
ON THE VOLUME OF CONVOLUTION BODIES IN THE PLANE

J. HADDAD

Abstract. For every convex body K ⊂ Rn and δ ∈ (0, 1), the δ-convolution

body of K is the set of x ∈ Rn for which |K ∩ (K + x)|n ≥ δ|K|n. We show
that for n = 2 and any δ ∈ (0, 1), ellipsoids do not maximize the volume of

the δ-convolution body of K, when K runs over all convex bodies of a fixed

volume. This behavior is somehow unexpected and contradicts the limit case
δ → 1−, which is governed by the Petty projection inequality.

1. Introduction

Let K ⊆ Rn be a convex body (compact, convex and with non-empty interior)
and let gK(x) = |K ∩ (K + x)|n denote the covariogram function, where | · |n is the
n-dimensional Lebesgue measure. For δ ∈ (0, 1), the convolution body of parameter
δ is the set defined by

CδK = {x ∈ Rn : gK(x) ≥ δ|K|n}.

The set CδK is called the convolution body of K, due to the fact that gK is the
convolution of the indicator functions of K and −K. Convolution bodies and the
covariogram function were studied in [8, 9, 10, 12, 14]. Specifically, in relation to
the phase retrieval problem in Fourier analysis, it was studied in [1, 2, 3].

When δ → 1− the set CδK collapses to the origin. The shape of CδK, if scaled
by a factor (1− δ)−1, approaches the polar projection body of K denoted by Π∗K,
which is the unit ball of the norm defined by

∥v∥Π∗K= |Pv⊥K|n−1

for every unit vector v ∈ Sn−1, where Pv⊥ is the orthogonal projection to the
hyperplane orthogonal to v. This was first observed by Matheron in [9], where the
covariogram function was introduced. Indeed it was proven in [12, Theorem 2.2]
that

(1) lim
δ→1−

|CδK|n
(1− δ)n

= |Π∗K|n.

The classical Petty projection inequality (see Section 10.9 of [13]) states that

(2) |Π∗K|n ≤ |Π∗BK |n
where BK is the Euclidean ball with same volume as K. Equality holds in (2) if and
only if K is an ellipsoid (an affine image of the Euclidean ball). The left-hand side
of inequality (2) is invariant under volume-preserving affine transformations. This
was proven by Petty in [11], and Schmuckenschläger gave a simpler proof of this fact
using (1) and the obvious fact that Cδφ(K) = φ(CδK) for every volume-preserving
affine transformation φ.
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2 J. HADDAD

In the opposite endpoint, δ → 0+, the body CδK converges to the difference
body of K, defined by

DK = {x− y : x, y ∈ K}.
By the Brunn-Minkowsky inequality (see [13, Theorem 7.1.1]), |DK|n ≥ 2n|K|n,

with equality if and only ifK is symmetric with respect to some point (i.e. x0+K =
x0 −K for some x0 ∈ K). Since BK is origin-symmetric,

(3) |DK|n ≥ |DBK |n,

which is reverse to the inequality (2). Nevertheless, (3) is an equality for all sym-
metric sets.

An extension of the Petty projection inequality to certain averages of volumes
of CδK can be deduced from the results in [8].

Theorem 1.1. For every non-decreasing function ω : [0, 1] → [0,∞) and every
convex body K, ∫ 1

0

ω(δ)|CδK|ndδ ≤
∫ 1

0

ω(δ)|CδBK |ndδ.

The results in [8] follow from the well-known Riesz convolution inequality, and
Theorem 1.1 recovers the Petty projection inequality (without the equality case)
thanks to (1) and a limit argument. Namely, one chooses ω to be an approximation
of the Dirac delta at 1. Since ω must be non-decreasing, this argument cannot be
applied to a Dirac delta at some other point in (0, 1). A particular case of Theorem
1.1 is that ∫ 1

t

|CδK|ndδ ≤
∫ 1

t

|CδBK |ndδ

for any t ∈ (0, 1).
A second application of the Riesz convolution inequality to convex bodies defined

from CδK, was given in [6].
A radial set is a set of the form

K = {0} ∪ {x ∈ Rn \ {0} : |x|≤ ρK(x/|x|)}

where ρK : Sn−1 → (0,∞) is continuous, and | · | is the Euclidean norm. A radial
body is a radial set for which ρK is strictly positive. Every convex body is also a
radial body.

For every convex body K and p > −1, p ̸= 0, the p-radial mean body of K is the
radial body defined by

ρRpK(v) =

(∫ 1

0

ρCδK(v)pdδ

)1/p

,

while R0K is defined as a limit of the sets RpK when p → 0. The original definition
given in [5] is different, but equivalent to ours. This can be deduced easily from
formulas (3), (16) and (17) in [7].

Theorem 1.2 ( [6, Theorem 20]). For every convex body K and p ∈ (−1, n),

|RpK|n ≤ |RpBK |n.

For p > n the inequality is reversed. Equality holds if and only if K is an ellipsoid.
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It was proven in [5] that RpK approaches Π∗K when p → −1+, so Theorem 1.2
is yet an other extension of the Petty projection inequality involving averages of
CδK.

Theorems 1.1 and 1.2 suggest the possibility that for a fixed δ ∈ (0, 1), |CδK|n
is also maximized by ellipsoids, among sets of a fixed volume. Of course, due to (3)
this is only possible if we restrict the problem to the symmetric case, or to some
range of δ ∈ (0, 1) far from 0. Let us formulate the weakest possible question:

Question 1.3. Is there a value of δ ∈ (0, 1) such that

(4) |CδK|n ≤ |CδBK |n
for every symmetric convex body K?

The purpose of this paper is to give a complete answer to this question in di-
mension 2.

Observe that due to Theorem 1.1, inequality (4) holds “in average” in δ for every
K.

The following proposition describes the situation in which K is far from the
set of ellipsoids. Define the Banach-Mazur distance between two convex bodies
K,L ⊆ Rn as

dBM(K,L) = min{λ > 0 : K−x ⊆ Φ(L−y) ⊆ eλ(K−x) for Φ ∈ GL(n), x, y ∈ Rn}.

where GL(n) is the set of invertible linear transformations of Rn. Let B be the unit
Euclidean ball in Rn. It follows from the definition that dBM (K,B) = 0 if and only
if K is an ellipsoid.

Proposition 1.4. For every convex body K ⊆ Rn which is not an ellipsoid,
|CδK|n ≤ |CδBK |n for every δ > φ(dBM (K,B)), where φ : [0,∞) → (0, 1] is a
continuous function with φ(t) = 1 if and only if t = 0.

