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ON A NEW CLASS OF BDF AND IMEX SCHEMES FOR PARABOLIC TYPE
EQUATIONS

FUKENG HUANG! AND JIE SHEN*

ABSTRACT. When applying the classical multistep schemes for solving differential equations, one
often faces the dilemma that smaller time steps are needed with higher-order schemes, making it
impractical to use high-order schemes for stiff problems. We construct in this paper a new class
of BDF and implicit-explicit (IMEX) schemes for parabolic type equations based on the Taylor
expansions at time t"t# with 8 > 1 being a tunable parameter. These new schemes, with a
suitable 8, allow larger time steps at higher-order for stiff problems than that is allowed with a
usual higher-order scheme. For parabolic type equations, we identify an explicit uniform multiplier
for the new second- to fourth-order schemes, and conduct rigorously stability and error analysis by
using the energy argument. We also present ample numerical examples to validate our findings.

1. INTRODUCTION

We consider in this paper numerical methods of a class of nonlinear ordinary or partial differential
equations in the form

wp + Lu(t) + Glu(t)] = f(t), 0<t<T,

w(0) — . (1.1)

where L is a linear (or possibly nonlinear) positive operator and G is a nonlinear operator, whose
exact descriptions can be found in the next section.

Numerical approximation of ordinary differential equations (ODEs) is a very mature field (see,
for instance, [9] [0, 15, [18]), and the numerical methods developed for ODEs have been playing
important roles in solving partial differential equations (PDEs) in the form of through the
method of lines [27], or the so called method of lines transpose [20], i.e., discretizing first in time
followed by the discretization in space. In particular, the backward difference formulae (BDF) and the
implicit-explicit (IMEX) schemes are frequently used to deal with which exhibit stiff behaviors
8. 16, 21,

Two key issues of numerical methods for are stability and accuracy. In order to obtain highly
accurate solution with less computational costs, it is highly desirable to be able to use higher-order
schemes with larger time steps. However, as we increase the order of accuracy of BDF or IMEX
type schemes, their stability regions usually decrease, i.e., smaller time steps need to be used with
higher-order schemes, particularly for stiff problems, making high-order schemes impractical for many
complex nonlinear systems. A natural question arises: is it possible to develop higher-order multi-
step schemes such that their stability regions are comparable or even larger than lower-order classical
BDF or IMEX schemes?

The main purposes of this paper are two-fold:

e to construct a new class of BDF and IMEX schemes with a tunable parameter such that
larger time steps can be used in higher-order schemes;
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e to carry out a rigorous stability and error analysis for this new class of IMEX schemes.

Furthermore, we provide convincing numerical evidences to validate our theoretical findings.

We recall that the classical BDF and IMEX schemes for approximating solution at time ¢"*! are
usually constructed using the Taylor expansion formulae at time ¢"*# with 8 € {0,1}. In this paper,
we shall construct a new class of BDF and IMEX schemes based on the Taylor expansion formulae
at time "% with 8 > 1 being a tunable parameter. The new schemes are a simple generalization
of the classical BDF or IMEX schemes with essentially the same computational efforts. However,
they enjoy a remarkable property that their stability regions increase as the parameter (8 increases,
making it possible, by choosing a suitably large (, to use high-order schemes with reasonably larger
time steps. The price to pay with a larger § is increased truncation errors which can be more than
compensated with higher-order of accuracy.

On the other hand, it is well known that a rigorous stability and error analysis by using the
energy technique of the classical BDF (and the related IMEX) schemes of order up to five (cf.
[ [@ 14 22] 24]) relies on a result by Nevanlinna and Odeh [25] (see also [3] for the extension to the
six-order BDF scheme) in which the existence of suitable multiplier that can lead to energy stability
was established. It is therefore natural to ask whether such a multiplier exists for the new class
of BDF schemes. We shall construct explicitly suitable multipliers in a more general form for the
new class of BDF schemes of orders two to four, and derive explicit telescoping formulae associated
with these multipliers. Furthermore, for nonlinear parabolic type equations, we show rigorously that
the stability condition of the new class of IMEX schemes becomes less restrictive as (3 increases,
particularly compared with the classical case of § = 1.

The idea behind the new class of BDF and IMEX schemes is very simple but original, and can be
easily extended to other type numerical schemes. However, our stability and error analysis rely on
the explicit formulae for the uniform multipliers and telescoping decomposition whose derivations are
totally nontrivial and original. On the other hand, the new schemes can be easily implemented with
a minimal effort by modifying the code based on the classical BDF or IMEX schemes, and provide a
much needed improvement on the stability of higher-order schemes.

The rest of the paper is organized as follows. In Section 2, we describe the abstract setting and
construct the new class of BDF and IMEX methods based on the Taylor expansion at time t"1#
and investigate their stability regions. In Section 3, we identify an explicit and uniform multiplier
for the new class of BDF and IMEX schemes, which plays an essential role in the stability and error
analysis. In Section 4, we establish the unconditional stability for the linear parabolic equations and
the stability, followed by error analysis for the nonlinear parabolic equations in Section 5. In section
6, we discuss extension to the fifth-order scheme. In section 7, we provide numerical examples to
show the advantages of our new schemes, followed by some concluding remarks in section 8.

