume of a sphere. Thus,   turns out to be a 

constant four-vector. 

We will substitute 
0
 from (34) into (31) and will integrate over the sphere’s volume. Since 

0u c = , where    is specified in (32), we obtain the following: 
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( )

0

2 2 0

0 0

0

sin 4

cos 4 cos 4 .
4

c c c
c

p

a
c

ac c ca ac

c ca

 
   

     
    

=

  
        = + + − −    

     
  

 

(35) 

 

If in (35) the inequality 04 1
a

c
   holds true, then the sines and cosines can be 

expanded up to the second-order terms. This gives the following: 

 

( ) ( )
3

2 20
0

4

3

c c
c c c c

a m
p c c

c c

   
  +  + . 

 

where 
3

04

3

a
m

 
=  is a quantity with the dimension of mass, which is equal to the product 

of mass density 
0  by the sphere’s volume. 

On the other hand, it was shown in [15] that the total mass of particles inside a sphere is 

defined by the quantity 
bm , which differs from m . The difference in masses arises from the 

particles’ motion, since the effective density of a moving particle equals 
0   . The total mass 

of particles inside the sphere is defined by the integral over the sphere’s volume: 

 

2

0 0 0

0

sin 4 cos 4
4

c
b g

c c a a
m m dm dV a

c c


     

  

    
= = = = −    

     
  . 

(36) 

 

Furthermore, it turns out that the mass 
bm  is equal to the gravitational mass 

gm , which 

specifies the scalar potential and the gravitational field strength outside the sphere. For the 

charge 
bq  of the system, similarly to (36), we find: 
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b q
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Let us substitute (36) into (35): 

 

( ) ( )
2 2

2

0 0cos 4b c c b
c c c

m c c ma
p c

c c c

  
    

 

  
= + + −  +  

  
.           (37) 

 

Hence, we can see that the time component 
0p  of the system’s generalized four-momentum 

exceeds the value 
b cm c  by approximately b

c

m

c
 . We will write the four-vector p  in terms 

of time and space components: 
0( , )p p = −p , where p  is a three-dimensional generalized 

momentum. The four-vector p  can be considered a constant four-vector, since according to 

(37) 
0p const=  as long as the Lorentz factor 

c  and the scalar potential 
c  at the center of 

sphere are constant, which is true for an equilibrium system. In addition, according to (16) and 

(26) 0=p  as a consequence of the fact that 0=  in the definition 
0( , ) = − . 

Since the four-vector   and p  for the sphere at rest turn out to be constant, then relation 

(18) holds true, and (13) implies the following: 

 

0
0

p

x u

 
= 

  
.                                                         (38) 

 

Let us verify relation (38) for the case of the sphere at rest within the framework of STR. 

For this, it is necessary to express the relation 
0

p u  in terms of components of the four-radius 

( , , , )x ct x y z = . We will consider the sum of products of the fields’ four-potentials by the 

four-currents in (24), and will express this sum in terms of its components. Thus, for the 

electromagnetic field and other fields inside the sphere we will obtain the following: 

 

,A
c



 
= − 
 

A ,       0 0 ( , )q qj u c     = = v ,       0 0q qA j      = − A v . 

 

,D
c



 
= − 
 

D ,           
0 0( , )J u c     = = v ,         0 0D J 

      = − D v . 

 

0 0U J 

      = − U v ,                  0 0J 

     = − Π v .                  (39) 
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Since the fields’ vector potentials A , D , U , Π  in this case are equal to zero, we can write: 

 

0 0 0 0qA j D J U J J   

                 + + + = + + + . 

 

Let us substitute here (30) and take into account that 0u c = : 

 

0

0 pA j D J U J J u   

   + + + = = − .                                (40) 

 

According to (34) 
0 const= , so in view of (40), relation (38) holds true: 

 

0

0
0

p

x u x 

  
= − = 

  
. 

 

7. Moving relativistic uniform system 

Let us consider a sphere with the particles moving at a constant velocity V  along the axis 

OX , and at initial time point the center of the sphere was located at the origin of fixed reference 

frame K . In the reference frame K , associated with the center of the sphere, the scalar 

potentials of the fields are expressed by formulas (32), and the vector potentials of the fields on 

the average are equal to zero. 

