
TREE INDEPENDENCE NUMBER
II. THREE-PATH-CONFIGURATIONS.
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Abstract. A three-path-configuration is a graph consisting of three pairwise internally-disjoint
paths the union of every two of which is an induced cycle of length at least four. A graph is 3PC-
free if no induced subgraph of it is a three-path-configuration. We prove that 3PC-free graphs have
poly-logarithmic tree-independence number. More explicitly, we show that there exists a constant
c such that every n-vertex 3PC-free graph graph has a tree decomposition in which every bag has
stability number at most c(log n)2. This implies that the Maximum Weight Independent Set
problem, as well as several other natural algorithmic problems that are known to be NP-hard in
general, can be solved in quasi-polynomial time if the input graph is 3PC-free.

1. Introduction

All graphs in this paper are finite and simple and all logarithms are base 2. We include the follow-
ing standard definitions for the reader’s convenience (see, for example, [4]). Let G = (V (G), E(G))
be a graph. For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X, and by G \ X the
subgraph of G induced by V (G) \ X. We use induced subgraphs and their vertex sets interchange-
ably. For graphs G, H we say that G contains H if H is isomorphic to G[X] for some X ⊆ V (G);
otherwise, we say that G is H-free. For a family H of graphs, G is said to be H-free if G is H-free
for every H ∈ H.

Let v ∈ V (G). The open neighborhood of v, denoted by NG(v), is the set of all vertices in V (G)
adjacent to v. The closed neighborhood of v, denoted by NG[v], is N(v) ∪ {v}. Let X ⊆ V (G). The
(open) neighborhood of X, denoted NG(X), is the set of all vertices in V (G) \ X with at least one
neighbor in X. The closed neighborhood of X, denoted by NG[X], is NG(X) ∪ X. When there is
no danger of confusion, we often omit the subscript G. Let Y ⊆ V (G) with X ∩ Y = ∅. We say X
is complete to Y if all possible edges with an end in X and an end in Y are present in G, and X is
anticomplete to Y if there are no edges between X and Y .

For a graph G = (V (G), E(G)), a tree decomposition (T, χ) of G consists of a tree T and a map
χ : V (T ) → 2V (G) with the following properties:

(i) For every vertex v ∈ V (G), there exists t ∈ V (T ) such that v ∈ χ(t).
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(ii) For every edge v1v2 ∈ E(G), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t).
(iii) For every vertex v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.

The width of a tree decomposition (T, χ) is maxt∈V (T ) |χ(t)| − 1. The treewidth of G, denoted
by tw(G), is the minimum width of a tree decomposition of G. Treewidth was first introduced
by Robertson and Seymour in their work on graph minors. A bound on the treewidth of a graph
provides important information about its structure [12]; it is also useful from the algorithmic per-
spective [3]. As a result treewidth has been extensively studied in both structural and algorithmic
graph theory.

A stable (or independent) set in a graph G is a set of pairwise non-adjacent vertices of G. The
stability (or independence) number α(G) of G is the size of a maximum stable set in G. Given a graph
G with weights on its vertices, the Maximum Weight Independent Set (MWIS) problem is the
problem of finding a stable set in G of maximum total weight. This problem is known to be NP-hard
[8], but it can be solved efficiently (in polynomial time) in graphs of bounded treewidth. Closer
examination of the algorithm motivated Dallard, Milanič and Štorgel [6] to define a related graph
width parameter, specifically targeting the complexity of the MWIS problem. The independence
number of a tree decomposition (T, χ) of G is maxt∈V (T ) α(G[χ(t)]). The tree independence number
of G, denoted tree-α(G), is the minimum independence number of a tree decomposition of G. Graphs
with large treewidth and small tree-α are graphs whose large treewidth can be explained by the
presence of a large clique. It is shown in [6] that if a graph is given together with a tree decomposition
with bounded independence number, then the MWIS problem can be solved in polynomial time.
Moreover, [5] presents an algorithm that constructs such tree decompositions efficiently in graphs
of bounded tree-α, yielding an efficient algorithm for the MWIS problem for graphs of bounded
tree-α.

We need the following standard definitions (see, for example, [2, 4]). A hole in a graph is an
induced cycle of length at least four. A path in a graph is an induced subgraph that is a path. The
length of a path or a hole is the number of edges in it. Given a path P with ends a, b, the interior
of P , denoted by P ∗, is the set P \ {a, b}.

A theta is a graph consisting of two distinct vertices a, b and three paths P1, P2, P3 from a to b,
such that Pi ∪Pj is a hole for every i, j ∈ {1, 2, 3}. It follows that a is non-adjacent to b and the sets
P ∗

1 , P ∗
2 , P ∗

3 are pairwise disjoint and anticomplete to each other. If a graph G contains an induced
subgraph H that is a theta, and a, b are the two vertices of degree three in H, then we say that G
contains a theta with ends a and b.

A pyramid is a graph consisting of a vertex a and a triangle {b1, b2, b3}, and three paths Pi

from a to bi for 1 ≤ i ≤ 3, such that Pi ∪ Pj is a hole for every i, j ∈ {1, 2, 3}. It follows that
P1 \ a, P2 \ a, P3 \ a are pairwise disjoint, and the only edges between them are of the form bibj . It
also follows that at most one of P1, P2, P3 has length exactly one. We say that a is the apex of the
pyramid and that b1b2b3 is the base of the pyramid.

A generalized prism is a graph consisting of two triangles {a1, a2, a3} and {b1, b2, b3}, and three
paths Pi from ai to bi for 1 ≤ i ≤ 3, and such that Pi ∪Pj is a hole for every i, j ∈ {1, 2, 3}. It follows
that P ∗

1 , P ∗
2 , P ∗

3 are pairwise disjoint and anticomplete to each other, |{a1, a2, a3} ∩ {b1, b2, b3}| ≤ 1,
and if a1 = b1, then P ∗

2 ̸= ∅ and P ∗
3 ̸= ∅. Moreover, the only edges between Pi and Pj are aiaj and

bibj . A prism is a generalized prism whose triangles are disjoint. A pinched prism is a generalized
prism whose triangles meet.

A three-path-configuration (3PC) is a graph that is either a theta, or pyramid, or a generalized
prism (see Figure 1). It is easy to check that this definition is equivalent to the one in the abstract.
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Figure 1. The three-path-configurations. From left to right: A theta, a pyramid,
a prism and a pinched prism (dashed lines depict paths of non-zero length).

Let C be the class of (theta, pyramid, generalized prism)-free graphs; C is also known as the class
of 3PC-free graphs.

The following is the main result of [2]:

Theorem 1.1 ([2]). For every integer t > 0 there exists a constant c(t) such that for every n-vertex
graph G ∈ C that contains no clique of size t, tw(G) ≤ c(t) log n.

This is a strengthening of a conjecture of [14] that theta-free graphs with no 3-vertex clique
have logarithmic treewidth It was also shown in [14] that there exist triangle-free graphs in C with
arbitrarily large treewidth (in fact, treewidth logarithmic in the number of vertices), and so the
bound of Theorem 1.1 is asymptotically best possible. A consequence of Theorem 1.1 is that the
MWIS problem (as well as many others) can be solved in polynomial time on 3PC-free graphs with
bounded clique number.

It is now natural to ask about 3PC-free graphs with no bound on the clique number. Since the
complete bipartite graph K2,3 is a theta, and therefore is forbidden in graphs in C, one would expect
these graphs to behave well with respect to tree-α. Our main result here confirms this. We prove:

Theorem 1.2. There exists a constant c such that for every integer n > 1 every n-vertex graph
G ∈ C has tree independence number at most c(log n)2.

