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Abstract

We develop an inferential toolkit for analyzing object-valued responses, which cor-
respond to data situated in general metric spaces, paired with Euclidean predictors
within the conformal framework. To this end we introduce conditional profile average
transport costs, where we compare distance profiles that correspond to one-dimensional
distributions of probability mass falling into balls of increasing radius through the op-
timal transport cost when moving from one distance profile to another. The average
transport cost to transport a given distance profile to all others is crucial for statistical
inference in metric spaces and underpins the proposed conditional profile scores. A
key feature of the proposed approach is to utilize the distribution of conditional profile
average transport costs as conformity score for general metric space-valued responses,
which facilitates the construction of prediction sets by the split conformal algorithm.
We derive the uniform convergence rate of the proposed conformity score estimators
and establish asymptotic conditional validity for the prediction sets. The finite sample
performance for synthetic data in various metric spaces demonstrates that the pro-
posed conditional profile score outperforms existing methods in terms of both coverage
level and size of the resulting prediction sets, even in the special case of scalar and thus
Euclidean responses. We also demonstrate the practical utility of conditional profile
scores for network data from New York taxi trips and for compositional data reflecting
energy sourcing of U.S. states.

Keywords: Conditional distance profiles, Conformity score, Empirical process, Non-Euclidean
data, Transport cost, Uniform convergence
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1 Introduction

The conformal prediction framework was introduced by Vovk et al. (2005, 2009) as a se-
quential approach for forming prediction intervals. Subsequently, conformal inference has
achieved notable success in various statistical settings, such as predictive inference for non-
parametric regression (Lei et al., 2013; Lei and Wasserman, 2014; Lei et al., 2018; Cher-
nozhukov et al., 2021; Barber et al., 2023), covariates shift problems (Barber et al., 2023;
Gibbs and Candès, 2021, 2022), change point detection (Vovk et al., 2021), hypothesis testing
(Vovk, 2021; Hu and Lei, 2023), outlier detection (Bates et al., 2023), time series (Angelopou-
los et al., 2024; Yang et al., 2024) and survival analysis (Candès et al., 2023).

In the regression setting with training data (Xi, Yi)
n
i=1 and additional identically and

independently distributed (i.i.d.) sampled data (Xn+1, Yn+1), the aim of conformal prediction
is to construct a prediction set Cα(Xn+1) such that

P(Yn+1 ∈ Cα(Xn+1)) ≥ 1− α. (1)

To determine whether a value y in the response space should be included in the prediction set
Cα(Xn+1), the basic idea of conformal prediction is to test the null hypothesis that Yn+1 = y
and to construct a valid p-value based on the empirical quantiles of a suitable score function
that is evaluated for the sample (Xi, Yi), . . . , (Xn, Yn), (Xn+1, y).

Besides marginal coverage (1), a more pertinent but also more ambitious and harder to
achieve target is to require guaranteed coverage for each new instance rather than average
coverage as conveyed by (1), i.e., to satisfy the conditional validity criterion

P(Yn+1 ∈ Cα(Xn+1)|Xn+1) ≥ 1− α. (2)

The left-hand side of equation (2) represents coverage conditional on the predictor Xn+1,
while the marginal coverage (1) is defined by taking an additional expectation over Xn+1.
In many real-world applications, conditional validity is the more satisfactory criterion since
often one aims at predictions for a specific predictor level Xn+1, and averaging across all
potential values of Xn+1 provides a lesser guarantee if one has Xn+1 in hand and is interested
in prediction at this specific value of the predictor. However, conditional validity is hard
to achieve and requires strong assumptions for the distribution of (X, Y ) (Vovk, 2012; Lei
and Wasserman, 2014; Foygel Barber et al., 2021). A commonly adopted alternative is
asymptotic conditional validity (Lei et al., 2018; Chernozhukov et al., 2021), i.e.,

P(Yn+1 ∈ Cα(Xn+1)|Xn+1) ≥ 1− α + oP (1). (3)

A key feature of conformal inference is that the marginal coverage level (1) is always
guaranteed as long as the score function meets certain symmetry conditions (Lei et al.,
2018). However, the choice of the conformity score influences the size of the prediction
sets and a well chosen score yields smaller prediction sets. In particular, Chernozhukov
et al. (2021) utilized an adjusted conditional distribution function as conformity score and
achieved an optimal prediction interval. However, their approach requires the optimization of
a loss function involving the conditional quantile of Y |X, which becomes rather complicated
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when Y |X is not unimodal. It is also worth noting that the optimality in Chernozhukov
et al. (2021) specifically concerns prediction sets that comprise a single interval. In cases
with bimodal conditional distributions, prediction sets featuring a union of distinct intervals
are expected to be more efficient than those featuring a single interval. This observation
motivated the adoption by Izbicki et al. (2022) of the conditional density as conformity
score, and it was demonstrated that the resulting HPD-split conformal prediction sets have
the smallest Lebesgue measure asymptotically.

One method to achieve conditional coverage is to partition the sample space X into
distinct bins. For a new data point Xn+1, the model is fitted and conformity scores are eval-
uated solely within the sub-region containing Xn+1 (Lei and Wasserman, 2014; Izbicki et al.,
2022). These approaches rely on the partitioning technique and specifically on the choice of
tuning of parameters such as the number of bins. A general principle is to seek a conformity
score that is approximately independent of X. The basic idea is straightforward: For any
random variable X with a distribution function F , the transformed variable F (X) follows
a uniform distribution on (0, 1), independently of X. Building on this idea, Chernozhukov
et al. (2021) introduced the conditional cumulative distribution of Y |X as conformity score
and Izbicki et al. (2022) proposed the conditional density of Y |X as score function.

Extending the scope of previous models for conformal prediction, we consider here a
setting where the Yi are complex data objects that are situated in a general metric space
M and the Xi are Euclidean predictors. Object data residing in metric spaces paired with
Euclidean predictors have found increasing interest in modern data analysis and various
statistical approaches for analyzing such data have been developed over the last years. Sta-
tistical models for regression scenarios with object responses and Euclidean predictors have
been studied for various scenarios, including responses located on a Riemannian manifold,
which can be locally approximated by linear spaces (Chang, 1989; Fisher et al., 1993; Yuan
et al., 2012; Fletcher, 2013; Cornea et al., 2017), responses that are distributions located
in the Wasserstein space (Chen et al., 2023; Zhu and Müller, 2023) and also for responses
in general metric spaces (Petersen and Müller, 2019; Lin and Müller, 2021). These pre-
vious studies either implicitly or explicitly developed models for object regression through
implementations of conditional Fréchet means, thus focusing on the mean response.

For real-world data analysis, understanding the distribution of the responses given a
covariate level is as important as quantifying the behavior of conditional means or Fréchet
means when covariates vary. For example, regression models that only target conditional
means are of little use when the underlying conditional distribution of a Euclidean response
is not naturally centered around a single value, for example if it is bimodal. We extend
the conformal framework to a new realm by introducing a conformity score that produces
prediction sets of reasonably small size for all covariate levels, is sufficiently flexible to adapt
to various response distributions, is efficient and, importantly, is easily computable for all
types of responses that are situated in various non-Euclidean metric spaces.

Mapping object-valued data to linear spaces such as tangent spaces for the case of ran-
dom objects situated on Riemannian manifolds is a familiar strategy to circumvent the
absence of linear operations in metric spaces. However, available transformations are limited
to responses that are situated in distributional and Riemannian spaces and do not cover
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other metric spaces. Another major limitation is that these linearizing maps are either
metric-distorting or not bijective. In the latter case inverse maps that are necessary for the
construction of prediction sets do not exist; various ad hoc work-arounds have been pro-
posed, none of which is entirely satisfactory (Petersen and Müller, 2016; Bigot et al., 2017;
Chen et al., 2023). More recently, new methods that operate intrinsically and do not rely on
mapping to a linear space have been considered. These are more promising as they directly
address the challenges of working within the non-Euclidean geometry of the response space
(Dubey and Müller, 2020; Zhu and Müller, 2023). We adopt here such an intrinsic approach
by adopting distance profiles (Dubey et al., 2024) for the proposed conformal inference. Dis-
tance profiles characterize the distributions of the distances of each element to a random
object in the metric space. Distance profiles are determined by both the metric of the object
space and its underlying probability measure and they characterize this measure if the metric
is of strong negative type. Distance profiles correspond to one-dimensional distributions in-
dexed by the elements ω of the metric space and form a well-defined stochastic process on the
metric space. For the proposed extension of conformal inference, we introduce conditional
distance profiles Fω|x, which characterize the inherent conditional distribution Y |X = x.

