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Abstract

Identifying differential operators from data is essential for the mathematical modeling of com-
plex physical and biological systems where massive datasets are available. These operators
must be stable for accurate predictions for dynamics forecasting problems. In this article, we
propose a novel methodology for learning sparse differential operators that are theoretically
linearly stable by solving a constrained regression problem. These underlying constraints are
obtained following linear stability for dynamical systems. We further extend this approach
for learning nonlinear differential operators by determining linear stability constraints for
linearized equations around an equilibrium point. The applicability of the proposed method
is demonstrated for both linear and nonlinear partial differential equations such as 1-D scalar
advection-diffusion equation, 1-D Burgers equation and 2-D advection equation. The results
indicated that solutions to constrained regression problems with linear stability constraints
provide accurate and linearly stable sparse differential operators.

Keywords: Constrained regression, Linear stability, Differential operators, System
identification, Scientific machine learning

1. Introduction

Mathematical models for predicting physical systems rely on well-defined partial differ-
ential equations (PDEs) or ordinary differential equations (ODEs) that govern the spatio-
temporal dynamics. Traditionally, these equations have been defined based on physical
insights from domain experts. This approach has prohibited simulations for many complex
systems, such as those in biology and finance, where obtaining such equations through in-
sights may not be possible. With advancements in machine learning techniques and the
availability of large-scale datasets, there has been a widespread interest in data-driven simu-
lation and modeling [1–6]. This interest has led to mathematical techniques that utilize such
datasets with partial physical information to infer physical systems and improve existing
models.

For several scenarios, such as physical and biological dynamical systems where PDEs
and ODEs are not readily available, there has been growing interest in techniques for system
identification [7–9]. The first step of modeling complex systems is to determine PDEs from
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data [10, 11]. The next step is solving these learned PDEs to predict system dynamics. The
typical approach to solving these identified equations is using numerical methods such as
finite differences [12], finite volumes [13] or finite elements [14]. These numerical methods
have been commonly used for solving PDEs as these have provable theoretical estimates
of accuracy and stability. However, these methods are often tailored to maintain accuracy
and stability for specific problems. Furthermore, the solution of PDEs using these methods
also requires the development of a comprehensive and efficient codebase, especially if the
targeted application is complex and computationally expensive. When system identification
techniques [10, 11] are applied for identifying PDEs, accuracy and stability considerations
for the spatial and temporal discretization of learned PDEs to obtain a valid solution are
typically not addressed. Instead, appropriate experience and insights from users are ex-
pected to address this selection. In such situations, it is desirable to determine discrete
differential operators, hereafter referred to as differential operators, directly using data and
modern machine learning methods. Furthermore, these differential operators can also enable
nonintrusive reduced order modeling [15] where, despite the knowledge of underlying PDE,
the knowledge and access to the discretization scheme are unavailable.

Identifying appropriate differential operators from data, which is intimately related to
learning spatial discretization from data [16] has gained significant interest over the years.
Such methods can also be classified as techniques for system identification as they identify
the set of discretized equations from data. Several popular approaches use artificial neural
networks (ANNs) for discrete representations of systems [16–18]. Despite their popularity
and accuracy for different applications, the typical black-box nature of ANNs often discour-
ages interpretability [19], which is desired when performing theoretical analysis to identify
the accuracy and stability properties of the method. An in-depth study of these properties
is essential for gauging the performance of learned differential operators for scenarios not
included in the training dataset. Furthermore, these nonlinear learned differential operators
could have a high evaluation cost, prohibiting the scalability of such methods for large-scale
physical systems. Standard numerical methods often result in sparse linear systems with a
lower computational overhead. Decades of research in solving such systems have resulted
in sparse linear system solvers that efficiently provide high accuracy with a low memory
footprint and enable scalability and portability to different hardware architectures. These
ANN-based discrete operators may not allow the efficient use of such sparse linear system
solvers, which could require implicit time integration for stiffer dynamics.

In contrast to previous approaches, which learn noninterpretable differential operators,
recent work [20] has focused on obtaining interpretable sparse stencils from data for linear
PDEs. They posed this as a regression problem where a local solution stencil is learned
from the data. In a follow-up work [21], this approach was extended for time-dependent
problems and nonlinear PDEs while using a strategy [11] to identify stencils and regular-
ization parameters for stable learned differential operators. Recent work on the adjacency-
based determination of differential operators [15, 22] has focused on a similar approach for
identifying sparse differential operators and demonstrating their application for nonintrusive
reduced order modeling. The accuracy of these methods can be adjusted by selecting the ap-
propriate solution stencil sizes, machine learning techniques and regularization parameters.
However, despite high accuracy within the training dataset, the numerical stability of these
discrete solution representations is essential to ensure that numerical approximation errors
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do not grow in time. All these methods, including ANN-based methods, do not theoretically
guarantee stability even for linear systems. Instead, feasible stable solutions may only be
constrained to scenarios within the validation dataset without any stability guarantees for
dynamics forecasting scenarios outside the validation dataset. For the reasons mentioned
above, there is an immense need for approaches that determine differential operators from
data while providing theoretical stability guarantees. Our experience with learning differen-
tial operators through state-of-the-art approaches that use regression to obtain differential
operators [15, 20] indicated that these methods often learn unstable differential operators
for linear PDEs and may not reliably perform even within the training dataset. While this
issue is partly addressed in [21] using the stability selection procedure [23], this approach
can be computationally expensive for a system with many degrees of freedom and cannot
theoretically guarantee stability.

In this article, we propose a novel approach for learning sparse differential operators that
are provably linearly stable. This approach relies on a set of local conditions for differential
operators derived using the stability theory for linear dynamical systems. These conditions
are incorporated as inequality constraints in the regression problem to determine the un-
known differential operators. The resulting constrained regression problem is solved using a
sequential least squares programming optimizer. We further extend this method for learn-
ing nonlinear differential operators by formulating constraints based on linearized equations
obtained using Taylor-series expansion around an equilibrium point. The applicability of
the proposed method for learning stable differential operators is demonstrated by comparing
the results against the standard regression-based approach for multiple linear and nonlinear
PDEs: 1-D scalar advection-diffusion equation, 1-D Burgers equation and 2-D advection
equation. The proposed approach targets identifying suitable differential operators while
using the known form of PDE to provide stability constraints. Therefore, this approach
differs from other system identification approaches that identify an unknown PDE.

The outline of this article is given below. Section 2 discusses the relevant mathemati-
cal background on differential operators for PDEs and stability theory for linear differential
operators. Section 3 first discusses the standard approach for learning sparse differential op-
erators from data. This section also gives the mathematical details for learning stable sparse
differential operators from data and an extension of this approach to nonlinear equations.
Section 4 includes the results for the three test cases and demonstrates the applicability of
the proposed approach for learning differential operators from data. Section 5 concludes this
article by highlighting the main contributions and mentioning directions for future research.

2. Mathematical background

In this section, we first introduce the theory of obtaining the semi-discrete form of PDEs
and then discuss the linear stability of differential operators in this semi-discrete form.