We can determine the field potentials from the standpoint of the reference frame K , taking 

into account the fact that field potentials are part of the corresponding four-potentials, which 

are transformed from K  into K  as four-vectors. Within the framework of SRT, the four-

potentials are transformed in the same way as the time and coordinates in the Lorentz 

transformations. For example, if the four-potential of electromagnetic field in K  is 

, , ,x y zA A A A
c



 
   = − − − 

 
, then in K  for the components of the four-potential we can write 

the following: 

 

( ) ( )2

2

, , , , / , ,

, ,0,0 .

x y z x x y zA A A A V A A V c A A
c c

V

c c



 
  

 

   
     = − − − = +  − + − − =   

   

  
= − 
 

         (41) 
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Here 
2 2

1

1 V c
 =

−
 is the Lorentz factor of motion of the sphere’s center in K . 

In (41) it is taken into account that in K , where the sphere is motionless, all the three 

components of the vector potential ( )1 2 3, ,A A A   =A  are equal to zero. For the four-potentials 

of other fields we can write in a similar way: 
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, , , , ,0,0x y z
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= − − − = −   
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2
, , , , ,0,0x y z

V

c c c


 
   

      
= − − − = −   
   

.                            (42) 

 

In K  the velocity of an arbitrary particle inside the sphere equals v , and the Lorentz factor 

is 
2 2

1

1 v c
  =

−
. Let us denote the total velocity of the particle in K  by v  and the Lorentz 

factor of the particle by 
2 2

1

1
p

v c
 =

−
. Transforming the particle’s four-velocity from K  

into K  using the Lorentz transformations gives the following: 

 

( ) ( ) ( )2, , , 1 / , , , .p p x p y p z x x y zu c v v v c Vv c v V v v                  = = + +
 

          (43) 

 

Let us substitute (41) and (42) into (25) and find in K  the time and space components of 

the density of generalized four-momentum 0( , ) = − , where ( , , )x y z= : 

 

( )0 0 0 0 0 0 0 0 0 0 0 0 0q qA D U
c


              = + + + = + + +  . 

 

( )0 0 0 0 0 0 0 0 02x q x x x x q

V V
A D U

c c


              = + + + = + + +  = . 
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0y z= = .                                                            (44) 

 

In (44), the fields’ scalar potentials  ,   ,   and   in the reference frame K  are the 

scalar potentials, which are presented in (32). With this in mind, we can use expressions (30), 

(33) and (34) for K , and for the reference frame K  we find: 

 

( )
2

0 0
0 0cos 4c c

c

c ca

c c

      
   

 

  
= + +  −  

   
. 

 

0x

V

c
= ,                      0y z= = .                                       (45) 

 

According to (45), in K  the time component of the density of generalized four-momentum 

increases by a factor of   as compared to K . In addition, the component 
x
 of the density of 

three-dimensional generalized momentum along the axis OX  appears, which is proportional to 

the velocity of the sphere’s motion in K . 

In order to simplify the calculations, we will assume that the sphere’s velocity V

significantly exceeds the particles’ velocities 
xv , 

yv  and 
zv , so the latter can be neglected. If 

in (43) 2

xVv c , then the time component 0u c   . Taking from (45) the components 

0( , ) = −  in K , with the help of (16), (26-27) at 1g− =  we can determine the 

components of the generalized four-momentum 
0( , )p p = −p , where ( , , )x y zp p p=p : 

 

0 1 2 31

sV

p u dx dx dx
c

 =  ,         
0 1 2 3 1 2 3

0 0 0

1

s sV V

p u dx dx dx dx dx dx
c

  =   . 

 

0 1 2 3 1 2 31

s sV V

u dx dx dx dx dx dx
c

  =  p . 

 

1 2 3 1 2 30 0

s s

x x

V V

V p V
p dx dx dx dx dx dx

c c


    = =  ,        0y zp p= = .              (46) 
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If in (46) we calculate the time component 
0p  of generalized four-momentum, then the 

component 
xp  of three-dimensional generalized momentum would be thereby determined. 