Statistical inference for object-valued data not only suffers from the absence of linear
operations but also from the challenge that one does not have density functions, so that
the density-based methods of Chernozhukov et al. (2021); Izbicki et al. (2022) are not fea-
sible anymore. Note that as in the unconditional case {Fω|x : ω ∈ M} is a family of
one-dimensional distributions indexed by ω ∈ M and FY |X=x is a random measure when
considering a random element Y in the response space. Then the expected value of the
1-Wasserstein distance between FY |X=x and Fω|X=x characterizes the average transport cost
of moving from FY |X=x to Fω|X=x and this motivates to employ conditional profile average
transport costs (CPCs) to quantify the compatibility of a given element ω ∈ M with the
conditional distribution of Y |X = x. The heuristic is that less compatible elements should
not be included in conditional prediction sets. Thus conditional profile costs serve as proxies
for the unavailable conditional density function in general metric spaces and provide the
starting point to arrive at conformal inference for object data by employing local linear esti-
mators for both conditional distance profiles and conditional profile average transport costs.
We derive uniform convergence rates, providing a solid theoretical foundation and show that
these rates attain the optimal one-dimensional kernel smoothing rate when the metric space
where responses reside has a polynomial covering number.

Employing this approach for conformal prediction leads to model-free statistical infer-
ence for object-valued responses coupled with Euclidean predictors when using a conditional
profile score as conformity score, which we introduce here and that is defined as the dis-
tribution of conditional profile average transport costs. We then use the split conformal
algorithm to derive prediction sets for object responses and show that these prediction sets
lead to asymptotic conditional validity under mild assumptions. Conditional validity is also
demonstrated via numerical experiments with synthetic data for various metric spaces. Even
for the special Euclidean case where the responses are scalars, the proposed method consis-
tently outperforms the HPD split approach (Izbicki et al., 2022) in both coverage levels and
lengths of prediction sets for various settings. When dealing with multivariate predictors,
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local linear smoothing becomes increasingly problematic due to the curse of dimensionality.
For this case we therefore replace local linear smoothing by single index Fréchet regression
(Bhattacharjee and Müller, 2023), where one first obtains an estimate of a direction pa-
rameter and then projects the multivariate predictor onto this direction to obtain a single
index predictor. Under mild assumptions on the consistency of the direction parameter the
asymptotic conditional validity of the proposed conformity score remains valid.

To summarize, the main contributions of this paper are as follows. First, we introduce
conditional distance profiles for random objects paired with Euclidean predictors. Second,
we propose a novel conditional profile average transport cost and demonstrate its utility for
statistical inference in general metric spaces. Third, we introduce the conditional profiles
score, which is a new conformity score for general object responses situated in general metric
spaces and paired with Euclidean predictors. Fourth, we show that this score achieves
asymptotic conditional coverage under mild assumptions. Fifth, we develop a theoretical
framework to establish uniform convergence rates for the local linear estimator involving
indicator functions defined on metric spaces. Sixth, the efficiency of the conditional profile
score is illustrated through comprehensive simulations and data applications across various
metric spaces. Even for the classical case of scalar responses in R the proposed conditional
profile score outperforms the HPD-score of Izbicki et al. (2022) in terms of both coverage
levels and sizes of prediction sets. Data illustrations include networks for New York taxi
trips and to compositional data reflecting energy usage by U.S. states as responses.

The paper is organized as follows. In Section 2, we introduce conditional distance profiles
and conditional profile average transport costs. The main methods are presented in Section
3, including estimation procedures and the split conformal algorithm. Section 4 contains the
main theoretical results; proofs and additional results can be found in the Supplement. The
multivariate predictor case is discussed in Section 5. Numerical results for simulated data
are presented in Section 6, and data applications in Section 7.

2 Conditional distance profiles

In what follows, we use An = Op(Bn) to denote P(An ≤ MBn) ≥ 1 − ϵ and An = op(Bn)
for P(An ≤ ϵBn) → 0 as n → ∞ for each ϵ > 0 and a positive constant M = M(ϵ). A non-
random sequence an is said to be O(1) if it is bounded, and for each non-random sequence
bn, bn = O(an) stands for bn/an = O(1) and bn = o(an) stands for bn/an → 0. The relation
an ≲ bn indicates a ≤ const · b for large n, and the relation ≳ is defined analogously. We
write an ≍ bn if an ≲ bn and bn ≲ an. For a ∈ R, we use ⌊a⌋ to denote the largest integer
smaller or equal to a. We write L2(D) := {f : D 7→ R :

∫
D f 2(x)dx < ∞} for the space of

square-integrable functions on D, ∥f∥22 :=
∫
D f(s)2ds, and ∥f∥∞ := sups∈D |f(s)|.

Consider a random pair Z = (X, Y ) ∈ X ×M, where X is a compact subset of Rd and
M is a totally bounded, separable metric space with the associated distance function d(·, ·).
Given a probability space (Ω,O,P), where O represents the Borel σ-algebra on the domain
Ω and P is a probability measure, the random pair Z can be described as a measurable
mapping Z : Ω → Rd × M. The joint law of (X, Y ) is represented by PZ , such that
PZ(A) = P(s ∈ Ω : Z(s) ∈ A) for any Borel measurable set A ⊂ Rd × M. We denote
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the marginal laws of X and Y as PX and PY , respectively. We also assume the conditional
probability measure PY |x of Y given X = x exists, where Y is the object response and X
a Euclidean predictor. We aim at inference for Y given X, first focusing on the case of a
one-dimensional predictor where d = 1 in Section 3, while multivariate predictors are studied
in Section 5.

For any x ∈ X and ω ∈ M, let Fω|x represent the cumulative distribution function (CDF)
of the distance between ω and the response Y , conditional on X = x and with respect to
PZ . We refer to the Fω|x as conditional distance profiles,

Fω|x(t) = P(d(ω, Y ) ≤ t|X = x), for all t ∈ R+. (4)

These conditional distance profiles can be seen as extensions of the previously introduced
distance profiles Fω(t) = P(d(ω, Y ) ≤ t) (Dubey et al., 2024) and related concepts (Wang
et al., 2023); they serve to indicate the centrality of an element ω; if ω is centrally located
given X = x, its corresponding profile Fω|x(t) will have relatively larger values near t = 0
compared to the profiles of less centrally located elements ω ∈ M.

We may view Fω|x(t) as an element in the Wasserstein space of distributions with positive
domain,

W :=

{
µ ∈ P(R+) :

∫
R+

x2dµ(x) < ∞
}
,

where P(R+) is the set of all probability measures on R+, equipped with the p-Wasserstein
metric dW,p(·, ·), which for µ, ν ∈ W is defined as

dW,p(µ, ν) := inf

{(∫
R+×R+

|x1 − x2|pdΓ(x1, x2)

)1/p

: Γ ∈ Γ(µ, ν)

}
for p > 0, (5)

where Γ(µ, ν) is the set of joint probability measures on R+ ×R+ with µ and ν as marginal
measures. The Wasserstein space (W , dW,p) is a separable and complete metric space (Am-
brosio et al., 2008; Villani et al., 2009). The emerging field of distributional data analysis
frequently utilizes the Wasserstein metric for one-dimensional distributions (Petersen and
Müller, 2016; Petersen et al., 2022; Chen et al., 2023). We write F−1(u) = inf{x ∈ R :
F (x) ≥ u} for u ∈ (0, 1) to represent quantile functions and consider both Fω|x, F

−1
ω|x as

representations of the probability measure µω|x.
Given X = x, the conditional distance profile FY |x can be regarded as a random element

of W , since it is indexed by the random element Y ∈ M. For any ω ∈ M, if Fω|x is absolutely
continuous with respect to the Lebesgue measure, the optimal transport map F−1

Y |x ◦ Fω|x is
the push-forward map from Fω|x to FY |x. The integral

dW,1(FY |x, Fω|x) =

∫
R+

∣∣∣F−1
Y |x ◦ Fω|x(u)− u

∣∣∣ dFω|x(u)

represents the 1-Wasserstein distance between Fω|x and FY |x, and quantifies the amount of
mass that needs to be moved from Fω|x to arrive at FY |x, i.e., the transport cost. The
connection between this transport cost and the conditional distance profiles is as follows.
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Figure 1: Illustration of the proposed profile average transport costs for data points generated
for various metric spaces. The transition from low to high CPCs (6) is indicated by the color
gradient from blue to red, where red indicates high values of profile average transport costs,
while blue indicates low values. The left panel shows data in the tree space T3 with the BHV
metric; each axis represents a distinct tree topology, and the position on the axis reflects the
length of the interior edge. The middle panel shows data points that follow a distribution
on S2, which is characterized by two modes centered at µ1 = (1, 0, 0) and µ2 = (0, 1, 0), each
with equal probability 0.5. The data points are generated from the exponential map at µk,
applied to a random vector Vk. Here V1 = (0, ϵ1, ϵ2) and V2 = ϵ3, 0, ϵ4), where ϵ1, . . . , ϵ4 are
r.v.s drawn from N (0, 0.2). The right panel refers to data from the 2-Wasserstein space.
Each curve represents the density function of a normal distribution N (µ, σ)), where µ and
σ are drawn from uniform distributions Unif(−0.8, 0.8) and Unif(0.25, 0.75).