2. A NEw cLASS OF BDF AND IMEX SCHEMES

2.1. The abstract setting. We first describe the functional setting. For the sake of simplicity, we
consider a simpler setting than that used in [6], although our analysis would also work for the more
general setting there.

Let V and H be two real Hilbert spaces such that V. ¢ H = H' C V', with V densely and
continuously embedded in H and V' being the dual space of V. We consider with £: V — V/
being a positive definite, self-adjoint, linear operator, and f in V' is a given source term. We denote
the inner product in H by (-,-), and the induced norm in H by | - |. We also denote the norm in V'
by || - || which is defined as ||u|| := [£'/?u| = (Lu,u)'/?. The dual norm in V' is defined by

wwl ey, (2.1)

)

|[v]]« := sup .
weV\{0} ||
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We assume that the nonlinear operator G satisfies the following local Lipschitz condition [6] in a ball
By :={v €V :|lv—u(t)|| <1}, centered at the exact solution u(t),
1G(v) = G@)IIF <Allv = 0lI* + plv = 0]*, Vo,7 € By, Vtel[0,T], (2.2)
with a non-negative constant v and an arbitrary constant .

2.2. Construction of the new schemes. We shall first construct the new schemes for (1.1)) based
on the Taylor expansion at time t"*#. Given an integer k£ > 2, denoting t” = nAt, it follows from
the Taylor expansion at time ¢"+# that

k—1 (m) (4n
Ty = S [(1—i— B)At]mw +O(At%),  for k >1i>0. (2.3)
m=0 ’

Then we can derive from the above an implicit difference formula to approximate d;¢(t"+5):

k
o D g (B0t = 0,67 + O(AT), (2.4)
q=0

where ay, 4(5) can be uniquely determined by solving the following linear system with a Vandermonde
matrix:

1 1 1 ak,k(ﬁ) 0
g—1 B .. B+k—1 ak7k,1<5) -1
B-12 p* . o (B+Ek-1) ark—2(8) | =| 0 [, (2.5)
B-1)F pF .. . (BHE-1)F a.0(B) 0
Similarly, we can derive an implicit difference formula to approximate ¢(t"+9):
k—1
D b g(B)p(E" RN = g(¢7 ) + O(AF), (2.6)
q=0
with by ¢(8) being the unique solution of the following Vandermonde system:
1 1 1 b k—1(B) 1
8—1 8 B+k—2 bi k—2(B) 0
. . : . =1 .. (2.7)
(B—1k1 gt L (B+k—2)FT br.o(B) 0

To deal with the nonlinear term in (1.1]), we also need the following explicit difference formula to
approximate ¢(t"4):

k—1
> crg(B)o(E" T = 6(t"F) + O(AL"), (2.8)
q=0
where ¢ ¢(8) can be uniquely determined from:
1 1 1 Ck,k—l(ﬁ) 1
B g+1 B+k—1 Ckvk_g(ﬂ) 0
: : Co : : I E (2.9)
B B L k=D | eol®) 0

Then, a new class of BDF schemes for (1.1) with G =0 is
k—1

k
é D ang(B)¢ T THOL LY b (B)¢" TR = (), k> 2 (2.10)
q=0 q=0
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and a new class of IMEX schemes for (1.1 is

k k-1 k—1
A% > ang(B)e" T T 4 L) b g(B)¢" 2T 4 GO er (BT = f(" 1), k> 2.
q=0 q=0 q=0

(2.11)

Remark 1. When 5 =1, (resp. ) becomes the classical semi-implicit IMEX (resp. BDF)
schemes, and there have been extensive works regarding its stability and error analysis [2], [4] [0, 22] 23]
in the literature. For V3 > 1, and still involve values at the same k + 1-levels as the
classical one (with 8 = 1) on the left hand side while they involve values at time t"*# on the right
hand side.

For the reader’s convenience, we list below the coeflicients in (2.11)) for k = 2, 3, 4.
k=2

28+1 _28-1

az2(6) = 5 a21(8) = —28, a2,0(B) 7 (2.12a)
b2,1(B) =B, b2o(B)=—(8-1), (2.12D)
c2,1(B) = B+ 1, c20(8) = =B (2.12¢)
k=3:
2 2 2 2
asa(8) = LIBE2 gy () = TOFHIIBZD) 5y = A0 (5= 2O 1)
(2.13a)
2 2
bs,2(B) = b ;57 bs1(B) = —(B° — 1), bso(B) = %, (2.13b)
2 2
es2() = AL o (8) = (8 +28), eso(d) = T 1L (2130
k=4
3 2 _ 3 2 3 2 _
taa(B) = 28 +9612+ 11,6+3’ a15(8) = 83 30ﬂ12 208 + 107 a12(8) = 128 +36ﬂ12+ 63 — 18
as1(B) = 807 185" +46+6 as,0(B) = 26°+36" - -1 (2.14a)
’ 12 ) ’ 12 ) .
3 2 _p3 _ 2 3 2 53
bis(B) = “3:%257 bis(8) = =2 252 TAH2 s = w bro(f) = =0 F5.
(2.14D)
3 2 a3 2 3 2
cra(®) = ZEOHIBHE oy = SO0 gy = PSS,
ca0(B) = w. (2.14c)