According to STR approach, a moving sphere with the particles is represented in K  as a 

Heaviside ellipsoid, regardless of the internal motion of particles in K . In [18], the energy and 

momentum of electromagnetic field of a moving charged sphere were studied and the 4/3 

problem was discovered. The same was discovered in [19] for the gravitational field. Next, we 

will proceed similarly to [18-19], and will introduce in K  new coordinates , ,r    associated 

with the Cartesian coordinates: 

 

1
cosx Vt r 


− = ,       sin cosy r  = ,       sin sinz r  = .                     (47) 

 

In these coordinates, the volume element in (46) is determined by the formula 

1 2 3 21
sindx dx dx r dr d d  


= . According to (32), in the reference frame K  the Lorentz 

factor    of particles moving inside the sphere is expressed in terms of a current radius, which 

we will denote here by r : 

 

0

0

4
4

cc r

cr


  

 

 
 =  

  
sin . 

 

If we take into account the Lorentz transformations, then the coordinates , ,r    in K  

inside of the Heaviside ellipsoid present in (47) coincide with the spherical coordinates 

, ,r      in K  inside of the sphere, so ( )
22 2 2r x vt y z r = − + + = . 

All this allows us to calculate the integral for 
0p  in (46): 

 

1 2 3

0 0 0 0

0

2

0 0 0

0 0

sin 4 sin
4

sin 4 cos 4 .
4

s s

c

V V

c

c r
p dx dx dx r dr d d

c

c c a a
a

c c


      

 


   

   

 
 = = 

 

    
= −    

     

 
 

 

Let us substitute here 
0
 from (45) and 

bm  from (36): 
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( ) ( )
2 2

2

0 0cos 4b c c b
c c c

m c c ma
p c

c c c

    
    

 

  
 + + −  +  

  
.        (48) 

 

In comparison with (37), the component 
0p  has increased by a factor of   due to the motion 

of the physical system as a whole at velocity V . 

For the component 
xp  of the generalized momentum from (46) we find: 

 

0
x

p V
p

c
 ,                                                            (49) 

 

where the component 
0p  is calculated in (48). 

As long as the sphere with the particles moves at a constant velocity V  along the axis OX

, we can assume that in (48) is the component 
0p const= . The same will also be true for 

xp  in 

(49), while 0y zp p= = . Hence it follows that the generalized four-momentum 
0( , )p p = −p

, where ( , , )x y zp p p=p , is a constant four-vector, and therefore the conservation condition 

(18) holds true. 

According to definition of the four-potential of pressure field in [6], for scalar potential at 

the center of a sphere we can write: 
0

c oc

c

p


 = , where ocp  is the proper pressure inside a 

typical particle moving at the center of the sphere. With this in mind, the expression for 

momentum of the system’s particles follows from (48) and (49): 

 

2

0

1
oc

c b

p
m

c
 



 
 + 

 
p V . 

 

As we can see, taking into account the proper pressure ocp  and the proper density 
0  of 

particles increases the value of the total momentum of the system’s particles, regardless of the 

contribution of the Lorentz factors   and 
c  to the momentum. 

According to (48) and (49), the generalized four-momentum can be written as follows:  

 

( )( )2

0 2 2
1, ,b c

c c b c

m
p p c c m u

c c c
    

  
= −  + −  +   

   

V
V ,                 (50) 
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where u  is four-velocity of the center of a sphere. Thus, the generalized 4-momentum is 

directed along the four-velocity of the system under consideration.  

From (48-50) it follows 

 

2

c
b cm

c
 

 
 + 

 
p V  

 

so that in the first approximation the total momentum of particles is proportional to the 

Lorentz factor  , the velocity V  of the center of momentum’s motion and the total mass 
bm  

of the system’s particles defined in (36). Besides, the greater are the scalar potential 2

c cc =  

of acceleration field and the scalar potential 
c  of pressure field at the center of a sphere, the 

greater is the momentum. Since 
c  is the Lorentz factor of particles at the center of the sphere, 

we can see that due to the motion of particles inside the sphere, the effective mass, which is 

included in the momentum of particles of the system, increases. This means that instead of the 

mass 
bm , which is typical for a resting relativistic uniform system, the value 

2

c
b cm

c


 
+ 

 
 

becomes the effective total mass of particles in the moving system. 