We will prove this fact in Section 4. Proposition 1.4 reduces the problem to a
local question: If (4) is valid for every K sufficiently close to the Euclidean ball and
δ close to 1, then thanks to Proposition 1.4, it is valid for every K and δ close to 1.

Definition 1.5. For any radial set K we will consider a one-parameter family of
radial bodies Kt defined by

(5) ρKt(v) = 1 + tρK(v).

We also define

(6) Kt = Kt/|Kt|1/nn .

We will say that a radial set K is Cβ smooth with β ≥ 1 if the radial function
ρK is Cβ . Notice that this definition does not coincide with the smoothness of the
set ∂K as usual, because we are allowing ρK(v) = 0. But it is clear that if K is Cβ

smooth, then Kt has a smooth boundary in the usual sense.
We will analyze

∣∣CδKt

∣∣
n
as a function of t and δ, for t near 0. First we obtain:

Theorem 1.6. For every C1 radial set K ⊆ Rn and δ ∈ (0, 1), the function
t 7→

∣∣CδKt

∣∣
n
is C1 and we have

∂

∂t

∣∣CδKt

∣∣
n

∣∣∣∣
t=0

= 0.
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Then it suffices to analyze the second derivative of t 7→
∣∣CδKt

∣∣
n
. In the limit

δ → 1− this second derivative is completely described in Section 6 for n = 2, and
its sign is compatible with the fact that t 7→

∣∣Π∗Kt

∣∣
n
has a maximum at t = 0. In

Section 6 we show:

Theorem 1.7. For every C2 smooth radial set K ⊆ R2 the function t 7→
∣∣CδKt

∣∣
n

is C2 for every δ ∈ (0, 1) and

lim
δ→1−

1

(1− δ)2
∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣∣
t=0

≤ 0.

Equality holds if and only if ρK is the restriction of a homogeneous polynomial of
degree 2 to the unit circle.

The equality cases of Theorem 1.7 correspond to variations Kt that coincide up
to first order with families of ellipsoids.

At this point it is natural to expect that Theorem 1.7 combined with an approx-
imation argument and Proposition 1.4, could yield a positive answer to Question
1.3. However, for this argument to be complete we need the convergence of the
second derivatives of the volume as δ → 1−, to be uniform with respect to K. We
were unable to show this uniform convergence, and the following counterexample
shows why:

Theorem 1.8. Let Km ⊆ R2 be the (symmetric) radial set defined by ρKm(v) =
cos(2mv)2 with v ∈ [0, 2π]. Then for every δ ∈ (0, 1) there exists m ∈ N such that

∂2

∂t2
∣∣CδKm

t

∣∣
2

∣∣∣∣
t=0

> 0.

As a consequence, we get a negative answer to Question 1.3 in dimension 2, and
every value of δ ∈ (0, 1).

Theorem 1.9. For every δ ∈ (0, 1) there exists a symmetric convex body K ⊆ R2

such that |CδK|n > |CδBK |n. Moreover, K can be chosen arbitrarily close to the
Euclidean ball in the C∞ topology.

It is important to remark that for a fixed m in Theorem 1.8, the set of δ ∈

(0, 1) for which ∂2

∂t2

∣∣CδKt

∣∣
2

∣∣∣∣
t=0

is positive, is a complicated union of intervals that

grow in number and accumulate near 1, as m → ∞. Previous attempts to find
regular polygons being counterexamples to Question 1.3 for δ close to 1 by direct
computation, failed probably because of this complicated behaviour. We still do
not know if regular polygons are counterexamples to Question 1.3.

The following natural question remains open:

Question 1.10. For each fixed δ ∈ (0, 1), what convex bodies are maximizers of
CδK when K runs among sets of the same volume?

The rest of the paper is organized as follows:
In Section 2 we introduce al the notation that will be necessary for our computa-

tions in the following sections. In Section 3 we obtain the results concerning convex
sets far from the ball (Proposition 1.4), and establish several technical lemmas that
will be needed later.

In Section 4 we compute the first-order approximation of
∣∣CδKt

∣∣
n

at t = 0

(Theorem 1.6). All results in this section are stated in Rn.
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In Section 5 we compute the second order approximation in the plane, and
establish Theorems 1.8 and 1.9.

Finally in Section 6 we compute the limit of the second derivative of
∣∣CδKt

∣∣
n

when δ → 1−, and prove Theorem 1.7.

2. Notation

The closed Euclidean ball of center p ∈ Rn and radius r > 0 will be denoted by
B(p, r). The closed unit Euclidean ball B(0, 1) is denoted by B, and its volume, by
ωn.

It is convenient to introduce some notation in order to simplify the lengthy
computations that we will carry over in Sections 4 and 5. The following notation
is by no means standard.

For any set L and x ∈ Rn, we denote GL(x) = L ∩ (L+ x). For x ∈ Rn denote
L(x) = B ∩ (B+ x) = GB(x), C(x) = Sn−1 ∩ (B+ x) and S(x) = C(x) ∪ C(−x).

The n− 1 dimensional volume S(s) = |S(sv)|n−1 is independent of v ∈ Sn−1 for
any s > 0, as well as the n-dimensional volume L(s) = |L(sv)|n.

For a fixed radial set K, v ∈ Sn−1 and δ ∈ (0, 1), denote

k(t) = |Kt|n, ρv(t) = ρCδKt
(v), sv(t) = ρv(t)k(t)

1/n and gv(t, s) = gKt(sv).

These quantities depend on the setK which is not explicitly written in the notation.
The partial derivatives of a function g(t, s) will be denoted by ∂sgv, ∂tgv, ∂s,tgv

and so on. We will denote k0 = k(0), k′0 = k′(0), k′′0 = k′′(0).
For A ⊆ Sn−1 and functions f, g : Sn−1 → R it will be convenient to use:

[f, g]A = {ty ∈ Rn : y ∈ A, t ∈ [f(y), g(y)]},

and for x ∈ Rn,

[f, g]xA = [f, g]A + x.

With this notation we haveK = [0, ρK ]Sn−1 andGK(x) = [0, ρK ]Sn−1∩[0, ρK ]xSn−1 .
The union of two disjoint sets will be denoted by A ⊔ B to emphasize that

A ∩B = ∅.
To measure the parameter of the convolution bodies CδK we will use the three

variables δ ∈ (0, 1), s ∈ (0, 2) and α ∈ (0, π/2), related by the formulas

(7) δ = L(s), s = 2 cos(α).

Our computations will involve the quantities

WK,v(s) =

∫
S(sv)

ρK(w)dw, IK =

∫
S1

ρK(w)dw.