Proposition 1. For all x1, x2 ∈ X and ω1, ω2 ∈ M, if Fω1|x1(u) or Fω2|x2(u) is
continuous in u,∫ 1

0

∣∣∣F−1
ω1|x1

(u)− F−1
ω2|x2

(u)
∣∣∣ du =

∫
R+

∣∣Fω1|x1(u)− Fω2|x2(u)
∣∣ du.

When the domain of the two cumulative distribution functions (CDFs) F and G is [0, 1],

the equality
∫ 1

0
|F (u)−G(u)|du =

∫ 1

0
|F−1(u)−G−1(u)|du is straightforward by the Fubini

theorem. However, it is less obvious when this does not hold, and the proof of Proposition 1
utilizes the definition of conditional distance profiles, a change of variables, and the Fubini
Theorem; details are in the supplement. Under the assumption that Fω2|x2(u) is continuous,
for the 1-Wasserstein distance, by Proposition 1,

dW,1(FY |x, Fω|x) =

∫ 1

0

∣∣∣F−1
Y |x(u)− F−1

ω|x(u)
∣∣∣ du =

∫ ∞

0

∣∣FY |x(u)− Fω|x(u)
∣∣ du,

and this motivates the concept of conditional profile average transport cost (CPC),

C(ω|x) = E
[∫

R+

∣∣Fω|X(t)− FY |X(t)
∣∣ dt ∣∣∣ X = x

]
. (6)
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Figure 2: Distance profiles for normal and mixture normal distributions of M = R. The
underlying distribution is normal N (3, 1) for the left panel and a mixture of normals
0.5N (−3, 1) + 0.5N (3, 1) for the right panel. Black, red, and blue lines represent the es-
timated distance profiles at ω = 3, 0,−3, respectively. Arrows indicate the direction of
transport of distance profiles, moving from the most central to the outermost point as de-
termined by H(ω|x0). In the right panel, the black and blue lines overlap for the most part.

A low value of C(ω|x) means that the average transport cost for moving from Fω|x to FY |x
is relatively small, indicating that ω has a high degree of centrality within the distribution
Y |X = x. Figure 1 illustrates the proposed CPCs, conditional on a fixed X = x, for three
metric spaces: The tree space T3 with the BHV metric, the sphere S2 with the geodesic
metric and the 2-Wasserstein space W2 of distributions.

Here CPCs are based on conditional expectations, unlike previously introduced uncondi-
tional transports and ranks (Dubey et al., 2024) that can also serve as a centrality measure.
These transports and derived ranks can also be defined conditionally,

H(ω|x) = E
[∫ 1

0

{
F−1
Y |X(u)− F−1

ω|X(u)
}
du
∣∣∣ X = x

]
. (7)

Given X = x0, for a distribution Y |X = x0 that is symmetric around a central point
ω0, the integral in Equation (7) with ω = ω0 can be expected to be relatively large and
H(ω|x0) to decrease as the distance d(ω0, ω) increases. The left panel of Figure 2 displays
estimators for the distance profiles F3|x0(t), F0|x0(t), and F−3|x0(t), corresponding to the
conditional distribution Y |X = x0 ∼ N (3, 1). In this scenario, ω0 = 3 represents the most
central point, with mass transferring from Fω0|x0(t) to Fω|x0(t) from left to right for all t > 0
and ω ̸= ω0. However, when the underlying distribution of Y |X = x0 is not centered
around a single point, the most central point as determined by Equation (7) may not always
be the most pertinent choice. For instance, consider a mixture of normal distributions
Y |X = x0 ∼ 0.5N (−3, 1) + 0.5N (3, 1); the right panel of Figure 2 illustrates estimators for
distance profiles F3|x0(t), F0|x0(t), and F−3|x0(t). By symmetry, F3|x0(t) = F−3|x0(t) for all
t > 0. Notably, mass transfers from F0|x0(t) to F3|x0(t) (or F−3|x0(t)) proceed from right to
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Figure 3: Illustration of conformal sets using conditional profile scores based on the data
from Figure 1. The blue points (curves) represent the training data falling within the 90%
prediction set, while the red points (curves) denote those that fall outside the 90% prediction
set. In the left and middle panels, the estimated prediction sets are highlighted in green.

left for t ∈ (0, 3) and from left to right for t ∈ (3,∞). Since the centrality measure H(ω|x0)
reflects the difference between rightward and leftward moving mass, rather than the total
transport cost, at the global center of the data, ω0 = 0, positioned between the two modes,
the integral in Equation (7) reaches its maximum and decreases as ω moves away from ω0.
However, in bimodal settings, this global center is less pertinent and statistical inference
that adapts to the mixture distribution is preferable. The proposed average transport cost
criterion performs much better in bimodal cases, as illustrated in Figure 4 of Section 3.1
below.

3 Conformal inference for object data

3.1 Conformal prediction with profile transport costs

Given i.i.d. observations (Xi, Yi) ∈ X ×M for i = 1, · · · , n, we aim to predict Yn+1 using the
information from a future predictor Xn+1. In contrast to standard regression methods that
correspond to versions of Fréchet regression in the scenario with random object responses and
focus on the conditional Fréchet mean, our goal is to construct a prediction set Ĉα(Xn+1)
that ensures asymptotic conditional validity (3) for a specified miscoverage level α. The
collection of prediction sets Ĉα := {Ĉα(x) : x ∈ X} is referred to as the α-level prediction
set.

The selection of a good score function is crucial for the effectiveness of conformal inference
methods. A well-chosen score not only yields a smaller prediction set but also achieves
asymptotic conditional validity. Note that for any random variable X with a distribution
function F , the transformed variable F (X) follows a uniform distribution over the interval
(0, 1) and is independent of X. Building on this, Chernozhukov et al. (2021) proposed
F (Y,X) as the conformity score, where F (y, x) = P(Y ≤ y|X = x) represents the conditional
CDF of Y for a given X = x. Similarly, Izbicki et al. (2022) proposed the HPD-split score
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Figure 4: Conformal prediction sets generated using transport ranks (Dubey et al., 2024)
as conformity score (left panel) and the proposed conditional profile scores defined in
Equation (8) (right panel), for M = R2. The training data are from a 2-dimensional
Gaussian mixture, 0.5N (µ1,Σ1) + 0.5N (µ2,Σ2), where µ1 = (2, 2)⊤, µ2 = (−2,−2)⊤,
Σ1 = (0.5,−0.3;−0.3, 0.3) and Σ1 = (0.5, 0; 0, 0.3). The data in the training set are blue,
and the respective 90% conformal sets are shaded in green.

H(f(Y |X)|X), where f(y|x) is the conditional density function of Y given X = x and
H(z|x) = P(f(Y |X) ≤ z|X = x) denotes the conditional CDF of f(Y |X) for a given X = x.

As discussed in Section 2, the conditional profile average transport costs (6) can be
viewed as a centrality measure relating to the conditional probability measure on the object
space. It is then straightforward to use the profile average transport costs as conformity
score. However, this approach does not guarantee conditional coverage in general. Instead,
we introduce the conditional profile score (CPS) as conformity score for random objects.
The CPS corresponds to the conditional distribution of profile average transport costs,

S(z|x) := P(C(Y |X) ≤ z|X = x). (8)

This choice is motivated by the example in Figure 3, which illustrates the conformal sets
derived using the proposed conditional profile average transport costs (8) as conformity
scores for the data in Figure 1, conditional on a specific X = x. Note that the generated
conformal prediction sets aptly provide conformal inference for both unimodal and bimodal
structures across different metric spaces.

