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STRUCTURE OF DUBROVIN-ZHANG FREE ENERGY FUNCTIONS AND
UNIVERSAL IDENTITIES

SERGEY SHADRIN AND ZHE WANG

ABSTRACT. We prove a structural theorem relating the higher genera free energy functions of
the Dubrovin-Zhang hierarchies to those of the trivial theory, that is, the Witten-Kontsevich
free energy functions. As an important application, for any given genus g > 1, we construct a
set of universal identities valid for the free energy functions of any Dubrovin-Zhang hierarchy.

CONTENTS

1. Introduction 1
Organization of the paper 4
Acknowledgement 4
2. Structure of free energy functions 4
2.1.  Givental theory 4

2.2.  Loop equation of the free energy function 6
2.3. Decomposition of free energy functions 10
3. Universal identities of free energy functions 14
3.1. A useful set of operators 14
3.2.  Action on v#? 16
3.3. The iterative structure of operators 17
3.4. Universal identities 18
3.5. Towards more general universal identities 19
4. Conclusion 22
References 23

1. INTRODUCTION

Since the proof of the Witten Conjecture [29] by Kontsevich [23], which relates the topology
of the moduli space of stable curves to the KAV hierarchy, people have gradually understood the
deep relation between the 2D topological field theory and the theory of integrable hierarchies
over past three decades. Many Witten-Kontsevich type theorems have been discovered and
proved since then, where the corresponding integrable hierarchies (which were already known
to mathematical physicists in completely different contexts) appear to universally govern par-
tition functions constructed from different aspects of mathematical physics, for example, from
quantum cohomology, matrix model, singularity theory, etc., see [1, 6, 16, 18, 21, 27, 29] and
references therein. To systematically study the emerging integrable hierarchies, Dubrovin and
Zhang started a program in [11] aiming at giving an axiomatic characterization of topologi-
cal integrable hierarchies, that is, the integrable evolutionary PDEs that control a certain 2D
topological field theory.

The paper [11] has two main goals. The first one is to construct an integrable hierarchy from a
given 2D topological field theory, and the second goal is to reproduce all the universal identities
satisfied by all Gromov-Witten invariants (and all other enumerative invariants that fit this
context) at full genera. Up to now, the first goal is completely achieved under the semisimplicity
assumption. To state precisely, given a semisimple Frobenius manifold with a calibration, there

exists a unique tau-symmetric bihamiltonian integrable hierarchy, called the Dubrovin-Zhang
1
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(DZ) hierarchy, whose tau-function satisfies a family of linear Virasoro constraints. As for the
second goal, Dubrovin and Zhang derive the topological recursion relations for genus zero and
one from the construction of DZ hierarchies. Remarkably, those topological recursion relations
are originally proved by studying the topology of the moduli space of stable curves. However,
Dubrovin and Zhang’s method indicates that those relations are hidden in every DZ hierarchies,
even for those hierarchies that have no known relations to geometric enumerative problems or
topology of moduli spaces. More generally, Dubrovin and Zhang prove that the tau functions
of their hierarchies are given by the Givental formula [18, 19], which is known to satisfy all
universal relations coming from the relations among additive generators of the tautological ring
of the moduli spaces of curves [14].

In some cases it is clear what structural property a Dubrovin-Zhang hierarchy possesses if
it is governed by a particular set of tautological relations, see e. g. [4, 22]. But it is largely
unknown for more involved types of relations, and the whole theory lacks simple explicitly
written universal identities that would reflect some explicitly understood universal properties
of the Dubrovin-Zhang hierarchies and/or their tau-functions. In this paper, we make a further
step towards studying the universal identities by using the method of Dubrovin and Zhang. For
a given genus g > 1, we construct a set of universal identities valid for the topological solution
of the Dubrovin-Zhang hierarchy of any semisimple Frobenius manifold.

The key ingredient for deriving these universal identities is a structural theorem for the free
energy functions. To state the result precisely, recall that for a semisimple Frobenius manifold
with a fixed calibration, the higher genus free energy functions F, can be written as functions
depending on jet variables for g > 1. For example, consider the following free energy function
of the Gromov-Witten theory of the point:

tk PR tk k
F, = ELIRARALL) ”f_ YLk
! ékl,énzo n! Mgn "

It is well-known that for g > 1, we have

(1.1) F,=F, (u(”,...,u(?’g—?)),
here s
u®®) = S+20, 521,
ot
and

1 1
Fr=—loguV, F,e @[— u® ,u(39‘2)] , g2
24 U
For example, we have
7“:1::1:“(3) u@®
360us  1920u3  1152u2
here we use the notation u, = «(*) and wu,, = u(?). Note that the Gromov-Witten theory of the
point corresponds to the one-dimensional Frobenius manifold given by the potential

2

ud

F= F0|t0=u7t>0=0 = E

Generally speaking, if the underlying semisimple Frobenius manifold M is of dimension N and
its first metric in the flat coordinates v!,... vV is denoted by 7, then its higher genera free

energy functions F, have the form
Fq=F, (va,va’l, .. ,va’39’2) ,

here

a _ paf

0?F s ( 0

S
il N _
OtB0HtL0’ 8t170) v*, s>1, a=1,...,N,

v
and

1 1 _
F1=ﬁlogdet(ca5w%1)+G(v)7 FgECw(v)[mjva’lava’a---,va’sg 2], g22.
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Here and henceforth, we will always assume the Einstein summation rule for upper and lower
Greek indices. Moreover, we will always raise or lower indices by the metric 1. Note that in
the above expressions, G(v) is the so-called G-function defined in [15] (see also [10]), cap, are
functions defined by

PF
BT D00 tB0I0 |00y ot g2
and C'*(v) is the ring of smooth function depending on variables v!,... v~. Furthermore, let
us denote by (u!,...,u") the canonical coordinates on M, then in terms of these coordinates,

the metric n is of the diagonal form
N
n= fi(u)(du')®
i=1

Each u! can be viewed as functions depending on vl,... v¥, therefore we see that F, for g > 1
can also be written as functions in jet variables of !, that is, F, can be viewed as a function
in w,ubl, ... w3972 with

A o\ .
uw:(@tlvo) u, s>1, +=1,..., N.

Now we can state the following structural theorem for F}.

Theorem 1.1. Given a semisimple Frobenius manifold (with a choice of calibration) of rank
N, its higher genus free energy function Fy, admits the following decomposition:

1\ ‘ ‘
(1.2) F,= Z(f( ) EFV(uh, a9+ Hy, g1,
i u

here FEW s the genus g free energy function (1.1) of the Gromouv-Witten theory of the point
and the function H, satisfies the conditions

O"H,
ouikr | Quinkn

By using the above theorem, we derive a family of universal identities. First, we define a set
of differential operators O(a, ;....an k., Where n=k; =1 or

=0, k+--+k,239g-3+n, n>1L

ki+-+k,=3g-3+n, ¢g>2, n>1, k>2.

These operators are differential operators of degree n on the large phase space. Introduce the
following correlators:
o F,
<<Ta17k1 s Tan,kn>>g = oter ko kn )

then the action Oyq, ky;...an ke (Fyg) can be expressed by just using these correlators. We then
have the following main result of the paper.

