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Abstract This paper presents a secure and versatile sampling-based verification protocol, Proof of
Sampling (PoSP) protocol, suitable for a wide range of decentralized applications. Our protocol has
a unique Nash Equilibrium in pure strategies, which compels rational participants to act honestly,
thus fortifying the network’s integrity. This can be achieved with manageable computational overhead.
When applied to decentralized inference for AI applications, we design spML based on PoSP protocol,
which ingeniously amalgamates the strengths of optimistic fraud proof and zero knowledge proof based
approaches, the foremost approaches in the domain at present. Moreover, the PoSP protocol can be
effectively utilized for designing verification mechanisms within Actively Validated Services (AVS) in
EigenLayer and Layer 2 solutions, further broadening its applicability. This innovative approach not
only enhances the security and efficiency of decentralized systems but also paves the way for a new
generation of scalable and reliable decentralized applications.

1. Introduction

In the development of decentralized protocols, it is customary to presuppose that honest nodes will adhere to
the established protocol. Take, for instance, optimistic rollup [7] is a scaling solution for blockchain that aims
to increase blockchain’s transaction throughput. In this approach, a designated rollup validator processes
transactions off-chain and posts the results on the blockchain. By default, the transactions are assumed to be
executed correctly. However, if other validators detect incorrect transactions, they can submit fraud proofs
on-chain to challenge the validator who submitted the false results. The security of optimistic rollup relies
on the critical assumption that at least one rollup validator is honest. If all validators are dishonest, the
on-chain transactions could be fraudulent. To incentivize honest behavior, an economic reward system is
introduced, making it more profitable for rational nodes to act honestly. However, under this assumption,
[14] observed that in most existing decentralized systems, the equilibrium state corresponds to a mixed
strategy Nash Equilibrium, which means that the optimal strategy for each validator is to cheat a certain
percentage of the time! This implies a non-negligible probability of dishonest behavior that is never detected
and introduces significant security vulnerabilities. Furthermore, [14] also proposed an alternate framework for
optimistic rollups that mandates the scrutiny of the system by all nodes. However, such a design introduces
duplicated work from all nodes and contravenes the fundamental principle of scalability, undermining the
initial objective of Layer 2 design.

In this paper, we introduce the Proof of Sampling (PoSP) protocol designed to address these challenges
effectively, under certain foundational assumptions. The PoSP protocol is applicable across a broad range of
decentralized systems. In this paper, we introduce its integration into decentralized AI inference platforms.
Notably, our system achieves a unique Nash Equilibrium in pure strategies, wherein each node acts honestly,
an principle that is highlighted in [9] as ideal for the design of secure decentralized systems. This signifies
that even when each node’s strategy is directed towards maximizing its individual profit, the overall system
maintains optimal security.
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1.1. Main Contribution

The main contributions of this paper are twofold. First, we propose the PoSP protocol, a robust protocol
for a wide range of decentralized applications. PoSP protocol leverages a unique Nash Equilibrium in pure
strategies to incentivize rational actors within the network to maintain honest behavior, thereby significantly
reinforcing the network’s security and integrity. Second, we design spML, a sampling-based verification
mechanism for decentralized AI inference network, using PoSP protocol. SpML synthesizes the advantages
of both optimistic fraud proof and zero knowledge proof based approaches (opML and zkML), incorporating
the high scalability and simplicity of opML with the enhanced security features of zkML. SpML stands
out for its strategic balance of computational efficiency and security, positioning it as a superior alternative
within the decentralized AI inference landscape.

In sum, our work not only introduces PoSP as a foundational protocol for secure and efficient verification
in decentralized systems but also presents the development of spML, a balanced approach in decentralized AI,
derived from the PoSP protocol. These innovations significantly advance the field, fostering a new generation
of decentralized applications.

1.2. Design Principles

PoSP enhances decentralized system security by initially selecting an asserter who submits results without
knowing which validators might review them. If challenged, n validators are randomly selected, and only
then do they learn each other’s identities. This approach prevents collusion at the outset and limits free-
riding by concealing the results until all verifications are complete, ensuring independent validation by each
participant.