An alternative is to use conditional transport ranks (Dubey et al., 2024) as conformity
score. Based on (7), unconditional transport ranks are obtained as

R(ω) = expit

(
E
[∫ 1

0

{F−1
Y (u)− F−1

ω (u)} du
])

, (9)

where expit(x) = ex

1+ex
. The transport ranks R(ω) quantify the aggregated preference of ω

in relation to the data distribution, where a larger R(ω) indicates that ω is more centrally
located within the distribution. However, as illustrated in Figure 2, R(ω) is less suited
to serve as a conformity score, which is evident when the underlying distribution is not
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centered around a single element. In the example in Figure 4, the conformal set determined
by transport ranks as conformity scores is centered at the global center of the data, It is seen
to be quite suboptimal for a 2-dimensional mixture Gaussian distribution. In contrast, the
proposed CPS successfully distinguishes the two groups and leads to smaller prediction sets.

3.2 Estimation and split conformal algoritm

Up to now, conditional distance profiles, conditional profile average transport costs and
conditional profile scores have been introduced as population concepts. In this subsection, we
discuss estimates of these quantities using independent random samples {(Xi, Yi)}ni=1 drawn
from (X, Y ). These estimates will then be combined with the split conformal algorithm to
arrive at conformal prediction sets.

As we aim at prediction sets for Y conditional on X = x, it makes sense to primarily
use those (Xi, Yi) for which Xi is close to x when aiming at conditional estimates. This
motivates the adoption of local linear smoothers (Fan and Gijbels, 1992; Fan, 1993) to
obtain conditional empirical profiles and estimates of Fω|x(t) for each x ∈ X , ω ∈ M, and
t ∈ R+,

F̂ω|x(t) = argmin
β0∈R

1

nhn

n∑
j=1

{Lj(ω, t)− β0 − β1(Xj − x)}2K
(
Xj − x

hn

)
, (10)

where Lj(ω, t) = 1{d(ω,Yj)≤t}, K is a symmetric and continuous density kernel on [−1, 1]
of bounded variation and hn is a sequence of bandwidths. Subsequently, to estimate the
conditional profile average transport costs as defined in (6), we utilize local linear smoothing
for (Xj, Jj(ω, x)), where Jj(ω, x) =

∫
|F̂ω|x(t)− F̂Yj |Xj

(t)|dt with estimated profiles F̂ω|x,

Ĉ(ω|x) = argmin
β0∈R

1

nhn

n∑
j=1

{Jj(ω, x)− β0 − β1(Xj − x)}2K
(
Xj − x

hn

)
. (11)

The estimated conditional profile scores are then

Ŝ(z|x) = argmin
β0∈R

1

nhn

n∑
j=1

{Hj(z)− β0 − β1(Xj − x)}2K
(
Xj − x

hn

)
, (12)

where Hj(z) = 1{Ĉ(Yj |Xj)≤z} is the empirical estimate of P(C(Y |X) < z).
The split conformal method has become popular tool, due to its computational efficiency,

and the benefit of needing to train the model only once (Lei et al., 2018; Chernozhukov
et al., 2021; Izbicki et al., 2022). Its underlying principle is sample splitting, which ensures
independence between the estimators and subsequent statistics. Sample splitting has a long
history and it has been adopted for various problems beyond conformal inference, including
variable selection in high dimensions (Wasserman and Roeder, 2009; Meinshausen et al.,
2009), change point detection (Zou et al., 2020), testing and false discovery rate control (Du
et al., 2023) and functional linear regression (Zhou et al., 2023). An outline of the algorithm
for implementing the split conformal method with the CPS is as follows.
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Algorithm 1 Split conformal algorithm for object valued data

Input: Data (Xi, Yi), i = 1, . . . , n; level α and a new data point Xn+1.

1: Randomly split {(Xi, Yi)}ni=1 into training set Dtra and calibration set Dcal.

2: Get F̂ω|x, Ĉ(ω|x) and Ŝ(z|x) based on the training set Dtra by (10), (11) and (12).

3: Evaluate the conformity scores {Ŝi = Ŝ(Ĉ(Yi|Xi)|Xi)} for (Xi, Yi) in the calibration set
Dcal.

4: Compute Q̂α, the (1− α)(1 + 1/|Dcal|) empirical quantile of {Ŝi}.
Output: Return the (1− α) prediction set Ĉα(Xn+1) = {y ∈ M : Ŝ(Ĉ(y|Xi)|Xi) ≤ Q̂α}.

In Algorithm 1, output is the prediction set Ĉα, which generally does not have an ana-
lytical form. Therefore, it is necessary to determine it over a finite grid ML = {yl}Ll=1 over
M. For example, if M = S2, one can first generate mesh grids θL := {k/π, k = 1, 2, . . . , L}
and ϕL := {k/(2π), k = 1, 2, . . . , L}. Then M = {(x, y, z) : x = sin(θl1) cos(ϕl2), y =
sin(θl1) sin(ϕl2), z = cos(θl1), 1 ≤ l1, l2 ≤ L}. The prediction sets then become Ĉα(Xn+1) =

{yi ∈ ML : Ŝ(Ĉ(yi|Xi)|Xi) ≥ Q̂α}. The main computing cost is to obtain the estimates

F̂ω|x, Ĉ(ω|x), and Ŝ(z|x). Thanks to the split conformal method, one needs to compute
these estimates only once. With the score function estimates in hand, the evaluations of the
scores of the yi are computationally inexpensive.

4 Theoretical results

To obtain convergence rates of the estimates F̂ω|x(t), Ĉ(ω|x), and Ŝ(z|x) to their population
targets, a key result is the uniform convergence of the following process, which is indexed
by f ∈ F and x ∈ X (Fan and Gijbels, 1992; Fan, 1993; Hall and Marron, 1997; Choi and
Hall, 1998):

An,r(x, f) =
n∑

j=1

f(Xj, Yj)K

(
Xj − x

hn

)
(Xj − x)r, r = 0, 1, 2, (13)

where F is a generic class of functions from X ×M to R. Let

F1 = {1{d(w,y)≤t} : ω ∈ M, t ∈ R+} (14)

be the class of indicator functions indexed by ω and t. By considering f0(x, y) = 1 for all
x ∈ X and y ∈ M, and fω,t(x, y) = 1{d(w,y)≤t} ∈ F1 for every x ∈ X , F̂ω|x as defined in (10)
has the form:

F̂ω|x(t) =
An,2(x, f0)An,0(x, fω,t)− An,1(x, f0)An,1(x, fω,t)

An,2(x, f0)An,0(x, f0)− A2
n,1(x, f0)

.

Analogous expressions for Ĉ(ω|x) and Ŝ(z|x) can be obtained by considering appropriate
function classes F in Equation (13).

To derive the convergence rate and establish the asymptotic properties of An,r(x, f), we
require the following regularity assumptions.
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A1 The marginal distribution of X has a continuous density function fX , which satisfies
infx∈X fX(x) > c1 and supx∈X fX(x) < c2 for strict positive constants c1 and c2.

A2 The bandwidth sequence {hn}n≥1 satisfies nhn/ log n → ∞ and | log hn|/ log log n →
∞ as n → ∞.

A3 The function class F is bounded, i.e., there exists a MF > 0 such that

sup
f∈F

sup
y∈M

sup
x∈X

|f(x, y)| ≤ MF < ∞.

Assumption (A1) is a mild condition widely adopted in kernel smoothing, while assumption
(A2) relates to a basic requirement for the bandwidth hn that is necessary for consistency.
Assumption (A3) imposes a boundedness constraint on the function class F that is satisfied
by the function classes that we consider later. Write N(ϵ,F , d) for the minimal number of
balls {g : d(g, f) < ϵ} with radius ϵ needed to cover F . For a function class F that contains
functions mapping from X ×M to R and has a finite-valued envelope function Fe, we define
the uniform covering number N (ϵ,F) of F as N (ϵ,F) := supQ N(ϵ

√
EQ[F 2

e ],F , dQ), where
the supremum is taken over all probability measures Q on X×M such that 0 < EQ[F

2
e ] < ∞.

Here dQ is the L2
Q metric, where for any two functions f, g ∈ F , d2Q(f, g) =

∫
{f(x) −

g(x)}2 dQ(x).
The following lemma establishes the uniform convergence rate for the process An,r(x, f).