Remark 2. Instead of deriving from Taylor expansions, one may also derive it by following the
standard construction of the usual multistep methods using interpolation formulae (see, e.g., Section
2 in [19]). In fact, it can be shown that the coefficients ay 4(5), br,q(5), ck,q(5) can be determined by
the values at t"1# of the corresponding Lagrange polynomials and their derivatives. For example,

arq(B) = AtLy(t"F), q=0,...k, (2.15)

where L, is the Lagrange polynomials associated with ¢"+1=k _ ¢n+l,

2.3. Linear stability regions. In this subsection, we investigate the regions of linear stability of
the new schemes (2.10]). For the test equation ¢, = A, (2.10) reduces to

k k—1
1
7 2 Gha(B)TH T =AY b ()9 TR k> 2, (2.16)
q=0 q=0
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In order to study the stability regions for S # 1, we set ¢™ = w™ (here, “n” is an upper index in @™
and an exponent in w™) and z = AAt in (2.16) to obtain its characteristic equation, e.g., in the case
of k = 2, it takes the form:

(28 4+ 1 —2B82)w? + (2(83 — 1)z — 4B8)w + (26 — 1) = 0. (2.17)

Then the region of absolute stability of method is the set of all z € C such that the characteristic
polynomial satisfies the root condition. We recall that the second order case was already considered
in [I7], and it was shown that the second-order case of is A-stable for 8 > 1, and more
importantly, the stability regions increase as we increase [3.

In Fig. [l and Fig. [2|, we plot the stability regions of the general third- and fourth-order BDF
schemes for § =1,3,5. We observe that, the stability regions increase as we increase f3.

g g g
E° E° £°
-5 -5 -5
2 0 2 4 & 8 2 0o 2 4 & 8
Re Re
(a) third order, 8 =1 (b) third order, 8 =3 (c) third order, 8 =5
05 05 05
& g g
E° E° E°
0.5 — 05 L 0.5 —
06 04 02 0 02 04 06 06 04 02 0 02 04 06 06 04 02 0 02 04 06
Re Re Re

(d) B =1, zoom in around the origin (e) 8 = 3, zoom in around the origin (f) 8 =5, zoom in around the origin

F1GURE 1. The pink parts show the region of absolute stability of the general third
order BDF scheme with Taylor expansion at n+ 3, 8 =1, 3, 5.

In order to have a better sense on how the stability regions vary with different 8 and k, we plot in
Table [1| a comparison of stability regions in the same scale. We observe that (i) the stability regions
increase faster when 3 is closer to 1; and (ii) the area of the stability region with £k =4 and 8 = 3
is already bigger than that of the classical second-order BDF. Hence, we can expect that the general
fourth-order scheme with 8 = 3 allows similar or larger time steps for nonlinear problems than the
classical second-order IMEX, avoiding the usual scenario that smaller time step has to be used when
increasing the accuracy order.

3. MULTIPLIERS FOR THE NEW BDF AND IMEX SCHEMES

In order to conduct the stability and error analysis for the BDF and IMEX schemes by using energy
techniques, a key step is to find a suitable multiplier. A key result which allows one to prove energy
stability of the classical BDF schemes of order up to five is established in [25] where the existence
of such multiplier is shown, see [3] for extension of this result to six-order BDF. In this section, we
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8 8 8
6 6 6
4 4 4t
2 2 2
g g g
E° E° EY
2 2 2
4 4 4
-6 -6 6
-8 -8 -8
5 0 5 5 0 5 10
Re Re
(a) fourth order, 8 =1 (b) fourth order, 8 =3 (c) fourth order, B3 =5
1 1 1
05 05 05
g g g
g0 g0 E°
05 05 05
- — - — . —
4 05 0 05 1 4 05 0 05 1 4 05 0 05 1
Re Re Re

(d) B8 =1, zoom in around the origin (e) 8 = 3, zoom in around the origin (f) 8 =5, zoom in around the origin

FiGURE 2. The pink parts show the region of absolute stability of the general
fourth-order BDF scheme with Taylor expansion at n+ 3, 5 =1,3,5.

identify an explicit multiplier, and show that it is suitable for the new BDF and IMEX schemes of
second to fourth order.

3.1. Notations and a key lemma. To simplify the presentations, we introduce the following no-
tations:

AL(¢") Zak,q B)o e, Bl(¢') = Zbkq BYoHHr (g7 = chq BgikHIHe.