Theorem 1.2. Given a semisimple Frobenius manifold (with a choice of calibration), its genus
g correlators satisfy the relations

O{ah/ﬂ, 704n7k5n}(f ) Bkh Wk H TauOT%fl,oT%’O»Ov
i=1
for g > 1. In the above expressions, Bgl .k, are some rational numbers that can be explicitly
computed from the intersection numbers of ﬂgm, and M|g] is defined by

o, forg=1,
M[g]s = Mg, forg=2,
Mg MG MG MY, for g >3,
where we denote
Mg = {75070 )00 7 8.0 )0
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Let us give some examples of these relations. The simplest ones are given by the operators
O{a,3¢-2}, Which coincide with the differential operators introduced in [13] (see also [4, 26]), and
the corresponding relations read

Ofa,3g-2y(Fy) = «Ta,OTB,OToA»OM[g]f ol fgiza g=>1
g,1
For g =1 the operator reads
0 5y O
O{Og,l} = ata,l - <<Ta707-0 >>0 atﬁ’O’

and we obtain the well-known relation [7]

(e = G0 Vo700 = 530 oo

For g =2, we can derive three relations from Theorem 1.2, and they read

1
O{a,4}(7:2) = Tm«TmOT)\,OTOM»OM;\a

Ota3,8,2y(F2) = = (Ta0mg ™00 D0 {T8,0T070 Do M,

T
1920

1
Ofa,2:8.2:,2)(F2) = @<<Ta7oT§TA,o>>o<<T/3,oTe,oTo”>>o<<Tv,oTa,075>>oM3-

Organization of the paper. This paper is organized as follows. In Sect. 2 we prove Theorem
1.1 by combining the Givental’s quantization formalism and Dubrovin-Zhang’s loop equation
approach. In Sect.3 we give a detailed description of the operators Oya, ki;....an .k, and study
their properties, then we prove Theorem 1.2. We also discuss possible approaches for deriving
more general universal identities. In Sect. 4, we give some concluding remarks.

Acknowledgement. S. S. was supported by the Netherlands Organization for Scientific Re-
search. Z. W. is a JSPS International Research Fellow and his research is supported by JSPS
KAKENHI Grant Number 23KF0114. Z. W. would like to thank Korteweg-de Vries Institute,
University of Amsterdam for its hospitality where part of the work was carried out. Z. W.
would like to thank Si-Qi Liu and Youjin Zhang for very helpful discussions.

2. STRUCTURE OF FREE ENERGY FUNCTIONS

In this section, we prove Theorem 1.1. The idea is to prove that the decomposition (1.2) is
invariant under the Givental’s twisted loop group action. Then Theorem 1.1 follows from the
fact that the tau-function of any calibrated semisimple Frobenius manifold can be computed via
Givental’s group actions from the Witten-Kontsevich tau-function, for which Theorem 1.1 holds
true trivially. A similar idea has been used to prove the invariance of tautological equations
[14, 24] and used to prove the polynomiality property of DZ hierarchies [3, 4].

2.1. Givental theory. In [18, 19, 20], Givental introduced a twisted loop group action on the
space of tame partition functions. Teleman proved [28] that partition functions of all semisimple
cohomological field theories wih the same underlying Frobenius algebra structure lie in the same
orbit of the group action. In this subsection, let us recall the basic formalism, one may refer
to, e.g., [4, 14, 24] for expositions.

Let H be an N-dimensional vector space equipped with a non-degenerate bilinear pairing
(-, —). Consider the space H = H ® C((z7!)) together with the bilinear map

f.0) = 5= [0z fgett



UNIVERSAL IDENTITIES 5

one can show that this is a symplectic form and H is called the Givental symplectic space. Let
M be a symplectomorphism of ‘H of the form

MZZMka, MkeEnd(H)
k

The action of M on tame partition functions is denoted by M and is given by the exponential
of the action of the corresponding Lie algebra element, that is, if we write M = exp(m), where
m is an infinitesimal symplectic transformation, then M := exp(m). The action m is then given
by the standard Weyl quantization of the quadratic Hamiltonian

() = 52 m(), )

For our purpose, we will only consider the action of upper triangular elements and lower
triangular elements. An infinitesimal symplectic transformation m is of the form

m=Y mz", my cEnd(H)
%

and satisfies the condition

Q(m(f),9) +Q(f,m(g)) =0, f,geH.

Such a transformation m is called upper triangular if m;, = 0 for k£ < 0 and called lower triangular
if mp =0 for k£ > 0. To write down the explicit expressions of the upper and lower triangular
action, let us fix an orthonormal basis eq,...,ey of H and denote 1l = ey +---+ en. This basis
determines coordinates t“* of the large phase space, where i = 1,...,N and k > 0. A tame
partition function is the exponential of a formal power series of the form

7 = exp (z ]—") FeC([tH]]

g20
that satisfies certain properties. Then an upper triangular transformation
t= Ztkzk, Tr EEIld(H)
k=1

acts on a tame partition function Z by

(2.1) t[t].Z =tZ,
where t is the following second order differential operator on the large phase space:
. N ; 0
t=- Z Z(tk ﬂatz k+1 Z Z (tk)z j otk
k>11i=1 £>0,k>11,5=1
52 0?
(D" (thresn)™
"9 k;m; Y ikt

Note that the action (2.1) induces the action

(2.2) t[t].F=2"tZ

on the free energy function F =log Z. Similarly, a lower triangular transformation
s=Y s,27% s, ¢End(H)

k>1

acts by the following first order differential operator:

. 1 1 N . o
5 —2(53)11,11 = Z Z(5k+2 natF + P Z Z (- 1)Z(5k+£+1)i,jtl’ktj’e
2e k>0 i=1 2e* [ Boi5

0
‘Z( 1)]1(%20 ZZ Z(s )itik g@tlk

k>0
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The twisted loop group action described above in particular allows one to reconstruct the
partition function of any homogeneous semisimple cohomological field theory from its genus
zero data [28]. Let (V,n,{cyn}) be a semisimple cohomological field theory of rank N, that is,
V' is an N-dimensional vector space with a non-degenerate bilinear form 7, ¢, ,, are families of
multilinear maps

Con: VO > H*(M,,,C), 29g-2+n>0
that satisfy certain properties. The partition function associated to this cohomological field
theory is defined to be

Z =exp (Z 529—2.7:9) ,

g>0
torkr  panskn 1 .
Foe Y Y e [ e 9w e etk
n>0  ky,....,kn>0 n. Mg.n
2g-2+n>0

here ey, ..., ey is a fixed basis of V' with e; being the unit of the theory, and 1; is the first Chern
class of the i-th tautological line bundle of M, ,. Then, in the homogeneous case, Givental
[18, 19] proposed the following formula:

which was identified with the tau-function of the Dubrovin-Zhang hierarchy of the underlying
Frobenius manifold with an appropriate choice of calibration by Dubrovin and Zhang [11] and
proved to hold for any homogenenous semisimple cohomological field theory by Teleman [28].

Let us explain the notation in the above formula, and one may refer to [18] for details. The

function ZX4V is the Witten-Kontsevich tau-function of the KdV hierarchy, namely it is given
by

. . .. N g2 Ti0 Til
(2.3) Z = CuSyt Wy Ry [T 25 (—- ,
=1

ZKdV (82;Ti’0,Ti’1, o ) = exp (Z €2g72‘7:'ngV(Ti,0’Ti,1’ o ))

g>0

FEV (7o it )= Y ok, Tk f G e
p ST " L
n>0kq,...,kn>0 g,m
The upper triangular symplectic transformation R,; and the lower triangular one S,; are both
determined from the underlying semisimple Frobenius manifold M corresponding to the given
homogenenous cohomological field theory. Note that these two transformations vary on M, and
we fix them by taking their values at an arbitrary (semisimple) point pt € M. In a neighborhood
of pt, we denote by (v!,... vV) the flat coordinates of M corresponding to the basis (eq,...,ey)
and by (u!,...,u") the canonical coordinates. It is well-known that in terms of the canonical
coordinates the metric 7 is diagonal whose diagonal elements we denote by f;. We then define

the matrix ¥ to be u
uZ
Via =\ fi 5=

f v

and the matrix U, is obtained by evaluating functions ¥,, at the point pt. The transformation
¥ is then a coordinate transformation from the normalized canonical time variables T%* to the
flat time variables t*?. Finally, C' is just a function on M, and we denote by C,, its value at
the point pt.