Note that since the class of theta-free graphs is “χ-bounded” (see [13] for details), Theorem 1.2
yields a weakening of Theorem 1.1, that for every integer t > 0, there exists a constant c(t) such
that for every n-vertex graph G ∈ C that contains no clique of size t, tw(G) ≤ c(t)(log n)2. On the
other hand, since the only construction of 3PC-graphs with large treewidth known to date is the
construction of [14] where all graphs have clique number at most four, we do not know if the bound
of Theorem 1.2 is asymptotically tight, or whether it can be made linear in log n (in which case, it
would imply Theorem 1.1).

Another result in this paper that may be of independent interest is the following:

Theorem 1.3. Let G ∈ C with |V (G)| = n, and let a, b ∈ V (G) be non-adjacent. Then there is a
set X ⊆ V (G) \ {a, b} with α(X) ≤ 32 log n and such that every component of G \ X contains at
most one of a, b.

1.1. Proof outline and organization. The proof of Theorem 1.2 follows an outline similar to
[4], but requires several new techniques and ideas. We sketch it in this subsection, postponing the
precise definitions for later. We begin by exploring the effect that the presence of “useful wheels” has
on 3PC-free graphs, and show that every useful wheel can be broken by a cutset that is contained
in the union of the neighborhoods of three vertices. This is done in Section 2.

For a graph G a function w : V (G) → [0, 1] is a normal weight function on G if w(V (G)) = 1.
Let c ∈ [0, 1] and let w be a normal weight function on G. A set X ⊆ V (G) is a (w, c)-balanced
separator if w(D) ≤ c for every component D of G \ X. The set X is a w-balanced separator if X
is a (w, 1

2)-balanced separator. We show:
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Theorem 1.4. There is an integer d with the following property. Let G ∈ C, and let w be a normal
weight function on G. Then there exists Y ⊆ V (G) such that

• |Y | ≤ d, and
• N [Y ] is a w-balanced separator in G.

This is done in Section 3; the proof is similar to the proof of an analogous statement in [4].
In Section 4 we prove Theorem 1.3. The key insight here is that a stronger result can (and

should) be proved, showing that every two “cooperative subgraphs”, disjoint and anticomplete to
each other, can be separated by removing a set with logarithmic stability number. The proof of
this strengthening follows by relatively standard structural analysis.

In Section 6 we develop a technique that uses results of Section 3 and Section 4 and produces a
balanced separator of small stability number in a graph. This technique does not depend on the
particular graph-class in question, but only on the validity of statements similar to Theorems 3.1
and 4.1. We also rely on a lemma from Section 5, which is proved here for theta-free graphs, but
can be generalized in several ways. Section 6 is completely different from [4], and requires several
new ideas.

In Section 7 we deduce Theorem 1.2 from the building blocks developed so far. We finish with
Section 8 discussing the algorithmic implications of Theorem 1.2.

2. Structural results

In this section we prove a theorem asserting the existence of certain cutsets in graphs in C.
Let G be a graph. Let X, Y, Z ⊆ V (G). We say that X separates Y from Z if no component of

G \ X meets both Y and Z. Let W be a hole in G and v ∈ G \ W . A sector of (W, v) is a path P
of W of length at least one, such that both ends of P are adjacent to v, and v is anticomplete to
P ∗. A sector P is long if P ∗ ̸= ∅. A useful wheel in G is a pair (W, v) where W is a hole of length
at least seven and (W, v) has at least two long sectors. We prove:

Theorem 2.1. Let G ∈ C and let (W, v) be a useful wheel in G. Let S be a long sector of W with
ends s1, s2. Then ((N(s1) ∪ N(s2)) \ W ) ∪ N(v) separates S∗ from W \ S.

Proof. Let X = ((N(s1)∪N(s2))\W )∪N(v). Suppose for a contradiction that there is a component
of G \ X intersecting both S∗ and W \ S. It follows that there is a path P = p1- . . . -pk in G \ X,
possibly with k = 1, such that p1 has a neighbor in S∗ and pk has a neighbor in W \S. In particular,
P is disjoint from and anticomplete to {s1, s2, v}.

Choose P with |P | = k as small as possible. It follows that

• we have P ⊆ G \ (W ∪ X);
• P ∗ is anticomplete to W ∪ {v};
• if k > 1, then p1 is anticomplete to W \ S∗ and pk is anticomplete to S.

Let t1 and t2 be the (unique) neighbors of s1 and s2 in W \ S∗, respectively. Since (W, v) has
at least two long sectors, it follows that s1, s2, t1, t2 are all distinct, and that W \ N [S] ̸= ∅. In
particular, since W ∪ {v} is not a pyramid, pinched prism, or theta, it follows that v has a neighbor
in w ∈ W \ N [S].
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Traversing S from s1 to s2, let u1 and u2 be the first and the last neighbor of p1 in S, respectively.
It follows that u1, u2 ∈ S∗. We deduce:

(1) N(pk) ∩ (W \ S) ⊆ {t1, t2}.

Suppose not. Then there is a path Q in G from pk to v such that Q∗ ⊆ W \ N [S]. Assume that
u1 = u2. Then there is a theta in G with ends u1, v and paths u1-S-s1-v, u1-S-s2-v, u1-p1-P -pk-Q-v.
Next, assume that u1 and u2 are distinct and non-adjacent. Then there is a theta in G with ends
p1, v and paths p1-u1-S-s1-v, p1-u2-S-s2-v, p1-P -pk-Q-v. Since G is theta-free, it follows that u1, u2
are distinct and adjacent. But now there is a pyramid in G with apex v, base p1u1u2 and paths
p1-P -pk-Q-v, u1-S-s1-v, u2-S-s2-v, a contradiction. This proves (1).

(2) We have u1 = u2.

Suppose not. By (1) and without loss of generality, we may assume that pk is adjacent to t1. As-
sume first that t1 and v are not adjacent. If u1 and u2 are not adjacent either, then there is a theta
in G with ends p1, s1 and paths p1-u1-S-s1, p1-u2-S-s2-v-s1, p1-P -pk-t1-s1, and if u1, u2 are adjacent,
then there is a pyramid in G with apex s1, base p1u1u2 and paths p1-P -pk-t1-s1, u1-S-s1, u2-S-s2-v-s1.
Since G is (theta, pyramid)-free, it follows that t1 and v are adjacent. Assume that u1 and
u2 are not adjacent. Then there is a pyramid in G with apex p1, base s1t1v and paths paths
s1-S-u1-p1, t1-pk-P -p1, v-s2-S-u2-p1. Again, since G is pyramid-free, it follows that u1, u2 are adja-
cent. But now there is a prism in G with triangles u1p1u2, s1t1v and paths u1-S-s1, p1-P -pk-t1, u2-S-s2-v,
a contradiction. This proves (2).

Henceforth, let u = u1 = u2. It follows that:

(3) We have k = 1.

Suppose that k > 1. Since W ∪ {pk} is not a theta with ends t1, t2, we may assume by (1) and
without loss of generality, that N(pk) ∩ (W \ S) = {t1}. But then W ∪ P is a theta in G with ends
u, t1, a contradiction. This proves (3).

Henceforth, let p = p1 = pk. Since W ∪ {p} is not a theta with one end u and the other end in
{t1, t2}, (1) implies that N(p) ∩ W = {t1, t2, u}. Recall that v has a neighbor w ∈ W \ N [S].

(4) We have t1w ∈ E(G) and t2v /∈ E(G). Similarly, we have t2w ∈ E(G) and t1v /∈ E(G).

Suppose not. Then we may assume, without loss of generality, that either t1 and w are not
adjacent, or t2 and v are adjacent. In either case, it follows that there is a path Q in G from p
to v such that t2 ∈ P ∗ ⊆ W \ (S ∪ N(t1)). Now there is a theta in G with ends p, s1 and paths
p-u-S-s1, p-t1-s1, p-Q-v-s1, a contradiction. This proves (4).