In the case where all nodes agree on the outcome, the system accepts this consensus, ensuring that the
protocol functions correctly. However, if there are discrepancies, indicating dishonesty or error, those nodes
are penalized. This mechanism ensures that acting honestly is not only the most straightforward but also
the most beneficial strategy for all participants, thus maintaining the integrity and security of the system.

1.3. Literature Review

Employing game theory for protocol analysis, rational and economic theories have been extensively applied to
explore various blockchain configurations, including Byzantine Fault Tolerance as discussed in [1,6], sharding
strategies [15], proof-of-work systems [2,5,10,13], proof-of-stake systems [3,16,17], secure outsourced compu-
tation [20], and Layer 2 solutions [11,12,14,18]. The use of slashing mechanisms, analyzed in [9], enhances
network security and ideally aims to align node incentives in such a way that following the protocol-prescribed
strategy always yields the most benefit, reflecting a unique Nash Equilibrium in pure strategies. A compre-
hensive review [21] elaborates on the diverse applications of game theory across different blockchain scaling
solutions. This analytical approach underscores the utility of game theory in dissecting and enhancing the
security and scalability mechanisms of blockchain technology.

The decentralized AI domain has significantly benefited from innovations like opML, as detailed by [3]
and [19], which enhances machine learning (ML) on the blockchain by facilitating the efficient processing of
intricate models, alongside the introduction of Zero-Knowledge Machine Learning (zkML) by [22,23]. These
advancements in blockchain AI, opML and zkML, address scalability, security, and efficiency with distinct
trade-offs. OpML enhances scalability and efficiency, yet its security may not be as robust. ZkML offers
strong security through zero-knowledge proofs, yet faces challenges in scalability and efficiency due to high
computational overhead.

The rest of this paper is organized as follows. In Section 2, we introduce PoSP protocol and prove that it
has a unique Nash Equilibrium in pure strategies. PoSP protocol can be applied in all kinds of verification
scenarios. In Section 3, we show a possible way to implement PoSP protocol in real world applications as
an example. We design a sampling-based verification mechanism (spML), which is implemented by PoSP
protocol, within a decentralized AI inference network, detailing the protocol design and its security validation.
In Section 4, we conclude the paper and discuss the future extensions of our work.
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2. Model

2.1. PoSP Protocol

In this section, we propose the PoSP protocol.

1. A node is randomly selected from the network to serve as an asserter. This asserter calculates a value
f(x), with both the function f(·) and the input x being well-known to the network, and outputs the
result.

2. With a predetermined probability p, a challenge mechanism protocol is triggered. If the challenge mech-
anism is not triggered, this round concludes, and the asserter is awarded a reward denoted by RA.

3. If the challenge mechanism is triggered, n validators are randomly selected from the network, where n ≥ 1
is a predetermined integer parameter. Each validator, denoted as validator i, independently computes
f(x) and outputs the result.

4. If all of the results from the asserter and the valitors match, the result is deemed valid and accepted.
The asserter receives RA and each validator receives RV /n. Otherwise, an arbitration process is initiated
to determine the honesty of the asserter and each of the n validators. If the asserter is proven honest, it
receives a reward of RA. Otherwise, it is penalized with S. Each honest validator, out of the m honest
ones from a total of n validators, receives RV /m if m ≥ 1, while each dishonest validator is penalized
with S.

2.2. Assumptions and Analysis

Then we show that, under certain conditions, PoSP protocol has a unique Nash Equilibrium in pure strategies
that all nodes act honestly. This ensures there is no economic incentive for nodes to perform malicious actions.
To analyze this protocol, we additionally define

• C: computational cost for computing f(x)
• U1: maximum profit that the asserter can gain if he acts dishonestly and the challenge mechanism is not

triggered
• U2: maximum profit that the asserter can gain if the challenge mechanism is triggered and he colludes

with all validators

Assumption 1. We assume that if the validator does not collude with the asserter, their messages will never

match with each other unless they both act honestly in the network.

Assumption 2. We also assume that RA − C > −S and RV /n − C > −S, which means that it is better for

each node to receive the reward than be slashed.