2.1. Differential operators for PDEs

We restrict the analysis and mathematical formulation to 1-D PDEs, although these con-
cepts can be generalized to higher-dimensional PDEs. Consider a 1-D PDE of the following
form:

∂u

∂t
+ F(u) = 0, (1)
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where F(·) is a continuous differential operator, u : Ω × [0, T ] → R is the PDE solution,
Ω is the simulation domain and T is the final simulation time. Boundary conditions often
accompany these PDEs on the boundaries Γ . Using the method of lines with a suitable
spatial discretization, the semi-discrete form of this PDE is obtained as

du

dt
+ F (u) = 0, (2)

where u ∈ Rn is the discrete solution field, F : Rn → Rn is a differential operator and n is
the number of degrees of freedom. These degrees of freedom often correspond to different
locations on the discretized domain, called the simulation grid Ωh, depending on the spatial
discretization approach. The differential operator can be linear or nonlinear, depending on
the PDE under consideration. We make this distinction by decomposing the differential
operator into a linear component L and a nonlinear component N̂ such that Eq. (2) is
simplified as

du

dt
+Lu+ N̂ (u) = 0. (3)

The form of these linear and nonlinear operators depends on the numerical method chosen
to discretize the PDE. Typical discretization methods such as finite difference, finite volume
or finite element methods result in a sparse operator, implying that the linear and nonlinear
operators are applied to localized degrees of freedom, commonly called solution stencil. The
sparsity of these operators allows efficient storage and faster computation of the PDE solution
field. The discretized PDE at the ith degree of freedom can be considered an ODE problem

dui

dt
+ (Li)TuΩl

i
+ N̂ i(uΩn

i
) = 0, (4)

where Li ∈ Rsl is the local linear operator which contributes to the ith row of L, superscript
T indicates the transpose, sl is the size of the local linear stencil, N̂ i : Rsn → R is the local
nonlinear operator and sn is the size of the local nonlinear stencil. The solution stencils uΩl

i

and uΩn
i
are selected based on local degrees of freedom. In the context of this article, we

transform the nonlinear term in Eq. (4) to a matrix-vector product, which is similar to the
linear term. The resulting equation is

dui

dt
+ (Li)TuΩl

i
+ (N i)Tz(uΩn

i
) = 0, (5)

where N i ∈ Rsn is the nonlinear differential operator in a vector form, sn is the nonlinear
stencil size and z(uΩn

i
) ∈ Rsn represents nonlinear products of uΩn

i
. To elucidate this

notation, we consider an example of the 1-D viscous Burgers equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 (6)

with periodic boundary conditions. For this example, we select a 1st-order backward dif-
ference for the nonlinear term and a 2nd-order centered finite difference for the linear term
for discretizing the system on n uniformly spaced grid nodes. This discretization gives the
following semi-discrete form

dui

dt
+ ui

ui − ui−1

∆x
− ν

ui+1 − 2ui + ui−1

(∆x)2
= 0. (7)
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This semi-discrete form can be written as Eq. (5) with

N i =
1

∆x
[−1, 1, 0]T and Li =

1

(∆x)2
[−1, 0, 1]T , (8)

where uΩl
i
= [ui−1, ui, ui+1]

T and z(uΩn
i
) = [uiui−1, u

2
i , uiui+1]

T . Note that the nonlinear
operator and the associated stencil can also be written in other ways. Typically, linear and
nonlinear operators and their corresponding stencils are designed based on accuracy and
stability analysis. For example, a 2nd-order centered finite difference for the nonlinear term
will result in N i = 1

2∆x
[−1, 0, 1]T which is unstable with 1st-order forward Euler method for

time integration, especially for hyperbolic problems such as 1-D advection equation [12].

2.2. Stability of differential operators

The stability of a numerical scheme is commonly assessed by performing a stability
analysis for some canonical linear problems. A well-known strategy for stability analysis of
PDEs is to perform Von Neumann analysis [24, 25], which involves decomposing the solution
u as the sum of spectral modes and assessing the growth or decay of these modes. Another
similar strategy for stability analysis is to identify a semi-discrete form of the PDE by
applying the method of lines with suitable spatial discretization [12] to obtain a set of linear
ODEs, which is used to perform stability analysis following common strategies in dynamical
system literature [26]. We will follow the latter approach, especially as it will allow us to
assess the stability property of differential operators learned from data. Consider a system
of linear ODEs

du

dt
= Au, (9)

where u = [u1, u2, · · ·un]
T and A : Rn → Rn.

Definition 2.1: The ODE system in Eq. (9) is referred to as stable if and only if the real
part of all eigenvalues of A are nonpositive. If any eigenvalue of A is positive, Eq. (9) is
called an unstable system.

Generally speaking, A is referred to as asymptotically stable if it has negative eigenvalues.
As the above definition holds for linear ODE systems, we refer to this property as linear
stability. Such linear systems are also often referred to as globally stable as the stability
properties hold irrespective of initial system states. For nonlinear ODE systems, which may
arise after discretizing nonlinear PDEs, assessment of global stability may not be possible.
Therefore, the local stability can be assessed by linearizing the system around an equilibrium
point and performing a linear stability analysis of the resulting linear equations. We illustrate
the applicability of stability analysis by considering the 1-D scalar advection equation

∂u

∂t
+ c

∂u

∂x
= 0, (10)

where c > 0 is the advection velocity. To illustrate the role of a suitable selection of spatial
discretization on stability, we discretize this equation to obtain a set of ODEs of the form Eq.
(9). For this example problem, we select two spatial discretization schemes, the 1st-order
backward difference and the 1st-order forward difference, with uniformly spaced n = 201
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Figure 1: Eigenvalues of the differential operator L obtained using (a) the 1st-order forward
difference and (b) the 1st-order backward difference. The shaded region in red indicates the
stable region.

degrees of freedom. We get a linear system with the equation for the ith interior degree of
freedom as

dui

dt
+ c(Li)TuΩl

i
= 0, (11)

where uΩl
i
= [ui−1, ui, ui+1]

T , Li = 1
∆x

[−1, 1, 0]T for the 1st-order backward difference and

Li = 1
∆x

[0,−1, 1]T for the 1st-order forward difference. Note that the boundary conditions
will modify the definition of Li for degrees of freedom associated with the boundaries. The
eigenvalues of the linear systems −L for these two spatial discretizations are shown in Figure
1. This figure shows the backward difference yielding a linear system with all eigenvalues
in the stable region, whereas the forward difference results in eigenvalues outside the stable
region. This stability plot implies that backward differences yield a stable system of equa-
tions, whereas forward differences do not. This observation and analysis is common in the
literature [12]. The role of this example is solely to demonstrate how we will analyze the
eigenvalues to assess the stability properties of differential operators learned from data. Even
though a similar theory may not guarantee global stability for nonlinear differential equa-
tions, the local linear stability of such equations will be considered around an equilibrium
point.

3. Learning differential operators from data

With the increasing availability of simulation data and advancements in modern machine-
learning techniques, there is a growing interest in determining differential equations from
data. Several proposed methods [16, 18, 19] utilize artificial neural network-based architec-
tures for representing discretized PDEs. On the other hand, interpretable sparse differential
operators are determined from data using regression-based methods recently proposed in
[20, 21]. The mathematical formulation of these methods is similar to the approach ex-
plained in Section 3.1. All these methods do not theoretically guarantee stability, even for
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linear differential equations. This article proposes a novel approach incorporating suitable
constraints to provide linearly stable differential operators from data. The mathematical
formulation of this proposed approach is explained in Section 3.2.