(3.1)
with ay ¢, bk.q, Ck.q defined in ([2.12) b 2.13) and %We also consider the characteristic polynomials
of the new BDF and IMEX schemes l 10)) and (2.11)):

k
= arg(B)CY, k=12,34; (3.2a)
q=0
k-1
CRQ =D crg(B)C!, k=234 (3.2b)
q=0

We first recall the following result from Dahlquist’s G-stability theory [13] which plays a key role
in establishing energy stability of multistep methods.

Lemma 1. Let o(¢) = aiCF + ... + ap and p(¢) = unC? + ... + po be polynomials of degree at most
k (and at least one of them of degree k) that have no common divisors. Let (-,-) be an inner product
with associated norm | - |. If

Reu(()>0 for|¢| > 1, (3.3)
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p=1 B=3 B=5

second order

Imag
& 5 A b o N s o o

third order

Imag
o & b N O N B O ®

fourth order

Imag
b & A b o N s oo

5 0 5 10 R 5
Re Re
TABLE 1. Comparison of stability regions for different k£ and 5 on the same scale.

then there exists a symmetric positive definite matriz G = (g;;) € R*** and real &, ..., 0) such that
for 00, ...,v* in the inner product space,

k k
(Zaivi,Zujlﬂ Z gij (V' 07 Z gij (v i +|Z(5U | (3.4)
i=0 j=0

3,j=1 3,j=1

It is clear from the above Lemma that the key for estabhshlng the energy stability of is to
:

find a suitable multiplier u(¢) = pxC* + ... + po such that is satisfied with a(¢) = Ak (C) To
this end, we first split B,”f (¢"*1) into two parts:
BY(¢"Hh) = me(B)C (0"*1) + D(6"), k=234, (3:5)
with
B—1 B—1 p-1
- , = - = , > 1, 3.6
n2(B) 3 n3(B) 1 n4(B) 513 B (3.6)

and D,f can be written as

Dyj(¢" ) = de,q B)grtiite k=234, (3.7)
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with
d21(B) = %7 d2,0(8) =0, (3.8a)
d32(B) =1, d31(8) = %» d3o(B) =0, (3.8b)
BB BB _B(B-1) _BBE-1)
ds3(B) = 5Tty ds2(B) = —(7 TS 1), ds1(B) = 5 dso(B) = T 6(3+3)
(3.8¢)
We also define
k-1
DRC) = dg(B)C,  k=2,34. (3.9)
q=0

Remark 3. The choices of 7;(3) are not unique. We choose 12(8), n3(83) defined in (3.6]) to make
D5, Dg as simple as possible and the choice of 14(3) defined in (3.6) allows us to prove (3.13)) in the

next subsection.

3.2. A uniform multiplier. Note that in [25], it was shown that there exists a multiplier in the
form of ¢"*! — 70" with 7, > 0 for the usual BDF schemes of order 2 to 5. Surprisingly, we can
find a uniform multiplier for the new BDF and IMEX schemes of order 2 to 4. More precisely, we
have the following results.

Theorem 1. Given 8 > 1, then

ged (A (), ¢CL(Q)) = ged(DY (), CL(Q)) =1, k = 2,3, 4, (3.10)
i.e. they have no common divisor, and
AP
e J“B(C) >0, forl¢|>1, k=234 (3.11)
Gy ()
Moreover, we also have
D?
Re ~/’;(C) >0, forl¢|>1,k=2,3; (3.12)
Cr (©)
and finally if 8 > 2, then we also have
D?
Re ~§(<) >0, forl¢|>1. (3.13)
Ci(0)

Proof. The proof follows the basic process in [3]. We will provide the proof for the case k = 4 in
detail as it includes some technical estimations and then we will point out the key steps for the cases
k = 2,3, which are easier to handle. To simplify the notation, we often omit the dependence on S for
the coefficients ay ¢(8), ¢k q(5), di,q(5), i.e., we only write them as ay g, Ck,q, di,q-

Case I: k = 4. Firstly, we show gcd(Af(C), Céf (¢)) = 1 by using the Sylvester Resultant [I]
as follows. The Sylvester matrix [I] of flf (¢) and Of (¢) is

Q44 Q43 Q42 Q41 G40 O 0
0 @44 aa3 as2 as1 asp O
0 0 ag4 a43 ag2 ag1 a4p
Sly(Af, éf) = 6473 C472 6471 6470 0 0 O . (314)
0 ca3 ca2 ca1 cpo O 0
0 0 ca3 ca2 ca1 cao O
0 0 0 ca3 ca2 ca1 cCap
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It is easy to verify that its determinant is

. 1 . ,

detSly(A?,CP) = — (1885 4 144° + 4264* + 5665° + 32152 + 555 +3) #0, for f>1, (3.15)
which implies that gcd([\f(@%éf(()) — 1. Combined with A7(0) = a4 # 0, it also implies that
AP (¢) and ¢C¥ (¢) have no common divisor.