Property 1. Under Assumption 1 and Assumption 2, if one validator does not collude with the asserter, his
dominant strategy is to act honestly.

Strategy Asserter Fraud Asserter Not Fraud

Validator Honest RV /m − C RV /m − C

Validator Dishonest −S −S

The table above gives a game in a bimatrix format. The first row is the behavior of the asserter, and the
first column is the behavior of the validator, who does not collude with the asserter. The value in the table
is the payoff of the validator. In this case, Property 1 is straightforward by the table.

The table above shows the payoff of the asserter. The first row represents whether his behavior will be
detected by the protocol, and the first column denotes the behavior of the asserter.
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Strategy Detected Undetected

Assserter Fraud −S U1 or U2

Asserter Not Fraud RA − C RA − C

Assumption 3. We assume that the fraction of the nodes in the network that the asserter controls is r,

which means at most a fraction of r nodes are able to collude with each other.

Theorem 1. Under Assumption 1, Assumption 2 and Assumption 3, the asserter has a dominant strategy

to act honestly if and only if

RA + pS − (1 − p)U1 − C + (1 − rn
− (1 − r)n)pC > prn(U2 + S − RV ).

Proof. The proof is provided in the Appendix A.

Corollary 1. If

RA + pS − (1 − p)U1 − C > prn(U2 + S − RV ),

the asserter has a dominant strategy to act honestly.

Proof. We can prove this Corollary by the inequality of 1 − rn − (1 − r)n ≥ 0 and Theorem 1.

3. Application to Decentralized AI Inference Network Design

With the rapid growth in AI, centralized AI servers and corporations are beginning to encounter significant
limitations. For instance, it is nearly impractical for a limited number of centralized servers to fulfill the
burgeoning global demand for AI inference. Consequently, the concept of a decentralized AI inference network
has gained popularity in recent times. Such a network leverages the computational power of a wide array
of individual providers who contribute to the AI server pool in a permissionless manner. A well-designed
decentralized AI inference network is able to balance the supply with the demand for AI inference capabilities.

In a decentralized network, simply executing a model and trusting its output is insufficient. Consider
a scenario where the network is requested to analyze a complex governance issue using a sophisticated
model, such as Llama2–70B. There arises a critical question: how can one be certain that the network is not
employing a less capable model, like Llama2–13B, thereby delivering subpar analysis while surreptitiously
profiting from the discrepancy?

In a centralized setting, one might place their trust in established companies like OpenAI, largely because
such entities have a reputation to uphold. Moreover, the quality of a Language Learning Model tends to be
self-evident to some degree. However, in a decentralized environment, trust cannot be taken for granted—it
must be established through rigorous verification.

SpML is ingeniously designed to excel in the verification process, thereby ensuring the integrity of the
system with a negligible increase in computational overhead for security purposes. It stands out as a partic-
ularly rational solution when compared to other methods that have been proposed. The following sections
will detail the application of PoSP protocol in establishing a robust decentralized AI inference network.

3.1. System Architecture

Deterministic ML Execution. To combat the inherent inconsistencies caused by floating-point calculations
in ML, our network implements fixed-point arithmetic and software-based floating-point libraries. To fix
the randomness, both the asserter and the validator will be assigned the same random seed. This approach
ensures uniform, deterministic ML executions, enabling the use of a deterministic state transition function
for the ML process, enhancing reliability in decentralized environments.

Stateless Design in ML Inference. While applications such as inference might appear stateful to users—due
to the ability to engage in ongoing interactions—they are fundamentally stateless. In our framework, each
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query is treated as independent; any necessary historical context is encapsulated within each new request,
thereby maintaining statelessness throughout the ML process.

Permissionless Network Participation. In our network, anyone can join the network, gain full access to the
ML model f(x), and contribute by running an AI server. The function f(x), pivotal for the AI inference
process, is established as common knowledge within the network. This inclusivity ensures that the model is
capable for validation, promoting the security of the network.