3.1. Regression-based approach for learning differential operator

In this article, we restrict the discussion to using least squares regression as they allow for
a more straightforward and interpretable representation. Using this approach, the differential
operators in Eq. (4) are obtained by solving the following regression problem:

Given high-fidelity data, u ∈ Rn and u̇ = du
dt

∈ Rn at time instances t = tj for j = 1, · · ·, nt,
find the optimal operators L and N , subject to the objective function

min
L̃, Ñ

∣∣∣∣∣∣u̇(t) + L̃u(t) + Ñz(u(t))
∣∣∣∣∣∣2
2
. (12)

The cost of the regression problem scales as O(ntn
2), which makes it expensive. Furthermore,

solving learned differential equations with dense matrices for L and N will have significantly
higher computational overhead than solving equations obtained using standard discretization
schemes, which typically have a sparser stencil. Inspired by determining more practical and
efficient differential operators from data, we pose the smaller regression problems for each
degree of freedom instead. The resulting regression problem is defined as follows:

Given high-fidelity data, u ∈ Rn and u̇ = du
dt

∈ Rn at time instances t = tj for j = 1, · · ·, nt

and solution stencils for linear and nonlinear operators uΩl
i
∈ Rsl and uΩn

i
∈ Rsn, find the

optimal operators Li and N i, subject to the objective function

min
L̃i, Ñ i

∣∣∣∣∣∣u̇i(t) + (L̃i)TuΩl
i
(t) + (Ñ i)T z(uΩn

i
(t))

∣∣∣∣∣∣2
2

∀ i = 1, · · ·, n. (13)

We can determine differential operators by solving this regression problem solely using high-
fidelity solution data and its time derivative. The time derivative of the solution can further
be extracted from time-resolved high-fidelity data using finite differences. This approach
involves solving a regression problem for each point in the domain. Therefore, assuming
data at nt timesteps are available, then the cost of the regression problem at each degree
of freedom is O(nt(sl + sn)

2). The complexity of determining the differential operator is
O(ntn(sl + sn)

2). For a large stencil size, that is n ≈ sl + sn, the cost can scale as O(ntn
3),

making this problem computationally expensive. However, as typically linear and nonlinear
operators are designed to be sparse, we can work with localized sparse stencils such that
n >> sl + sn, resulting in a less expensive regression problem. Furthermore, the boundary
conditions can be enforced by appropriately selecting local stencil and setting constraints on
the local differential operators.

The training dataset should consist of high-fidelity data available at several time instances
or simulation conditions to better pose the regression problem. However, even with large
amounts of data, the model could overfit the available data and not generalize to simulation
conditions outside the training dataset. Furthermore, the linear system we obtain in this
regression problem could also be rank deficient, leading to undefined solutions [20]. This
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issue is overcome by augmenting the least squares regression problem in Eq. (13) with a
regularization term. The resulting objective function is

min
L̃i, Ñ i

∣∣∣∣∣∣u̇i(t)+ (L̃i)TuΩl
i
(t)+ (Ñ i)T z(uΩn

i
(t))

∣∣∣∣∣∣2
2
+β1||L̃i||22+β2||Ñ i||22 ∀ i = 1, · · ·, n, (14)

where β1 and β2 are regularization constants for the unknown linear and nonlinear operators.
Similarly, if the differential equations are linear, then the objective function reduces to

min
L̃i

∣∣∣∣∣∣u̇i(t) + (L̃i)TuΩl
i
(t)

∣∣∣∣∣∣2
2
+ β1||L̃i||22 ∀ i = 1, · · ·, n. (15)

By solving the regularized least squares regression problem, we can obtain the sparse opera-
tors Li andN i. The choice of regularization here corresponds to the Tikhonov regularization
[27] that is commonly used in the literature, resulting in a ridge regression problem. Other
regression approaches, such as Lasso [28] and Elastic-net [29], can also be used. In our ex-
perience, these appear to give similar results to ridge regression, especially with a sparser
solution stencil. The choice of stencil size, regularization approach and regularization param-
eter significantly influence the stability properties of the learned differential operator. There
is some recent but limited work on similar sparse differential operators [20, 22] but without
a detailed analysis of the impact of stencil size and regularization on stability. The method
proposed in [21] uses statistical stability technique [11] and solves multiple similar regression
problems to determine the ideal stencil size and regularization parameter that yields accurate
results for a specific validation dataset window. Obtaining stable operators by solving stan-
dard unconstrained regression problems may not always be possible. Therefore, a particular
combination of these parameters might yield accurate results in the validation dataset but
still be theoretically unstable, yielding unphysical results for dynamics forecasting. In Sec-
tion 4, we will demonstrate this behavior through several numerical experiments. Therefore,
a strategy is needed to theoretically guarantee the stability of learned differential operators.

3.2. Constrained regression-based approach to learning stable differential operator

This section describes a methodology to learn differential operators from data while
ensuring stability. As stability is more precisely defined for linear operators, we formulate the
method for linear operators and then extend the method for nonlinear operators. Consider
a discretized PDE of the form

du

dt
+Lu = 0 (16)

with unknown differential operator L. We can obtain a stable differential operator by for-
mulating a constrained regression problem:

Given high-fidelity data, u ∈ Rn and u̇ = du
dt

∈ Rn at time instances t = tj for j = 1, · · ·, nt,
find the optimal operator L, subject to the objective function

min
L̃

∣∣∣∣∣∣u̇(t) + L̃u(t)
∣∣∣∣∣∣2
2

(17)

subject to
L ⪰ 0. (18)
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The constraint in Eq. (18) ensures that L is a positive semi-definite matrix, which implies
that L has either positive or zero eigenvalues and is stable following Definition 2.1. Ensur-
ing stability by constraining eigenvalues has been considered in other fields such as linear
dynamical systems [30] and reduced order modeling [31, 32]

This regression problem in Eq. (17) and Eq. (18) can be considered a semi-definite pro-
gram [33], which is more expensive to compute than Eq. (12). Furthermore, this constrained
regression problem will be much more expensive for large n and would not provide us L that
follows the sparsity pattern obtained using standard PDE discretizations. Therefore, we
pose the regression problem differently to learn a localized differential operator Li that acts
on a local solution stencil uΩl

i
∈ Rsl and satisfies the objective function

min
L̃i

∣∣∣∣∣∣u̇i(t) + (L̃i)TuΩl
i
(t)

∣∣∣∣∣∣2
2

∀ i = 1, · · ·, n. (19)

These localized differential operators Li are assembled to provide a differential operator L
that should be positive semi-definite. To describe this regression problem mathematically,
we reframe the constraint locally on Li to ensure the assembled L is positive semi-definite.
To achieve this, we utilize the commonly used Gershgorin circle theorem [34].

Theorem 3.1 (Gershgorin circle theorem): Considering a complex matrix A ∈ Cn×n

with the ijth element as aij. Every eigenvalue, λ, of matrix A satisfies

|λ− aii| ≤
∑
j ̸=i

|aij| ∀ i ∈ 1, 2, · · ·, n. (20)

Applying the Gershgorin circle theorem to the differential operator L, every eigenvalue λ of
L must satisfy

|λ− Li
i| ≤

∑
j ̸=i

|Li
j| ∀ i ∈ 1, 2, · · ·, n, (21)

where Li
j is the j

th element of Li or the ijth element of L in common matrix notation. This
inequality indicates the bounds for eigenvalues of L relating to individual terms of local
operators Li. Therefore, L is guaranteed to be positive semi-definite if

Li
i ≥

∑
i ̸=j

|Li
j| ∀ i ∈ 1, 2, · · ·, n, (22)

which is a constraint on values of the local operator Li. Using this result, we can pose a
constrained regression problem for each degree of freedom:

Given high-fidelity data, u ∈ Rn and u̇ = du
dt

∈ Rn at time instances t = tj for j = 1, · · ·, nt

and solution stencil uΩl
i
∈ Rsl, find the differential operator Li, subject to the objective

function

min
L̃i

nt∑
j=1

∣∣∣∣∣∣u̇i(t) + (L̃i)TuΩl
i
(t)

∣∣∣∣∣∣2
2

∀ i = 1, · · ·, n (23)
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subject to

Li
i −

∑
i ̸=j

|Li
j| ≥ 0. (24)

This constraint ensures that we can obtain local linear operators from data while ensuring
that the assembled global linear operator is stable. By solving this constrained regression
problem, we obtain a differential operator that could reflect the sparsity pattern of the
spatial discretization method while ensuring the stability of the assembled linear systems.
To extend this approach for nonlinear PDEs, we determine the stability constraints from
the corresponding linearized equations. These linearized differential equations are obtained
by applying Taylor series approximation on Eq. (4) around an equilibrium point u0. This
approach provides us with a linearized ODE problem

du

dt
+NLu = 0, (25)

where NL is the linear term arising as a result of linearization and depends on N , L and
u0. The linearized equations are stable if