In the variable α we will denote wK,v(α) = WK,v(2 cos(α)v).
For the computations in R2 we will identify points in S1 with their angle in

[0, 2π), and write indistinctly ρK(v) for v ∈ [0, 2π) or v ∈ S1 ⊆ R2. We will also
use the vector vα = (cos(α), sin(α)).

3. Preliminary results

We start by proving Proposition 1.4 and Theorem 1.1.
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Proof of Proposition 1.4. According to [12, Corollary 2], for every convex body
K ⊆ Rn

(1− δ)n|Π∗K|n ≤ |CδK|n ≤ (− log(δ))n|Π∗K|n.
so

|CδK|n ≤ (− log(δ))n|Π∗K|n

≤ (− log(δ))n
|Π∗K|n
|Π∗BK |n

|Π∗BK |n

≤
(
− log(δ)

1− δ

)n |Π∗K|n
|Π∗BK |n

|CδBK |n.

Assuming K is not an ellipsoid,
|Π∗K|n
|Π∗BK |n

< 1 and we may find an appropriate δ0(K)

for which |CδK|n ≤ |CδBK |n if δ > δ0(K). Indeed, by a theorem of Böröczky [4,
Corollary 5], there exists a constant γn > 0 such that

|Π∗K|n ≤ (1− γndBM (K,B)1680n)|Π∗BK |n
and we get

|CδK|n ≤
(
− log(δ)

1− δ

)n

(1− γndBM (K,B)1680n)|CδBK |n.

Using that − log(δ)
1−δ ≤ δ−1 for δ ∈ (0, 1), it suffices to take

δ0(K) = (1− γndBM (K,B)1680n)1/n and the function φ(t) = (1− γnt
1680n)1/n. □

Proof of Theorem 1.1. In [8, Section 2], Kiener proves that for p ≥ 1 and any
convex body K, ∫

gK(x)pdx ≤
∫

gBK
(x)pdx.

A quick inspection of the proof (stated also in [8, Lemma 3] for the equality
case) shows that the p-th power can be replaced by any convex, non-negative and
non-decreasing function φ : [0, 1] → R+, this is,

(8)

∫
φ(gK(x))dx ≤

∫
φ(gBK

(x))dx.

Assume without loss of generality that ω is C1. Take φ(t) =
∫ 1

0
ω′(δ)(t − δ)+dδ

which is clearly non-negative, convex and non-decreasing. Using Fubini, integration
by parts, the layer-cake formula,∫

φ(gK(x))dx =

∫ 1

0

ω′(δ)

∫
Rn

(gK(x)− δ)+dxdδ

=

∫ 1

0

ω′(δ)

∫ 1

δ

|CsK|ndsdδ

= ω′(0)

∫
Rn

gK(x)dx+

∫ 1

0

ω(δ)|CδK|ndδ.

= ω′(0)|K|2n +

∫ 1

0

ω(δ)|CδK|ndδ.

By (8) we get the result. □
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Figure 1. Set in the left-hand side of equation (9)

The following technical proposition is essential to estimate gK(x) for small x.
Set

L(K,x) = L(x) ⊔ [1, ρK ]C(x) ⊔ [1, ρK ]xC(−x).

The sets GKt(x) and L(Kt, x) are very similar when t > 0 is small, in fact they
coincide outside a small region of volume O(t2), while the volume of L(Kt, x) is
easier to compute.

Proposition 3.1. For M > 0, x ∈ Rn, |x|< 2 there exist c, t0 > 0 depending only
on M and |x|, such that for every radial set K ⊆ Rn with ρK ≤ M and for every
t ∈ (0, t0),

GKt(x) \ T (ct) = L(Kt, x) \ T (ct)
where

T (t) = {y ∈ Rn : d(y, Sn−1 ∩ (Sn−1 + x)) ≤ t}
and Kt is defined by (5).

Proof. Let E be the line parallel to x passing through the origin, and P the hyper-
plane perpendicular to x, passing through x/2. Denote by a(y), b(y) the euclidean
distances from y to P and E, respectively. Since |x|< 2, we have |x|= 2 cos(α) for
a unique α ∈ (0, π/2). Consider the set

U = {y ∈ Rn/a(y) ≤ sin(α)}.
It is clear that U ⊆ L(x) ⊔ [0,∞]C(x) ⊔ [0,∞]xC(−x).

Now we claim that if t ∈
(
0,

√
1+8 cos(α)2−1

M

)
, then

(9) U ∩B(0, 1 +Mt) ∩B(x, 1 +Mt) ⊆ B(0, 1) ∪B(x, 1)

(see Figure 1)
Indeed, the equations defining the left intersection are

(10) (a(y) + cos(α))2 + b(y)2 ≤ (1 +Mt)2,

(11) b(y) ≤ sin(α).

If a(y) ≤ 2 cos(α), then (a(y)− cos(α))2 ≤ cos(α)2 and we get from (11),

(a(y)− cos(α))2 + b(y)2 ≤ 1.
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If a(y) ≥ 2 cos(α), we also get

(a(y)− cos(α))2 + b(y)2 = (a(y) + cos(α))2 + b(y)2 − 4a(y) cos(α)

≤ (1 +Mt)2 − 4a(y) cos(α)

≤ 1 + 8 cos(α)2 − 4a(y) cos(α)

< 1,

and this implies in both cases that

y ∈ B(0, 1) ∪B(x, 1)

and the claim is proven.
Notice that

B(0, 1) ∪B(x, 1) = L(x) ⊔ ([0, 1]xSn−1 ∩ [1,∞]Sn−1) ∩ ([0, 1]Sn−1 ∩ [1,∞]xSn−1).

Now, since both GKt
(x), L(Kt, x) lie inside B(0, 1+Mt)∩B(x, 1+Mt), a point

in either of the sets U ∩GKt
(x), U ∩ L(Kt, x) must belong to

(B(0, 1) ∪B(x, 1)) ∩ (L(x) ⊔ [0,∞]C(x) ⊔ [0,∞]xC(−x))

= L(x) ⊔ ([0, 1]xSn−1 ∩ [1,∞]C(x)) ⊔ ([0, 1]Sn−1 ∩ [1,∞]xC(−x))

Inside this set, it is clear that the conditions defining GKt
(x) and L(Kt, x) coin-

cide. To see this write GKt
(x) = [0, ρKt

]Sn−1 ∩ [0, ρKt
]xSn−1 and

GKt
(x) ∩

(
L(x) ⊔ ([0, 1]xSn−1 ∩ [1,∞]C(x)) ⊔ ([0, 1]Sn−1 ∩ [1,∞]xC(−x))

)
= L(x) ⊔ ([0, 1]xSn−1 ∩ [1, ρKt

]C(x)) ⊔ ([0, 1]Sn−1 ∩ [1, ρKt
]xC(−x))

L(Kt, x) ∩
(
L(x) ⊔ ([0, 1]xSn−1 ∩ [1,∞]C(x)) ⊔ ([0, 1]Sn−1 ∩ [1,∞]xC(−x))

)
.