Off-chain Operations. Given the extensive usage inherent in AI inference networks, it is impractical to
process or record every AI inference outcome on the blockchain due to scalability constraints. Instead, AI
inferences are computed off-chain by decentralized servers, which then relay the results along with their
digital signatures directly to users, bypassing the on-chain mechanism. This approach significantly reduces
the load on the blockchain while ensuring that users receive authenticated and accurate inference results.

On-chain Operations. Critical functions, such as the posting of overall balance calculations after set periods,
are conducted on-chain to ensure transparency and security. Additionally, the protocol allows for on-chain
handling of challenge mechanism, enabling disputes or anomalies detected off-chain to be resolved transpar-
ently and securely within the blockchain framework. This ensures both integrity and accountability in the
system’s operations.

3.2. SpML Protocol

The spML protocol is designed as follows.

1. The user sends the input to a randomly selected server A with his signature. The base fee is u, which is
determined by the protocol, and will be burnt.

2. Server A sends the output and its hash back to the user with his signature.
3. With a predetermined probability p, the protocol randomly select another server B. Otherwise, A gets

the reward R, and this round of AI inference concludes.
4. If selected, user sends the same input to server B with his signature.
5. Server B sends the output and its hash back to the user with his signature.
6. The user compares the hash of A’s and B’s output. If they are the same, user accepts the output and

gets a pre-determined discount d < 1 of his base fee, which equals to d · u, back to his account, both of
A and B gets the reward R, and this round of AI inference concludes.

7. Otherwise, the user broadcast A’s and B’s hash to the network. Server A and B also broadcast the user’s
input to the network, to prevent the user sends different input to them.

8. All the nodes vote for the behavior of user, sever A and server B. A result will be considered as valid if
at least 2/3 of the nodes vote on it. If the user is dishonest, the user will be slashed Su. Otherwise, the
user will get the transaction fee and the compensation u + S/3, the dishonest server will get slashed S
and the honest server will get rewarded R.

The user and the voting procedure effectively acts as the orchestrator and arbitration procedure respec-
tively, as in PoSP in Section 2.1, due to the comprehensive participation of network nodes. The integrity
of the voting outcome is upheld with the same level of trust as that observed in Ethereum Layer 1. Unlike
conventional approaches that may require all nodes to recompute the function f(x) during fraud detection
processes, spML protocol simplifies this by necessitating only hash comparisons in most cases. This task par-
allels the execution of a rudimentary smart contract, incurring little computational overhead. Consequently,
our network does not experience significant additional load during challenge mechanism operations.

3.3. Analysis

Property 2. The rational user will never collude with the server in the network, and the dominant strategy
for the user is always act honestly.

This is because it is always impossible to slash the honest node. Then we can assume that the user will
not collude with any server in the network. Moreover, if the challenge mechanism is triggered, the rational



6

user will indeed send his input to another server B, because he has the utility to gain the transaction fee
discount and get to know the true outcome of his request.

Given Property 2, we can assume that the user will always act honestly. In this case, the orchestrator,
i.e. the user, is honest, and the spML protocol in Section 3.2 will reduce to the PoSP protocol in Section 2.1.

Proposition 1. If

p >
C

(1 − r)(R + S)
,

the system has a unique Nash Equilibrium in pure strategies, where every participant perform honestly.

Proof. After plugging n = 1, RA = RV = R, U1 = R and U2 = 2R in Theorem 1, we can get this result.

As you can see from Proposition 1, the numerator equals to the computational cost for running one ML
model, which is considered to be much less than the denominator. This means if we design the value of the
reward and penalty appropriately, we only need little extra computational overhead to guarantee the security
of the network.

3.4. SpML vs. Existing Decentralized AI Solutions

In this section, we compare spML with the two prevalent methodologies in decentralized AI networks:
optimistic fraud proof based approach (opML) and zero knowledge proof based approach (zkML).

opML. Contrary to the heavy cryptographic reliance of zkML, opML adopts a fundamentally different strat-
egy based on dispute resolution mechanisms. The optimistic approach presupposes that participants will
act honestly, given the economic disincentives for fraudulent behavior. In the rare event of disputes, opML
provides mechanisms for challenge and resolving fraudulent claims, ideally without necessitating heavy com-
putational verification for every transaction. Nevertheless, the reliance on economic incentives and dispute
resolution may introduce vulnerabilities for network security.

zkML. At its core, zkML leverages zero-knowledge proofs. In the context of decentralized AI, zkML ensures
that computations can be verified for correctness without revealing the underlying data or the specifics of
the computation. This characteristic is particularly advantageous for applications requiring stringent data
privacy measures. However, the sophistication and computational intensity of generating zero-knowledge
proofs present challenges in terms of scalability and accessibility.