It remains for us to verify Equation (13). From (45) it follows that 
0 const= , 

0x

V
const

c
= = , 0y z= = . This means that the density of generalized four-momentum 

0( , ) = − , where ( , , )x y z= , is a constant four-vector, and then the left-hand side 

of Equation (13) becomes equal to zero, 0
d

dt


= . We will consider the right-hand side of (13), 

which contains the value 
0

p
c

x u

 
−  

  
. Using the expression for 

p
 in (24), we find: 

 

( )

( )

0 0

0 0 0 0 0 0 0 0

1

1
.

p

q q

A j D J U J J
u u

c

   

   

          

= − − − − =

= − −  + −  + −  + − A v D v U v Π v

              (51) 
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According to (43), the Lorentz factor 
p  and the components of total velocity 

( , , )x y zv v v=v  of an arbitrary particle during motion of a sphere with the particles in K  equal: 

 

( )21 /p xV v c    = + ,         
( )

21 /

x x
x

p x

v V v V
v

V v c

 



  +  +
= =

+
, 

 

( )21 /

y y

y

p x

v v
v

V v c



 

  
= =

+
,            

( )21 /

z z
z

p x

v v
v

V v c



 

  
= =

+
.                      (52) 

 

If in (52) we neglect the components 
xv , 

yv , 
zv  of the particle’s proper velocity inside the 

sphere measured in K , then it will be ( ,0,0)Vv . Then for the electromagnetic field 

2

2x

V
A V

c


  =A v , and similar expressions will hold for the other fields, in view of (41) and 

(42). We will substitute this into (51) and will take into account the expressions for scalar 

potentials of the form  =  from (41) and (42), as well as 
0
 from (44): 

 

( )

( )

2

0 0 0 00 2

0
0 0 0 0 2

1

1
.

p

q

q

V

u c c

c


      

      
 

 
   = − − + + +  = 

 

   = − + + +  = −

 

 

Since according to (45) 
0 const= , we obtain the value 

0

p
const

u
= . Consequently, the 

right-hand side of (13) will be equal to zero, that is, 
0

0
p

c
x u

 
− = 

  
, and Equation (13) is 

satisfied. 

 

8. Discussion 

When we calculated the generalized four-momentum of a moving uniform relativistic 

system in the reference frame K , instead of the time component of four-velocity of an arbitrary 

particle ( )0 21 /xu c V v c   = +  in (43) we used an approximate value 0u c   . This led to the 

fact that the time component 
0p  in (48) increased by a factor of   due to the motion of the 
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physical system as a whole at the velocity V  as compared to the static case. Will anything 

change if we take into account the velocity component 
xv  in the expression for 

0u ? In an 

equilibrium system of particles, which is stationary in general, the total momentum of these 

particles as a rule is equal to zero. When the particles move randomly, their momenta are 

subtracted from each other due to the different directions of the particles’ velocities, the same 

is true for freely rotating systems. In addition, in the center-of-momentum frame the total 

momentum is always equal to zero. The velocity component 
xv  is included in 

0u  as an additive 

raised to the first odd power, and then is integrated over the volume when we calculate p  in 

(46). This additive behaves as a certain antisymmetric function changing its sign, the volume 

integral of which becomes equal to zero. Therefore, the estimates of 
0p  and 

xp  obtained in 

(48) and (49) remain unchanged. 

The relativistic energy E  for a system of particles and vector fields was found in [5] in a 

curved space-time. If the system is stationary and there is no energy dissipation due to non-

potential forces, then the Hamiltonian H  of the system becomes equal to the energy: 

 

( ) 0 1 2 3

0 0 0 0

2

0 1 2 3

2 2

1

1
2

16 4
.

16 16

s

s

q

V

V

H E u g dx dx dx
c

c
ck R ck Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

      

 

  

= = + + +  − −

 
−  + − − 

 − −
 
− −  
 





               (53) 

 

We substitute  from (23) into (1), using the energy calibration condition in the form 

2 0ckR ck−  =  according to [5], [20],  add the result for L  with H  (53) and take into account 

(25): 

 

1 2 3 0 1 2 3 1 2 3

0

s s s

i

i

V V V

L H u g dx dx dx u g dx dx dx u g dx dx dx

+ = − − + − = − −   . 