Lemma 1. Under Assumptions (A1) to (A3), with probability 1, there exists an abso-
lute constant C1, such that for r = 0, 1, 2,

a). If N (ϵ,F) ≲ ϵ−v for a constant v > 0,

lim
n→∞

supf∈F supx∈X |An,r(x, f)− EAn,r(x, f)|√
2nhn |log hn|

≤ C1. (15)

b). If logN (ϵ,F) ≲ ϵ−v for a constant 0 < v < 2,

lim
n→∞

supf∈F supx∈X |An,r(x, f)− EAn,r(x, f)|√
2nh

1−v/2
n

≤ C1. (16)

Lemma 1 establishes the uniform convergence rate of the process An,r. It is the key tool
for obtaining uniform convergence rates for the local linear estimator with object data; as
for all other results, the proof is in the Supplement. The uniform covering number N (ϵ,F)
characterizes the complexity of the function class F . When F has a polynomial uniform
covering number, equation (15) indicates that An,r typically achieves a one-dimensional
kernel smoothing rate. However, for a relatively complex F where logN (ϵ,F) ≲ ϵ−v for
a constant 0 < v < 2, the process An,r has a slower uniform convergence rate. Our primary
focus is on the function class F1 = {1{d(w,y)≤t} : ω ∈ M, t ∈ R+}. Applying Lemma 1 with
F1, we obtain the uniform convergence rate for conditional distance profiles. To proceed,
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we require additional assumptions on the continuity of Fω|x(t). The following assumption
(A4) requires that the distance profiles Fω|x(t) are continuous in t and have bounded density
functions, and Assumption (A5) stipulates that Fω|x(t) is Lipschitz continuous in both x and
ω.

A4 For every ω ∈ M and x ∈ X , the profile function Fω|x is absolutely continuous
with continuous density fω|x and there exist strict positive constants c3 and c4 such that
inft∈support(fω|x) fω|x(t) ≥ c3 and supt∈R fω|x(t) ≤ c4 < ∞.

A5 For every ω ∈ M and t ∈ R+, Fω|x(t) is second order differentiable and has bounded
second order derivatives with respect to x. Moreover, there exists a constant L′ such that
|Fω1|x(t)− Fω2|x(t)| ≤ L′d(ω1, ω2) for all x ∈ X , t ∈ R+ and ω1, ω2 ∈ M.

Theorem 1. Under Assumptions (A1) - (A5), for the profile function estimator F̂w|x
defined by (10),

a). If N (ϵ,F1) ≲ ϵ−v for a constant v > 0,

sup
ω∈M

sup
x∈X

sup
t∈R+

∣∣∣F̂w|x(t)− Fω|x(t)
∣∣∣ = O

√ | log hn|+ log n

nhn

+ h2
n

 a.s..

b). If logN (ϵ,F1) ≲ ϵ−v for a constant 0 < v < 2,

sup
ω∈M

sup
x∈X

sup
t∈R+

∣∣∣F̂w|x(t)− Fω|x(t)
∣∣∣ = O

(√
1

nh
1+v/2
n

+ h2
n

)
a.s..

It is important to note that the convergence rates in Theorem 1 are uniform not just
over x ∈ X , but also over ω ∈ M and t ≥ 0. When choosing an asymptotically optimal
bandwidth sequence to balance the bias and stochastic error terms and if F1 has a polynomial
uniform covering number, Corollary 1 below implies that F̂ω|x converges to Fω|x at a typical
one-dimensional kernel smoothing rate. For each x and ω, the empirical estimates of the
distributions corresponding to distance profiles in the unconditional case can be estimated
at a parametric rate (Dubey et al., 2024). However, when applying the kernel smoother to
the predictor space X , as needed to obtain conditional distance profiles, achieving a root-n
rate using data falling into a local window is not feasible (Hall et al., 1999). The achievable
rate for the conditional case is as follows.

Corollary 1. Under Assumptions (A1) - (A5), if N (ϵ,F1) ≲ ϵ−v for a constant
v > 0 and hn ≍ (n/ log n)−1/5

sup
ω∈M

sup
x∈X

sup
t∈R+

∣∣∣F̂w|x(t)− Fω|x(t)
∣∣∣ = O

((
n

log n

)− 2
5

)
a.s..
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For a complex metric space M where logN (ϵ,F1) ≲ ϵ−v with 0 < v < 2, the uniform
convergence rate of F̂ω|x becomes

sup
ω∈M

sup
x∈X

sup
t∈R+

∣∣∣F̂ω|x(t)− Fω|x(t)
∣∣∣ = O

(
n− 4

10+v

)
,

which falls within the range (n−2/5, n−1/3). This rate is slower than the one-dimensional
kernel smoothing rate but faster than the two-dimensional kernel smoothing rate.

The uniform covering number of the function class F1, containing solely indicator func-
tions, is determined by the geometric properties of the object space M. The following result
provides a sufficient condition for F1 to be a VC-subgraph class with polynomial uniform
covering number, leveraging the geometric structure of M and the properties of the indicator
functions within F1. A more detailed description of VC (Vapnik-Chervonenkis) dimension
and VC class can be found in the Supplement S1.

Lemma 2. Let F1 = {1{d(w,x)≤t}} be the function class indexed by ω ∈ M and t ∈ R.
If {x : d(ω, x) ≤ t, ω ∈ M, t ∈ R+} forms a VC-class in M, then F1 is a VC-subgraph
class.

Many commonly used metric spaces fulfill the condition stated in Lemma 2. This includes
the Euclidean space, the sphere Sp and the 2-Wasserstein space for distributions that are
absolutely continuous with respect to the Lebesgue measure defined on a compact interval.
This implies that for these metric spaces, the polynomial uniform covering assumption in
Theorem 1 a) is satisfied and the convergence rate of F̂ω|x(t) is (n/ log n)−2/5 uniform in
x ∈ X , ω ∈ M, and t ∈ R+, which is optimal in the minimax sense and cannot be improved.

Next, we establish the convergence of the estimated profiles average transport costs
Ĉ(ω|x) under N (ϵ,F1) ≲ ϵ−v. The convergence rate for the case logN (ϵ,F1) ≲ ϵ−v is
discussed in the supplement.

Theorem 2. Under Assumptions (A1) - (A5), for the conditional profile average
transport costs estimator Ĉ(ω|x) defined by (11),

a). If N (ϵ,F1) ≲ ϵ−v and N(ϵ,M, d) ≲ ϵ−v1 for v > 0 and v1 > 0,

sup
ω∈M

sup
x∈X

∣∣∣Ĉ(ω|x)− C(ω|x)
∣∣∣ = O

√ | log hn|+ log n

nhn

+ h2
n

 a.s..

b). If N (ϵ,F1) ≲ ϵ−v and logN(ϵ,M, d) ≲ ϵ−v1 for v > 0 and 0 < v1 < 2,

sup
ω∈M

sup
x∈X

∣∣∣Ĉ(ω|x)− C(ω|x)
∣∣∣ = O

(√
1

nh
1+v1/2
n

+ h2
n

)
a.s..

By a similar argument as in Corollary 1, one can obtain the best convergence rate when
selecting the asymptotically optimal bandwidth sequence hn. Details on this are provided
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in Supplement. Unlike profile functions, which are CDFs for which one can employ straight-
forward empirical estimates, the convergence rate of conditional profile average transport
costs is influenced not only by the function class F1 but also by the covering number of the
metric space M. When M is a compact subset of R, the number N(ϵ,M, d) is less than or
proportional to ϵ−1. The inequality logN(ϵ,M, d) ≲ ϵ−1 holds for most statistically relevant
metric spaces, such as symmetric positive definite matrices with fixed dimension (Dryden
et al., 2009; Thanwerdas and Pennec, 2023), simplex-valued objects of fixed size (Jeon and
Park, 2020; Chen and Müller, 2012), and the space of phylogenetic trees (Billera et al., 2001;
Kim et al., 2020). For the 2-Wasserstein space of distributions on a compact subset of R that
are absolutely continuous with respect to the Lebesgue measure with smooth densities, the
covering number also satisfies logN(ϵ,M, d) ≲ ϵ−1 (Gao and Wellner, 2009; Dubey et al.,
2024).

The following key result demonstrates the asymptotic conditional validity of the predic-
tion sets constructed by Algorithm 1, for which we require the following Lipschitz continuity
assumption on the conditional profile scores. This is a mild assumption that requires that
conditional scores evolve smoothly as the predictor changes.

A6 The conditional profile score S(z|x) is Lipschitz continuous in both z and x, that
is, supx∈X |S(z1|x)−S(z2|x)| ≤ LS|z1− z2| and supz∈R+ |S(z|x1)−S(z|x2)| ≤ LS|x1−x2| for
a positive constant LS. Moreover, the distribution function G(v) = P(S(C(Y |X)|X) ≤ v)
of S(C(Y |X)|X) is continuous.

Theorem 3. Under Assumptions (A1) - (A6), for the prediction set Ĉα defined by
Algorithm 1,

P
(
Yn+1 ∈ Ĉα(Xn+1) | Xn+1

)
≥ 1− α + oP (1).