NL ≻ 0, (26)

implying NL should be a positive definite matrix. Note that NL having a zero eigenvalue
may not imply linear stability as this stability characteristic would depend on the truncated
terms during the linearization. With this constraint, the localized stencil regression problem
transforms to:

Given high-fidelity data, u ∈ Rn and u̇ = du
dt

∈ Rn at time instances t = tj for j = 1, · · ·, nt

and solution stencils for the two operators uΩl
i
∈ Rsl and uΩn

i
∈ Rsn, find differential

operators Li and N i, subject to the objective function

min
L̃i, Ñ i

∣∣∣∣∣∣u̇i(t) + (L̃i)TuΩl
i
(t) + (Ñ i)Tz(uΩn

i
(t))

∣∣∣∣∣∣2
2

∀ i = 1, · · ·, n (27)

subject to

NL,i
i −

∑
i ̸=j

|NL,i
j | > 0 ∀ i = 1, · · ·, n, (28)

which is the localized form of Eq. (26) where NL,i
j is the jth element of NL,i and NL,i is

assembled to form NL.
This constraint ensures that eigenvalues of NL are positive, indicating linear stability for

learned nonlinear operators. The above regression problem can theoretically ensure linear
stability, implying that the learned Eq. (4) is stable around an equilibrium point. For both
linear and nonlinear equations, this notion of stability classifies the resulting ODEs, or the
semi-discrete form of PDEs, as linearly stable or unstable. These stable ODEs will lead to
stable solutions if the eigenvalues lie within the absolute stability region of the selected time
integration scheme.
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4. Numerical results

In this section, we assess the stability and performance of the differential operator ob-
tained using the two approaches discussed in Section 3:

• Solving the standard regression problem Eq. (14) or Eq. (15) which gives us learned
differential operators (LDOs); and

• Solving the constrained regression problem Eq. (23) or Eq. (27) which gives us stable
learned differential operators (S-LDOs).

The constrained regression problem for obtaining S-LDOs is solved using a sequential least
squared programming optimizer available in [35]. For all the numerical experiments, the
tolerance of this optimizer is set to 10−6 to ensure that the cost of obtaining S-LDOs is
comparable to the cost of obtaining LDOs. At such lower tolerances, the performance of
S-LDOs is sensitive to the stencil size which is discussed in detail for each test case. We
consider three test cases with different PDEs: 1-D scalar advection-diffusion equation, 1-
D Burgers equation and 2-D advection equation, to demonstrate the applicability of the
proposed approach for learning stable differential operators from data.

4.1. 1-D scalar advection-diffusion equation

We consider 1-D scalar advection-diffusion PDE, which is one of the most commonly
used validation cases for assessing the accuracy and stability characteristics of discretization
techniques. This equation is of the form

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
, (29)

where c is the advection velocity and ν is the diffusion coefficient. The semi-discrete form
after the spatial discretization is

du

dt
+ cL1u− νL2u = 0. (30)

The equation for each degree of freedom is

dui

dt
+ c(Li

1)
TuΩ1

i
− ν(Li

2)
TuΩ2

i
= 0, (31)

where uΩ1
i
and uΩ2

i
are solution stencils for the advection and diffusion terms, whereasLi

1 and

Li
2 are the local advection and diffusion differential operators that can be assembled to form

L1 and L2 respectively. For scenarios where c and ν are unknown, these could be included in
the definition of linear differential operators L1 and L2. To generate the data, we solve this
PDE using a 1st-order backward difference for the advective term and a 2nd-order centered
difference for the diffusion term with n = 201 degrees of freedom. This spatial discretization,
coupled with the temporal discretization mentioned later, gives accurate and stable results.
With this spatial discretization, the differential operators for the chosen discretization are

Li
1 =

1

∆x
[−1, 1, 0]T and Li

2 =
1

2∆x
[−1, 0, 1]T . (32)
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In this case, the stencils for advection and diffusion terms are uΩ1
i
= uΩ2

i
= [ui−1, ui, ui+1]

T .
We use periodic boundary conditions for this test case. The solution of Eq. (31) not only
provides us with data to determine LDOs and S-LDOs but also serves as reference results
for assessing the performance of learned differential operators. This PDE exhibits a mixed
hyperbolic-parabolic nature based on the values of c and ν. We first isolate the hyperbolic and
parabolic nature to study the performance of learned differential operators for pure diffusive
and advective problems. After these tests, we consider learning differential operators when
both hyperbolic and parabolic terms are active.

4.1.1. Diffusion problem: c = 0, ν = 0.02

We first consider the diffusion problem, which exhibits a parabolic nature. This problem
is obtained by setting the advection velocity to zero, resulting in the following semi-discrete
form of PDE for the ith degree of freedom:

dui

dt
− ν(Li

2)
TuΩ2

i
= 0. (33)

In this article, we model the semi-discrete form as

dui

dt
− ν(Li,m

2 )TuΩ2
i
= 0, (34)

where the modeled linear differential operator Li,m
2 ∈ Rsl is learned from the generated data

and uΩ2
i
∈ Rsl is the solution stencil of dimensionality sl. The modeled differential operator

of the system Lm
2 is assembled from Li,m

2 . We obtain 500 snapshots of data by solving
Eq. (33) using the forward Euler method with a timestep size of 0.04. This data is used
to determine LDOs and S-LDOs by solving the regression problems mentioned earlier. We
normalize these local regression problems by the Euclidean norm of local solution over time
to ensure similar regression problems are solved for different locations in the domain.

We first assess the stability properties of the learned differential operator by analyzing
the eigenvalues of Lm

2 . These eigenvalues for LDOs of different stencil sizes are shown in
Figure 2. All eigenvalues have a negative real part for the smallest stencil size (sl = 3). On
the other hand, for all other stencil sizes (sl > 3), there are several eigenvalues with a positive
real part. We also observe a reduction in the magnitude of eigenvalues with increased stencil
size. This behavior indicates that the increase in stencil size improves the stability. Despite
this improvement in stability, as several stencil sizes (sl > 3) have positive eigenvalues, these
learned operators are unstable. Even though the smallest stencil size (sl = 3) does not follow
this behavior and is found to be stable for this pure diffusion problem, we will show using the
following test case that this behavior does not hold for the advection-dominated scenario.

The regression problem in Eq. (15) also involves a regularization term often tuned to
improve the well-posedness of the regression problem and avoid overfitting of the model.
We assess the impact of the regularization parameter β1 on the stability characteristics of
the LDO. The eigenvalues of LDOs Lm

2 for different values of β1 are shown in Figure 3.
The results indicate that the increase in β1 reduces the positive real part of the eigenvalues.
Therefore, an increase in β1 improves the stability characteristics of the learned differential
operator. However, these learned differential operators are unstable as positive real part of
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Figure 2: Diffusion problem (c = 0, ν = 0.02): Eigenvalues of LDOs (Lm
2 ) with stencil size

of (a) 3, (b) 5, (c) 7, (d) 11, (e) 21 and (f) 41 and regularization parameter β1 = 10−3. The
shaded region in red indicates the stable region.
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Figure 3: Diffusion problem (c = 0, ν = 0.02): Eigenvalues for LDO (−Lm
1 ) for stencil size of

(a) 5 and (b) 11 with several regularization parameters. The stable region is not shown as the
x-axis is in the log scale.
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Figure 4: Diffusion problem (c = 0, ν = 0.02): Error in the regression objective function etrain
for LDOs of different stencil sizes.

eigenvalues exist even at higher values of β1. The error in the regression objective function

etrain =
nt∑
l=0

n∑
i=0

(dui

dt
(tl)− ν(Li,m

2 )Tui,Ω2
i
(tl)

)2

(35)

is shown in Figure 4. The error increases with the increase in β1 for all the stencil sizes.
This observation indicates that improved stability characteristics with increased β1 come at
the cost of reduced accuracy. We also observe that the increase in the stencil size not only
improves stability but also reduces the error while learning LDOs. Therefore, a wider stencil
would imply a more accurate and improved stability of LDOs. However, such LDOs are also
accompanied by a larger matrix bandwidth, which makes them more expensive due to the
higher cost of matrix-vector products.