We will now finish the proof. From (4), it follows that W \S = t1-w-t2 and N(v)∩W = {s1, s2, w}.
Recall also that N(p) ∩ W = {t1, t2, u}. Since |W | > 6, it follows either s1-S-u or s2-S-u, say
the former, has non-empty interior. But then there is a theta in G with ends s1, u and paths
s1-S-u, s1-t1-p-u and s1-v-s2-S-u, a contradiction. ■

3. Dominated balanced separators

The goal of this section is to prove the following:
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Theorem 3.1. There is an integer d with the following property. Let G ∈ C and let w be a normal
weight function on G. Then there exists Y ⊆ V (G) such that

• |Y | ≤ d, and
• N [Y ] is a w-balanced separator in G.

We follow the outline of the proof of Theorem 8.1 in [4]. First we repeat several definitions from
[4]. Let G be a graph, let P = p1- . . . -pn be a path in G and let X = {x1, . . . , xk} ⊆ G \ P .
We say that (P, X) is an alignment if NP (x1) = {p1}, NP (xk) = {pn}, every vertex of X has a
neighbor in P , and there exist 1 < j2 < · · · < jk−1 < jk = n such that NP (xi) ⊆ pji-P -pji+1−1 for
i ∈ {2, . . . , k − 1}. We also say that x1, . . . , xk is the order on X given by the alignment (P, X). An
alignment (P, X) is wide if each of x2, . . . , xk−1 has two non-adjacent neighbors in P , spiky if each
of x2, . . . , xk−1 has a unique neighbor in P and triangular if each of x2, . . . , xk−1 has exactly two
neighbors in P and they are adjacent. An alignment is consistent if it is wide, spiky or triangular.

The first step in the proof of Theorem 3.1 is the following:

Theorem 3.2. For every integer x ≥ 6, there exists an integer σ = σ(x) ≥ 1 with the following
property. Let G ∈ C and assume that V (G) = D1 ∪ D2 ∪ Y where

• Y is a stable set with |Y | = σ,
• D1 and D2 are components of G \ Y ,
• N(D1) = N(D2) = Y ,
• D1 = d1- · · · -dk is a path, and
• for every y ∈ Y there exists i(y) ∈ {1, . . . , k} such that N(di(y)) ∩ Y = {y}.

Then there exist X ⊆ Y with |X| = x + 2 and a subpath H1 of D1 as well as H2 ⊆ D2 such that
(1) (H1, X) is a consistent alignment, and for every vertex x in X except for at most two of

them, ND1(x) = NH1(x).
(2) One of the following holds.

• We have |H2| = 1 (so H2 ∪ X is a star), and (H1, X) is wide.
• (H2, X) is a consistent alignment, the orders given on X by (H1, X) and by (H2, X)

are the same, and at least one of (H1, X) and (H2, X) is wide.

The proof of Theorem 3.2 requires two preliminary results. The first one is Theorem 3.3 below
from [4]. Following [4], by a caterpillar we mean a tree C with maximum degree three such that
there exists a path P of C where all branch vertices of C belong to P . (Our definition of a caterpillar
is non-standard for two reasons: a caterpillar is often allowed to be of arbitrary maximum degree,
and a spine often contains all vertices of degree more than one.) A claw is the graph K1,3. For a
graph H, a vertex v of H is said to be simplicial if NH(v) is a clique.

Theorem 3.3 (Chudnovsky, Gartland, Hajebi, Lokshtanov, Spirkl; Theorem 5.2 in [4]). For every
integer h ≥ 1, there exists an integer µ = µ(h) ≥ 1 with the following property. Let G be a connected
graph. Let Y ⊆ G such that |Y | ≥ µ, G \ Y is connected and every vertex of Y has a neighbor in
G \ Y . Then there is a set Y ′ ⊆ Y with |Y ′| = h and an induced subgraph H of G \ Y for which one
of the following holds.

• H is a path and every vertex of Y ′ has a neighbor in H.
• H is a caterpillar, or the line graph of a caterpillar, or a subdivided star or the line graph

of a subdivided star. Moreover, every vertex of Y ′ has a unique neighbor in H and every
vertex of H ∩ N(Y ′) is simplicial in H.

The second one is:
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Lemma 3.4. Let c, x ≥ 1 be integers. Let G be a theta-free graph and assume that V (G) =
D1 ∪ D2 ∪ Y where

• Y is a stable set with |Y | = (3x + 2)(c + 2);
• D1 and D2 are components of G \ Y ;
• N(D1) = N(D2) = Y ;
• D1 is a path; and
• for every d ∈ D1, we have |N(d) ∩ Y | ≤ c.

Then there exist X ⊆ Y with |X| = x + 2 and a subpath H1 of D1 such that:

• (H1, X) is a consistent alignment.
• For all but at most two vertices of X, all their neighbors in D1 are contained in H1.

Proof. For every vertex y ∈ Y , let Py be the path in D1 such that y is complete to the ends of Py

and anticomplete to D1 \ Py. Let I be the graph with V (I) = Y , such that two distinct vertices
y, y′ ∈ Y are adjacent in I if and only if Py ∩ Py′ ̸= ∅. Then I is an interval graph, and so by [9], I
is perfect. Since |V (I)| = (3x + 2)(c + 2), we deduce that I contains either a clique of cardinality
c + 2 of a stable set of cardinality 3x + 2.

Assume that I contains a clique of cardinality c + 2. Then there exists C ⊆ Y with |C| = c + 2
and d ∈ D1 such that d ∈ Py for every y ∈ C. It follows that for every y ∈ C, either y is adjacent
to d, or D1 \ d has two components and y has a neighbor in each of them. Since |N(d) ∩ Y | ≤ c, we
deduce that there are two vertices y, y′ ∈ C ⊆ Y as well as two paths P1 and P2 from y to y′ with
disjoint and anticomplete interiors contained in D1. On the other hand, since D2 is connected and
N(D2) = Y , it follows that there is a path P3 in G from y to y′ whose interior is contained in D2.
But now there is a theta in G with ends y, y′ and paths P1, P2, P3, a contradiction.

We deduce that I contains a stable set S of cardinality 3x + 2. From the definition of I, it
follows that there is a subpath H1 of D1 such that (H1, S) is an alignment. Hence, there exists
X ⊆ S ⊆ Y with |X| = x such that (H1, X) is a consistent alignment. This completes the proof of
Lemma 3.4. ■

We are now ready to prove Theorem 3.2:

Proof of Theorem 3.2. Let σ(x) = 18µ(3((x + 2)2 + 1)(x + 1)), where µ(·) comes from Theorem 3.3.
We begin with the following:

(5) Every vertex in D1 has at most four neighbors in Y .

Suppose for a contradiction that for some i ∈ {1, . . . , k}, there is a subset Z ⊆ Y of cardinality
five such that di is complete to Z. It follows that for every y ∈ Z, we have i(y) ̸= i, and so there
is 3-subset T of Z such that either i(y) < i for all y ∈ T or i < i(y) for all y ∈ T . Consequently,
there are two distinct vertices y, y′ ∈ T ⊆ Z ⊆ Y for which di is disjoint from and anticomplete to
di(y)-D1-di(y′). On the other hand, since D2 is connected and N(D2) = Y , it follows that there is
a path Q in G from y to y′ whose interior is contained in D2. But now there is a theta in G with
ends y, y′ and paths y-di(y)-D1-di(y′)-y′, y-di-y′, Q, a contradiction. This proves (5).
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From (5), Lemma 3.4 and the choice of σ(x), it follows that:

(6) There exists Y1 ⊆ Y with |Y1| = µ(3((x + 2)2 + 1)(x + 1)) and a subpath H1 of D1 such that
(H1, Y1) is consistent alignment.