AJ(Q)
ReH®) B}
suffices to show that all three zeros of Cf (¢) are inside the unit disk. Note that

Next, we show is holomorphic outside the unit disk in the complex plane. To this end, it

dc? )
7dx (Z) = 3647358 + 264,21‘ +c4.1, (316)
with

B2 +66°+116+6
C43 = 6

>0, Ay i=4c} 5 — 12c43c41 = —B(B+2)(B+3)* <0, (3.17)

which means C'4(;B) is monotonically increasing in the real axis. Note also that

B +3p°+28

6 <0, éf(l) =cy3+cao+cy1+cegp=1. (3.18)

CL(0) = cap =

Therefore, C’f (¢) = 0 has exactly one real root, denoted as x1, and two complex roots, denoted as
Zo, 23 = Z2, in the complex plane. Next, we denote

—cao  PBE438+2
ca3—1  BZ+68+11

Then we can find with § > 1,

2p%+275° + 1415 + 3515° 4 4055° 41625 — 8 _
(B2 +68+11)3

Combining (3.18)) and (3.20)), we have zy < 1 < 1. On the other hand, by Vieta’s formulae, we have

Cy (w) =

0. (3.20)

1 —C4,0 1 —C4,0 C4.3 -1

c
T12923 = T1|2|? = —=20% " then |22]? = — < = < 1. (3.21)
4,3 Ty €43 To €43 4,3
A7) Di(©) : . :
As a result, we have |z1], |22],|23] < 1 and hence A and e e holomorphic outside the unit
4 4

disk.
On the other hand, we have
AJQ) _asa _ 28°+98°+118+43
m s N = . T 533 2
Il=o0 ¢CP(C)  cas  2(B*+68%+115+6)

> 0. (3.22)

i8
Therefore, it follows from the maximum principle for harmonic functions, Re Cjzjlﬂ((% >0,V|¢(] >1is
4
equivalent to

AP
e# >0, V¢eSt, (3.23)
¢Cy (<)
with S! being the unit circle in the complex plane, and which is equivalent to
Re[AL (e)e0CP (e9)] >0, 0€e[0,2m). (3.24)

Letting y := cos(f) and using the trigonometric identities

cos(20) = 2y* — 1, cos(36) = 4y® — 3y, sin(26) = 2ysin(0), sin(30) = (4y* — 1) sin(h), (3.25)
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we find
é’f (e_w) = ¢4,3 c05(30) + c4,2 c08(20) + c4,1 cos(0) + ca,0 — i[ca,38In(36) + c4,2 8In(260) + c4,1 sin(H)]
= 64’3(4y3 —3y) + 0472(21/2 — 1) +ca1y+cao— i[C473(4y2 — 1)+ 2¢4 2y + c4.1] sin(6),
(3.26)

and
AB(€%)e™ = ag 46 + ag3e?® + agoe®® + agy + agoe"
= 4,4 c08(30) + aq,3 cos(26) + as2 cos(f) + as1 + aq, cos(h)
+ i[agasin(30) + aq,38in(20) + aq,2sin(f) — aq,osin(6)] (3.27)
= a474(4y3 —3y) + a473(2y2 — 1)+ (as2 + aa,0)y + asn

+ifags(4y* — 1) + 2a43y + ag 2 — ago]sin(6).
It follows from (3.26)), (3.27)) and flf(l) =0, sin?(f) = 1 — y? that

Re[A]()e= G} ()] = 5(1— )(s(8)y + w28 +w1(B)y +0(8) = 5(1—9)fay), (329)
with

fa(y) = ws(B)y® + w2 (B)y* + wi(B)y + wo(B),

wo(B) = 26°% + 158° 4 398 + 3983 + 1082 + 15,
wi(B) = —68° —456° — 1178* — 11633 — 2182 + 175+ 9, (3.29)
wo(B) = 66°% +458° + 1178 + 11533 + 128% — 348 — 12,

ws(B) = —2B% — 156° — 395% — 3833 — B2 + 175 + 6.
In the following, we omit the dependence on § for w;, ¢ =0,1,2, 3.
It is clear that is equivalent to
faly) >0, Vyel[-1,1]. (3.30)
With w; defined in and 8 > 1, we have
fa(l) = wo + w1 + wo +ws = 18 > 0,

3.31
fa(=1) = wp — w1 +wy — w3 = 163°% +1208° + 3126* 4 3083> + 444% — 688 — 12 > 0, (3:31)

and
Fi(y) = 3wsy® + 2way + wi. (3.32)

If f4(y) does not have zero in [—1,1], then (3.31]) implies (3.30). Otherwise, supposing there exists
—1 < yo < 1 such that fj(yo) = 0, we only need to show fy(yo) > 0. Indeed, with f;(yo) = 0, we
have