The results have indicated that LDOs for most stencil sizes are unstable even for a
diffusion problem. We expect S-LDOs to resolve this issue and provide stable differential
operators. We assess the stability characteristics by analyzing the eigenvalues of S-LDOs
Lm

2 for different stencil sizes as shown in Figure 5. We observe that all the eigenvalues have
a negative real part, implying that S-LDOs are stable for all tested stencil sizes. With the
increase in stencil size, we observed a reduction in the magnitude of the eigenvalues. A
larger ratio of eigenvalue magnitudes implies stiffer system behavior and possibly decreased
accuracy. The results indicate that the increase in stencil size reduces the stiffness of the
system. Despite the variability in stiffness behavior, the stability of the system is still
guaranteed in such situations.

Analysis of eigenvalues has allowed the identification of stability characteristics of LDOs
and S-LDOs. We now assess the performance of these learned operators on replicating the
dynamics of true solutions. These solution dynamics are obtained by solving Eq. (34) using
the same time integration scheme for generating the data. We also quantify the error in
solution prediction defined as

eu(t) =
||u(t)− um(t)||22

||u(t)||22
, (36)
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Figure 5: Diffusion problem (c = 0, ν = 0.02): Eigenvalues of S-LDOs (Lm
2 ) for stencil size of

(a) 3, (b) 5, (c) 7, (d) 11, (e) 21 and (f) 41 with a regularization parameter of β1 = 10−3. The
shaded region in red indicates the stable region.
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Figure 6: Diffusion problem (c = 0, ν = 0.02): Predicted solution at (a) t = 20s, (b) t = 40s
and (c) error in time using LDOs (with β1 = 10−3). Predicted solution at (d) t = 20s, (e)
t = 40s and (f) error in time using S-LDOs. The results for different stencil sizes for S-LDOs
overlap. In the error plots, the unshaded region is the region of extrapolation.

where u(t) is the reference solution and um(t) is the solution predicted using LDOs or S-
LDOs. The predicted solutions using LDOs and S-LDOs and the corresponding errors are
shown in Figure 6. Both LDOs and S-LDOs provide a good estimation of the solution at peak
and tails at t = 20s for all stencil sizes. The smallest stencil size (sl = 3) for LDOs exhibits
some oscillations at the peak for t = 20s, whereas S-LDOs exhibit very close prediction to
the reference results for all stencil sizes. At t = 40s, we observe oscillations in solutions
predicted by LDOs, which are a consequence of the unstable nature of LDOs. On the other
hand, solutions predicted by S-LDOs are very accurate even at t = 40s which is outside the
training dataset. These observations are also reiterated by assessing the variation of error
in time. Despite the low error for LDOs in the initial time interval, the data from which
is used for learning differential operators, high error and unstable behavior is observed for
multiple stencil sizes outside this time interval. The error is maintained at a low value for
the largest stencil sizes (sl ≥ 21). However, this error is expected to increase in future time
instances due to the unstable nature of LDOs. On the other hand, we observe that S-LDOs
exhibit much smaller errors, which do not grow substantially outside the initial time interval.
Furthermore, this error is low for all stencil sizes, indicating that even sparser S-LDOs are
more accurate and stable than LDOs with much larger stencil sizes. These results suggest
that S-LDOs are better suited for diffusion problems than LDOs.
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Figure 7: Advection problem (c = 1.25, ν = 0): Eigenvalues of LDOs (−Lm
1 ) for stencil size of

(a) 3, (b) 5, (c) 7, (d) 11, (e) 21 and (f) 41 with a regularization parameter of β1 = 10−3. The
shaded region in red indicates the stable region.

4.1.2. Advection problem: c = 1.25, ν = 0

For the diffusion problem, although LDOs do not yield as good performance as S-LDOs,
errors do not rapidly blow up due to the unstable system behavior for large stencil sizes.
This behavior is peculiar to this test case as diffusive problems have fewer stability issues
than other advection-dominated problems. Therefore, to assess the performance of LDOs
and S-LDOs for hyperbolic PDEs, we consider the advection problem with the following
semi-discrete form of PDE for the ith degree of freedom:

dui

dt
+ c(Li

1)
TuΩ1

i
= 0. (37)

In this article, this semi-discrete form is modelled as

dui

dt
+ c(Li,m

1 )TuΩ1
i
= 0, (38)

where the modeled local differential operator Li,m
1 ∈ Rsl is learned from generated data and

uΩ1
i
∈ Rsl is the solution stencil of dimensionality sl. The modeled differential operator of the

system Lm
1 is assembled from Li,m

1 . The details of the time integration for data generation
are the same as those of the diffusion problem.

We assess the stability of the LDOs by analyzing the eigenvalues of −Lm
1 for different

stencil sizes as shown in Figure 7. The results indicate many eigenvalues with a positive real
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Figure 8: Advection problem (c = 1.25, ν = 0): Eigenvalues for LDO (−Lm
1 ) for stencil size of

(a) 3, (b) 5 and (c) 11 with several regularization parameters. The stable region is not shown
as the x-axis is in the log scale.
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Figure 9: Advection problem (c = 1.25, ν = 0): Eigenvalues of S-LDOs (−Lm
1 ) for various

stencil sizes. The shaded region in red indicates the stable region. All the tested stencil sizes
lead to overlapping eigenvalues.

part for all stencil sizes. At the smallest stencil, all the eigenvalues have a positive real part.
With increased stencil size, we observe more eigenvalues with negative real parts, while the
rest have a smaller positive real part. This behavior matches with the diffusion problem
where a larger stencil was observed to yield better stability properties in LDOs. Despite
improved stability characteristics with an increased stencil size, LDOs are unstable for all
these stencil sizes.

The effect of the regularization parameter β1 on the eigenvalues of LDOs is shown in
Figure 8. The results indicate that an increase in β1 brings the real part of eigenvalues closer
to the origin, thereby improving the stability characteristics of the LDOs. This behavior
holds for different stencil sizes as shown in the Figure 8. As we still observe the positive real
part of the eigenvalues irrespective of β1, these LDOs are also unstable. This improvement in
stability characteristics also comes at the cost of error in approximation as discussed for the
pure diffusion problem. For brevity, we do not include a detailed discussion on this behavior
for the pure advection case.

The results indicated that LDOs with different stencil sizes and regularization parameters
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are unstable for the advection problem. We now assess the stability characteristics of S-LDOs
by analyzing the eigenvalues of −Lm

1 as shown in Figure 9. The eigenvalues for different
stencil sizes are very similar and overlapping. We observe that all the eigenvalues have a
negative real part, implying that S-LDOs are stable. This behavior indicates that adding
the constraint in the regression formulation exhibits the desired effect and enables learning
a stable differential operator from data.