Henceforth, let Y1 be as in (6). Since G1 = G[Y1∪D2] and G1\Y1 = D2 are both connected, we can
apply Theorem 3.3 to G1 and Y1. It follows that there is a set Y ′ ⊆ Y1 with |Y ′| = 3((x+2)2+1)(x+1)
and an induced subgraph H of G1 \ Y1 = D2 for which one of the following holds.

• H is a path and every vertex of Y ′ has a neighbor in H.
• H is a caterpillar, or the line graph of a caterpillar, or a subdivided star or the line graph

of a subdivided star. Moreover, every vertex of Y ′ has a unique neighbor in H and every
vertex of H ∩ N(Y ′) is simplicial in H.

Assume that the second bullet above holds. By (6), (H1, Y ′) is a consistent alignment. But then
it is straightforward to observe that G contains either a theta, a prism or a pyramid, a contradiction.
It follows that H is indeed a path and every vertex of Y ′ has a neighbor in H.

Now, assume that some vertex in z ∈ H has at least x neighbors in Y ′. Choose X ⊆ N(z)∩Y ′ ⊆ Y
with |X| = x. Let H2 = {z}. By (6), (H1, X) is a consistent alignment. Note that if (H1, X) is
spiky, then H1 ∪ X ∪ {z} contains a theta, and if (H1, X) is triangular, then H1 ∪ X ∪ {z} contains
a pyramid. Therefore, (H1, X) is wide. But now X and H2 satisfy Theorem 3.2.

Therefore, we may assume that every vertex in H has fewer than x neighbors in Y ′. Let H2 = H.
Since |Y ′| = 3((x + 2)2 + 1)(x + 1), it follows from Lemma 3.4 that there exists X ′ ⊆ Y ′ with
|X ′| = (x + 2)2 such that (H2, X ′) is a consistent alignment. Also, by (6), (D1, X ′) is a consistent
alignment. This, along with the Erdős-Szekeres Theorem [7], implies that there exists X ⊆ X ′ ⊆
Y ′ ⊆ Y with |X| = x + 2 such that both (H1, X) and (H2, X) are consistent alignments, and the
orders given on X by (H1, X) and (H2, X) are the same. Moreover, since G is (theta, pyramid,
pinched prism)-free, it follows that at least one of (H1, X) and (H2, X) is wide. Hence, X and H2
satisfy Theorem 3.2. This completes the proof. ■

Now, as in [4], we will show that the class C is “amiable” and “amicable”, and then use Theo-
rem 8.5 of [4] to complete to the proof. The details are below. In [4], a graph class G is said to
be amiable if, under the same assumptions as that of Theorem 3.2 for a graph G ∈ G, there exists
X ⊆ Y with |X| = x + 2, H1 ⊆ D1 and H2 ⊆ D2 satisfying one of several possible outcomes.
In particular, the outcome of Theorem 3.2 is one of the possible outcomes in the definition of an
amiable class. Therefore, from Theorem 3.2, we deduce that:
Corollary 3.5. The class C is amiable.

Following [4], for an integer m > 0, a graph class G is said to be m-amicable if G is amiable, and
the following holds for every graph G ∈ G. Let σ be as in the definition of an amiable class (and
so as in Theorem 3.2) for G and let V (G) = D1 ∪ D2 ∪ Y such that D1 = d1- · · · -dk, D2 and Y
satisfy the assumptions of Theorem 3.2 with |Y | = σ(7). Let X ⊆ Y , H1 ⊆ D1 and H2 ⊆ D2 be as
Theorem 3.2 with |X| = 9, and let {x1, . . . , x7} ⊆ X such that:

• x1, . . . , x7 is the order given on {x1, . . . , x7} by (H1, X); and
• For every x ∈ {x1, . . . , x7}, we have ND1(x) = NH1(x).

Let i be maximum such that x1 is adjacent to di, and let j be minimum such that x7 is adjacent
to dj . Then there exists a subset Z ⊆ D2 ∪ {di+2, . . . , dj−2} ∪ {x4} with |Z| ≤ m such that N [Z]
separates di from dj . Consequently, N [Z] separates d1-D1-di from dj-D1-dk. We prove:
Theorem 3.6. The class C is 3-amicable.
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Proof. By Corollary 3.5, C is an amiable class. With same notation as in the definition of a 3-
amicable class, our goal is to show that there exists a subset Z ⊆ D2 ∪ {di+2, . . . , dj−2} ∪ {x4} with
|Z| ≤ 3 such that N [Z] separates di from dj . Consequently, N [Z] separates d1-D1-di from dj-D1-dk.

Let l ∈ {1, . . . , k} be minimum such that x4 is adjacent to dl, and let m ∈ {1, . . . , k} be maximum
such that x4 is adjacent to dm. It follows that i + 2 < l ≤ m < j − 2.

Let R be the (unique) path in H2 with ends r1, r2 (possibly r1 = r2) such that x1 is adjacent to
r1 and anticomplete to R \ {r1} and x7 is adjacent to r2 and anticomplete to R \ {r2}. Then x4 has
a neighbor in R. Traversing R from r1 to r2, let z1 and z2 be the first and the last neighbor of x4
in R.

Let W = di-D1-dj-x7-r2-R-r1-x1-di. Then W is a hole in G and |W | ≥ 7. It follows that (W, x4)
is a useful wheel in G. In particular, S = dl-D1-di-x1-r1-R-z1 and S′ = dm-D1-dj-x7-r2-R-z2 are
two long sectors of (W, x4).

Note that d1 and z1 are the ends of the sector S from (W, x4). Let Z = {x4, dl, z1}. Then we have
Z ⊆ D2 ∪ {di+2, . . . , dj−2} ∪ {x4}, di ∈ S∗ \ N [Z] and dj ∈ W \ (S ∪ N [Z]). Hence, by Theorem 2.1,
N [Z] separates di from dj , as desired. ■

The following is a restatement of Theorem 8.5 of [4]:

Theorem 3.7 (Chudnovsky, Gartland, Hajebi, Lokshtanov, Spirkl [4]). For every integer m > 0
and every m-amicable graph class G, there is an integer d > 0 with the following property. Let G be
a graph class which is m-amicable. Let G ∈ C and let w be a normal weight function on G. Then
there exists Y ⊆ V (G) such that

• |Y | ≤ d, and
• N [Y ] is a w-balanced separator in G.

Now Theorem 3.1 is immediate from Theorems 3.6 and 3.7.

4. Separating a pair of vertices

The goal of this section is to prove the following:

Theorem 4.1. Let G ∈ C with |V (G)| = n, and let a, b ∈ V (G) be non-adjacent. Then there is a
set X ⊆ V (G) \ {a, b} with α(X) ≤ 16 × 2 log n and such that every component of G \ X contains
at most one of a, b.

We need the following result from [1].

Lemma 4.2. Let x1, x2, x3 be three distinct vertices of a graph G. Assume that H is a connected
induced subgraph of G \ {x1, x2, x3} such that V (H) contains at least one neighbor of each of x1,
x2, x3, and that V (H) is minimal subject to inclusion. Then, one of the following holds:

(i) For some distinct i, j, k ∈ {1, 2, 3}, there exists P that is either a path from xi to xj or a hole
containing the edge xixj such that

• V (H) = V (P ) \ {xi, xj}; and
• either xk has two non-adjacent neighbors in H or xk has exactly two neighbors in H and

its neighbors in H are adjacent.
(ii) There exists a vertex a ∈ V (H) and three paths P1, P2, P3, where Pi is from a to xi, such that

• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3};
• the sets V (P1) \ {a}, V (P2) \ {a} and V (P3) \ {a} are pairwise disjoint; and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) \ {a} and V (Pj) \ {a}, except

possibly xixj.
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(iii) There exists a triangle a1a2a3 in H and three paths P1, P2, P3, where Pi is from ai to xi, such
that

• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3};
• the sets V (P1), V (P2) and V (P3) are pairwise disjoint; and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) and V (Pj), except aiaj and

possibly xixj.