Then, we only need to prove that

B(0, 1 +Mt) ∩B(x, 1 +Mt) \ U ⊆ T (ct).

The equations defining the left-hand side, are (10) and

(12) b(y) ≥ sin(α).

From (10) we obtain

(13) a(y)2 + cos(α)2 + b(y)2 ≤ (1 +Mt)2,

and using (12) for t < 1,

(14) a(y)2 ≤ (1 +Mt)2 − 1 = 2Mt+M2t2 ≤ (2M +M2)t.

From (13) we also have

b(y)2 ≤ (1 +Mt)2 − cos(α)2 ≤ (2M +M2)t+ sin(α)2,

which yields, together with (14) and (12),

(b(y)− sin(α))2 + a(y)2 = b(y)2 − 2b(y) sin(α) + sin(α)2 + a(y)2

≤ (2M +M2)t+ 2 sin(α)2 − 2b(y) sin(α) + (2M +M2)t

≤ 2(2M +M2)t

for t ∈ (0, 1).
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On the other hand, the equations defining Sn−1 ∩ (Sn−1 + x) are

a(y) = 0, b(y) = sin(α),

and the equations defining T (ct) are

(b(y)− sin(α))2 + a(y)2 ≤ ct.

Thus, we have proved that B(0, 1+Mt)∩B(x, 1+Mt)\U ⊆ T (ct) for t ∈ (0, t0),
with c = 2(2M +M2) and some t0 small, and the proof is complete.

□

The following proposition guarantees that the computations of first and second
derivatives in the next section are correctly justified.

Proposition 3.2. Let K be a Cβ radial set with β ≥ 1. Then there is ε > 0 such
that the function

Sn−1 × (−ε, ε)× (0, 2) → R
(v, t, s) 7→ gv(t, s) = gKt

(sv)

is Cβ smooth. Moreover, ∂
∂sgv(t, s) ̸= 0.

Proof. Fix v0 ∈ Sn−1, s0 ∈ (0, 2). Since K is Cβ and ∂K0 = Sn−1 intersects
transversally with ∂K0 + s0v0, there is ε > 0 small such that for all (v, t, s) in an
ε neighborhood of (v0, 0, s0), the boundaries ∂Kt and ∂Kt + sv intersect transver-
sally to each other, and to any line parallel to v0 passing through a point in an ε
neighborhood of GKt

.
Let Pv,t,s be the orthogonal projection of GKt

(sv) onto the plane orthogonal to
v0, ⟨v0⟩⊥. By transversality, reducing ε further if necessary, the set GKt

(sv) can
be described as the region between the graphs of two functions f− and f+. This is,

GKt
(sv) = {y + lv0 : y ∈ Pv,t,s, f−(v, t, y) + s ≤ l ≤ f+(v, t, y)}

for two Cβ functions f± defined for (v, t) in a neighborhood of (v0, 0), and y in a
fixed open set containing Pv,t,s for all such (v, t, s). The volume can be computed
as

gv(t, s) =

∫
Pv,t,s

(f+(v, t, y)− f−(v, t, y)− s)dy(15)

=

∫
Sn−1∩⟨v0⟩⊥

∫ ρ(v,t,s)

0

rn−2(f+(v, t, rξ)− f−(v, t, rξ)− s)drdξ,

where ρ(v, t, s) is the (Cβ-smooth) radial function of Pv,t,s. Then it is clear that
gv(t, s) is C

β smooth around (v0, 0, s0).
By (15), the partial derivative with respect to s is exactly −|Pv,t,s|n−1, which is

non-zero since s ∈ (0, 2) implies GKt
has non-empty interior. □

4. First-order Taylor Expansion of CδKt

In order to compute the derivative of
∣∣CδKt

∣∣
n
we need to compute that of the

covariogram function.
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Proposition 4.1. Let K be a radial set and Kt be the radial body defined by (5),
then for x ∈ Rn with 0 < |x|< 2,

(16) gKt
(x) = |L(x)|n + t

∫
S(x)

ρK(v)dv +O(t2).

For x = 0,

(17) |Kt|n = |B|n + tIK +O(t2).

Here O(t2)
t2 is bounded by a constant independent of t ∈ (0, 1) (but possibly depending

on K and x).

Proof. Thanks to Proposition 3.1, the set GKt(x) can be approximated as the
disjoint union

(18) GKt
(x) ∼ [1, ρK ]C(x) ⊔ [1, ρK ]xC(−x) ⊔ L(x)

where A ∼ B means that the symmetric difference A∆B has volume O(t2). Indeed,
the symmetric difference must lie inside the torus T (ct), whose volume is bounded
by cn(ct)

2 where cn is some dimensional constant.
We obtain

gKt
(x) = |L(x)|2 +

∣∣[1, ρK ]C(x)

∣∣
2
+
∣∣[1, ρK ]C(−x)

∣∣
2
+O(t2).

Integrating in polar coordinates,∣∣[1, ρK ]C(x)

∣∣
2
+
∣∣[1, ρK ]C(−x)

∣∣
2
=
∣∣[1, ρK ]S(x)

∣∣
2

=
1

n

∫
S(x)

(ρKt
(v)n − 1)dv

=
1

n

∫
S(x)

(ntρK(v) +O(t2))dv

= t

∫
S(x)

ρK(v)dv +O(t2),(19)

and the proposition follows. □

Proof of Theorem 1.6. For t = 0, K0 is the Euclidean ball of volume 1. The body
CδK0 is also a ball, and its radius ρ0 satisfies L(ρ0) = δ.

Start observing that for any λ > 0,

gλK(λx) = λngK(x),

implying that

gK̄(x) = |K|−1
n gK(|K|1/nn x).

Since ρCδKt
(v)v is in the boundary of CδKt, by the continuity of volume, the

radial function ρCδK̄(v) satisfies

δ = gKt
(ρCδKt

(v)v) = |Kt|−1
n gKt

(|Kt|1/nn ρCδKt
(v)v).

We get

(20) δ = k(t)−1gv(t, ρv(t)k(t)
1/n).