5 Multivariate predictors

In the previous sections, we have established methodology and theory of the proposed con-
formal prediction method for the case of univariate predictors. For the case of multivariate
predictors we consider X ∈ X , where X is a compact subspace of Rd for a fixed d and
note that the previously proposed density- or CDF-based (Izbicki et al., 2022; Chernozhukov
et al., 2021) and kernel-based methods (Lei and Wasserman, 2014; Lei et al., 2018) to obtain
a conformity score are subject to the curse of dimensionality. To avoid this, we employ a
single index Fréchet regression approach (Bhattacharjee and Müller, 2023). Throughout this
section, we employ boldface for multivariate vectors to distinguish them from scalars.

Single index models are well established and strike a balance between more restrictive
linear models and fully nonparametric models that are hard to interpret and subject to the
curse of dimensionality (Hall, 1989; Ichimura, 1993). They provide dimension reduction and
thereby achieve convergence rates comparable to one-dimensional nonparametric regression,
thus avoiding the curse of dimensionality. Various extensions of single index models have
been proposed over the years (Zhou and He, 2008; Zhu and Zhu, 2009; Chen et al., 2011;
Ferraty et al., 2011; Jiang and Wang, 2011; Kuchibhotla and Patra, 2020) and more recently

16



this approach has been extended to to accommodate object responses (Bhattacharjee and
Müller, 2023). For an object response Y ∈ M and a multivariate predictor X ∈ X , a single
index Fréchet regression model is given by

E(Y |X = x) = E(Y |X = x⊤θ0) = m(t,θ0), (17)

where θ0 is the true slope parameter, and m is the underlying regression function that
depends on the multivariate predictors X = x only through the single index t = x⊤θ0.
We can then extend the definition of conditional distance profiles, profile average transport
costs, and profile scores in Section 3 to the multivariate case through

Fm,ω|x(t) = P(d(ω, Y ) ≤ t|X⊤θ0 = x), for all t ∈ R+, (18)

Cm(ω|x) = E
[∫ 1

0

|Fm,ω|X⊤θ0(t)− Fm,Y |X⊤θ0(t)| dt | X
⊤θ0 = x

]
, (19)

and
Sm(z|x) := P(C(Y |X⊤θ0) ≤ z|X⊤θ0 = x). (20)

00 Adopting the estimation procedure of Bhattacharjee and Müller (2023), to obtain the
slope vector θ0 one needs to estimate the conditional Fréchet mean m(t,θ) for given θ by

m̂(t,θ) = argmin
ω∈M

1

n

n∑
i=1

ŝ(X⊤
i θ, t, h)d

2(Yi, ω), (21)

where

ŝ(X⊤
i θ, t, h) =

1

σ̂2
0(t,θ)

Kh(X
⊤
i θ − t){µ̂2(t,θ)− µ̂1(t,θ)(X

⊤
i θ − t)}, (22)

with

µ̂l(t,θ) =
1

n

n∑
j=1

Kh(X
⊤
j θ − t)(X⊤

j θ − t)l for l = 0, 1, 2,

and σ̂2
0(t,θ) = µ̂2(t,θ)µ̂0(t,θ)− µ̂2

1(t,θ). The parameter θ0 is then obtained by minimizing
the distance between Yi and m̂(X⊤

i θ,θ). To ensure identifiability, θ is constrained to have
unit norm and to fall into the parameter space

Θ := {θ = (θ1, . . . , θd) ∈ Rd : ∥θ∥ = 1, θ1 > 0}.

The set Xθ0 is defined as the image of x⊤θ0, which is a compact subset of R due to the
compactness of X . Following Bhattacharjee and Müller (2023), we partition Xθ into M
equal-width, non-overlapping bins {B1, . . . , BM} and denote the representative data points
in the lth bin as (X̃l, Ỹl), which satisfy X̃⊤

l θ ∈ Bl for l = 1, . . . ,M . The choice of the optimal
M depends on the metric space M. For common metric spaces, such as the 2-Wasserstein
space, M should be on the order of nγ, where 0 < γ < 1/3. The final estimator for the true
slope θ0 is then

θ̂ = argmin
θ∈Θ

1

M

M∑
l=1

d2
(
Ỹl, m̂(X̃⊤

l θ,θ)
)
, (23)

17



where m̂(·, ·) is the estimator as defined in (21). We then implement the estimation procedure
in Section 3 for the data (X⊤

i θ̂, Yi) and construct the prediction set Ĉα by Algorithm 1. The
local linear estimator for Fm,ω|x is given by

F̂m,ω|x(t) = argmin
β0∈R

1

nhn

n∑
j=1

{
Lj(ω, t)− β0 − β1(X

⊤
j θ̂ − x)

}2

K

(
X⊤

j θ̂ − x

hn

)
, (24)

where Lj(ω, t) = 1{d(ω,Yj)≤t} as before. Subsequently, the conditional profile average trans-

port costs are estimated by applying local linear smoothing for the Jm,j(ω, x) =
∫ 1

0
|F̂m,ω|x(t)−

F̂m,Yj |X⊤
j θ̂(t)| dt constructed with the estimated profiles F̂m,ω|x as responses, leading to

Ĉm(ω|x) = argmin
β0∈R

1

nhn

n∑
j=1

{
Jm,j(ω, x)− β0 − β1(X

⊤
j θ̂ − x)

}2

K

(
X⊤

j θ̂ − x

hn

)
. (25)

The estimate of the conditional profile score function then emerges as

Ŝm(z|x) = argmin
β0∈R

1

nhn

n∑
j=1

{
Hj(z)− β0 − β1(X

⊤
j θ̂ − x)

}2

K

(
X⊤

j θ̂ − x

hn

)
, (26)

where Hj(z) = 1{Ĉ(Yj |X⊤
j θ̂)≤z}.

To obtain asymptotic conditional validity, similar continuity assumptions for Fm,ω|x(t),
Cm(ω|x), and Sm(z|x) as in (A4) - (A6) are needed. Detailed assumptions (B1)-(B4) are
listed in Supplement S3.

Theorem 4. Under Assumptions (B1) – (B4) in Supplement S2, if h−1∥θ̂ − θ0∥ =
oP (1), the prediction set Ĉα obtained by Algorithm 1 with (24) to (26) satisfies

P(Yn+1 ∈ Ĉα|X⊤
n+1θ0) = 1− α + oP (1).

Theorem 4 demonstrates that the asymptotic conditional coverage is guaranteed if θ̂
is a consistent estimator of θ0. Under certain regularity assumptions (Assumptions (U1)
to (U8) in Supplement S3), Theorem 3.2 in Bhattacharjee and Müller (2023) shows that
∥θ̂ − θ0∥ = OP (M

−1/2). Therefore the assumption h−1∥θ̂ − θ0∥ = oP (1) in Theorem 4 can
be satisfied by choosing the number of bins M such that M ≳ h−2.
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6 Simulations

6.1 Univariate predictors

We illustrate the proposed method for univariate predictors with responses in various metric
spaces, including the Euclidean space R, the sphere S2, and the 2-Wasserstein space W2.
We use the conditional coverages and lengths (or sizes) of prediction sets as criteria. Unless
otherwise specified, for all settings the predictors xi are generated from Unif(−1, 1) and are
independent of the regression error ϵi in each setting.

For Euclidean responses, adopting similar settings as in Lei and Wasserman (2014) and
Izbicki et al. (2022), we consider three scenarios that include homoscedastic variability, het-
eroscedastic variability, and bimodal distributions of the responses, as illustrated in Figure
5.

• Setting 1 (Nonlinear regression with homoscedastic errors): This is a simple nonlinear
regression scenario with homoscedastic errors. The responses are generated by yi =
f(xi) + ϵi with f(x) = (x− 1)2(x+ 1) and ϵi are random samples from N (0, 0.12).

• Setting 2 (Nonlinear regression with heteroscedastic errors): The responses are gen-
erated by the same regression function as in Setting 1, but the regression errors have
different variances for xi ∈ (−1, 0) and xi ∈ (0, 1), that is, yi = f(xi) + ϵi(xi) with
f(x) = (x − 1)2(x + 1) and ϵi(x) are random samples from 1{−1≤x≤0}N (0, 0.52) +
1{0<x≤1}N (0, 0.12).