2.2. Loop equation of the free energy function. To prove Theorem 1.1, we recall in this
subsection the Dubrovin-Zhang’s loop equation method [11] for computing the free energy
function.

Let M be a semisimple Frobenius manifold of dimension N with a fixed calibration, denote
its flat coordinates by v, ..., v" and the first flat metric by 1. As we have introduced in Sect. 1,
the higher genus free energy functions can be written as functions in the jet coordinates v®* of
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M [4, 11], where v* are flat coordinates of M, or equivalently as functions in u»* where u' are
canonical coordinates of M:

F,(t*P) = Fy(u',ut, . u72), g>1

where we view 1! as functions of v® and

v® = anO a,s _ d ° « 1,5 _ a ° 7 > 1
"™ g U = \gus) = gus) ¥ o2t

We will also use the notation v®? = v and u*° = w?. In [11], Dubrovin and Zhang give a way
to uniquely reconstruct Fj from M by requiring the so-called linearized Virasoro constraints,
and they derive the following loop equation satisfied by F, for g > 1:

aFg k-1 af qr-k+1 oy
(2.4) Zamr ( ) DI Ct Z( )a Dpa G107,

r>0
1 & OB OFym Py
2,50 ity Ok Quet - QurkQuet

+_ZaF91

k>0 av’Y7

) 0y (0"pa) G0 (07p5)

a Y
o v v | 6 o, N

here and henceforth we use the notation

0 9 D
Wa aoz:— 0 p

ov*’ ~T 0B
and on the right-hand side we set Fy:=0.

Let us explain how Fj is obtained from the above equation. Note first that A appeared in the
equation (2.4) is a formal parameter, and we solve the equation with respect to Fj such that
(2.4) holds true for any A. To make it precise, it is proved that when written in the canonical
coordinates, the left-hand side is of the form

g 2T 7,7 1 1 ]
ZZ@U“’K K EA[)\—ul""’A—uN ’

r>014=1

Oy =

where A is the ring of differential polynomial given by
A=C®w)[u>*:s>1,i=1,...,N].

It is also proved that (see Lemma 3.10.19 of [11]), when viewed as a polynomial in ﬁ, .
each K% is of degree r + 1 of the form

gi,r
()\ _ ui)r+1

On the right-hand side, the function h(v,\) can be expressed in terms of the canonical coordi-
nates by

(2.5) K" = +lower order terms, ¢“" €A, g¢"" #0.

Moy -2y 1 Ly h~(u)( LR )
T8 &H (M- UZ)Q AN A-ut A—uwl )’
i<j

Therefore, for g = 1, we have the equation

8F1 1 N 1 1 1
ZZ ZT = 7 + Z hzj(u)( i_ ])’
r>014=1 U‘ i=1 ()\ U ) i,j:_l,...N A—u A—u
i<j
from which one observes that
F
Of o rs2 i=1,...N.

ouvr
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and obtains the well-known g = 1 free energy function ([7, 15, 10], see also Sect.3.10.7 of [11]
for a detailed discussion)
1
F = 2 log det (cagﬂ,v%l) +G(v),
where G(v) is Getzler’s G-function. For g > 2, we see that the right-hand side of the loop
equation (2.4) only depends on Fi,..., F, 1, so we can find recursively all F, starting from Fj.
Moreover, it is proved that the right-hand side is a function in the ring

1 1 1
A[ul...uN][)\—ul"“’)\—uN]’

. 9F, . . S
therefore one finds the gradient =% by comparing the coefficients of monomials in +=, ..., —x.
out A-ul? ' A-u

Let us proceed to explain the notations in the loop equation (2.4). Recall that the derivative
0, is just at;al,o. E is the Euler vector field of M and

(L)A{ _ Z 1 (Em+1)7 Em™l - pm.E E0 .= ¢
E -\ S A2 ’ ’ ’

where - is the quantum product on T'M and e is the unit vector field with respect to the
quantum product. The functions p,(v;\) are so-called periods of M, which are solutions of
the Gauss-Manin system associated to M ([8], see also Sect.3.6.3 of [11]), and G*? are some
constants where the matrix (G*%) is the Gram matrix of the flat pencil of M with respects to
the periods. In the expression

Vox Von

V is the Levi-Civita connection of the flat metric n and v, is the vector with components v!.
Therefore, we see that

[apa 3pﬁ_v]y

Opa s ]V ( Pp ) Pps \ 5
2.6 e VA 2= ol 9 5,1’
(26) [V ox Y ox ] T\ @xauc )\ angun ) oo
where ¢3_ are the structure constants of the quantum product given by
PBFo

o _ o
6y =T Hpn0B040

o0 =g 7to¢,1:to¢,2:,,,:0 '
As an example, let us consider the loop equation of the Gromov-Witten theory of the point.

The flat coordinate of M is v!, and it is also the canonical coordinate, u! = v!. The loop
equation for FX4V is given by

aFKdV aFKdV T
(27) e ) R () el e S e
50 ovtr vt=A) H oot 3 \k vt = A vi=A
_1 gz_:l 8F7§dv aFngglV + 82Fglfilv ak+1 1 8£+1 1
2, B\ it Ovbk Qutt Qubkgult | F TEEDY A vl = A
+1 8Fg*1 ak+1 ,ULl — 5g,1
s o0 )~ T -0

which we can solve with respect to Ff% and obtain

ilogvl’l KAV _ (v12)3 ) Tol2pl3 N !
©TP T B60(M ) 1920(0n )P T 1152(u )2

FleV —
24
To prepare for the proof of Theorem 1.1, let us analyze the loop equation (2.7) for g > 2 and
reproduce some well-known results about the structure of the F gK av’,
We first observe that both sides of the equation are homogeneous with respect to the differ-
ential degree deg, defined by

degy v' =0, degy v'"* =k, k>1
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Hence, by induction on g, we see that deg, FngV = 2g — 2. Moreover, by a straightforward
computation we find that, viewed as a polynomial in )\_—lvl,

(2.8) o ! o I A (vhh)mme + lower order terms, nq,ng >0
: z 1 z Ul _ )\ ni,n2 ()\ _ ,Ul)n1+n2+1 ) ’ -

vl =\
where the constant A,, ,, is given as

2n1+n2

(2.9) Anyny =
Therefore, it is easy to prove by induction on g that

- 1
FEWV ¢ C (v)[

m:l [’Ul’l,...,’Ul’mg], g22,
for some m, > 1. To find m,, we notice that the left-hand side of (2.7) is of the form
KdV KdV
1 OF, .\ 1 5 k+ QUl,kaFg Ly A, |
vl=X Ouvt (v =A)2 5 2 ovbk S (vl = A\)r
where A, are some expressions computed from gradients of F*¥V and the right-hand side is of
the form

B,
7;3 (vt =)
for some expressions B, computed from F¥V, ... FEV. Tt is immediate to obtain that
OFKav
(2.10) ;Ul =0, g=>1
k+2 |, OFFY
(2.11) k; > vl 8517,? =0, g=x2.