3fa(yo) = 3f4(yo) — yof1(yo) = wayg + 2wiyo + 3wo- (3.33)
Denote
9a(y) = way® + 2w1y + 3wo; (3.34)
then with 8 > 1, we have
g4(1) = w2 + 2w1 + 3wo = 51 > 0,
ga(—1) = w2 — 2w1 + 3wy = 2453° + 18043° 4 4684" + 4645° + 8453° — 683 + 15 > 0, (3.35)
Ay = 4wi — 12wowo = —12208° — 91083° — 234083* — 222125° — 10765 + 73443 + 2484 < 0,

which means g4(y) > 0,Vy € [—1,1]. In particular, we have f4(yo) = %g4(y0) > 0 which implies
(3.30)), which in turn implies (3.24). Therefore, we proved (3.11)) with k& = 4.
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Next, we prove (3.13) with 8 > 2. The procedure is similar to the proof of (3.11)) above. First,
the Sylvester matrix of Df(C) and C’f €):

dys dgo dsy dapg O 0

0 daz da2 dag dapg O
~3 = 0 0 dsz dap da1 dap
Sly(DY,C?) = ) , ) ) 3.36
y(Dy, C1) €43 Ca2 ca1 Cag O 0 ’ (3.36)
0 ca3 cap ca1 capo O
0 0 C43 C42 C41 C40
and its determinant is
_ ~ 2 2 3 2 2
det Siy(D?, %) = — 58 “L?)Gﬂ“L <o (3.37)

which implies D?(¢) and C(¢) have no common divisor. Since we have shown in the above that

58

géég is holomorphic outside the unit disk, following the same process as above, we have that (3.13)
4

is equivalent to:

ha(y) = as(B)y’ + a2(B)y” + a1 (B)y + ao(B) = 0, ¥y € [-1,1], (3.38)
with

_ 1 6 5 4 3 amp2

ao(B) = 9(ﬂ+3)(25 +158° + 358" +153° — 378° — 396 + 9),
26° o4 108° o

=-L 35 - — 28+1
a1(B) 1 3 — 36 5 A 2841, (3.39)
2(8) = 3(B(28" +98° +128° + 34 - 2)),

a3(8) = — 5 (B(8 + 1)*(26° + 56 +2)).

In the following, we omit the dependence on § for «;,i =0, 1,2,3. Hence, we have

ha(=1) = —as + o2 — a1 + ap = L(wﬁ +6083° 4+ 1528 + 1328° — 168% — 578 — 9) > 0,
9(6 +3)
A (3.40)
ha(l) =0z +az+ a1+ a0 = B+3 >0,
and
Ry (y) = 3azy® + 209y + a. (3.41)

Similarly as before, if h}(y) does not have zero in [—1,1], then (3.40) implies (3.38). Suppose —1 <
yo < 1 such that h(yo) = 0, we only need to show hy(yo) > 0.
With k) (yo) = 0 and ag # 0, we have

3ha(yo) = 3ha(yo) — Yol (yo) = aayg + 2a1y0 + 3o

a -, 2a§ o2 L)
=—h Q0 — —2 3o —
308 4(¥o) + (2 3a3)yo +3ag 30 (3.42)
202 a0
=0+ (20q — =2 3ag — :
+ (21 3@3)310 + 3ag 30
We define
202 %Ko )
= (20q — =2 3ag — 3.43
p(y) == (21 3@3)y+ @0~ 3 (3.43)

Then p(y*) = 0 if we define y* as

. _ Bay —3%0 _ 40" +308% +356° + 35 (3.44)
VT e 28 T 4B B0F + TIB2 4 545 19 |
(6%}
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and we also have ) 52 8
2a 86 +288+6
200 — —2="1"_—""T""">0. 3.45
M 30, 65 +3 (3.45)
Therefore, to prove (3.38)), it suffices to show yo > y*. However, this is more complicated as (3.44))
implies that y* can be arbitrarily close to 1 by increasing 3, and meanwhile, there indeed exists
y* < yo < 1 such that hj(yo) = 0.

If follows from ([3.41)) that

—2ai9 = /A
Yo = 70‘26 h (3.46)
as
with o os )
4 1)°(4 22 31 6
Ap = 402 — 120705 — 220 )(5‘; F+318+6) . (3.47)
We can estimate Ay, as follows
4 12283 +58%2 -6 4
An < Ay + HBH VPP +55° ~ 66) S8+ 1228 +68)° = A, (3.48)

9

To show yo > y*, we only consider the smallest root of h4( ) = 0. Since we have ag > 0 and ag < 0,
the smallest root is

—2as + /Ay, . —200 + /A 28% 4782+ 358

Jo = 6o3 6ars B 263 +182+T78+2 (349)

Finally, we can prove yg > y* as follows. It follows from ([3.44)) and ( - ) that

L 283 +TB%2+33-8 454 + 3053 + 3582 4+ 38
YooY 2 o T 17312 4B+ 308 1 7132 + 546+ 9 250
568% + 13832 — 95482 — 3398 — 72 (3:50)

~ 8535 + 8055 + 30084 + 52343° + 43052 + 1533 + 18
and given 8 > 2,

568 +1388% — 9532 — 3398 — 72 > 56 x 223 + 138 x 232 — 9542 — 3393 — 72 (351)

= 1098 + 18182 — 72 > 0.