For a graph G and two subsets X, Y ⊆ V (G) we define the distance in G between X and Y as
the length (number of edges) of the shortest path of G with one end in X and the other in Y . We
denote the distance between X and Y by distG(X, Y ). Thus X and Y are disjoint if and only if
distG(X, Y ) > 0, and X, Y are anticomplete to each other if and only if distG(X, Y ) > 1. In order
to prove Theorem 4.1 we will prove a stronger statement. Let H ⊆ G. We denote by δG(H) the set
of vertices of H that have a neighbor in G \ H (so δ(H) = N(G \ H)). We say that H is cooperative
if one of the following holds:

• H is a clique, or
• NH(H \ δ(H)) = δ(H) and H \ δ(H) is connected.

The following lemma summarizes the property of cooperative subgraphs that is of interest to us.

Lemma 4.3. Let H ⊆ G be cooperative and let {n1, n2, n3} be a stable set in N(H). Assume that
there exist distinct h1, h2, h3 ∈ δ(H) such that nihj is an edge if and only if i = j. Then there is
K ⊆ H ∪ {n1, n2, n3} such that

(1) K is a subdivided claw or the line graph of a subdivided claw
(2) {n1, n2, n3} is the set of simplicial vertices of K.

Proof. If {h1, h2, h3} is a triangle, then {n1, n2, n3, h1, h2, h3} is the line graph of a subdivided claw
and the lemma holds. This we may assume that at least one pair hihj is non-adjacent, and in
particular H is not a clique. It follows that NH(H \ δ(H)) = δ(H) and H \ δ(H) is connected.

Next suppose that h1h2 and h2h3 are edges. Then h1h3 is not an edge, and {n1, n2, n3, h1, h2, h3}
is a subdivided claw and the lemma holds. Thus we may assume that at most one of the pairs hihj

is an edge.
Suppose h1h3 is an edge. Let P = p1- . . . -pk be path such that p1 = h2, pk has a neighbor in

{h1, h3}, and P \ p1 ⊆ H \ δ(H); choose P with k as small as possible. If pk is adjacent to exactly
one of h1, h3, then P ∪ {h1, h2, h3, n1, n2, n3} is a subdivided claw; and if pk is adjacent to both h1
and h3, then P ∪ {h1, h2, h3, n1, n2, n3} is the line graph of a subdivided claw; in both cases the
lemma holds. Thus we may assume that {h1, h2, h3} is a stable set.

Let R be a minimal connected subgraph of H \ δ(H) such that each of h1, h2, h3 has a neighbor
in R. We apply Lemma 4.2. Suppose that the first outcome holds; we may assume that R is
path from h1 to h2. If h3 has two non-adjacent neighbors in R, then R ∪ {h1, h2, h3, n1, n2, n3}
contains a subdivided claw; and if h3 has exactly two neighbors in R and they are adjacent, then
R ∪ {h1, h2, h3, n1, n2, n3} is the line graph of a subdivided claw; in both cases the theorem holds.
If the second outcome of Lemma 4.2 holds, then R ∪ {h1, h2, h3, n1, n2, n3} is a subdivided claw;
and if the third outcome of Lemma 4.2 holds, then R ∪ {h1, h2, h3, n1, n2, n3} is the line graph of a
subdivided claw. Thus in all cases the lemma holds. ■

We also need the following:

Lemma 4.4. Let G ∈ C and let H1, H2 be cooperative subgraphs of G, disjoint and anticomplete to
each other. Then α(N(H1) ∩ N(H2)) < 17.
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Proof. Suppose there is a stable set N ⊆ N(H1) ∩ N(H2) with |N | = 17. Suppose first that some
vertex h1 ∈ H1 has at least five neighbors in N ; let n1, . . . , n5 ∈ N ∩ N(h1). If some h2 ∈ H2
has three three neighbors in {n1, . . . , n5}, say {n1, n2, n3}, then {h1, h2, n1, n2, n3} is a theta with
ends h1, h2, a contradiction. So no such h2 exists. It follows that there exist h′

1, h′
2, h′

3 ∈ H2 and
n′

1, n′
2, n′

3 ∈ {n1, . . . , n5} such that h′
in

′
j is an edge if and only if i = j. By Lemma 4.3 there exists

K ⊆ H2 ∪ {n′
1, n′

2, n′
3} such that K is a subdivided claw or the line graph of a subdivided claw, and

{n′
1, n′

2, n′
3} is the set of simplicial vertices of K. But now K ∪ h1 is a theta or a pyramid in G, a

contradiction.
It follows that for every h1 ∈ H1, |N(h1) ∩ N | ≤ 4. Since |N | = 17 and N ⊆ N(H1), there exist

h1, . . . , h5 ∈ H, and n1, . . . , n5 ∈ N such that hinj is an edge if and only if i = j.
By renumbering n1, . . . , n5 if necessary we may assume that one of the following holds:

• there exists k ∈ H2 such that n1, n2, n3 ∈ N(k); in this case set K2 = {k, n1, n2, n3}, or
• there exist k1, k2, k3 ∈ H2 such that kinj is an edge if and only if i = j. In this case let

K2 ⊆ H2∪{n1, n2, n3} be such that K2 is a subdivided claw or the line graph of a subdivided
claw and {n1, n2, n3} is the set of simplicial vertices of K2 (such K2 exists by Lemma 4.3).

By Lemma 4.3 there exists K1 ⊆ H1 ∪ {n1, n2, n3} such that K1 is a subdivided claw or the line
graph of a subdivided claw, and {n1, n2, n3} is the set of simplicial vertices of K1. But now K1 ∪K2
is a theta, a pyramid or a prism in G, a contradiction. ■

For X ⊆ V (G), a component D of G \ X is full for X if N(D) = X. X ⊆ V (G) is a minimal
separator in G if there exist two distinct full components for X. We will now prove the following
strengthening of Theorem 4.1:

Theorem 4.5. Let G ∈ C with |V (G)| = n, and let H1, H2 be cooperative subgraphs of G, disjoint
and anticomplete to each other. Then there is a set X ⊆ V (G) \ (H1 ∪ H2) with α(X) ≤ 16 ×
2 log(n + 1 − |H1| − |H2|) and such that X separates H1 from H2.

Proof. Write G1 = G, H1
2 = H2 and N1 = NG1(H1)∩NG1(H2). Define G2 = G1\N1, H2

2 = NG2 [H1
2 ]

and N2 = NG2(H1) ∩ NG2(H2
2 ). Let G3 = G2 \ N2.

(7) distG3(H1, H2) > 3.

Let P = p1- . . . -pk be a shortest path in G3 from H1 to H2. Then P is a path in G, p1 ∈ H1,
pk ∈ H2, P \p1 is anticomplete to H1, and P \pk is anticomplete to H2. Since H1 is anticomplete to
H2, it follows that k ≥ 3. If k = 3, then p1 ∈ N1, a contradiction. Suppose k = 4. Then p2, p3 ̸∈ N1.
It follows that p3 ∈ NG2(H2) = H2

2 , and therefore p2 ∈ N2; again a contradiction. This proves that
k > 4, and (7) follows.