Note that Eq. (2.11) is equivalent to the homogeneity condition of the trivial cohomological
field theory. By combining the two identities above, we conclude that /€ 4V is of the form

Kdv Uly(l‘)
(2.12) EfY =0 2 Conpimygm
n20 ueP(g,n) (U ’ )
where P(g,n) is the set of partition p = (1, ..., 1) of 3g — 3 +n with the constraints
pi>2, p)=~L=n>1.
For p=(p1,...,ptn) € P(g,n), we denote by
b () = gl gyl
and Cj,, are some rational numbers. These numbers can be computed either from solving the
loop equation or using the intersection numbers on M, ,. For example, it is easy to see that

39-2
Coi(3g-2) = [ﬂg,l (G
The special form (2.12) of FX4V for g > 2 and the explicit expression for F{*®" imply that
8anKdV
ovbkr  Qylkn
which is a particular form of the general (3¢ — 2)-property [11, 13, 17].
Finally, let us derive a relation that will be used later. By using the above (3g —2) property

and the identity (2.8), it is easy to see that the left-hand side of the loop equation, viewed as

a polynomial in 1 has the leading term

(,Ul,l)3g72 3g-2 39_2 HF KV
ot " _2)”;( k )A’“’?’g” e

(2.13) =0 for ki+---+k,#39g-3+n, g>1, n>1,
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where the constants Ay_1,_j.1 are defined in (2.9). Similarly, we have
o ol  (n+2)!(vb1)n
(vl - \)3 - 2(\ —pl)n+3
Therefore, when g > 2, the leading term of the right-hang side is
1 (U1,1)3g—2 g-1 JFKav aFlfgLV
5()\ 1)3g-1 Asm-139-3m-1 11? -2 13g73 -2
—pl)3g-1 &~ Ovl:3m=2 gyl.3g-3m
1 (vtt)so2 PFRIY 1 (3g-2)!(v11)3e-3 DFLLY

e L .
1)3g-1 v Lk Lt 1)3g-1 1,39-5
2(A-wt)¥t ovtkgutt 16 (A -ovt)3s ovt39
k+0=3g-4

+ lower order terms, n >0.

By comparing the leading terms of both sides of the loop equation, we arrive at the relation

32 (39 -2 OFKdv
g g
_ —_2) _ 9
(214) ( (3g 2) + kz::l ( k )Ak173g1k) 8U1’3g_2
= FKWV  FKWY

9 21 Azn-1,3g-3m-1 Oul3m=-2 Hyl,3g-3m-2
m=

1 PELY 1 (3g-2)1 OF Y

*5 At =7 — == 932
2 k%zjl T ovbkoult 16 oLl Qul3e-d]
k+0=3g-4

This relation will play an important role in the proof of Theorem 1.1.

2.3. Decomposition of free energy functions. We continue to use the same notations as
in previous subsections. Let us first show that, if the genus g free energy function F,(t**) of
M admits a decomposition in terms of the canonical coordinates

(2.15) }—g(ti’k) = Fg(ui’k) = Z‘Pg;i(u)FngV(ui’la .. aui’3g72) +Hy, g21,

with the function H, satisfying the condition
o"H,
Ouik | Quinskn
then such decomposition is preserved under both upper triangular and lower triangular infini-
tesimal symplectic transformation.

Let us start by considering the action (2.2) given by an upper triangular element t. Our goal
is to show that

=0, ki+--+k,239g-3+n, n>1,

(2.16)

an
. —t[t].F, =0, ki+--+k,239g-3+n, g,n>1.
at“’kl . ..8#”7’“" [ ] g t=0 !

Indeed, the above identity suffices to show that for & +--- + k,, = 3g — 3 + n, the expressions
o F,
Quikr . Quinkn

remain unchanged after applying the upper triangular transformation. Then we prove the
invariance of the decomposition from the property (2.13) of F4" and the assumption (2.15).

Proposition 2.1. The identity (2.16) holds true for any upper triangular transformation.

Proof. First let us recall that the free energy function F, of a cohomological field theory satisfies
the condition

o F,
(2.17) Db ot 0, l+-+0,>39g-3+n, ¢g=>0,n>1.
In what follows, we fix indices 41, ...,1, and kq,...,k, with

(2.18) ki+-+k,=3g-3+n.
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By a straightforward computation using (2.2) (see also [24]), we find that the left-hand side of
(2.16) reads

N A O F,
LHS. = - N F
l; ;( k)ll Otk | Otinskn Opik+1 o
) 8nfg
]; iél mz=:1( k)lm 8t21’k1 e atlm—hkm—l atlm+1ykm+1 Ce 8tzn7knatlvk+km t=0
1 A .. an+2f =
+— -1 k+1 T ij__ ' g | |
2 k%;() 17]2::1( ) ( k+€+1) Otivkr | Otinskn Otk il )
Ly s 0 0F,\( 0 OF
+= 1)+ (¢ ,J( 91)(_ ,92) ’
k;m;l gﬁzg;:g (P17 (vt otL otk )\ ot ot
[ I|_|J={17,“7n} Y

here in the last line we use the notation

0 0
ot nl;ll Btim "

By using the identity (2.17), the first line of the right-hand side vanishes due to the fact that
ki+--+k,+k+1>3g-3+n+2>3g-3+(n+1).

For a similar reason, the second line and the third line also vanish. As for the last line, we see
that it is non-vanishing only when
k+ Y kn<3gi-3+(I|+1), €+ ky<3g1-3+(]J]+1)
mel meJ
which implies that
ki+---+k,<3g—-4+n.

This contradicts to the assumption (2.18) and hence the last line also vanishes. The proposition
is proved. O

Next we prove the invariance of decomposition (2.15) under lower triangular transformation.

Proposition 2.2. The lower triangular transformations preserve the decomposition (2.15) for
g>1.

Proof. We prove by computing the infinitesimal action of a lower triangular transformation s
in terms of the flat coordinates v® of M. Such an action is given in [4] and reads

8] ———Z( 1 ((62)en + (s1)0.) 2 2.

here we denote by §[v]. the action of s in terms of the flat coordinates, and it is given by
N 8F a s+1 a
[ ] f ZZ@UN( tll,O) 0

s>01=1

ti,oﬁ[t]'}—o'
Therefore, the lower triangular transformation leads to a translation of the flat coordinates,
which leaves the decomposition (2.15) invariant. The proposition is proved. U

Combining the result or Proposition 2.1 and 2.2, we conclude that (2.15) holds true for
any partition function given by the Givental formula. Note that a possible alternative to the
infinitesimal analysis of Proposition 2.1 would be to use the closed graphical formula for the
upper traingular Givental group action [12], which would lead to the same result.

Finally, we can prove Theorem 1.1. For this, we need to use the loop equation (2.4) of M,
hence let us first recall some basic facts about semisimple Frobenius manifolds. One may refer
to [8, 9, 11] for details. As before, we use (v®) to denote the flat coordinates of M and (u?) to
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denote its canonical coordinates. Recall that in terms of (u?), the flat metric n of M is diagonal
of the form 7 =Y. f;(du?)?. We define functions ¥,, by

out U,

—=—=, Uy=\/fi

8’Ua \I/il ’ ! \/?
These functions satisfy the identity

(219) \Ilia\II;‘X = 5ij7 \I/ja = naﬁ\lljﬁ'

For i # j, we denote by +;; the rotation coefficients of the flat metric 7, and in terms of the
canonical coordinates, they read

P ! % EN
Wy g ow T
Define functions V;; to be
Vij = O’- : fom::j:’
(w9 —u?)y;;, fori#j.

Note that the functions 7;; are symmetric with respect to their indices and hence Vj; are
antisymmetric. By using the notations above, the Gauss-Manin system satisfied by periods
Pa(u; A) of M can be written into the following first-order equations for functions ¢;:

opi Vi .
6uj__u"—uﬂ¢j7 LR
0¢; 1

1 v,
Pui A (§¢i+JZVij¢j)+§m¢”

96 & Vi
X 2(ui-N) P e

J

Let us denote by ¢;, a fundamental solution matrix for the above system, then the periods p,
are specified by

IPa Ipa

- :\Ili 1o N - \I]z iou-

By definition, functions p, serve as flat coordinates of the flat pencil of M, and we denote by
G the corresponding Gram matrix. In particular, we have
5i
G g = —2—.
¢ Gis ut — A

The following proposition is important in analyzing the structure of the loop equation (2.4).