Clearly, for t close to 0, the function k(t) is C1 smooth and bounded away from 0.
By Proposition 3.2 and the Implicit Function Theorem, the function ρv(t) must be
C1 with respect to (t, v), in a neighborhood of t = 0.
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We can take derivative of (20) with respect to t, to obtain

0 = −k(t)−2k′(t)gv(t, ρv(t)k(t)
1/n)(21)

+ k(t)−1∂sgv(t, ρv(t)k(t)
1/n)

(
1

n
k(t)

1
n−1k′(t)ρv(t) + k(t)1/nρ′v(t)

)
+ k(t)−1∂tgv(t, ρv(t)k(t)

1/n)

Notice that gv(0, s) = L(s) for every s > 0, so ∂sgv(0, s) = L′(s). From (21) we
compute

(22) ρ′v(0) = ω−1/n
n L′(s0)

−1
(
ω−1
n k′(0)L(s0)− ∂tgv(0, s0)

)
− 1

n
ω−1
n k′(0)ρ0

where ωn = k(0) and s0 = s(0) = ρv(0)k(0)
1/n is independent of v.

The volume of CδKt can be computed as

(23)
∣∣CδKt

∣∣
n
=

1

n

∫
Sn−1

ρCδKt
(v)ndv

so taking derivative with respect to t and using (22) and (17),

∂

∂t

∣∣CδKt

∣∣
n

∣∣∣∣
t=0

= ρn−1
0

∫
Sn−1

ρ′v(0)dv

= ρn−1
0 ω−1/n−1

n IK
L(s0)

L′(s0)
nωn − 1

n
ω−1
n IKρn0nωn

− ρn−1
0 ω−1/n

n L′(s0)
−1

∫
Sn−1

∂

∂t
gKt

(s0v)

∣∣∣∣
t=0

dv.

By (16) in Proposition 4.1 we have ∂
∂tgKt

(s0v)

∣∣∣∣
t=0

= WK,v(s0). Observe that

S(x) is a union of two spherical caps, so for v, w ∈ Sn−1, we have v ∈ S(s0w) if
and only if w ∈ S(s0v), then∫

Sn−1

WK,v(s0)dv =

∫
Sn−1

∫
Sn−1

χS(s0v)(w)ρK(w)dwdv(24)

=

∫
Sn−1

∫
Sn−1

χS(s0w)(v)dvρK(w)dw

= S(s0)IK .

We get

∂

∂t

∣∣CδKt

∣∣
n

∣∣∣∣
t=0

= ρn−1
0 ω−1/n

n nIK
L(s0)

L′(s0)
− IKρn0 − ρn−1

0 ω−1/n
n L′(s0)

−1S(s)IK

= IKL′(s0)
−1ω−1/n

n ρn−1
0 (nL(s0)− s0L

′(s0)− S(s0)).

Finally we shall prove that

nL(s0) = s0L
′(s0) + S(s0)

which concludes the proof.
Consider the n− 1 dimensional circle S2 = ( 12s0v + v⊥)∩ (B+ s0v) and observe

that L′(s0) = |S2|n−1. Consider the cone D2 with vertex at the origin and base

S2. Using the cone volume measure (see (9.33) of [13]), this is, 1
n |⟨n(x), x⟩|dS(x)
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(where n is a unit normal vector to the surface) to compute the volumes of the
cones we get

L(s0) = 2(|D(x)|n − |D2|n)

=
2

n

(∫
C(x)

1dS(x)−
∫
S2

s0
2
dS(x)

)

=
2

n
(
1

2
S(s)− s0

2
L′(s0)).

and the proof is complete. □

5. Second-order Taylor Expansion of CδKt in the plane

In order to compute the second derivative of
∣∣CδKt

∣∣
n
we need a second-order

estimate of the covariogram of Kt. From now on, all computations will be made
for n = 2. We will make use of Proposition 3.1 again. In dimension 2, the set T (ct)
is a union of two closed balls.

Proposition 5.1. Let K ⊆ R2 be a planar radial set and Kt be the radial body
defined by (5), then

gKt
(x) = L(x) + t

∫
S(x)

ρK(v)dv + t2
1

2

∫
S(x)

ρK(v)2dv + t2TK(x) + o(t2)

where o(t2)
t2 → 0 as t → 0+, for fixed K and x, and

TK(x) =
1

2|x|
√
4− |x|2

(
4(ρK(v1)ρK(v2) + ρK(v3)ρK(v4))

+ (ρK(v1)
2 + ρK(v2)

2 + ρK(v3)
2 + ρK(v4)

2)(|x|2−2)
)

where (v1, v2) are the boundary points of S(x) and (v3, v4) are the lower ones, as
shown in Figure 2b.

Moreover,

|Kt|n = π + tIK + t2|K|n.

Proof. Without loss of generality we may assume x = (|x|, 0). Let p+, p− be the
upper and lower intersection points of S1 and S1 + x. Proposition 3.1 provides
constants t0, c > 0 sufficiently small such that outside the balls B(p±, ct), the sets
in the left and right of (18) are equal for all t ∈ [0, t0]. This is,

(25) GKt
(x) \B(p+, ct) \B(p−, ct)

=
(
L(x) ⊔ [1, ρKt

]C(x) ⊔ [1, ρKt
]xC(−x)

)
\B(p+, ct) \B(p−, ct).

(see Figure 2a)
To simplify the computations, we will only compute the volume of GKt

(x) in-
tersected with the upper half-plane H+. For any measurable A ⊆ R2, we denote
|A|2+ = |A ∩H+|2. The intersection with the lower half-plane is similar and will

be omitted. For small t > 0, B(p+, ct) lies in H+.
To compute the second order term inside the ball we use a blow-up argument at

the point p+. The set

R1(t) =
1

t
((GKt

(x) \ L(x) ∩B(p+, ct))− p+)
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(a) Sets of equation (25) and B(p+, ct). (b) Boundary points of S(x),
v1, v2, v3, v4

is uniformly bounded with respect to t, and converges in the Hausdorff metric to

(26) R1(0) =
{
y ∈ R2 : |y|≤ d,max{y.vα, y.vπ−α} ≥ 0,

y.vα ≤ ρK(α), y.vπ−α ≤ ρK(π − α)
}

(see Figure 3a).
On the other hand, the set

R2(t) =
1

t

(
([1, ρKt

]C(x) ⊔ [1, ρKt
]xC(−x) − p+) ∩B(p+, ct)

)
is also uniformly bounded with respect to t and converges in the Hausdorff metric
to

(27) R2(0) =

{
y ∈ R2 : |y|≤ d, (0 ≤ y.vα ≤ ρK(vα), y.vα−π/2 ≥ 0)

or (0 ≤ y.vπ−α ≤ ρK(vπ−α), y.vπ−α+π/2 ≥ 0)

}

(see Figure 3c).
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(a) Approximation of the set
R1 near p+.