 

Here the index 1,2,3i =  defines spatial components of four-vectors  and u
. We now 

take into account that 0( , ) = − , and four-velocity 0 01 1
( , )

dx dx
u u u c

d c dt c

 



= = = v :  
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0 1 2 31

sV

L H u g dx dx dx
c

+ =  − v . 

 

Using (17), we can replace volumes of moving particles with their proper volumes and 

replace the integral over volume with the sum of integrals over volumes of individual particles:  

 

0 0 0

0 0 0

1 1
s n n

N N

n n n n n n

n nV V V

L H dV dV dV
= =

+ =  =  =    v v v . 

 

Since 
0( , )p p = −p , in view of (16) we find: 

 

1

N

n n

n

L H
=

+ = v p , 

 

This expression is a standard Legendre transformation connecting the Lagrangian, 

Hamiltonian, velocities and generalized three-dimensional momenta of all particles of the 

system. Thus, the concept of the generalized four-momentum presented by us is consistent both 

with Hamiltonian mechanics and Lagrange mechanics [21]. 

From (53), on condition of energy gauging in the form 2 0ckR ck−  = , and from (29) it 

follows: 

 

2

0 1 2 3

0 2 2

1

16 4

16 16
sV

c
Φ Φ F F

G
E c p g dx dx dx

c c
u u f f

 

 

 

 

 

 

 
− − 

 = − −
 
− −  
 

 .                   (54) 

 

This means that the time component 
0p  of the generalized four-momentum of a system 

defines a part of the energy-momentum that is associated with the particles affected by the 

system’s fields. As for contribution of the fields themselves to the system’s energy, it is defined 

by the integral in (54), according to [15], [16], [22]. We can assume that separation of energy 

in (54) into particle energy and field energy arises from the very structure of the Lagrangian 

density (23). In this Lagrangian density, there is part (24) containing four-potentials of fields 

and four-currents of particles, and there is also a part containing tensor invariants appearing in 

the integral in (54). 
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Let us also consider the approach to the problem in question within the framework of the 

general theory of relativity (GTR). According to [13], [21], the Lagrangian density of GTR for 

the relativistic fluid can be represented as follows: 

 

0
0 0

0

1
2

4
GTR qc g u u g u u A u F F ckR ck

c

     

   


 


= − −  − − + −  .     (55) 

 

The function 
0 00

p
dp p

 
 = −  in (55) is the potential energy of elastic compression of the 

fluid per unit mass, and p  represents the pressure. The first three terms in (55) directly depend 

on the four-velocity u


, and we can assume that they form that part of the Lagrangian 
p
, with 

the help of which the generalized momentum density   is calculated in (13). Hence we find: 

 

0
0 0

p

qu u A
u c

   


 


= − = +  +


.                                      (56)  

 

Expression (56) for the generalized momentum density in GTR shows a significant 

difference in comparison with expression (25) obtained for the vector fields. In (56) the first 

term 
0u  corresponds to the term 

0U  in (25). However, the four-potential U  of the 

acceleration field is equal to the four-velocity u  only for a point particle, and in the general 

case for a fluid, as for a system of closely interacting particles, the inequality U u   holds 

true [23]. The second term 0 u
c




  in (56), associated with the pressure energy, corresponds 

to the term 
0    in (25). But the term 0 u

c



  is always directed along the four-velocity u , 

as for a free point particle, while actually the fluid particles interact with each other in such a 

way that the four-potential   of the pressure field would always differ from the value 
1

u
c



. Finally, if the term 
0q A  for the electromagnetic field is identically represented in (25) and 

(56), then for the gravitational field the difference again is observed. In (25), the contribution 

to the generalized momentum density is made by 0 D , where D  is the gravitational four-

potential. But in (56) in the expression for   there isn’t any term defining the gravitational 
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field. This is an obvious consequence of the axiomatic of GTR, in which the spacetime metric 

plays the role of the gravitational field. Nevertheless, such equations as (12) and (13), into 

which the physical quantities averaged over typical particles should be substituted, must remain 

valid in GTR. This is possible, since the generalized four-force   in (13) depends on the 

metric and therefore on the gravitational field in GTR. 