Proposition 2.3. We have:

(1) In terms of canonical coordinates, the function

O (07 pa) GO (97ps) EA[)\—l 1 ]

T Y oW
and, viewed as a polynomaial in A_—lul, e ﬁ, it has the leading term

(ui,l)n1+n2 P

Z An17n2 ()\ _ ui)n1+n2+1 \IIZ \IIZ )

here the constants Ay, ,, are defined in (2.9).
(2) The function

W[ Opa _Ops ]V af [ 1 1 ]
8$[Va)\ Vm\ vy | G*eA SN |
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and, viewed as a polynomaial in L, e ﬁ, it has the leading term
Z (n +2)!(ui1)+1 07
- 8()\ uz)n+3 \I[zl

)

Proof. The first statement is proved in Lemma 3.10.19 of [11]. As for the second statement, by
a straightforward computation using (2.6) and the Gauss-Manin system satisfied by p,,, we see
that, in terms of canonical coordinates,

a5 ]7 s _ o UY] 1
[Vm Vo ! ¢ ‘; 1\ 4(ui—A) ut — QZUJ—

1l

here we also use (2.19) and the fact [8] that

(2.20) L= Z

Then the second statement can be verified dlrectly. The proposition is proved. U

\Ilm\IlZﬁ\If

Proposition 2.4. The function ¢4; defined in (2.15) is given by (f;(u))9.

Proof. By using Dubrovin-Zhang’s theorem that their tau-function is given by the Givental
formula, (or, alternatively, one can employ Teleman’s result [28] on the classification of co-
homological field theories), we know that Fj, given by the Givental formula satisfies the loop
equation (2.4).

Let us prove ¢g; = (f;(u))!79 by induction on g. For g = 1, it is well-known that

1 )
F = % Zi:loguz’l + Hi(u),

hence we see that ¢;,; = 1. Assume that we have proved the statement for 1,...,¢g -1, let us
find ¢,,;. It follows from Lemma 3.10.19 of [11] that the left-hand side of (2.4), viewed as a
polynomial in += ., 3=, has the leading term

Nl
(uz 1)39 2 3g-2 3g -9 oF.
WY ( k )A’“’?’“’f ST

Similarly, it follows from Proposition 2.3 that the right-hand side, viewed as a polynomial in
L . ﬁ, has the leading term

A—ul’
(i1)39-2 g-1 1 1 OF, OFy
5 Z (A= ui)do1 £ 3m71,3g73m71111_221 Oui-3m=2 Hy ir39-3m—2
(u“)?’g 2 1 0*F,, 1 1 (3g-2)!(ubt)3973 OF,

— A — . . . )
Z (A — ui)3o-1 k,%zjl k1,641 \1,121 ui*ouit 16 Z \1,2 (A—ui)do-1  Juide—s
k+0=3g-4

Now by using (2.15), we have for g > 1

OF, OF KV (uf)
Ouid9-2 Pgsi Ouise2
O°F, G2EKAV (yi)

ukgurt 1P kgt o F =L

Using above identities, as well as the recursion relation (2.14) and the induction hypothesis
Oma = (fi(u))™ for m < g — 1, we have

oo = LGP - (.

The proposition is proved. O

Now we are fully armed to present the proof of Theorem 1.1.
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Proof of Theorem 1.1. As we remark above, the general shape of the decomposition (1.2) (as
given in equation (2.15)) follows from Propositions 2.1 and 2.2. The coefficients f;(u)!™9 are
computed in Proposition 2.4. The theorem is proved. O

3. UNIVERSAL IDENTITIES OF FREE ENERGY FUNCTIONS

The goal of this section is to present a set of operators O¢a, ay;....an,a,} Of Order n in the time
variables that are going to be used to derive the universal relations. The parameters here are
subject to the following condition: a; > 2, ¢ = 1,...,n. The main reason to introduce these

operators is the following list of properties:

Theorem 3.1. We have:
(1) The operators Oga, ay;....an,any COmmute with vA9- and v®1 (that is, with the operators of

7777

multiplication by v° and vP1).
(2) Let m>1;b;22,i=1,....m, and Y"1 b; < ¥ ya; — 1. Then

(31) O{Q’l,(ll;...,a’n7an}(’Uﬁl,bl.”vﬁm,bm) - 0
(8) Let m>1;b;>2,i=1,...,m, and 3", b; = ¥y a;. Then if m >n, we have

(3'2) O{al,al;---@n,an}(Uﬁhbl"'vﬁmbm) = 5nm Z H 5aibo'(i) H H 8x<<7_(;{” T’Yi,j+170>>07

0eSy i=1 i=1 j=0
where ;0 = By and Vi q, = Q.

Below we introduce the construction of these operators and, after we discuss their properties,
we prove all statements of Theorem 3.1 in Corollaries 3.6, 3.9, and 3.10. As an application, we
derive some universal identities and prove Theorem 1.2.

3.1. A useful set of operators. We start by explaining the notations used for defining the
operators O{a, ay;....an,an}-

3.1.1. Basic notation for trees. Let RT, be the set of stable rooted trees with n legs o4, ..., 0,.
We demand that the index of each vertex except for the root is at least 3. For a T € RT,, we
use the following notation:

H(T) is the set of half-edges of T.

L(T) is the set of legs of T'.

H(T)=H(T)~ L(T).

1:H(T) - H.(T) is the involution that interchanges the half-edges that form an edge.

E(T) is the set of edges of T, E =~ H.(T)/:.

H,.(T) c H(T) is the set of the so-called “positive” half-edges that consists of all legs of

T and of half-edges in H(T') \~ L(T") directed away from the root at the vertices where

they are attached, H,(T) = E(T)u L(T);

e H (T)c H(T) is the set of the so-called “negative” half-edges that consists of all half-

edges in H(T')\ L(T) directed towards the root at the vertices where they are attached,

H_(T) =z E(T);

V(T), V- (T) are the sets of vertices and non-root vertices of 7.

v, € V(T) is the root vertex of T; V(T') = {v,.(T)} uV,.(T).

For a v e V(T), H.(v) is the set of all positive half-edges attached to v.

For a v e V,,,.(T) let H_(v) be the negative half-edge attached to v.

We say that a vertex or a (half-)edge x is a descendant of a vertex or a (half-)edge y if

y is on the unique path connecting x to v,.

e For an he H,(T) let DL(h) be the set of all legs that are descendants to h, including
h itself. Note that DL(h) ¢ L(T) for any h e H (T) and DL(l) = {l} for l € L(T).

e Foran he H (T) let DH(h) be the set of all positive half-edges that are descendants to

h, excluding h. For instance, for [ € L(T') we have DH(l) = @, and for h e H (T)~ L(T)

we have DH(h) 2 DL(h).
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In the pictures it is convenient to arrange the half-edges at each vertex such that the negative
half-edges are directed to the right and the positive half-edges are directed to the left (this
convention is opposite to the one used in the similar structures in [2, 5], but it is more suitable
for the purpose of defining the differential operators). In particular, the root vertex is the
rightmost vertex on the pictures. Here is an example of a stable rooted tree in RT, placed on
the plane following this convention:

(o] g3

Let T € RT,. Introduce an extra function ¢: H,(T) - Zsq such that
(33) S )+ BT =Y
heH,(T) i1

and at each vertex v € V,,,.(T") we have

(3.4) |H,(v)]-2> > q(h).

heH(v)
Let Q(T, Y a;) denote the set of such functions. We also associate to each h € H(T) an index
a(h) such that a(o;) = «;.

3.1.2. Eguchi-Xiong operators and their generalizations. Let Og, be the differential operators
of Eguchi-Xiong [13] (see also [4, 26]) defined inductively by the following rules:

0
(3.5) Opp = 550"
o Bl
(3.6) Opp = ohr Z<<73767k>>007,p—k—1-

k=0

We have [Og,,,0,4]=0if p,g> 1.
We associate to a pair (T',q), T € RT,, g € Q(T, X}, a;), an operator Oy, q) given by

(3.7) O(r.0) =(=1)/E)] I (e ()
heH_(T)
1
Y @O+D- Y () +1)
Hi:l(ai + 1)' hEIl;[(T) (Zel)zl;(h) h’el)zl;f(h) )q(h)+1
( H (: H Oa(h),q(h): <<T04(h_(v))70>>0)): H Oa(h),q(h):
veVpr (T) heH. (v) heH, (vy)

Here a(?) = a; for £ = 0; and (s); = s(s—1)---(s—t+1) denotes the Pochhammer symbol and we
recall that it is assumed that Y ,cp, () q(h) + |[E(T)| = ¥, a;. By normal order we just mean
that we put differentiations in the vector fields ahead, that is, the vector fields are not allowed
to act on the coefficients of each other.