(b) Difference between R1

and R2.
(c) Approximation of the set
R2 near p+.

We get from (25), (26), (27) and (19) that∣∣∣GKt
(x)
∣∣∣
2+

= |GKt
(x) \ L(x) \B(p+, ct)|2+ + |tR1(t)|2 + |L(x)|2+

=
∣∣∣([1, ρKt

]C(x) ⊔ [1, ρKt
]xC(−x)

)
\B(p+, ct)

∣∣∣
2+

+ |tR2(t)|2 + |L(x)|

+ t2(|R1(t)|2 − |R2(t)|2)

=
∣∣∣[1, ρKt

]C(x) ⊔ [1, ρKt
]xC(−x)

∣∣∣
2+

+ |L(x)|2+

+ t2(R1(0)−R2(0)) + o(t2)

= |L(x)|2+ + t

∫
S(x)∩H+

ρKt
(v)dv +

1

2
t2
∫
S(x)∩H+

ρKt
(v)2dv

+ t2(|R1(0)|2 − |R2(0)|2) + o(t2)

The difference |R1(0)|2 − |R2(0)|2 is exactly the signed area of the quadrilateral
with (ordered) vertices 0, ρKt

(α)vα, pα, ρKt
(π−α)vπ−α, where pα is the intersection

point of the two lines pα · vα = ρKt
(α) and pα · vπ−α = ρKt

(π−α). The sign of the
area of each region bounded by the quadrilateral is given by the sens of rotation
of the boundary around it. (see Figure 3b) This quadrilateral is always convex
if α ∈ (0, π/4). It is clear that this signed area is exactly 1

2 (det(ρKt(α)vα, pα) +
det(pα, ρKt

(π − α)vπ−α). By computing pα in terms of α, ρKt
(α) and ρKt

(π − α),
and adding the corresponding term for the lower half space, we obtain the formula
for TK(x).

The second formula is computed easily as

|Kt|n =
1

2

∫
S1

ρKt
(v)2dv

=
1

2

∫
S1

(1 + 2tρK(v) + t2ρK(v)2)dv

= π + t

∫
S1

ρK(v)dv + t2|K|n.

□

We are ready to compute the second derivative of the volume, in dimension 2.
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Proposition 5.2. Let K be a C2 smooth radial set and Kt be defined by (6), then
if α is given by (7),

∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣∣
t=0

=
1

π sin(α)2

(
− 1

2π

(
sin(2α)− 2α

sin(α)

)2

I2K

(28)

− 1

2

cos(α)

sin(α)

∫
S1

[
ρK(v +

π

2
± π

2
± α)

]
wK,v(α)dv

+
1

4 sin(α)2

∫
S1

(wK,v(α))
2
dv + 2

∫
S1

ρK(v − α+ π)ρK(v + α)dv

+ 4 cos(2α)|K|2

)
where[
ρK(v +

π

2
± π

2
± α)

]
= ρK(v + α) + ρK(v − α) + ρK(v + π + α) + ρK(v + π − α).

Proof. First we compute the second derivative of
∣∣CδKt

∣∣
n
with respect to t using

(23), at t = 0.

(29)
∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣∣
t=0

=

∫
S1

ρ′v(0)
2dv + ρ0

∫
S1

ρ′′K(0)dv.

In order to simplify the computations we write (20) as

(30) δ = k(t)−1gv(t, sv(t))

where sv(t) = k(t)1/2ρv(t) and take derivative with respect to t at t = 0, to obtain

(31) s′v(0) =
k′0gv,0 − k0∂tgv,0

k0∂sgv,0

where gv,0 = gv(0, sv(0)), ∂tgv,0 = ∂tgv(0, sv(0)). Take the second derivative of
(30) with respect to t, at t = 0, and use (31) to get

s′′v(0) =
1

k20 (∂sgv,0)
3

(
k0gv,0

(
−2k′0∂sgv,0∂t,sgv,0 + 2k′0∂s,sgv,0∂tgv,0 + k′′0 (∂sgv,0)

2
)(32)

− (∂tgv,0)
2
k20∂s,sgv,0 + 2k20∂sgv,0∂tgv,0∂t,sgv,0 − k20 (∂sgv,0)

2
∂t,tgv,0

− (k′0)
2
g2v,0∂s,sgv,0

)
The terms ρ′v, ρ

′′
v can be computed from s′v, s

′′
v by the relation sv(t) = k(t)1/2ρv(t)

as

(33) ρ′v(0) = s′v(0)k
−1/2
0 − 1

2
sv(0)k

−3/2
0 k′0

and

(34) ρ′′v(0) = −k′0s
′
v(0)

k
3/2
0

+
s′′v(0)√

k0
+

3 (k′0)
2
ρv(0)

4k20
− k′′0ρv(0)

2k0
.
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Using Propositions 4.1 and 5.1 we get the following identities:

(35)
k0 = π k′0 = IK k′′0 = 2|K|2

gv,0 = L(s0) ∂sgv,0 = L′(s0) ∂sgv,0 = L′′(s0)

(36)
∂tgv,0 = WK,v(s0) ∂t,tgv,0 =

∫
S(s0v)

ρK(w)2dw + 2TK(s0v)

∂t,sgv,0 = W ′
K,v(s0).

Notice that gv,0, ∂sgv,0, ∂s,sgv,0 are independent of v.
Integrating (32),∫

S1

s′′v(0)dv =
1

π2(L′)3

[
− 2πIKLL′

∫
S1

W ′
K,vdv + 2πLIKL′′

∫
S1

WK,vdv(37)

+ 4π2L|K|2(L
′)2 − π2L′′

∫
S1

W 2
K,vdv − 2πI2KL2L′′

+ π2(L′)2
∫
S1

(∫
S(s0v)

ρK(w)2dw + 2TK(s0v)
)
dv

+ 2π2L′
∫
S1

WK,vW
′
K,vdv

]
where we omitted the argument s0 in the functions WK,v,W

′
K,v, L, L

′ and L′′.

Using a computation similar to (24), we obtain

(38)

∫
S1

∫
S(s0v)

ρK(w)2dwdv = 2S(s0)|K|2.

Also from (24),

(39)

∫
S1

W ′
K,v(s0)dv = S′(s0)IK .