It follows immediately from the definition of a cooperative subgraph that:
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(8) For i ∈ {1, 2}, H1 and H i
2 are both cooperative in Gi.

Now Lemma 4.3 implies:

(9) α(Ni) < 17 for every i ∈ {1, 2}.

If H1 and H2 belong to different components of G3, then N1 ∪ N2 separates H1 from H2 in
G. Since by (9), α(N1 ∪ N2) ≤ 16 × 2, the theorem holds. Thus we may assume that there is a
component F of G3 such that H1 ∪ H2 ⊆ F .

(10) There is a minimal separator Z in F such that distF (Z, Hi) ≥ 2 for i ∈ {1, 2}, and there exist
distinct full components F1, F2 for Z such that Hi ⊆ Fi.

Let X = N2
F (H1). It follows that X separates H1 from H2 in F , and since distF (H1, H2) ≥ 4,

we have distF (H2, X) ≥ 2. For i ∈ {1, 2}, let Di be the component of F \ X such that Hi ⊆ Di.
Let Y = N(D1), let D′

2 be the component of F \ Y such that D2 ⊆ D′
2, and let Z = N(D′

2). Then
Z ⊆ Y , and D1, D′

2 are full components for Z. Setting F1 = D1 and F2 = D′
2, (10) follows.

Let Z, F1, F2 be as in (10). We are now ready to complete the proof of the theorem. The proof is
by induction on n − |H1| − |H2|. If n − |H1| − |H2| = 0, then X = ∅ works. Likewise, if Z = ∅, we
set X = ∅. Since F1 ∩ F2 = ∅, we may assume that |F1 \ H1| < n−|H1|−|H2|

2 . Let F ′ = F1 ∪ F2 ∪ Z.
Let H ′

2 = F2 ∪ Z. Then δF ′(H ′
2) = Z and H ′

2 is cooperative in F ′. Since distF ′(H1, Z) ≥ 2, we have
that H1 is anticomplete to H ′

2. Also

|F ′| − |H1| − |H ′
2| ≤ |F1| − |H1| ≤ n − |H1| − |H2| − 1

2 .

Inductively, there exists X ′ ⊆ F ′ \ (H1 ∪ H ′
2) with

α(X ′) ≤ 16 × 2 log
(

n − |H1| − |H2| − 1
2 + 1

)
≤ 16 × 2 log (n − |H1| − |H2| + 1) − 16 × 2

such that X ′ separates H1 from H ′
2 = F2 ∪ Z in F ′. Let X = X ′ ∪ N1 ∪ N2. Then X separates H1

from H2 in G. By (9), α(X) ≤ 16 × 2 log(n − |H1| − |H2| + 1) as required. ■

5. Large stable subsets in neighborhoods

In this section we prove a statement about theta-free graphs which we expect to use in future
papers.

Lemma 5.1. Let G be a theta-free graph. Let c ≥ 2 be integer, and let Y be a set with α(Y ) > 24c2.
Let Z be the set of all vertices such that α(N(z) ∩ Y ) ≥ α(Y )

c . Then α(Z) < 2c.

Proof. Suppose not, and let I ⊆ Z be a stable set of size 2c. For every z ∈ I, let J ′(z) be a stable
set in N(z) ∩ Y with |J ′(z)| = ⌈α(Y )

c ⌉.
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(11) For all distinct z, z′ ∈ I, α(N [z] ∩ N [z′]) ≤ 2.

Suppose that α(N [z] ∩ N [z′]) ≥ 3. Since z is non-adjacent to z′, there exists a stable set of size
three in N(z) ∩ N(z′), and we get a theta with ends z, z′, a contradiction. This proves (11).

(12) For all distinct z, z′ ∈ I, |J ′(z) ∩ N(J ′(z′) \ N(z))| ≤ 4.

Suppose not, and let {n1, .., n5} ⊆ J ′(z) ∩ N(J ′(z′)). Then {n1, . . . , n5} is a stable set. If some
h ∈ J ′(z′) has three neighbors in {n1, .., n5}, then we get a theta with ends z, h; so no such h exists.
It follows that there exist h1, h2, h3 ∈ J ′(z′) such that (permuting n1, . . . , n5 if necessary) nihj is
an edge if and only if i = j. But now {z, n1, n2, n3, h1, h2, h3, z′} is a theta with ends z, z′, again a
contradiction. This proves (12).

Let J(z) = J ′(z) \
⋃

z′∈I\{z}(N [z′] ∪ (N(J ′(z′) \ N(z)))). By (11) and (12) it follows that

|J(z)| ≥ |J ′(z)| − 6|I| ≥ α(Y )
c

− 12c.

But for all distinct z, z′ ∈ I the sets J(z), J(z′) are disjoint and anticomplete to each other; it
follows that

⋃
z∈I J(z) is a stable set of size 2c

(
α(Y )

c − 12c
)
. Consequently,

2c

(
α(Y )

c
− 12c

)
≤ α(Y )

and so α(Y ) ≤ 24c2, a contradiction. ■

6. From domination to stability

The last step in the proof of Theorem 1.2 is to transform balanced separators with small domi-
nation number into balanced separators with small stability number.

The results in this section are more general than what we need in this paper; again they are to
be used in future papers in the series. Let L, d, r be integers. We say that an n-vertex graph G is
(L, d, r)-breakable if

(1) for every two disjoint and anticomplete cliques H1, H2 of G with |H1| ≤ r and |H2| ≤ r,
there is a set X ⊆ G \ (H1 ∪ H2) with α(X) ≤ L separating H1 from H2, and

(2) for every normal weight function w on G and for every induced subgraph G′ of G there exists
a set Y ⊆ V (G′) with |Y | ≤ d such that for every component D of G′ \ N [Y ], w(D) ≤ 1

2 .
We prove:

Theorem 6.1. Let d > 0 be an integer and let C(d) = 100d2. Let L, d, n, r > 0 be integers such
that r ≤ d(2 + log n) and let G be an n-vertex (L, d, r)-breakable theta-free graph. Then there exists
a w-balanced separator Y in G such that α(Y ) ≤ C(d)⌈d(2+log n)

r ⌉(2 + log n)L.

We start by proving a variant of Theorem 3.1 for (L, d, 1)-breakable graphs.

Theorem 6.2. Let L, d be integers, and let G be an (L, d, 1)-breakable graph. Let w be a normal
weight function on G. Then there exist a clique K in G and a set Y (K) ⊆ V (G) \ K such that

• |K| ≤ d,
• α(Y (K)) ≤ d2L and
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• N [K] ∪ Y (K) is a w-balanced separator in G.

Proof. Since G is (L, d, 1)-breakable, there exists X ⊆ V (G) with |X| ≤ d such that for every
component D of G\N [X], w(D) ≤ 1

2 . For every pair x, x′ of non-adjacent vertices of X, let Y (x, x′)
be a set with α(Y (x, x′)) ≤ L and Y (x, x′) ∩ {x, x′} = ∅ separating x form x′ in G (such a set exists
since G (L, d, 1)-breakable). Now let

Y = X ∪
⋃

x,x′∈X non-adjacent
Y (x, x′).

Then α(Y ) ≤
(d

2
)
L + d ≤ d2L. If Y is a w-balanced separator of G, set K = ∅ and Y (K) = Y , and

the theorem holds. Thus we may assume that there is a component D of G \ Y with w(D) > 1
2 .

Let K ⊆ X be the set of vertices of X with a neighbor in D. Since every two non-adjacent vertices
of X are separated by Y , it follows that K is a clique.