Remark 3.2. In the notation of Liu [26] the function ; [Tren, () Oath).qth) s {Tath_w)),0 o can be
written as

(3.8)

na(h—(v))a(b(h—(v))): H Oa(hm(h):<<7—a(h7(v))70>>0:«To(ea(b(h—(v)))) H Tq(h)(ea(h))»o-
heH(v) heH (v)
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3.1.3. Definition of operators.
Definition 3.3. The operator O(q, a,;....an,a,} 15 defined as

(39) O{al,al;...,an,an} = Z Z O(T,q)
TeRTy qeQ(T,X7 1 a;)

For instance,
(3.10) Og = 1d;
Otar.ary = Ooran
(1) Ourmsmsia) = 0 Oupan — (020

0 0 0/ o
! (T°(ea,)TO(€ay)TO(€*)N0Ou a1 +ag-1-

3.2. Action on v#t. Consider Ofa, ay;..;an,an) 0?0 for b < Y  a; — 1. Note that the usage of the
Eugchi-Xiong operators implies that we are dealing with a lift of a tautological relation from
the moduli space of curves ﬂo,mwg [26]. Let us describe this relation.

For each T' € RT, let T. be the tree with b+ 2 extra labeled legs attached to the root vertex
v,. This graph defines a stratum in M07n+b+2 and let gl be the boundary map corresponding
to this stratum. To fix the notation we choose an order on the legs attached to each vertex v
using the map o,: H,(v) = {1,...,|H.(v)|}.

For each ¢ € Q(T, Yi; a;) consider class B4y given by

_1)\IE(T)]
CUP 1 (% 0+n- ¥ @)+)

[Tt (as + DY i oy N ienion h'eDH (h) q(h)+1

(ngN)*l( I )wgg?M) e & ( 1 wgflg;))mo,mw)lu]

heH. (vr Mo |y (or)lex+2 eV (T7)  heH, (v)

(3.12) B(T7q) =

€ RE=1% (Mo pipi2)-
Furthermore, define
(313> Bal,...,a = Z Z B(T7q) € R % (M07n+b+2).

" TeRT, qeQ(T, S, a;)
Lemma 3.4. For b< Y, a; -1 we have By, . 4, = 0.

Proof. For any b, ai,...,a,, we have B,, ., =0 for a; +---+a, >b+ 1, see [5, Theorem 3.4 in
combination with Theorem 2.3]. O

Remark 3.5. Note also that dimm07n+b+2 =n+b-1, so the statement of Lemma 3.4 holds for
dimensional reasons for ', a; > n + b, that is, for b< ¥ | a; — n.

An immediate corollary of Lemma 3.4 is

Corollary 3.6. The statements (2) and (3) of Theorem 3.1 hold for m =1. That is,

(3-14> O{al,al;---;aman}vﬁ’b =0

forb< ¥ a; -1, n>1, and

(3'15> Oa,avﬁ’b = H 61«7—0% T’Yj+1,0>>0
j=0

with vo = B and v, = «a for b=a.

-----

Using this lemma and the standard conversion of tautological relations into the PDEs for the
descendant potentials, see e. g. [14, Sec. 2.1.3] or [26], we obtain the desired vanishing.

The second statement is merely an exercise on iterative application of the topological recur-
sion relation in genus 0 [29]. O
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3.3. The iterative structure of operators. Consider Oyq, a,:...an,a,} (f1.f2), Where f1, fy are
some functions in jet variables v#:?.

Lemma 3.7. We have
(316> O{al,al;---;an,an}(flfQ) = Z O{ai,ai}iell (fl)O{a’iyai}ieIQ(f2)

Proof. This identity follows directly from the structure of the operators. Indeed, for T € RT,, and
q € Q(T, X1, a;), each factor of the vector fields in the product ; [Tjep, (1) Oan)gr) s I Orp)
acts on f fo by the Leibniz rule. This splits H, (v,) into two subsets, H,(v,) = H, (v, )1UH,(v,)2
such that vector fields Oqn)q(n) With h € H,(v,); are applied to f;, i=1,2.

Let T1 and 75, respectively, be the trees obtained by contracting to the root vertex the
full subtree descending to H.(v,)s and H, (v, )1, respectively. Let Upep, (), DL(R) = {0}}jer,,
i = 1,2. Then T; € RTj;, (with the legs labeled by o}, j € I;), and ¢; = q|lu, (1) € Q(T3, Xs),
i=1,2, where x; = (X, a;) — 1. This allows to rearrange the sum

(3.17) >, Y. Owg(fif)

TeRTy qeQ(T,x)

as
(3.18) ( 2 0<T17q1>(f1))( 2 X 0<T27q2>(f2))7

Ill_I12={1 ..... n} TIERTUH qleQ(Tth) TQGRT‘Iﬂ q2€Q(T27X2)
which implies the statement of the lemma. U

An immediate corollary of this lemma is the following statement:

Corollary 3.8. For any functions f1,..., fm in jet variables v5* we have:
(3'19) O{a1,a1;---;an7an}(fl"'fM) = Z HO{aiyai}islj (fl)
{1{u1---uln; j=1

And also now we can proof the first statement of Theorem 3.1:

Corollary 3.9. The operators Ofa, ay;..;an,an} COMMute with the operators of multiplication by
vB0 and vP1.

Proof. Indeed, by Lemma 3.4 we have

(32()) [O{Oél7a1;...§04n,an}7 Uﬁ’b'] = Z O{Oéi7ai}i511 (Uﬁ,b)O{Oémai}ieIQ
Ilu12={1 ..... n}
I,+o
Note that ) ;.;, a; > 2n, hence for b=0,1 we have b<a-1forn=1and b< Y, a;+1-n for
n 2 2. Then by Corollary 3.6 Oya, a;),.,, (v**) vanishes for all I; # @. O

Now we can use Corollary 3.8 to prove the statements (2) and (3) of Theorem 3.1 hold for
m > 2. We have:

Corollary 3.10. Let m>2;b;>2,i=1,...,m, and 3,2, b; < ¥ a;— 1. Then
(3.21) Ofar,arssamany (VPP 0Pmbm) = 0.
If ¥ b =" a; and m >n, then

n n  a;
(3'22> O{Oél#lﬁ---ﬂmdn}(Uﬁl’l’LnUﬁWhﬂl) = 5nm Z H 5a¢ba(i) H H 833«7—0%’] T’Yi,j+170>>07
oeSy =1 =1 j=0

where 7; 0 = 50(2‘) and q; = Q.
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Proof. Using Corollary 3.8 we see that

(3'23) O{a17al;~~~7aman}(Uﬁhbl"'vﬁmbm) = Z HO{az,az}lEI (UBW J)

Luuly, g=1

={L..n}
Note that by Corollary 3.6 the factor O{Oéiyai}ielj (vPbi) vanishes unless b; > Yf a;. But if
this inequality holds for every j =1,...,m, then };*; b; > 7", a;. Thus, under the assumption
i by < ¥y a; — 1 each summand on the right hand side of Equation (3.23) has at least one
vanishing factor, which implies the first statement of the Corollary.