Therefore, we have 3o > y*. Hence (3.13) is proved for 8 > 2.

For the case k = 2 and 3, we can prove ({3.11)) and (3.12)) by the same process as above, so we only
point out some related facts below, which are sufficient to complete the proof.

Case II: k = 2.

o det Sly(A5,CJ) = —1 #0, det Sly(D5,Cy) = —1 # 0, A5(0) # 0.

A8
e The only zero of Cg (C) is % < 1, which means : 525((42) and gé% Eg are holomorphic outside
the unit disk.

e For k =2, (3.11) is equivalent to
fay) = (=28 = B+ Dy +28°+ f+120, Vye[-L1], (3.52)

which is true since f>(y) is monotonically decreasing and fo(1) = 2.
e For k =2, (3.12) is equivalent to

1
hs(y)=—y+1+5 >0, Vye[-1,1], (3.53)

which is obviously true.
Case III: k£ = 3.
o det Sly(Af,C5) =2 + 38 1 L 20, det Sly(Dj,Cy) = 2 20, A5(0) # 0, V8 > 1.
. CB(() has two complex zeros z1 and zp such that |2]? = |,22|2 = % < 1, which means
A2 (Q) D5 (9)
ero @4 g0

2

are holomorphic outside the unit disk.
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e For k = 3, (3.11) is equivalent to

fs(y) = o2(B)y* + o1 (B)y + 00 >0, Vye[-1,1], (3.54)

with
o9(B) = 38* +96% +58% — 38 — 2, (3.55a)
o1(B) = —68* —184% — 1352 + B + 4, (3.55b)
oo(B) = 38 +98% +86% 4+ 28 + 4. (3.55¢)

is true since o2(8) > 0 for § > 1 and
fa(—1) = 128* +- 363 + 263> — 28 — 2 > 0, (3.56a)
f3(1) =6, (3.56b)
Az =02 — 4ogoy = —636% — 1863 — 9562 + 726 + 48 < 0. (3.56¢)
e For k=3, is equivalent to

ha(y) = p2(B)y? + ma(B)y + po(B) >0, vy € [-1,1], (3.57)

with
p2(B) = BB+ 1), (3.584)
p(B) = =262 =28 + 1, (3.58b)
po(B) = BSJFBinH (3.58¢)

(3.57)) is true since pa(5) > 0 for 8 > 1 and
26282448 +1)

hs(—1) = 0 3.59
3( ) ﬂ F1 > U, ( a‘)
2
h3(1) = —— >0, 3.59b
o) = 577 (3.590)
AS = p? — dpops =183 < 0. (3.59¢)
The proof for all the cases is completed. O

Remark 4. The restriction 5 > 2 is a sufficient condition for ([3.13]), which comes from (3.51f). One
can easily show that (3.37) and (3.51)) are true whenever 8 > 1.6. On the other hand, (3.38]) is not
true when 8 =1 as h4(0.2) = —0.312 < 0 with hy defined in (3.38).

3.3. Explicit telescoping formulae for the second and third order schemes. Note that
Lemma [1| only provides the existence of a symmetric positive definite matrix G without giving the
exact value of g;;. In the following, we provide explicit formulae for g;; in the second and third order
cases.

Proposition 3.1. For the second-order version of (2.11)), we have

1

(DS(@"1),CF(6") = 5lo 1P + 0™ = S0P + 310" — "B, (3.60)

and

(A5(7H1),C5 (0" ) = as|¢™ > — asl@™* + [b20" ! + c26"|* — [b20" + 26" |

(3.61)
+ |dog™ T + ea9™ + fad™ T,
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where the coefficients are given by

— VBB, A =288+ 1) ea = fo =~V

=V2+ fo, Ey, =—-p5(26-1), b2:E2:722§2fZ,a2 35+1(;W

Moreover, we have as > 0 for all 5 > 1.

Proposition 3.2. For the third-order version of (2.11), we have

(D§(¢n+1)7c¥§(¢n+l)) _ &3|¢n+1|2 _ d3|¢n|2 + |83¢n+1 + 63¢7L|2 _ |ZA)3(]5” + é3¢n—1‘2

bl s F g2 (3.62)
+ [d3¢" T + é3d™ + fso" 7,
where the coefficients are given by
3 2 2 12 . ) ) 2
MZQB +4p +ﬂ+17N:(2B +26-1) ,A3:M2—4N:46(2B +46+1)
B+1 4 (B+1)?
boe (M= VAs 5 B A2PAL 5 2°H4BPHBHT
3 9 ) - ﬂ"’l 3 - 6"’1 3
A—\f+Q — 1) + 4é5f. 2 3 N
f= \F —fordy = VPt fo b= QOGS o B BT,
4¢3 2 2
(3.63)

and

(A§(¢n+1)70§’(¢n+1)) _ a3|¢n+1|2 _ a3|¢n|2 + |b3¢n+1 + 03¢n|2 _ |b3(bn + C3¢n_1|2
+1ds¢™ ! + €38 + f30" P — |d3d” + e3d" T + f30" 2P + |gsd" T + had™ +izd" T + s 2,