On the other hand, according to (16), the generalized four-momentum p  of system of 

particles is the volume integral of  . Then it turns out that p  in GTR does not contain a 

contribution from the gravitational field, and therefore the space component p  cannot define 

the relativistic momentum of the particles of the system, in contrast to what we found for the 

vector fields in Section 4. The situation in GTR is made more complicated by the fact that an 

attempt to determine the four-momentum and the relativistic momentum of a physical system 

in another way, with the help of the volume integral of the time components of stress-energy 

tensor, even taking into account the gravitational field pseudotensor, is unsuccessful (see [21] 

and the references therein). Instead of the four-momentum, the so-called integral four-

dimensional vector is obtained in this way, which characterizes distribution of energy and field 

energy fluxes in the system, is conserved in a closed system, but is not a standard locally defined 

four-vector. 

 

9. Conclusion 

The analysis of Lagrangian and its variation in the principle of least action has led us to the 

four-dimensional Euler-Lagrange Equation (12) and its variant (13) for the continuously 

distributed materials. In (16) we determine the generalized four-momentum 
0( , )p p = −p , in 

(20) – an auxiliary four-dimensional quantity 
0( , ) =  − , in (21) the vector   and in (22) 

– the total relativistic momentum of particles of a system, found through the Lagrangian. By its 

definition, the generalized four-momentum p  turns out to be an integral four-vector, 

belonging to the special class of non-local four-vectors. As is shown at the end of Section 4, for 

such four-vectors a different order of transformation between the form with a covariant index 

and the form with a contravariant index is required. 

Within the framework of the accepted assumptions, when for each particle 
0u  does not 

change at moment the momentum is calculated, it turns out that =p  , moreover, p  is equal 

to the total relativistic momentum of particles of the system. 
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Below, as an example, we use in (23) the Lagrangian density , which describes the 

relativistic vector fields, and in (24) its part 
p
, containing four-currents. As follows from 

definition of the generalized four-momentum, for its calculation it suffices to specify a part of 

the Lagrangian density 
p
. We calculate in terms of 

p
 the density of generalized four-

momentum 
p

u
 


= −


 in (25), as well as the terms of Equation (13). As a result, it turns out 

that for the vector fields the generalized four-momentum p  and the four-dimensional quantity 

  coincide with each other, and Equation (13) is also satisfied in case of the system’s motion 

at a constant velocity. 

The results obtained are applied to uniform relativistic system in the form of a sphere, 

studied earlier in [24]. First, the components 
0p  and p , which are part of the generalized four-

momentum p , are calculated for the system at rest, and then for the same system moving at a 

constant velocity. It follows from (37) and (48) that the component 
0p  of the moving system is 

  times greater than the component 
0p  of the resting system, where   is the Lorentz factor of 

motion of the center of sphere in the laboratory frame of reference. In this case, the moving 

system acquires a relativistic momentum p  (49). A feature of the components 
0p  and p  is that 

in the first approximation they depend on the Lorentz factor 
c  and on the potential 

c  of 

pressure field at the center of sphere. This can be seen in (50), where the generalized four-

momentum is expressed in terms of four-velocity of the sphere. 

Analysis of the current situation in general theory of relativity (GTR) shows that due to absence 

of covariant representation of contribution from the gravitational field, in relativistic 

hydrodynamics there is no complete description of relativistic and generalized four-momenta 

with the help of GTR. Available works are confined to the fact that the pressure has static 

nature, so neither the four-potential nor the pressure field tensor in the covariant formulation 

are used in description of the pressure field. The same is true for acceleration field, which not 

only defines the particles’ energy density in the Lagrangian according to Einstein’s formula, 

but also describes contribution from the energy of particles’ own motion inside a system in 

terms of its four-potential and acceleration tensor. Instead, a phenomenological thermodynamic 

approach is usually used, in which the fluxes and the energies of particles are calculated in 

terms of temperature, pressure, entropy, chemical potential, etc. [25-34]. However, the 

approach based on the field theory and Lagrangian mechanics allows us to derive more 

convenient and covariant expressions for the generalized four-momentum p  in (16) and the 
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generalized four-momentum density   in (25), which are valid in the curved spacetime. The 

results obtained are made possible by using the concept of typical particles to describe a 

continuous material, which makes it possible to simplify variation procedure and implement it 

completely in a four-dimensional form. 
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