For the second statement notice that if 3% b; = 331 a; then b; > ¥,y a; foreach j=1,...,m
implies b; = Y, a; (otherwise at least one factor in the corresponding summand vanishes)
and, therefore, n > m (since each I; must be nonempty). Hence n > m, and since m > n by
assumption, we obtain m = n. Hence, each I; consists just of one element that we denote
by a,-1(;) for some o € S5, and the correspondlng summand is nonzero only if a,-1(;) = by,
j=1,...,m. This implies

(324) O{al,al;-..,an,an}(Uﬁl’bl"'vﬁm’bm) = Z H 5(11 0( ) H Oa, a (vﬁa( i) az)

aeSn =1
and we complete the argument by applying Corollary 3.6 to each factor on the right-hand side
of this expression. O

3.4. Universal identities. With the properties of the operators given in previous subsections,
we are ready to prove Theorem 1.2. In what follows we fix a semisimple Frobenius manifold
M (and recall all standard notation as in Section 2.2). First let us derive the action of those
operators in terms of the canonical coordinates.

Lemma 3.11. In terms of the canonical coordinates, the genus zero 3-point correlators are
given by
WiaWig Wiy ubl

<<7'a,07'5,07'%0>>0 = Z T
il

Proof. This lemma is most simply proved by using the tau-structure of the Principal Hierarchy
associated with M. Alternatively, it follows from tameness of Fy that (see [4])

0?F
<<TCVyOTﬁ,O>>O = avaav67

here F' is the Frobenius potential of M given by

F f a,0_po ol _pa,2 . —
0]t O=px 1=t 0-

Note that by definition v* = (7§71,0))o, hence
o™ _ 8«7’0@7570»0
otho 1o
Therefore, it follows that

= e rsohor™ = o,

OvH
(7075071000 = FuTaoTs.0 o5 = Casuchs0™

The lemma then follows from (2.19), (2.20). O
We can now prove Theorem 1.2 with the help of the above lemma.

Theorem 3.12 (=Theorem 1.2). Fiz an operator Oga, ky;...ankny With ki +---+k, =3g-3+n
with g=n=ky =1 or

ki+-+k,=39g-3+n, ¢g=22, n>1, Fk;>2,
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and denote by p the partition of 3g — 3 +n given by ki,...,k,. Then we have the following
universal identity for F, with g > 1:

n

(3'25) O{m,k‘l;...,an,kn}(‘rg) = |AUt(M)|Cg;uM[9BZ H«Tai707_%—1,07_%70>>07
i=1
here Cy,,, is the constant defined in (2.12) and M[g] is defined by
09, forg=1,
M[g]e = { Mz, for g=2,

Mg MG MM, for g 23,

where we denote
Mg = {50700 {7570 75.0)0-
Proof. 1t follows from Lemma 3.11 and Corollary 3.6 that

..,
O{a k}(ul k) — ( z1)k+1

21

Hence, by combining Theorem 1.1 and the iterative property (3.19) of the operator, we see that

Vinr - Yian /i 1\20-94m
O{al,kl;...,an,kn}(fg) = |AUt(N)|Cg;u Z \I;Zg—2+n u 71)29 n,
i il
By a straightforward computation using Lemma 3.11, it follows that

n | Wig, o Wi Ui U7 S 70
H«TamOTw-l,oT%O»O = Z oy > (u 71) ) M[g]v - Z \IJT’; ,1)29 ’
i=1 i 1l g il

which implies the validity of (3.25). The theorem is proved. O

3.5. Towards more general universal identities. As we have introduced in Sect. 1, the
simplest example of universal identities derived from Theorem 1.2 is

1
(7,11 - ((Ta,075>>0<<7/370>>1 Y

However, using Theorem 1.1, it is immediate to derive the general form of the above genus 1
recursion relation [7]:

—{(Ta0Th T3,0)0-

1
(3.26) (Tapd1 = (Tap170 DolTs0)1 = ﬂ((Ta,p—lToﬁTB,o»o-
Indeed, let us define the vector field
0 0
Agp = ata,p - <<7—O‘7p_17-0ﬁ>>0 atﬁp? p 2 ]-7

then it follows from genus zero topological recursion relation [29] that
AL (07) =0, AL, (07 = (Tapamuomo om0 Do
By using the decomposition (1.2) we have
oF, ¥,
(]:1) Z o le \Ijﬁ To,p-1Tp,071, 0>>0<<757(§3T1,0>>0

1 1 Wy

_ € B B, .,
- ﬂ (Z wil Uy, )(Zaeha,pl\l’j\l'j,uuﬂ) (§‘I’?‘I’zu 1)

\I[ZE fL
Za hap 1\1111’& 1

1

24<<Tap 175 75,00,
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here in the computation we denote by hq.p = (7a,p71.0)0, and we use the fact that

(3.27) (Tepmsom0)o = 3 0chay—g—"u".
3 il

The identity (3.27) can be proved similarly as Lemma 3.11.
This idea can be used to derive more general universal identities. In this section, we construct
some operators that can be viewed as certain generalizations of those operators given in Sect. 3.1.

Definition 3.13. Define vector fields A7, for p>m +1 and m >0 by
m _{O s for p=m+1,
P + (1 Ta k)00 pko1, fOr p2m+2,
here O,,, are the Eguchi-Xiong operators defined by (3.5), (3.6).
We have the following observations on these operators.
Lemma 3.14. The vector fields A7}, are in involution.

Proof. This follows from the fact that [Oa,,0p,4] = 0 for p,g > 1 and O, ,(v?) = 0 for p > 1.

The lemma is proved. U
Lemma 3.15. The vector fields Ay}, satisfy the recursion relation
0 0
(3.28) ap = ior (0 Tap-thoz g
(329> AZL,+1 Am <<TO To,p-m— 2>>0A'Tyrfm+17 m2 0.
Proof. The lemma is proved directly from the definition. O

The recursive description of Aj', allows us to compute their action in terms of the flat
coordinates.

Proposition 3.16. We have

r—1 j1-1 Jm—1 r . m
n
(330) Ag (/UBJ’) = e ( ) )( ) ) . ( ) 7— ,7- . 70,7-jm+1 —0—Jm+2- £>>O
v leZ:OjQZ::O jmgo i+l \ja+1 Jme1 +1 p 0 e 07L0
m+ 1 m+ s
«Tap m- 17—71707'{0 v >>0<<7'8/ 17'0ﬁ7'1 ojl»O-

In particular, we have A7 (v%7) =0 for r <m.

Proof. For AY . we have

a,p’

AS L (0P7) = (Tap o 15 N0 = (Tap-2 ™ Vol oo 715 o

-5 (1 ot bl o

here we use the genus zero topologlcal recursion relation to derive the second line. Hence, (3.30)
holds true for m = 0. Then it is straightforward to prove the general case by induction on m
using the recursive relation (3.29). The proposition is proved. U

Corollary 3.17. In terms of the canonical coordinates, we have

AR (0P = 37 0 et WO (),
Proof. Taking r =m + 1 in the identity (3.30), we have

m
Agfp(vﬁ’mﬂ) = (Tap-m-1Ty1,071,0 Do 7 'ym“To T1,0) H (70" Typs1.07T1,0Do-

Then we prove the corollary by a straightforward computation using (3.27). U
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Proposition 3.18. For any p > 3g — 2, we have the following universal identity
(3.31) A3 (Fy) = «Ta,p—?,g—ﬂoﬁmo»OM[Q]g - P97,
g,1
Proof. Combining Theorem 1.1 and Corollary 3.17, it follows that
pe .
3g-3 _ i 1,1\2¢g-1 3g-2
ABT3(F,) = ;aeha,pggz—q]?fl (ui1)2 fﬂ W32,

Using (3.27) and the expression for M[g], the right-hand side of (3.31) reads

VR V2 PP
RILS. = [ 30y gg0 it it ) (5 25758 iz |
; 7 Wi 7 Vit
The proposition is proved. O
It is clear that the identity (3.31) is the general form of (3.25) for n = 1 and k; = 3¢ - 2.
However, it is not easy to generalize this for n > 2.
Definition 3.19. Define Az} "%, p. to be the order n differential operator
eyl = Ao 00 A pa