We combine (29), (31), (32), (33), (34) the identities (35) and (36), and (38),
(39), and we get

∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣∣
t=0

=
2

π2

(
IKL

π3/2L′

)2

+
1

π(L′)2

∫
S1

W 2
K,vdv +

1

2π
(ρ0IK)2(40)

− 2
I2KLS

π2(L′)2
− 2

π3/2

ρ0I
2
KL

L′ +
ρ0
π3/2

I2KS

L′ + ρ0

[
− 1

π3/2

I2KL

L′

+
I2KS

π3/2L′ +
1

π1/2

∫
S1

s′′v(0)dv +
3

2π
ρ0I

2
K − 2ρ0|K|2

]
.

We combine (40), with (37), (32), the identities (35) and (36), and after lengthy
but straight-forward computations we get

∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣
t=0

=
1

π2(L′)3

[
2πs0L

′
(∫

S1

WK,vW
′
K,vdv

)
(41)

+ π (L′ − s0L
′′)

(∫
S1

W 2
K,vdv

)
− 2πs0(L

′)2
(∫

S1

T (v, s0)dv

)
− 2πs20|K|2(L′)3 + 4πs0|K|2L(L

′)2 + 2s20I
2
K(L′)3

− 2s0I
2
KLS′L′ + 2s0I

2
KSLL′′ + 2s0I

2
KS(L′)2 − 2I2KSLL′

− 2s0I
2
KL2L′′ − 4s0I

2
KL(L′)2 + 2I2KL2L′ − 2πs0S(L

′)2|K|2

]
.
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Figure 4. The sets Km
t for m = 1, 2, 3, 4 and t = 1

2m2 .

Now we parametrize with respect to the variable α ∈ (0, π/2) with s0 = 2 cos(α).
We have the following relations:

(42)

s0 = 2 cos(α) δ = L(s0)/π
S(s0) = 4α S′(s0) = − 2

sin(α)

L′(s0) = −2 sin(α) L′′(s0) = tan(α)−1 L(s0) = 2(α− cos(α) sin(α))

To compute the term W ′
K,v, observe that

−2 sin(α)W ′
K,v(2 cos(α)) = w′

K,v(α)(43)

=
∂

∂α

(∫ v+α

v−α

ρK(w)dw +

∫ v+π+α

v+π−α

ρK(w)dw

)
= ρK(v + α) + ρK(v − α) + ρK(v + π + α) + ρK(v + π − α)

=
[
ρK(v +

π

2
± π

2
± α)

]
.

Using the identities (42) and (43) we simplify equation (41) to obtain (28).
□

We are ready to compute the counterexample:

Proof of Theorem 1.8. Consider the (infinitely smooth and symmetric) radial set
given by

(44) ρKm(v) = cos(mv)2 =
1

2
cos(2mv) +

1

2
.

(see Figure 4.)
All integrals in (28) can be computed exactly using the two expressions for

ρKm(v) in (44). To compute the last integral we use the identity

cos(m(v − α))2 cos(m(v + α))2 =
1

4
(cos(2mv) + cos(2mα))2.

Integrating every term in (28) we obtain

IK = π, |K|2 =
3

8
π,

∫
S1

ρK(v − α+ π)ρK(v + α)dv =
1

4
π(cos(4αm) + 2)

wK,v(α) =
1

4m
(sin(2m(α+ v)) + sin(2m(α+ v + π))− 2 sin(2m(v − α)))

∫
S1

wK,v(α)
2dv =

π
(
16α2m2 − cos(4αm) + 1

)
2m2
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Figure 5. The function sin(α)2Fm(α) for m = 10.

and ∫
S1

[
ρK(v +

π

2
± π

2
± α)

]
wK,v(α)dv =

1

m
π(8αm+ sin(4αm)).

Denote Fm(α) = ∂2

∂t2

∣∣CδKm
t

∣∣
2

∣∣∣∣
t=0

, where δ and α are related by (7). Putting all

the integrals together we get

Fm(α) =
1

sin(α)2

(
1

2
cos(2α) +

1

2
cos(4αm)(45)

+
1

8m2 sin2(α)
− cos(4αm)

8m2 sin2(α)
− sin(4αm)

2m tan(α)

)
.

Every pair m,α for which Fm(α) is positive will provide us a counterexample to
Question 1.3. To finish the proof, it remains to prove that for every α0 ∈ (0, π/2)
there exists m such that Fm(α0) > 0.

Consider

c(α,m) =
1

8m2 sin(α)2
− cos(4αm)

8m2 sin2(α)
− sin(4αm)

2m tan(α)
.

Equation (45) can be written as

sin(α)2FSm(α) =
1

2
cos(2α) +

1

2
cos(4αm) + c(α,m).

(see Figure 5)
The function c(α,m) tends to 0 as m → ∞, for every α ∈ (0, π/2].
Fix α0 ∈ (0, π/2) and consider m0 such that for every m ≥ m0,

1
2 cos(2α0) +

c(α0,m) > −1/2. This is possible since cos(2α0) ∈ (−1, 1).
If α0/π is a rational number, choose a suitable m ≥ m0 such that α0m/π is

integer, then cos(4mα0) = 1. If α0/π is not rational, the sequence cos(4mα0),m ≥
m0 is dense in [−1, 1] and we may choose m ≥ m0 so that cos(4mα0) is arbitrarily
close to 1.

In both cases we obtain at least one value of m such that Fm(α0) > 0. □

Finally we are ready to give a negative answer to Question 1.3.

Proof of Theorem 1.9. Let δ ∈ (0, 1) and take the value of α given by the relations
(42). By the proof of Theorem 1.8 there is m ∈ N such that Fm(α) > 0. Consider
the radial set Km defined by (44) and the radial body Km

t = (Km)t defined by
(5). Since the function ρKm

t
converges to 1 in the Cβ topology for every β ≥ 0, and
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since convexity is a C2 property of ρ, there exists t̃m > 0 such that Km
t is convex

for every t ∈ [0, t̃m] (by analyzing the Gauss curvature, one can see that Km
t is

convex for t ∈ [0, 1
2m2 ]). By Theorems 1.6 and 1.8, there exists tm < t̃m such that

the function t 7→
∣∣CδKm

t

∣∣
2
is increasing at [0, t̃m]. Then∣∣CδKm

tm

∣∣
2
>
∣∣CδKm

0

∣∣
2
=
∣∣CδB

∣∣
2
,

and the proof is complete. □

6. The limit as δ → 1

In this section we prove Theorem 1.7. We split the proof in two parts: first we
compute the limit as δ → 1, and later we show that the limit is non-positive.

Theorem 1.7 is a direct consequence of Propositions 6.1 and 6.2.