Aspect opML zkML spML

Security
More vulnerable to
fraudulent activity

High security through
cryptographic proofs

High security through
economic incentives

Delays
Potential delays in
dispute resolution

Delays due to
proof generation

Almost no delay due to as-
serter will act honestly

Scalability Highly scalable
Limited by computational

overhead of proof generation
Highly scalable

Simplicity
Simple, unless
for fraud proof

Complex due to zk proofs Simple

Overhead
Low computational
overhead, unless in
the case of disputes

High computational
overhead due to the

nature of crypto-
graphic proof generation

Low computational over-
head, unless in the case of
disputes which never hap-
pens if everyone is rational

The table above compares opML, zkML and spML as follows.

Security. OpML is recognized as being more vulnerable to fraudulent activity, a vulnerability that can arise
from insufficient validation of results. Typically, users themselves may initiate a fraud proof if the results
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they receive appear aberrant. Nevertheless, it presents a challenge for users to discern the accuracy of these
results, particularly when a server might employ a similar yet less sophisticated model to produce the output.
Conversely, zkML boasts robust security due to its use of cryptographic proofs. SpML can also achieve high-
security just like zkML, but achieves this through economic incentives. In spML, the initiation of challenge
mechanism is an automated process managed by the protocol itself, rather than relying on the assumption
that there will be at least one external validator, as is the case with opML. This intrinsic mechanism enhances
the overall security of our system.

Delays. In opML, delays exist due to the challenge period, during which a transaction can be challenged
with a fault proof. This is a drawback in scenarios requiring real-time results. zkML faces inherent significant
delays due to the computational overhead in proof generation. SpML is designed to mitigate delay issues
altogether. Even if the challenge mechanism is triggered, the user does not need to wait for the challenge
procedure, because the result from the asserter is trustable due to the unique Nash Equilibrium in pure
strategies.

Scalability. OpML is recognized for its scalability, especially when disputes are minimal, suggesting a
lightweight protocol suitable for large-scale applications. ZkML’s scalability is hampered by the heavy com-
putational load required for proof generation. In contrast, spML is presented as highly scalable as well, which
can handle extensive network activity without significant degradation in performance.

Simplicity. The complexity of ZK proofs contributes to the high complexity of zkML, possibly making it
less accessible for broader implementation. For opML, it is usually considered to be simple. However, its
implementation can become complex when applied to fraud proof scenarios. In contrast, spML maintains
consistent simplicity in implementation due to its arbitration procedure based on voting. This simplicity
enhances ease of integration and maintenance, potentially facilitating widespread adoption.

Overhead. OpML claims low computational overhead, with the caveat that opML may incur higher overhead
during disputes. ZkML’s approach results in high computational overhead due to cryptographic processes.
SpML also has a low computational overhead. During the challenge mechanism, spML still has a low compu-
tational overhead. This is because in spML, the validators only need to compare some hashes in most cases.
Only when the hashes do not match during the challenge mechanism, spML may incur high overhead during
arbitration, but the arbitration never happens if every node is rational.

Empirical Evaluation

For this part, we use empirical evaluation to further compare opML, zkML and spML.
For zkML, existing solutions, as demonstrated in [4,8], indicate that generating a proof for a nanoGPT

model with 1M parameters takes approximately 16 minutes. However, for more advanced models like Llama2-
70B, which possesses 70, 000 times more parameters than nanoGPT, it is reasonable to expect that generating
a single proof could take several days or weeks. Consequently, employing zkML in a decentralized AI inference
network may not be practical given the extended time requirements.