Generally speaking, the action of operator Au. ", ». is hard to describe. We have the

following properties.
Proposition 3.20. We have
AOﬁl,};i.;’T;gn,pn (Uﬁm) =0, r<my+-+m,.
Proof. Note that as a differential polynomial, genus zero n-point functions are of differential
degree n — 2 for n > 2. In particular,

«Ta,pTﬁ,qTf,o»O O (U)[Uv’la e ’U%J'L J=zL
Hence, it follows from (3.30) that
AT (0P e O (v)[v, L 0T
Then it is easy to see that
ARl (vP)eC™ (v)[v7l, ... e ]
If Agy e, o, (v97) is non-zero, then it is a differential polynomial of degree r + n and hence
r—mqp—---—my>1.
The proposition is proved. O

Corollary 3.21. Fiz mq,...,mg, T1,...,7n, with m; > 1, r; > 2 and my +---+my = 3g — 3 for
some g > 2. Then we have
Ameemn (B Bty =00 4, < 39— 4+ 0.

Proof. By successively using the Leibniz rule, the action Aayy"%, p, (v vBnm) can be

m;

computed by distributing the action of vector fields Ay, on each v%mi. If the action is to
give a non-zero result, without loss of generality, we can assume that the following expression
is non-zero:
LTy B1,m1 Mg 1 +1505Ts BsiTs ) qyBs+1:Ts+1 Br,Tn

Aompu---;ozeppzl(v )"'Aafs,1+lvpfs,1+l§---§a€s ,pes(v JuPenrat Ly )

for some s <n. Then it follows from Proposition 3.20 that
re>myp+e+my +1, o, rg>2my, 4+ +my + 1
Therefore, the action is non-zero unless
Tt trg2mi o +mp+s+2(n—s)>39g-3+n.

The corollary is proved. O



22 SERGEY SHADRIN AND ZHE WANG

The above corollary implies that, with the help of the decomposition (1.2), the action
Amieemn - (9BTY(F,), mi+e+m,=3g-3, my>1, g>2

Q1,P15.i0m,Pn
can be represented in terms of genus zero correlators, and hence produce universal identities
that can be viewed as general forms of (3.25). However, it is not straightforward to write down
the explicit forms of these identities. Let us illustrate the idea by considering g = n = 2.

We fix p; > 2 and ps > 3. Denote by

Qm o - Agfp(vﬁm)u
then it follows from Corollary 3.21 that

75174
A21 (F) = Q22301612 Py + OB 38Qa17p1 Ok,

Q2,p2;01,P1 az,p2 CALPL 5,,81,24,52,3 Qaz#’z OvB23 Gybra

By using Corollary 3.17, we see that
(332) QN2 = Y Oahayp 2V (WP, QR = N Ouhag s VU (u),

a1,p1 @2,p2

KdVv
F2

and by using (1.2) and the expression for we see that

0?Fy 7 UigUig, 1
JuPr2pP3 1920 Z Us (uhh)?
It is a straightforward computation to obtain that
o i L R By SR O ERT I WY1 )1
azpa COLPL 51,2823~ 190 1 H0T0 MO azp2m3To TA0N0TLE
As for the second term, it follows from the identity (3.30) that

25 =35 (7 )7 i hotreomart ol i o

§=0 £=0

Hence we see that
oQuL! : 5
e =6{(Tay p1-276 71,000 { 72,071,071 0>>OCB + 3 Tay p1-276 T1,0 )0 Cer: {0 7o T1,0 )0
+ 03,76 T 120 7=.07,071,0)0(70 75 71,0,
and we have
Q252 36Q}vﬁ)’14 OF, b}

2p2gybad gubid 576
To summarize, we have the following universal identity for g = 2:

29
A§217P27061 »P1 (‘7:2) = 5760

4. CONCLUSION

= {(Ten 78070 >>0<<Ta27p2—370ﬁﬂ,0»OM[?]Q-
(701 75,070 Dol Taz pa-370 Tr0 Do M[2]).

In this paper, we study the universal identities for tau-functions (or, more precisely, the free
energy functions) of the Dubrovin-Zhang hierarchies. The result is that we can derive a family
of universal identities for each genus g > 1, and these identities don’t seem to follow directly
from the known relations among the tautological classes on the moduli spaces of curves.

Moreover, the identities are derived in a particular way that does clarify the structure of
the free energy functions in the Dubrovin-Zhang formalism. It is worth to remark that the
decomposition (1.2) should be viewed as decomposing the free energy function Fj into leading
terms and lower order terms. It is interesting to ask how to identify in a similar explicit way
the next order term in the decomposition (1.2) and derive corresponding universal identities.

In this paper, we combine the Givental’s quantization formalism and Dubrovin-Zhang’s loop
equation to derive (1.2). The key observation is that, viewed as polynomials in ﬁ, ce ﬁ,
the leading terms of both sides of the loop equation can be explicitly written. However, it is
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difficult to consider even the next order terms. Therefore, one may ask if the property of F}, can
be studied with other approaches. The polynomiality theorem [25] may be a good candidate
to study Fj. Indeed, the relation between the polynomiality theorem and some tautological
relations on the moduli space is studied in [22]. The polynomiality should give some constraints
on the form of F, and by combining with the loop equation, one may find more structures for
F,.
It is also interesting to note that the results of this paper can be applied in a wider context
than the free energy functions in the Dubrovin-Zhang formalism. To this end, one can consider
the partition functions of not necessarily homogeneous semisimple cohomological field theories.
Their relation to the Dubrovin-Zhang tau-functions can be described by the following system

of observations:

e A homogeneous semisimple CohF'T determines a formal Frobenius manifold semisimple
at the origin, and for a particular choice of calibration the Dubrovin-Zhang tau function
coincides with the corresponding CohFT partition function.

e Vice versa, the formal expansion of a semisimple Frobenius manifold near each its
semisimple point determines a homogeneous CohF'T in all genera; moreover, by Tele-
man’s result [28] the homogeneous CohFT in this case is uniquely determined by its
genus 0 part. In this case the partition function of thus constructed CohFT is obtained
from the Dubrovin-Zhang tau function by a lower triangular element of the Givental
group.

e If we drop the assumption of homogeneity for a CohFT, many of the used techniques still
work. For instance, their partition functions are still tame and in the same orbit of the
Givental group, and they are tau-functions of some Hamiltonian hierarchies [4, 3]. But,
in general, we don’t have the second Hamiltonian structure and lose the loop equation.

We note that Proposition 2.4 can also be proved for the partition functions of not necessar-
ily homogeneous semisimple cohomological field theories through the analysis of the Givental
formula in terms of graphs, as in [12]. In particular, in combination with Proposition 2.1 this
means that the KdV free energy functions serve as universal leading terms for the partition
functions of any semisimple cohomological field theory. However, we don’t expect that we can
omit analysis through the loop equation for the next order terms.

Finally, in deriving the universal identities, the operators Oy, ;:....ank,} Play an important
role. They are not very straightforward to define (and remarkably their structure is related to
the tautological relations responsible for the DR/DZ equivalence conjecture and polynomiality
of the conservation laws of DZ hierarchies of more general F-CohFTs, see [5]), but they possess
nice properties and their actions can be explicitly written. However, as shown in Sect. 3.5,
those operators are not enough to derive more general universal identities. We propose some
operators Agn\'5i "%, ». that are more general, and to some extent they do serve the purpose,
but it is not yet a fully satisfactory set of operators, since their action is hard to determine
explicitly. The operators Ayl ., pn can be interpreted as the leading terms of the operators
coming from more general tautological relations on the genus zero moduli space studied in [5],

and we hope that this link might help to derive more general universal identities.
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