Proposition 6.1. Let K be a C2 smooth radial set, then

lim
δ→1−

1

(1− δ)2
∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣∣
t=0

=
3

4
π

∫
S1

(
ρK(v) + ρK(v + π)

2

)2

dv

− 1

2

(∫
S1

ρK(v)dv

)2

− π

4

∫
S1

ρ′K(v)2dv +
π

2
|K|n.(46)

Proof. First notice that

lim
α→π/2−

1− δ
4
π cos(α)

= 1,

where δ and α are related by (7), so we may replace the factor (1− δ)2 in (46) by
( 4π cos(α))2. We rearrange some terms of (28) to obtain

π sin(α)

cos(α)2
∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣∣
t=0

(47)

=
1

sin(α)
A1(α) + 2A2(α)−

1

sin(α)2
A3(α) + 8|K|2 −

2

π
I2K

where

A1(α) =
1

cos(α)

[
4α

π
I2K − 1

2

∫
S1

[
ρK(v +

π

2
± π

2
± α)

]
wK,v(α)dv

]
A2(α) =

1

cos(α)2

[∫
S1

ρK(v − α+ π)ρK(v + α)dv −
∫
S1

ρ(v)2dv

]
A3(α) =

1

cos(α)2

[
2α2

π
I2K − 1

4

∫
S1

wK,v(α)
2dv

]
.

Here we used the identities cos(2α) = 2 cos(α)2 − 1 and sin(2α) = 2 sin(α) cos(α).
To compute the limits, first we observe that

lim
α→π/2−

IK − wK,v(α)

2π − 4α
=

1

2
(ρ(v + π/2) + ρ(v − π/2)),

since the left term is the average of ρK in the complement of S(cos(α)v).
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We compute A1:

cos(α)A1(α) =
4α

π
I2K +

1

2
(2π − 4α)

∫
S1

[
ρK(v +

π

2
± π

2
± α)

] IK − wK,v(α)

2π − 4α
dv

− 1

2

∫
S1

[
ρK(v +

π

2
± π

2
± α)

]
dvIK

=
4

π
I2K(α− π/2) + 2(π/2− α)

∫
S1

[
ρK(v +

π

2
± π

2
± α)

] IK − wK,v(α)

2π − 4α
dv.

Since cos(α)
π/2−α → 1 when α → π/2 we obtain

lim
α→π/2−

A1(α) = 8

∫
S1

(
ρK(v) + ρK(v + π)

2

)2

dv − 4

π
I2K .

We compute A2:

cos(α)2A2(α) =

∫
S1

ρK(v − α+ π)ρK(v + α)dv −
∫
S1

ρK(v)2dv

=
1

2

∫
S1

(2ρK(v − α+ π)ρK(v + α)dv − ρK(v + α)2 − ρK(v − α+ π)2)dv

= −2(π/2− α)2
∫
S1

(
ρK(v − α+ π)− ρK(v + α)

π − 2α

)2

dv

we get

lim
α→π/2−

A2(α) = −2

∫
S1

ρ′K(v)2dv.

We compute A3:

cos(α)2A3(α) =
2α2

π
I2K − 1

4

∫
S1

(wK,v(α)− IK)2dv − 1

4

∫
S1

(2IKwK,v(α)− I2K)dv

= I2K

(
2α2

π
+

π

2

)
− 1

2
IK

∫
S1

wK,v(α)dv

− 4
(π
2
− α

)2 ∫
S1

(
wK,v(α)− IK

2π − α

)2

dv

= I2K

(
2α2

π
+

π

2
− 2α

)
− 4

(π
2
− α

)2 ∫
S1

(
wK,v(α)− IK

2π − α

)2

dv

=
2

π
I2K

(π
2
− α

)2
− 4

(π
2
− α

)2 ∫
S1

(
wK,v(α)− IK

2π − α

)2

dv,

and we get

lim
α→π/2−

A3(α) =
2

π
I2K − 4

∫
S1

(
ρK(v) + ρK(v + π)

2

)2

dv.
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Putting together all the terms Ai in (47), we get

lim
π

4 cos(α)2
∂2

∂t2
∣∣CδKt

∣∣
2

∣∣∣∣
t=0

= 3

∫
S1

(
ρK(v) + ρK(v + π)

2

)2

dv

− 2

π

(∫
S1

ρK(v)dv

)2

−
∫
S1

ρ′K(v)2dv + 2|K|n,

and the Proposition is proved. □

Finally, we shall prove that the limit of the second derivative is non-positive.

Proposition 6.2. For every C2 smooth radial set K,

3

∫
S1

(
ρK(v) + ρK(v + π)

2

)2

dv − 2

π

(∫
S1

ρK(v)dv

)2

−
∫
S1

ρ′K(v)2dv + 2|K|n ≤ 0.

Equality holds if and only if

ρK(α) = a+ b cos(α) + c sin(α) + d cos(2α) + e sin(2α)

for some constants a, b, c, d, e.

Proof. Since ρK is a real periodic and continuous function we can represent it as a
Fourier series

ρK(α) =
∑
n∈Z

ane
inα

with a−n = an, a0 > 0. The integrals are expressed as

(48)

∫
S1

ρK = 2πa0,

∫
S1

ρ2K = 4π
∑
n≥1

|an|2+2πa20,

∫
S1

(ρ′K)2 = 4π
∑
n≥1

n2|an|2

The symmetric part is

ρK(α) + ρK(α+ π)

2
=
∑
n∈Z

εnane
inα

where εn = 1 if n is even, and εn = 0 if n is odd. Using (48) we have

∫
S1

(
ρK(v) + ρK(v + π)

2

)2

dv = 4π
∑
n≥1

εn|an|2+2πa20
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and we compute

lim
πF (α)

4 cos(α)2
= 3

4π
∑
n≥1

εn|an|2+2πa20

− 2

π
(2πa0)

2

−

4π
∑
n≥1

n2|an|2
+

4π
∑
n≥1

|an|2+2πa20


= 12π

∑
n≥1

εn|an|2−4π
∑
n≥1

n2|an|2+4π
∑
n≥1

|an|2

= 4π

∑
n≥1

(1 + 3εn)|an|2−
∑
n≥1

n2|an|2


Observe that 1 + 3εn ≤ n2 for every n ≥ 1, then the inequality follows.
Equality holds if and only if an = 0 for all |n|≥ 3, which happens if and only if

K has radial function

ρK(α) = a+ b cos(α) + c sin(α) + d cos(2α) + e sin(2α).

This function is a homogeneous polynomial of degree 2 in two variables, evaluated
in vα. □
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