We now assess the performance of these learned operators on replicating the dynamics
of true solutions. These solution dynamics are obtained by solving Eq. (38) using the same
time integration scheme used for generating the data. The solutions obtained using LDOs
and S-LDOs for different stencil sizes and corresponding errors are shown in Figure 10. The
results indicate that LDOs exhibit oscillations near the tails, especially for the coarsest stencil
size, even at an early time t = 0.4s. The solutions predicted by LDOs at later instances
are not shown because they exhibit large oscillations for all stencil sizes. The variation of
prediction errors in time solidifies this point as we observe a rapid increase in errors for
all stencil sizes at an early time, which is within the dataset used for determining LDOs.
This behavior is also exhibited at other regularization parameters not discussed for brevity.
Conversely, S-LDOs exhibit very high accuracy without any instability in the solution. Even
though LDOs become unstable and yield wildly inaccurate solutions at later time instances,
S-LDOs provide accurate predictions even at t = 20s. The error plots indicate that S-LDOs
exhibit a much smaller error in time, which grows linearly in time even outside the initial
time region used to determine S-LDOs. This error is maximum when the smallest stencil
is used and becomes lower when larger solution stencils are selected. An exception to this
behavior is sl = 5, which gives the lowest errors that could be attributed to initialization
and tolerance of the optimizer.

These results indicate the importance of adding stability constraints in the regression
problem for learning differential operators. Without such constraints, the learned operator
may not be stable and fail to perform accurately even within the training data period. These
observations for stability and accuracy can also be explained by looking at learned differential
operators (scaled by ∆x and spatially averaged) using both approaches as shown in Table
1. S-LDOs are observed to be similar to differential operators corresponding to the 1st-order
backward difference, which explains the stable behavior of these operators. With increased
stencil size, this behavior is still retained, and the solution stencil does not correspond to
a higher-order backward difference stencil. Therefore, despite providing better accuracy, a
larger stencil does not guarantee a higher order of accuracy for the learned operator. Instead,
it recovers the true differential operator with a better accuracy. On the other hand, LDOs
do not directly resemble any standard finite difference stencil, especially for larger stencils.

4.1.3. Case with both advection and diffusion: c = 0.2, ν = 0.02

In this third scenario, we explore a mixed hyperbolic-parabolic regime with active ad-
vection and diffusion terms. Common scalar transport equations often have this form. The
resulting differential equations for the ith degree of freedom is given in Eq. (31). In this
article, we model the semi-discrete form as

dui

dt
+ c(Li,m

1 )TuΩ1
i
− ν(Li,m

2 )TuΩ2
i
= 0, (39)
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Figure 10: Advection problem (c = 1.25, ν = 0): Predicted velocity at (a) t = 0.4s and (b)
corresponding errors using LDO (with β1 = 10−3). Predicted velocity at (c) t = 0.4s, (d)
t = 20s and (e) corresponding errors using S-LDOs for different stencil sizes. In the error plots,
the unshaded region is the region of extrapolation.
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Table 1: Advection problem (c = 1.25, ν = 0): Spatially averaged coefficients for different
solution stencils for LDOs (with β1 = 10−3) and SLDOs compared to the 1st-order backward
difference (BD).

Approach Stencil size
Coefficients

ui−3 ui−2 ui−1 ui ui+1 ui+2 ui+3

sl = 3 - - −0.415 −0.167 0.582 - -
LDO sl = 5 - −0.084 −0.160 −0.116 0.044 0.315 -

sl = 7 −0.041 −0.080 −0.079 −0.046 0.010 0.081 0.156
sl = 3 - - −0.993 0.993 ≈ 0 - -

SLDO sl = 5 - ≈ 0 −0.998 0.998 ≈ 0 - -
sl = 7 ≈ 0 ≈ 0 −0.996 0.996 ≈ 0 ≈ 0 ≈ 0

BD - - -1 1 - - -

where the modeled linear differential operators Li,m
1 ∈ Rsl1 and Li,m

2 ∈ Rsl2 are learned from
generated data. The local velocity stencils are denoted by uΩ1

i
∈ Rsl1 and uΩ2

i
∈ Rsl2 , where

sl1 and sl2 denote the dimensionality of these stencils. We obtain 1, 000 snapshots of data by
solving Eq. (33) using the forward Euler method with a timestep size of 0.04. Assessment of
stability properties by identifying eigenvalues yielded similar results and discussion to those
observed for pure advection and diffusion cases. Even though we are not discussing them for
brevity, the results indicated that LDOs are unstable. In contrast, S-LDOs result in a stable
system as we ensure that eigenvalues for −cLm

1 + νLm
2 are negative by solving a constrained

regression problem. Instead, we assess the performance of these learned operators on repli-
cating the dynamics of the true solution, which is referred to as the reference solution in
the figures. The predicted dynamics are obtained by solving Eq. (39) using the same time
integration scheme used for generating the data.

The predicted solutions obtained using LDOs and S-LDOs, along with the corresponding
errors, are compared to the reference data in Figure 11 for different stencil sizes of the
advection term. LDOs exhibit incorrect solution predictions for most stencil sizes at t = 20s.
Smaller stencil sizes lead to a higher error in prediction and exhibit wildly unstable solution
time instances even at t = 36s, which is within the dataset used for learning these operators.
This error is reduced with increased stencil sizes and LDOs using the largest solution stencil,
which exhibits good accuracy for t = 20s and 36s. This behavior is also reflected by a large
growth of errors in solutions predicted by LDOs for sl1 ≤ 21. In contrast, S-LDOs exhibit a
much higher accuracy where all but the smallest stencil size sl1 = 3 yield close predictions
to the reference result. This behavior holds for both time instances, indicating that S-LDOs
are robust and less prone to stability issues. The temporal variation of error confirms this
behavior as S-LDOs exhibit a very low error for all the stencil sizes except the smallest one.
As errors remain low even for time instances not used to determine the operators, these
results demonstrate the applicability of S-LDOs for long-time dynamics forecasting.

In the results until now, the stencil size of the diffusion operator was fixed at sl2 = 3. To
obtain a holistic picture of the operator performance for several combinations of advection
and diffusion stencils, we compare the total error in both space and time

εxt =
||u(·, ·)− um(·, ·)||F

||u(·, ·)||F
, (40)
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Figure 11: Advection-diffusion problem (c = 0.2, ν = 0.02): Predicted solutions at (a) t = 20s,
(b) t = 36s and (c) errors in time using LDOs (with β1 = 10−3). Predicted solutions at (d)
t = 20s, (e) t = 36s and (f) errors in time using SLDOs for several stencil sizes sl1 and with
sl2 = 3. In the error plots, the unshaded region is the region of extrapolation.
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Figure 12: Advection-diffusion problem (c = 0.2, ν = 0.02): Total error in the solution obtained
using (a) LDOs (with β1 = 10−3), (b) LDOs (with β1 = 10−6) and (c) S-LDOs. The white
regions indicate a very high error that is an undefined number.
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where u is the reference solution and um is the solution predicted using LDOs or S-LDOs.
This error metric is obtained by taking the L2 norm in space and time, which corresponds
to the Frobenius norm || · ||F if the solution is stored as a 2-D matrix. The total error for
different advection and diffusion term stencil sizes is shown in Figure 12. We observe a high
error for LDOs for most combinations of stencil sizes except when sl1 = 41 or sl2 = 41. These
results indicate that LDOs require larger stencils for low error. Even in such scenarios, the
system can become unstable and yield high errors for future time instances. This behavior
is also observed at different regularization parameters as shown in the figure. Alternately,
S-LDOs exhibit a very low error for most combinations of stencil sizes except when sl1 = 3
and sl2 ≤ 7. The accuracy appears to increase with both advection and diffusion stencil
sizes. The accuracy of S-LDOs for small stencil sizes can be further improved by adjusting
the initial guess or selecting a lower tolerance for the optimizer. In this study, we kept
this strategy the same for all stencils for a fairer comparison. These results indicate that
S-LDOs perform much better than LDOs and highlight the importance of ensuring stability
while learning differential operators to maintain stable and accurate results for dynamics
forecasting.