We claim that N [K] ∪ Y is a w-balanced separator in G. Suppose not, and let D′ be the
component of G \ (N [K] ∪ Y ) with w(D′) > 1

2 . Then D′ ⊆ D. But D ∩ N(X) ⊆ D ∩ N(K) ⊆ Y ,
and consequently D′ ∩ N [X] = ∅, contrary to the fact that N [X] is a w-balanced separator in G.
Thus, setting Y (K) = Y , the theorem holds. ■

We are now ready to prove Theorem 6.1. Let us briefly describe the idea of the proof. Throughout,
we have Zi−1, part of the separator we are building, and a clique Li−1 and cliques K1, . . . , Ki−1
such that N(Kj ∩ Li−1) is a balanced separator in G \ Zi−1.

This means that in each step, we add at least one vertex v to create Li from Li−1 (or Li ∩ Ki is
empty, and then Zi is the balanced separator we are looking for), which means that v has a neighbor
in each previous Kj (since Li remains a clique).

Now our goal becomes controlling vertices with a neighbor in each Kj ; we call them Badi−1 and
we may assume they have big stability number. This tells us via Lemma 5.1 that we can remove a
set of small stability number, and for all remaining vertices, their neighbors in Badi−1 have stability
number only a small fraction of α(Badi−1).

Theorem 6.2 gives us a balanced separator, but it consists of a clique (Ki), its neighbours, and
some other vertices (Y (Ki)). We add Ki and Y (Ki) to our separator; both have bounded stability
number. Since Ki is small, with Badi = N(Ki) ∩ Badi−1, we have α(Badi) ≤ α(Badi−1)/2, which
means that after logarithmically many steps, Badi will be empty and the process terminates.

It remains to build Li. To do so, we find a small set of separators for each vertex v ∈ Ki and
its non-neighbors in Li−1 and add it to Zi. Now, for the big component D′ of G \ Zi, the parts of
Ki and Li−1 that attach to D′ are complete to each other, and it turns out that we can restrict
ourselves to those parts for Li.

Proof. Let G be an (L, d, r)-breakable graph on n vertices. Let C(d) = 200d2. We define several
sequences of subgraphs of G and subsets of V (G). Let G0 = G; let K0 = Y (K0) = L0 = Z0 = ∅
and let Bad0 = V (G). We iteratively define Gi, Ki, Li, Zi, Badi with the following properties:

(I) If i > 0, then Ki ∩ Zi−1 = ∅.
(II) α(Zi) ≤ C(d)L · ⌈di

r ⌉i/2.
(III) Gi = G \ Zi.
(IV) If v ∈ Gi has a neighbor in Kj for every j ∈ {1, . . . , i}, then v ∈ Badi.
(V) α(Badi) ≤ n

2i .
(VI) Li is a clique and |Li| ≤ di.

(VII) For all 1 ≤ j ≤ i, Zi ∪ N(Kj ∩ Li) is a w-balanced separator in G.
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We proceed as follows. Suppose that we have defined Gi−1, Ki−1, Li−1, Zi−1, Badi−1 satisfying the
properties above. If Zi−1 is a w-balanced separator of G, we stop the construction. Otherwise, we
construct Gi, Ki, Li, Zi, Badi and show that the properties above continue to hold. If α(Badi−1) >
96d2, let Z be obtained by applying Lemma 5.1 to G with Y = Badi−1 and c = 2d; then α(Z) ≤ 4d.
If α(Badi−1) ≤ 96d2, let Z = Badi−1.

In both cases, α(Z) ≤ 96d2. Let G′ = Gi−1 \ Z. Let w′(v) = w(v)
Σv∈V (G′)w(v) . Then w′ is a normal

weight function on G′, and for every v ∈ G′, w′(v) ≥ w(v). Let Ki, Y (Ki) be as in Theorem 6.2
applied to G′ and w′. It follows that Ki is a clique of size at most d, and K ⊆ G′ ⊆ G \ Zi−1, so (I)
holds (for i).

Let v ∈ Ki. By (VI) (for i − 1), Li−1 \ N(v) can be partitioned into at most ⌈d(i−1)
r ⌉ cliques

each of size at most r. Since G is (L, d, r)-breakable, this implies that there exists a set Z(v) with
α(Z(v)) ≤ ⌈d(i−1)

r ⌉L, such that Z(v) separates {v} from Li−1 \ N(v) in G. Let Z ′ =
⋃

v∈Ki
Z(v);

then α(Z ′) ≤ d⌈d(i−1)
r ⌉L.

Let Zi = Zi−1 ∪ Z ′ ∪ Z ∪ Ki ∪ Y (Ki). Next we have:

α(Zi \ Zi−1) ≤ d⌈d(i − 1)
r

⌉L + 96d2 + 1 + d2L ≤ C(d)⌈d(i − 1)
r

⌉L/2.

It follows that α(Zi) ≤ C(d)⌈di
r ⌉L × i/2, and (II) holds.

Let Gi = Gi−1 \ Zi = G \ Zi; now (III) holds. Let Badi = Badi−1 ∩ NG′(Ki) ∩ V (Gi); now
(IV) holds. Since G′ = Gi−1 \ Z and either Z = Badi−1 or Z is the set of all vertices v such that
α(N(v) ∩ Badi) ≥ α(Badi)/2d and by (V) for i − 1, we have that for every v ∈ Ki, α(NG′(v) ∩
Badi−1) ≤ n

2id
. It follows that α(Badi) ≤ n

2i , and (V) holds for i.
If Zi is a w′-balanced separator in Gi−1, let Li = Li−1; now (VI) and (VII) hold. Thus we may

assume not, and let D′ be the maximal connected subset of Gi = G \ Zi with w(D′) > 1
2 .

We now define Li and check that (VI) and (VII) hold. Since N [Ki] ∪ Y (Ki) is a w′-balanced
separator in G′ and since Gi ⊆ G′\Ki∪Y (Ki), it follows that D′∩N(Ki) ̸= ∅, and so N(D′)∩Ki ̸= ∅.
Since Z ′ ∩ Gi = ∅, and since for every v ∈ Ki, Z(v) ⊆ Z ′ separates v from Li−1 \ N(v), it follows
that N(D′) ∩ Ki is complete to N(D′) ∩ Li−1; let

Li = (N(D′) ∩ Li−1) ∪ (N(D′) ∩ Ki).
Then Li is a clique, and no vertex of Ki \ Li has a neighbor in D′. Since Li \ Li−1 ⊆ Ki, (VI) holds.

In order to prove (VII), let us consider first the case j = i. Suppose for a contradiction that D is a
component of G\(Zi∪N(Ki∩Li)) with w(D) > 1/2. Then D ⊆ D′. Moreover, Ki∩Li = N(D′)∩Ki,
and so NGi(Ki ∩ Li) ∩ D′ = NGi(Ki) ∩ D′. Therefore, D ⊆ D′ \ NGi(Ki) ⊆ Gi \ N(Ki). However,
since N [Ki] ∪ Y (Ki) is a w′-balanced separator in G′, and since Ki ∪ Y (Ki) ⊆ Zi, it follows that
w(D) ≤ w′(D) ≤ 1/2.

Next, we consider the case when j < i. By (VII) for i−1, we know that Zi ∪N(Kj ∩Li−1) is a w-
balanced separator in G. Suppose for a contradiction that D is a component of G\(Zi ∪N(Kj ∩Li))
with w(D) > 1/2. Then D ⊆ D′. We have that N(D′) ∩ Kj ∩ Li−1 ⊆ Li ∩ Kj , and therefore,
ND′(Li−1 ∩ Kj) ⊆ ND′(Li ∩ Kj). It follows that D ⊆ D′ \ N(Li−1 ∩ Kj) ⊆ G \ (Zi ∪ N(Li−1 ∩ Kj)),
a contradiction as Zi ∪ N(Li−1 ∩ Kj) is a w-balanced separator in G.