In the opML scenario, when the validator initiates the fraud proof procedure and detects the fraud, we
assume the penalty for the malicious server is S, and the net gain for the validator is RC , accounting for the
difference between the reward and the cost of initiating the fraud proof procedure.

Strategy Server Fraud Server Not Fraud

Validator Check RC , −S −C, R − C

Validator Not Check 0, R 0, R − C

The table above gives a game in a bimatrix format, where the first number in each pair represents the utility
to the validator, and the second number represents the utility to the server. We can calculate the probability
for the undetected fraud is (S +R−C)C/[(S +R)(RC +C)] by the mixed strategy Nash Equilibrium, similar
to the approach detailed in [14]. Assuming RC = 100C, R = 1.2C and S = 150C, the calculated probability
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of undetected fraud is 0.98%. This implies that if you request AI inference 50 times per day, you can expect,
on average, one undetected fraud approximately every 2 days.

In contrast, in the spML scenario, assuming the asserter controls a fraction r = 10% of the network,
by Proposition 1, the probability of triggering the challenge mechanism is 0.735%. This translates to only
0.735% additional computational overhead in spML, enabling us to completely avoid fraud and eliminate
the need for fraud proof procedures, if all nodes are rational. Hence, spML is clearly the superior choice.

4. Conclusions and Future Extensions

In this study, we have introduced a robust PoSP protocol applicable across all kinds of scenarios, such as
decentralized AI inference network, distinguished by its exceptional security features. Central to its design
is the implementation of a unique Nash Equilibrium in pure strategies, ensuring that all rational partici-
pants within the network adhere to honest behavior. This protocol demonstrates superior performance when
compared to existing methodologies across various applications.

Looking ahead, further exploration into the application of the PoSP protocol within Layer 2 architectures
holds promise, particularly by employing our method of sampling multiple nodes to recompute results. This
approach can lead to a unique Nash Equilibrium in pure strategies, where every participant acts honestly,
directly addressing and potentially solving the concerns highlighted in [14]. Following this, there is significant
potential for utilizing the PoSP protocol in the development of verification mechanisms within Actively
Validated Services (AVS), enhancing security and reliability in EigenLayer. This exploration could lead to
innovative applications that leverage the strengths of PoSP in ensuring robust, scalable, and secure systems.
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A. Proof of Theorem 1

First, we consider the expected payoff of the asserter if he does not commit fraud. If the asserter does not
commit fraud, the expected payoff is

(1 − p)(RA − C) + p

n
∑

i=0

(

n

i

)

ri(1 − r)n−i

(

i
RV

n
+ RA − C

)

.

This is because when challenge mechanism is triggered, if i out of n selected validators collude with the
asserter,the collusions can have the payoff iRv/n + RA − C, because the colluders are able to obtain the
outcome of f(x) directly from the asserter instead of recalculating it themselves.

Then, we consider the expected payoff of the asserter if he commits fraud. If the challenge mechanism
is not triggered, the asserter is capable of compromising the integrity of the system and get a payoff of U1.
However, if the challenge mechanism is triggered, by Property 1, only when all of the n selected validators
collude with the asserter, the fraud will not be detected, and the asserter can earn U2. If 1 ≤ i < n out of n
selected validators collude with the asserter, their optimal strategy is to act honestly and report the fraud
to get the reward for validation rather than be slashed. Thus, the expected payoff is

(1 − p)U1 + prnU2 + p

n−1
∑

i=0

(

n

i

)

ri(1 − r)n−i

(

i
RV

n
− C − S

)

.

Hence, the system having a unique Nash Equilibrium in pure strategies is equivalent to the scenario where
the asserter can obtain a greater profit if he does not commit fraud, which is

(1 − p)(RA − c) + p

n
∑

i=0

(

n

i

)

ri(1 − r)n−i

(

i
RV

n
+ RA − C

)

>(1 − p)U1 + prnU2 + p

n−1
∑

i=0

(

n

i

)

ri(1 − r)n−i

(

i
RV

n
− C − S

)

.

By rearranging this inequality, we can get

RA + pS − (1 − p)U1 − C + (1 − rn
− (1 − r)n)pC > prn(U2 + S − RV ),

which coincides Theorem 1.
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