4.2. 1-D Burgers equation

Having demonstrated the applicability of learned differential operators for linear PDEs,
we now assess the validity of this approach for nonlinear PDEs. Therefore, we consider
the 1-D Burgers equation in Eq. (6). Unlike the scalar advection-diffusion problem, this
equation has a nonlinear transport term. Using appropriate spatial discretization schemes,
we obtain the semi-discrete form of the equations

du

dt
+Nz(u)− νLu = 0, (41)

where N is the nonlinear operator, L is the linear diffusion operator and z(u) is composed
of quadratic products of u. We generate the data by using the 2nd-order centered difference
for both nonlinear and linear diffusion terms with 129 degrees of freedom. The differential
equation for the ith degree of freedom is

dui

dt
+ (N i)TzΩn

i
− ν(Li)TuΩl

i
= 0, (42)

where

N i =
1

2∆x
[−1, 0, 1]T and Li =

1

(∆x)2
[1,−2, 1]T . (43)

The stencil for the nonlinear term is zΩn
i
= ui[ui−1, ui, ui+1]

T , whereas it is uΩl
i
= [ui−1, ui, ui+1]

T

for the linear diffusion term. In this article, we model the semi-discrete form as

dui

dt
+ (N i,m)TzΩn

i
− ν(Li,m)TuΩl

i
= 0, (44)

where N i,m ∈ Rsl1 and Li,m ∈ Rsl2 are nonlinear and linear operators determined from the
data, while zΩn

i
∈ Rsl1 and uΩl

i
∈ Rsl2 are the solution stencils of dimensionality sl1 and sl2 .

For nonlinear problems such as the 1-D Burgers equation, a single stable equilibrium point
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Figure 13: 1-D Burgers problem: Total error in the solution obtained for LDOs with sl1 = 5
and sl2 = 5. The white regions indicate a very high error that is an undefined number.

does not exist as any constant solution is a valid equilibrium point. Due to the viscous term,
the solution decays to a stable equilibrium close to the initial condition. As the modeled
semi-discrete form in Eq. (44) is nonlinear, we cannot guarantee the global stability of
these equations. Instead, we focus on local linear stability around the equilibrium point u0

by considering the 1st-order Taylor series approximation to the equation and obtaining the
linearized equation

dui

dt
+ (N i,m,L)TuΩn

i
= 0, (45)

with

N i,m,L =

∣∣∣∣∣∂(N i,m)TzΩn
i

∂uΩn
i

− ν
∂(Li,m)TuΩl

i

∂uΩn
i

∣∣∣∣∣
u0

, (46)

where | · |u0 implies the term is evaluated at equilibrium point u0 and N i,m,L is the local
linearized operator that is assembled to give the global linearized operator Nm,L. This
linearized equation is used in Eq. (28) to determine linear stability constraints for the
regression problem in Eq. (27) for obtaining S-LDOs.

The reference data is used to learn differential operators and assess the performance of
LDOs and S-LDOs. This data is obtained by integrating Eq. (42) in time using a 1st-order
explicit time integration scheme and a time step size of 0.002. This test case is initialized
with Gaussian random perturbations with a mean of 0.3 and a standard deviation of 0.2.
For this test case, we can assess the eigenvalues of the operators Nm,L, which can provide us
with the notion of linear stability of the system around an equilibrium point. This analysis
aligns with one for the advection-diffusion equation, which showed that S-LDOs are linearly
stable, whereas LDOs are not. A detailed discussion on this aspect is excluded from this
article for brevity. Instead, we discuss the consequences of this behavior on the evolution of
the solution over time.

We first assess the impact of regularization parameters β1 and β2 on the predicted solution
for LDOs with a fixed stencil size of sl1 = sl2 = 5. The total error in the predicted solution
for LDOs is shown in Figure 13. The results indicate the sensitivity of LDOs to selected
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Figure 14: 1-D Burgers problem: Predicted solutions at (a) t = 0.2s, (b) t = 2s and (c)
corresponding errors for LDOs (with β1 = 0.1 and β2 = 0.01). Predicted solutions at (d)
t = 0.2s, (e) t = 2s and (f) corresponding errors for S-LDOs. These are evaluated for different
sl1 while keeping sl2 = 5.

regularization parameters and typically give predictions with very high errors. As β1 = 0.1
and β2 = 0.01 lead to reasonable errors where solutions are well undefined, we select these
regularization parameters for LDOs for further comparison.

The predicted solutions obtained using LDOs and S-LDOs and corresponding errors are
compared to the reference data in Figure 14. We observe that even at an early time t = 0.2s,
LDOs for multiple stencil sizes exhibit oscillations. These oscillations persist and grow larger
as evident from the results at t = 2s. These results correspond to the best selection of the
stencil sizes for a given regularization parameter, and still, LDOs do not provide stable and
accurate results. This behavior is also highlighted in the error plots, which indicate high
errors for LDOs for different stencil sizes. On the contrary, S-LDOs for all stencil sizes
exhibit high accuracy at both time instances as the results are close to the reference data.
Furthermore, the errors in solution predicted by S-LDOs are consistently low for all stencil
sizes, even at longer times. These results indicate that S-LDOs exhibit superior stability
properties and provide feasible, stable and physically accurate solutions.

The matrix plot with total errors for different combinations of stencil sizes for LDOs
and S-LDOs is shown in Figure 15. We observe that LDOs exhibit high errors for all
combinations of stencil sizes. The total error is lower for the largest stencil sizes, similar to
the behavior observed for the advection-diffusion problem. However, this error is still much
larger compared to errors exhibited by S-LDOs. For the smallest stencil size for S-LDOs,
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Figure 15: 1-D Burgers problem: Total error in the solution obtained using (a) LDOs (with
β1 = 0.1 and β2 = 0.01) and (b) S-LDOs. The white regions indicate a very high error that is
an undefined number.

some instability in the results is observed, which gives high errors. As S-LDOs can only ensure
linear stability, whereas the system is nonlinear, there is no guarantee that all stencil sizes
will always have stable solutions. Unstable behavior is also observed at several stencil sizes
larger than those considered in this study. The inability of differential operators to perform
well in such scenarios is not a big issue as larger stencil sizes may not even be considered due
to higher computational costs. This behavior highly depends on the linearization strategy
and selection of the equilibrium point. The errors for most combinations of stencil sizes are
very low, demonstrating the applicability of S-LDOs in giving accurate solutions. Although
S-LDOs are designed to provide linearly stable operators, they perform remarkably well for
nonlinear problems, as demonstrated using this test case. These results highlight that adding
linear stability constraints while learning nonlinear operators can be a viable solution even
for nonlinear PDEs.