We have shown that properties (I)–(VII) are maintained at each step of the construction.
We can now complete the proof of the theorem. It follows immediately from (V) that there

exists k ≤ 1 + log n such that Badk = ∅. We claim that Zk is a balanced separator in G (and
in particular the construction stops). Suppose not. Then the construction continues and the sets
Gk+1, Kk+1, Lk+1, Zk+1, Badk+1 are defined. Also, there exists a component D of G \ Zk = Gk such
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that w(D) > 1
2 . We apply (VII) with i = k + 1. It follows that there is a vertex v ∈ Lk+1 ∩ Kk+1.

By (I) and (III), it follows that v ∈ Gk. Since Lk+1 ∩ Kj ̸= ∅ for every 1 ≤ j ≤ k (again by (VII)),
we deduce from (IV) and (VI) that v ∈ Badk, a contradiction.

Now by (II) we have

α(Zk+1) ≤ C(d)⌈d(k + 1)
r

⌉L × (k + 1)/2 ≤ C(d)d(log n + 2)
r

(2 + log n)L,

as required.
■

7. The proof of Theorem 1.2

We start with a lemma. (There are many versions of this lemma; we chose one with a simple
proof, without optimizing the constants.)
Lemma 7.1. Let G be a graph, let c ∈ [1

2 , 1), and let d be a positive integer. If for every normal
weight function w on G, there is a (c, w)-balanced separator Xw with α(Xw) ≤ d, then the tree-
independence number of G is at most 3−c

1−cd.

Proof. We will prove that for every set Z ⊆ V (G) with α(Z) ≤ 2
1−cd there is a tree decomposition

(T, χ) of G such that α(χ(v)) ≤ 3−c
1−cd for every v ∈ T , and there exists t ∈ T such that Z ⊆ χ(t).

The proof is by induction on |V (G)|. Observe that every induced subgraph of G satisfies the
assumption of the theorem.

Let Z ⊆ V (G) with α(Z) ≤ 2
1−cd. Let I be a stable set of Z with |I| = α(Z). Define a function

w where w(v) = 1
|I| if v ∈ I, and w(v) = 0 if v ̸∈ I. Then w is a normal weight function on G. Let

X be a (c, w)-balanced separator with α(X) ≤ d. Then V (G) \ X = V1 ∪ · · · ∪ Vq, where V1, . . . , Vq

are the components of G \ X, and |I ∩ Vi| ≤ c|I| for i ∈ {1, . . . , q}. Let i ∈ {1, . . . , q}. Define
Zi = (Z ∩ Vi) ∪ X. Since |I ∩ Vi| ≤ c|I|, it follows that |I ∩ (G \ Vi)| ≥ (1 − c)|I|. Since α(X) ≤ d,
we have that |I ∩ (G \ (Vi ∪ X))| ≥ (1 − c)|I| − d. It follows that α(Z ∩ Vi) ≤ c|I| + d. Consequently,

α(Zi) ≤ α(Z ∩ Vi) + α(X) ≤ c|I| + 2d ≤ 2c

1 − c
d + 2(1 − c)

1 − c
d = 2

1 − c
d.

Inductively, for i ∈ {1, . . . , q}, there is a tree decomposition (Ti, χi) of Vi ∪X such that α(χi(t)) ≤
3−c
1−cd for every v ∈ Ti, and there exists ti ∈ Ti such that Zi ⊆ χ(t). Now let T be obtained from
the disjoint union of T1, . . . , Tq by adding a new vertex t0 adjacent to t1, . . . , tq (and with no other
neighbors). Define χ(t) = χi(t) for every t ∈ Ti, and let χ(t0) = Z ∪ X. Since

α(Z ∪ X) ≤ α(Z) + α(X) ≤ 2
1 − c

d + d = 3 − c

1 − c
d,

(T, χ) satisfies the conclusion of the theorem. ■

Next we restate and prove Theorem 1.2:
Theorem 7.2. There exists a constant c such that for every integer n > 1 every n-vertex graph
G ∈ C has tree independence number at most at most c(log n)2.
Proof. Let G ∈ C. Let d be as in Theorem 3.1. Let C(d) be as in Theorem 6.1, and let c = 165C(d).
We may assume that n ≥ c. Let r = d(2 + log n), and let L = 32 log n. By Theorems 3.1 and 4.5,
and since every clique is cooperative, it follows that G is (L, d, r)-breakable. Now by Theorem 6.1,
for every normal weight function w on G, there exists a w-balanced separator Y in G such that
α(Y ) ≤ C(d)d(2+log n)

r (2+log n)L ≤ 33C(d)(log n)2. Now Theorem 7.2 follows from Lemma 7.1. ■
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8. Algorithmic consequences

Theorem 7.2 implies quasi-polynomial time (namely 2(log n)O(1) time) algorithms for a number
of problems. In particular Dallard et al. [6] gave nO(k) time algorithms for Maximum Weight
Independent Set and Maximum Weight Induced Matching assuming that a tree decom-
position with independence number at most k is given as input. Subsequently Dallard et al. [5]
gave an algorithm that takes as input a graph G and integer k, runs in time 2O(k2)nO(k) and either
outputs a tree decomposition of G with independence number at most 8k, or determines that the
tree independence number of G is larger than k. Theorem 7.2, together with these results (setting
k = c log2 n), immediately imply the following theorem.
Theorem 8.1. Maximum Weight Independent Set and Maximum Weight Induced Match-
ing admit algorithms with running time nO((log n)3) on graphs in C.

It is worth mentioning that the nO(k) time algorithm of Dallard et al. [6] works for a slightly
more general packing problem (see their Theorem 7.2 for a precise statement) that simultaneously
generalizes Maximum Weight Independent Set and Maximum Weight Induced Matching.
Thus we could have stated Theorem 8.1 for this even more general problem.

Lima et al. [11] observed that the algorithm of Dallard et al. [6] can be generalized to a much
more general class of problems. In particular they show that for every integer ℓ and CMSO2
formula ϕ, there exists an algorithm that takes as input a graph G of tree independence at most
k, and a weight function w : V (G) → N, runs in time f(k, ϕ, ℓ)nO(ℓk) and outputs a maximum
weight vertex subset S such that G[S] has treewidth at most ℓ and G[S] |= ϕ. This formalism
captures Maximum Weight Independent Set, Maximum Weight Induced Matching as
well as Maximum Weight Induced Forest, recognition of many well-studied graph classes
(including C) and a host of other problems. We remark that their result (Theorem 6.2 of [11]) is
stated in terms of clique number rather than treewidth, however at the very beginning in the proof
they show that in this context bounded clique number implies treewidth at most ℓ and then proceed
to prove the theorem as stated here.

Unfortunately the algorithm of [11] does not give any meaningful results when combined with
Theorem 7.2. The reason is that the function f(k, ϕ, ℓ) bounding the running time of the al-
gorithm is a tower of exponentials, which leads to super-exponential running time bounds even
when k = c log2 n. However it turns out that the algorithm of [11] can be modified to run in
time (f(ℓ, ϕ)n)O(ℓk) [10], which is quasi-polynomial for every fixed ℓ, ϕ when k = O(log2 n). This
improvement immediately leads to the following theorem.
Theorem 8.2. For every integer ℓ and CMSO2 formula ϕ, there exists an algorithm that takes as
input a graph G ∈ C and a weight function w : V (G) → N, runs in time (f(ϕ, ℓ)n)O(ℓ log2 n) and
outputs a maximum weight vertex subset S such that G[S] has treewidth at most ℓ and G[S] |= ϕ.

We refer to [11] for a discussion of the set of problems that are captured by Theorem 8.2.
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