• Setting 3 (Nonlinear regression with a bimodal pattern): We also consider a bimodal
setting as considered previously in Lei and Wasserman (2014). For xi ∈ (−1, 0), the
regression function remains the same as in Setting 1 and Setting 2. For xi ∈ (0, 1),
two branches are present, each with a probability of 0.5. Formally, the responses are
generated by

yi ∼ 0.5N
(
f(xi) + g(xi), 0.1

2
)
+ 0.5N

(
f(xi)− 0.2g(xi), 0.1

2
)
,

where f(x) = (x− 1)2(x+ 1) and g(x) = 2
√
x1{x≥0}.
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Figure 5: Illustration of the settings considered for M = R: Setting 1 (nonlinear regression
with homoscedastic variability, left panel); Setting 2 (nonlinear regression with heteroscedas-
tic variability, middle panel); Setting 3 (nonlinear regression with bimodal pattern, right
panel). Blue points are the observed data for the training set; the black curves are the
underlying regression functions or the mixture regression function (in the right panel).

We first check the influence of bandwidth choice on marginal coverage level and average
length of the prediction sets. We considered sample sizes n = 500, 1000, 2000 and 200 Monte
Carlo runs for each setting. Conditional coverage was evaluated on a test set with a sample
size of 2000 with the same distribution as the training set for each setting. Marginal coverage
levels and lengths of prediction sets for Setting 1 (Nonlinear regression with homoscedastic
variability) are shown in Figure 6 and for Setting 2 (Nonlinear regression with heteroscedastic
variability) and Setting 3 (Nonlinear regression with a bimodal pattern) in Supplement S5.
One key feature of conformal inference is that the choice of conformity scores does not affect
the coverage level but does affect the size (length) of the prediction sets. This is verified in
Figure 6. Due to the bias and variance trade-off for the local linear smoother, the length of
the prediction set as a function of the bandwidth is convex. As the sample size increases, the
lengths of the conformal sets and the optimal bandwidths decrease, consistent with theory.

Next we check conditional coverage levels and lengths of the conformal prediction sets for
both conditional profile scores and the HPD-split scores proposed in Izbicki et al. (2022). The
latter is implemented using R code available at https://github.com/rizbicki/predictionBands,
using the default settings. As illustrated in the first row of Figure 7, the proposed method
consistently achieves conditional coverage across all settings. In Setting 2 (nonlinear re-
gression with heteroscedastic variability) and Setting 3 (nonlinear regression with a bimodal
pattern), where there is a change point in mean and variance at x = 0, the HPD-split shows
varying coverage levels for x ∈ (−1, 0) and x ∈ (0, 1), only achieving marginal coverage.
In contrast, conditional profile scores generally achieve conditional validity for all three set-
tings. The spike at x = 0 is caused by the change points and kernel smoothing. Moreover,
the second row of Figure 7 reveals that the proposed method results in prediction sets with
shorter lengths compared to the HPD-split in all three settings, demonstrating the efficiency
of conditional profile scores.
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Figure 6: Average marginal coverage levels (left panel) and lengths of prediction sets (right
panel) over 200 Monte Carlo runs for varying bandwidths h for Setting 1 (nonlinear regres-
sion with homoscedastic variability). The target coverage level is 90%.

Next we consider responses in metric spaces, specifically responses on the unit sphere
S2 := {p ∈ R3|p⊤p = 1} and in the 2-Wasserstein space. Note that S2 is a 2-dimensional
Riemannian manifold endowed with the geodesic distance d(p, q) = arccos(p⊤q). The tangent
space at a point p is Tp := {y ∈ R3|y⊤p = 0}. For all p ∈ S2 and v ∈ Tp, the Riemannian
exponential map that projects v onto S2 is defined by

expp v = cos(∥v∥)p+ sin(∥v∥)∥v∥−1v.

• Setting 4 (Responses in the unit sphere S2). The responses are generated by

yi = expµ(xi)
Vi(xi),

with µ(x) = (sin(πx/2), cos(πx/2), 0)⊤ and Vi = (0, 0, ϵi)
⊤, where ϵi are random sam-

ples from N (0, 0.52).

For the next setting with distributional data in the 2-Wasserstein space, we adopt addition
and scalar multiplication operations in the transport space T := {T : [0, 1] 7→ [0, 1], T (0) =
0, T (1) = 1, T is increasing} following Zhu and Müller (2023), as follows,

• Addition: T1 ⊕ T2 = T2 ◦ T1 for T1, T2 ∈ T.

• Scalar multiplication: for any |α| ≤ 1 and T ∈ T,

α⊙ T (x) :=


x+ α(T (x)− x), 0 < α ≤ 1,

x, α = 0,

x+ α (x− T−1(x)) , −1 ≤ α < 0.

For distributions defined on (0, 1) that are absolutely continuous with respect to the Lebesgue
measure, their corresponding quantile functions can be regarded as elements of T. For the 2-
Wasserstein space, we represent the random elements in W2 through their quantile functions.
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• Setting 5 (Distributional responses in the Wasserstein space W2). The responses are
yi = TrunN (f(xi), 0.5) ⊕ ϵi, where TrunN is the truncated normal distribution on
(0, 1), f(xi) = 0.8(xi − 1)2(xi + 1), and the ϵi are random distributions drawn from
Unif[−0.5, 0.5]⊙ Beta(2, 2).

The conditional validity of the proposed conditional profile scores for Setting 4 and Setting
5 is demonstrated in Figure 8. Additional simulation results, such as marginal coverage levels
and sizes of the prediction sets can be found in Supplement S5.
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Figure 7: Average conditional coverage (first row) and prediction set length (second row)
over 200 Monte Carlo runs in dependence on the level of the predictor x. The same three
settings for M = R as in Figure 5 are considered for sample size n = 2000 and target
coverage level 90%. The prediction sets are obtained by Algorithm 1; blue lines represent
results for conditional profile scores and red lines for the HPD-split scores in Izbicki et al.
(2022).

6.2 Multivariate predictors

In this subsection, we show the performance of the proposed method described in Section
5 for multivariate predictors and scalar responses. In addition to evaluating the conditional
coverage and size of the prediction set, we also examine the mean square error of the slope
parameter in the single index Fréchet regression,

MSE(θ0, θ̂) = ∥θ̂ − θ0∥2. (27)
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Figure 8: Average conditional coverage levels over 200 Monte Carlo runs for a target coverage
level at 90% for Setting 4 (left panel) and Setting 5 (right panel).

For responses we considered the same scenarios as for univariate responses and again com-
pared the proposed conditional profile scores with HPD-split scores (Izbicki et al., 2022) for
Euclidean responses across three different settings, as well as for responses located on the
unit sphere as well as distributional responses.

• Setting 6 (Multivariate predictor with homoscedastic variability): The predictors are
Xi = (xi1, xi2)

⊤ with xik independently and identically distributed ∼ Unif(−1, 1)
and θ0 = (1, 0)⊤. The responses are generated by yi = f(X⊤

i θ0) + ϵi with f(x) =
(x− 1)2(x+ 1) and the ϵi are random samples from N (0, 0.12).

• Setting 7 (Multivariate predictor with heteroscedastic variability): The predictors are
Xi = (xi1, xi2)

⊤ with xik ∼ Unif(−1, 1) and θ0 = (1, 0)⊤. The responses are generated
by yi = f(X⊤

i θ0) + ϵi(X
⊤
i θ0) with f(x) = (x − 1)2(x + 1) and the ϵi(x) are random

samples from 1−1≤x≤0N (0, 0.52) + 10<x≤1N (0, 0.12).

• Setting 8 (Multivariate predictor with a bimodal pattern): The predictors are Xi =
(xi1, xi2)

⊤ with xik i.i.d. ∼ Unif(−1, 1) and θ0 = (1, 0)⊤, and responses are

yi ∼ 0.5N
(
f(X⊤

i θ0) + g(X⊤
i θ0), 0.1

2
)
+ 0.5N

(
f(X⊤

i θ0)− 0.2g(X⊤
i θ0), 0.1

2
)
,

where f(x) = (x− 1)2(x+ 1) and g(x) = 2
√
x1{x≥0}.

Figure 9 demonstrates conditional coverages and lengths of prediction sets, in analogy to
Figure 7. Conditional profiles scores outperform HPD-split scores in both coverage and size.
For responses on the unit sphere with a multivariate predictor, we consider the following
setting. Figure S.8 in Supplement S5 demonstrates that the proposed Fréchet single index
approach with Algorithm 1 achieves conditional validity for this setting (Setting 9).
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• Setting 9 (Multivariate predictor with responses in S2): The predictors are

Xi = (xi1, xi2, xi3, xi4)
⊤

with xik independently and identically distributed ∼ Unif(−1, 1) and θ0 = (1, 0, 0, 0)⊤.
The responses are generated by yi = expµ(x⊤

i θ0) Vi(xi), where

µ(x) = (sin(πx/2), cos(πx/2), 0)⊤

and Vi = (0, 0, ϵi)
⊤ where the ϵi are random samples from N (0, 0.52).