4.3. 2-D scalar advection equation

We select a 2-D scalar advection equation for the third test case to demonstrate the
applicability of learned differential operators to operators for 2-D PDEs. The equation is
given as follows:

∂u

∂t
+ c · ∇u = 0, (47)

where c is the advection velocity. Using an appropriate spatial discretization scheme, the
PDE can be converted to a set of ODEs

du

dt
+ cxL

xu+ cyL
yu = 0, (48)

where Lx and Ly are the linear operators on the solution components. For data generation,
we use a 1st-order backward difference for approximating these operators with 101 degrees
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Figure 16: 2-D advection problem: Solutions at t = 12.5s for (a) reference data, (b) LDO with
β = 10−2 and (c) S-LDO for stencil sizes slx = 7 and sly = 7.

of freedom in each direction. This selection implies that the differential equations for the ith

degree of freedom is
dui

dt
+ cx(L

i,x)TuΩx
i
+ cy(L

i,y)TuΩy
i
= 0, (49)

where

Li,x =
1

∆x
[−1, 1, 0]T and Li,y =

1

∆y
[−1, 1, 0]T . (50)

The solution stencil for the Li,x operator is denoted by uΩx
i
, whereas the stencil for the

Li,y operator is denoted by uΩy
i
. This test case is initialized with the initial condition

u(x, y, 0) = exp
(
− (x− 2)2 + (y − 5)2

)
(51)

and integrated in time using a 1st-order forward Euler method with a timestep of 0.05.
The generated data is used to learn the differential operators and as a reference result for
assessing the performance of LDOs and S-LDOs. The advection velocity is chosen to be
c = 0.5ê1 + 0.5ê2 where ê1 and ê2 are unit vectors aligned to Cartesian x and y directions
respectively. In this article, we determine the unknown operators Li,x,m and Li,y,m from
data. Therefore, Eq. (49) is modeled as

dui

dt
+ cx(L

i,x,m)TuΩx
i
+ cy(L

i,y,m)TuΩy
i
= 0, (52)

where Li,x,m ∈ Rslx and Li,y,m ∈ Rsly are the modeled linear operators. The stencils for
these operators uΩx

i
∈ Rslx and uΩy

i
∈ Rsly have a dimensionality of slx and sly respectively.

The constraints in S-LDO formulation ensure a positive real part for the eigenvalues of
cxL

m
x + cyL

m
y . A detailed analysis showing this behavior is excluded for brevity, although

the behavior is similar to the one observed for the 1-D advection equation.
The solution predicted using an LDO and an S-LDO is compared to the reference data

in Figure 16. We observe that prediction by LDO is very different than the reference data
as the unstable behavior of these operators leads to large deviations in the results. The
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Figure 17: 2-D advection problem: Temporal variation of errors in the predicted solution
obtained using (a) LDOs (with β1 = 10−2) and (b) S-LDOs for several stencil sizes slx while
keeping sly = 7.

predicted solution by the S-LDO exhibits a similar behavior and magnitude as the reference
data. This behavior echoes other test cases, where S-LDOs consistently gave much more
accurate results than LDOs. The temporal variation of errors in the solutions predicted by
LDOs and S-LDOs for different stencil sizes slx is shown in Figure 17. We observe that
LDOs exhibit a large error and grow quickly in time for different stencil sizes. These results
confirm that LDOs are ill-equipped to infer operators for advection-dominated problems,
as already assessed from the 1-D advection case. Conversely, S-LDOs exhibit a low error
for all the stencil sizes considered in this study. After an initial rise, the error reaches a
near-constant value, which does not change drastically as time increases. This behavior also
numerically verifies the stability properties of S-LDOs and demonstrates its applicability for
stable prediction of solution field. Although these results are shown for different values of
stencil sizes slx while keeping sly = 7, this behavior also holds other values of sly .

The total error in the predicted solution for LDOs and S-LDOs of different stencil sizes is
shown in Figure 18. We observe that the total error is very high for LDOs for all combinations
of stencil sizes. This behavior renders LDOs impractical for their use in dynamics predictions.
On the contrary, S-LDOs exhibit a comparatively low error for all the stencil sizes. The error
appears to be lower for the smaller stencil sizes and becomes higher for larger stencils. This
behavior is different from those observed for the 1-D advection case, where the error appeared
to decrease with a larger stencil. Nevertheless, the low prediction error and theoretical linear
stability make S-LDOs suitable for dynamics forecasting.

5. Conclusions

Several applications, such as system identification and nonintrusive reduced order model-
ing, motivate the need to identify discrete approximations of PDEs from data. Most studies
have focused on modern machine learning techniques to obtain accurate approximations of
a PDE. However, these approaches often yield noninterpretable and dense representations,
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Figure 18: 2-D advection problem: Total error in the solution obtained using (a) LDOs (with
β1 = 10−2) and (b) S-LDOs for different stencil sizes slx and sly .

which may not be scalable for large-scale applications. Even fewer studies have addressed
stability concerns for learned semi-discrete differential equations.

In this article, we propose a novel methodology for determining sparse semi-discrete
approximations of PDEs from data while ensuring the linear stability of learned approxi-
mations. This approach is inspired by common spatial discretizations that have a sparse
structure for computational efficiency and are stable for accurate dynamics prediction. We
demonstrate that the standard regression approach, which is common in the literature, does
not yield theoretically stable differential operators even for simple 1-D PDEs. We over-
come this drawback by identifying stability conditions on local differential operators using
dynamical system theory. These conditions are then added to the regression problem as
constraints on the learned differential operators. Solving these constrained regression prob-
lems yields theoretically stable differential operators for linear PDEs. We also extend this
approach to nonlinear PDEs by formulating constraints using linearized differential equa-
tions. The applicability of the proposed approach is demonstrated using three examples:
1-D scalar advection-diffusion equation, 1-D Burgers equation and 2-D advection equation.
The numerical experiments indicated that differential operators learned using the standard
regression approach yielded unstable differential operators for different combinations of sten-
cil sizes and regularization parameters. Consequently, the learned differential operator often
produces highly oscillatory results in the initial time window and blows up in finite time,
even for linear problems. In contrast, the learned differential operators obtained using the
proposed constrained regression approach yielded stable and highly accurate results for linear
and nonlinear PDEs considered in this study.

The proposed approach to incorporate constraints for ensuring stability while learning
differential operators can be extended to several practical applications. These learned dif-
ferential operators are ideally suited for developing nonintrusive reduced order models. We
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plan to demonstrate the proposed approach for this application while comparing it with other
nonintrusive approaches [36–38]. A key benefit of the proposed approach is the possibility
of enabling nonintrusive reduced order modeling for standard projection-based techniques
such as those that rely on stabilization [39] and closure modeling [40, 41]. We also plan to
extend this approach to determine stable coarse-grained discretizations from data, enabling
high-fidelity simulations at a lower computational cost.
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754, 1931.

[35] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy et al. SciPy 1.0:
Fundamental algorithms for scientific computing in python. Nature Methods, 17:261–
272, 2020.

32



[36] C. Audouze, F. D. Vuyst, and P. B. Nair. Nonintrusive reduced-order modeling of
parametrized time-dependent partial differential equations. Numerical Methods for Par-
tial Differential Equations, 29(5):1587–1628, 2013.

[37] J. S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear
problems using neural networks. Journal of Computational Physics, 363:55–78, 2018.

[38] B. Peherstorfer and K. E. Willcox. Data-driven operator inference for nonintrusive
projection-based model reduction. Computer Methods in Applied Mechanics and Engi-
neering, 306:196–215, 2016.

[39] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via
a least-squares Petrov–Galerkin projection and compressive tensor approximations. In-
ternational Journal for Numerical Methods in Engineering, 86(2):155–181, 2011.

[40] S. E. Ahmed, S. Pawar, O. San, A. Rasheed, T. Iliescu, and B. R. Noack. On closures
for reduced order models - A spectrum of first-principle to machine-learned avenues.
Physics of Fluids, 33(9), 2021.

[41] A. Prakash and Y. J. Zhang. Projection-based reduced order modeling and data-driven
artificial viscosity closures for incompressible fluid flows. Computer Methods in Applied
Mechanics and Engineering, 425:116930, 2024.

33


	Introduction
	Mathematical background
	Differential operators for PDEs
	Stability of differential operators

	Learning differential operators from data
	Regression-based approach for learning differential operator
	Constrained regression-based approach to learning stable differential operator

	Numerical results
	1-D scalar advection-diffusion equation
	Diffusion problem: c = 0, = 0.02
	Advection problem: c = 1.25, = 0
	Case with both advection and diffusion: c = 0.2, = 0.02

	1-D Burgers equation
	2-D scalar advection equation

	Conclusions
	Acknowledgements