We also obtained MSE(θ̂,θ0) as defined in (27) for Settings 6-9 across various sample
sizes. The results in Table 1 indicate that MSE(θ̂,θ0) decreases as the sample size increases
across all settings.
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Figure 9: Average conditional coverages (first row) and prediction set lengths (second row)
over 200 Monte Carlo runs in dependence on the single index level x for multivariate predic-
tors in Settings 6-8 for sample size n = 2000 and target coverage level 90%. The prediction
sets are obtained by Algorithm 1 as in (24) – (26); blue lines represent the proposed condi-
tional profile scores, and red lines the HPD-split scores in Izbicki et al. (2022).
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Table 1: Average MSE(θ̂,θ0) for the estimated single index parameter θ̂ over 200 Monte
Carlo runs for various settings, with standard deviations in parentheses, where all values are
multiplied by 102 for better visualization.

M = R M = S2

n Setting 6 Setting 7 Setting 8 n Setting 9

500 0.52(0.45) 2.85(2.71) 20.23(32.50) 200 12.84(43.21)

1000 0.38(0.30) 1.82(1.86) 8.05(21.35) 500 7.58(34.01)

2000 0.24(0.23) 1.22(1.14) 2.42(2.48)

7 Data illustrations

7.1 New York taxi data

Trip records for yellow taxis in New York City, with times and locations for pick-ups and drop-
offs, can be accessed via https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.
page. We focus on the pick-up and drop-off points located within Manhattan. Omitting
Governor’s Island, Ellis Island and Liberty Island, we divide the remaining 66 zones of
Manhattan into 13 distinct regions. The predictor x records the time of day, ranging from 4
AM to 8 PM and the response is a network representing the number of customers commuting
between the selected areas by taking a yellow taxi at time x; we include all N = 260 weekdays
within the year 2023. For each weekday i, there are ni records collected from 4 AM to 8
PM. We divide the time domain (4, 20) (from 4 AM to 8 PM) into bins Si1 = (ai0, ai1), Si2 =
(ai1, ai2), . . . , SBi

= (ai(Bi−1), aiBi
), ensuring there are N = 1000 records within each bin,

with 4 = ai0 < ai1 < ai2 < · · · < ai(Bi−1) < aiBi
= 20 and Bi = ⌊ni/N⌋. For each bin Sk,

k = 1, . . . , Bi, we pool all records whose pickup times fall within this bin to construct the
13 by 13 adjacency matrix yik, which represents the response at time xik = (ai(k−1) + aik)/2.
Each adjacency matrix’s edge weights are normalized against its maximum edge weight,
ensuring they range between [0, 1]. The resulting pairs {(xik, yik)}Bi

k=1 from all weekdays are
pooled together to form the final dataset.

We use the Frobenius metric dF as the metric between graph adjacency matrices,

dF (A,B) =
√

tr [(A−B)(A−B)⊤],

for A,B ∈ R13×13. The data are divided into training, calibration, and testing sets in a
4:4:2 proportion. We implemented Algorithm 1 and evaluated the conditional coverage on
the testing set. Figure 10 indicates that the proposed conditional profile score ensures
conditional coverage across all x in the time range. We also examined the conditional
coverage for holidays and weekends in 2023, but still using training and calibration data
collected for weekdays in Algorithm 1. Figure 10 reveals that the conditional coverages for
holidays significantly deviate from the target, confirming that taxi transportation patterns
on weekdays and non-weekdays do not align.
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Figure 10: Conditional coverage levels for taxi data. The target coverage level is 95%, as
indicated by the red solid line. The conditional coverage levels evaluated on the testing set
(black solid line) derived from weekdays differs substantially from the conditional coverage
levels evaluated using data from weekends and holidays (dashed line).

Figure 11 displays heatmaps for the Fréchet mean and for networks with the lowest and
highest conditional profile scores from the training set. The heatmap for the network with
the lowest score has a pattern similar to the Fréchet mean, indicating its corresponding
adjacency matrix is at the center of the dataset. The heatmap for the network with the
highest score presents a very different pattern from the previous two, indicating that it sits
near the boundary of the prediction set and has a higher likelihood of being an outlier.

7.2 U.S. energy data

The global energy landscape has undergone profound changes over the last thirty years,
driven by technological innovations, economic shifts, and evolving societal needs. Data on
the sources of energy used for electricity generation across the U.S. are available at https:
//www.eia.gov/electricity/data/state/. As an illustration of the proposed method,
we considered three categories of energy sources and their corresponding proportions: I.
Coal, Petroleum, Wood, and Wood Derived Fuels; II. Natural Gas; III. Hydroelectric, Wind,
Nuclear, Geothermal, Solar Thermal and Photovoltaic. Sources in category I are traditional
energy sources known to emit high levels of greenhouse gases and have historically been
associated with severe air pollution. Sources in category II are a cleaner alternatives and
their contribution has steadily grown. Sources in category III represent renewable energy
and other eco-friendly sources.

The predictors x are calendar years ranging from 1990 to 2021. The corresponding
responses are defined as y(x) = (U1/2(x), V 1/2(x),W 1/2(x)), where U(x), V (x), and W (x)
denote the proportions of energy sources I, II, and III used for electricity generation in the
given year x. These proportions constitute compositional data as they satisfy the condition
U(x) + V (x) + W (x) = 1 for every calendar year x. Figure 12 shows a clear trend in the
prediction set obtained by the proposed method, moving from the bottom left to the top
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Figure 11: Heat maps for networks represented by graph adjacency matrices at time 3 PM
from the training set of weekday data. The Fréchet mean is in the left panel, the network
with the lowest conditional profile score in the middle panel and the network with the highest
conditional profile score in the right panel.

right as the years progress. This indicates a decreasing dependence on traditional fossil fuels
and an increasing share of natural gas and renewable energy sources.

8 Discussion

We extend the distance profiles proposed by Dubey et al. (2024) to a conditional version
and propose the profile average transport costs as a measure of the centrality of any element
in a metric space with respect to the underlying conditional distribution of Y |X. There are
major distinctions between the proposed profile average transport costs and the transport
ranks introduced in Dubey et al. (2024). While transport ranks account for the directionality
of optimal transports, profile average transport costs focus solely on the costs of transport
between two distance profiles and ignore the direction of the transport. Consequently, while
transport ranks identify the most centrally located element globally, the proposed CPCs can
capture local modes with respect to the underlying conditional distributions, aiding in the
construction of conformal prediction sets.

The key for successful conformal inference lies in the choice of a good conformity score.
In general metric spaces, residual scores R̂(x, y) = d(f̂(x), y) may seem to be the most
straightforward approach, however for complex object data these have many shortcomings.
First, such residual scores can only achieve marginal coverage, and the size of the resulting
prediction sets is the same for all predictor levels. This results in poor prediction sets
when there is heteroscedasticity or other distributional change in Y when predictors vary.
Moreover, residual scores depend crucially on the regression function estimator f̂ . In many
situations, including when the conditional distribution of Y |X is bimodal or multimodal,
estimates f̂ will not perform well. The proposed conditional profile scores are determined
solely by the distances within the metric space, leading to an intrinsic approach that does
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Figure 12: Illustration of energy data sources and corresponding conformal sets for calen-
dar years 1990, 1996, 2002, 2008, 2014, and 2021. The the front-right axis represents the
proportion of fossil fuels (sources I), front-left axis represents the proportion of natural gas
(sources II), and the rear axis represents the proportion of renewable energy (sources III).
Blue points represent the square root of proportions of energy sources for each state. The
red areas are the conformal prediction sets obtained with the proposed conditional profile
score.
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not require projections of the data into extrinsic spaces. This distance-based approach
simplifies computations, as it can be readily applied for any metric space without the need
for transformations or manipulations of the data structure. The effectiveness of the proposed
method is demonstrated through comparison with the HPD-split approach (Izbicki et al.,
2022) for Euclidean responses. The proposed method outperforms the HPD-split in terms
of both better conditional coverage accuracy and shorter prediction set lengths even for
traditional data types.

While this paper primarily focuses on obtaining prediction sets within the conformal
framework, an additional benefit of the proposed profile average transport costs is their
ability to act as substitutes for density functions within general metric spaces. Numerous
methodologies in Euclidean spaces rely on density functions for a variety of applications,
including hypothesis testing, clustering, classification, and outlier detection. The profile
average transport cost approach paves the way for adapting such approaches and further
developing such methods will be a promising topic for future research.
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