(3.64)
where the coefficients are given by
1382 B 1 p? 152 383 vM+1
M =2p* S L - N=—(=—-= —4+1),P=——
B+6f3+3 33 (G -G 5 5
p? 1 4 78 1982 B 7754 2533 178% B
ﬂ2 38 32 17982 218 58 238
W= +2+1)( +5+)U*2 12 4 4 127
\/P2+2N+P . ) 2i3j3 —
f3:fhﬂs:fs,93:f3*P,Z3:*VM*93,hs VM — fs, 3—%{5@,
R — 2g3i3 U - 2d363 - 293h3
d3:72f3 7C3:\/S—6§—g§—h§,b3: 203 7a'3:W_g§_d§_b§
(3.65)

Moreover, it is numerically verified that all variables appearing in (3.63) and (3.65) are real and
bounded, and as, as > 0 for 1 < 8 <100 (c¢f. Fig. @

The proof of the above two propositions is based on the method of undetermined coefficients,
more precisely, we assume a desired form and use the method of undetermined coefficients to find
the suitable coefficients. The detail of the proof is tedious but straightforward so we leave it to the
interested readers.
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FIGURE 3. Values of a3 and a3 with different /3.

4. STABILITY OF (2.10) FOR LINEAR PARABOLIC TYPE EQUATIONS

We consider in this section the new BDF schemes for the linear case (2.10), which can be written
as
AP (pnt1
7k(§t ) LB = . k=234 (4.1)

and establish a stability result based on Theorem
Theorem 2. Assuming ||f(t)||2 < Cf, ¥Vt < T, B> 1 for k =2,3, and B > 2 for k = 4, then the

scheme (4.1)) is stable in the sense that

n+1 k—1
gl P4 S 8m(8) SO ICE @017 < 03 (19717 + Adlgr]) +
q=k

q=0

TC; T
L VE<ntl< -, (42
2nx(B) At (4.2)

with gx a positive constant depending only on k, C a constant independent of At and ni(8) is defined
in B.0).
Proof. We denote f* = f(t), Vi < %. Taking the inner product of (4.1) with AtC,f(WL“) and
splitting B,f (¢ *1) as in (3.5]), we obtain

(AZ(" ), CL(e"™)) + At (B)IICK (6" 1? + AL(LD (6" ), CL (")) = At(f"7,CL (0" ), (4.3)

where we used ([ﬁC’,f((;S”"’l)7 C’]f((b"“‘l)) = |CL(¢" )2, We estimate the terms in (&3) as follows.
It follows from (2.1]) and the assumption on f that

(f7H2,CL (™)) < [Pl ICE (e
1

1oz 4 By o griny 2

= 20 () 2 (4.4)
Cf Uk(ﬂ) B n+1y12
<ot 2 [Cy ("I,

Denote <I>Z+1 = (pn kL L ¢"THT. Tt follows from Lemma |1| and Theorem [1| that there exist
symmetric positive definite matrices G = (g;;) € R¥** and H = (h;;) € RF=Dx(*k=1) guch that

k k
(AL ("), O (")) > Z gy (¢nHIHiTh gniti=hy Z gij (¢nik, gnti—hy

ij=1 ij=1
= QPG — |27,

(4.5)



16 F. HUANG AND J. SHEN

and
k—1
(EDf(qi)"Jrl), C}lj(d)mrl Z h L¢n+2+z k n+2+] k Z h ¢n+1+i7k’ ¢n+1+jfk)
3,j=1 1,7=1 (46)
= [ @p T — 2RI
Now, combining (4.3)-(4.6)), we obtain
[5G — 19k [& + At @R 7 — I19R17) + 5 At (B BIC (¢ H]* < ni(ﬁ)' (4.7)
Summing up (4.7) from n =k — 1 to n = m, we obtain
m m 1 S _ _ TC
B+ MO+ S Am8) D0 ICH I < 0T+ Aol + 5 T (48)
qg=k—1
Let g be the smallest eigenvalue of the matrix G € R**, then we have
@7 E > grlo™ P, (4.9)
and we can choose a constant C' large enough such that
|oh12 < CZ |o?[2, (4.10a)
k—1
At E < CAtY 6% (4.10D)
i=0
Finally, combining (4.8]) and ( - ) leads to
me12 , 1 - B q+1 2 |2 i ch
9rl@™ T + S Atk (B) PR <CZ 6712 + At]l¢"|1%) + ; (4.11)
Sl 2mk(B)
which implies (4.2]). O

Remark 5. Note that in order to obtain (4.6)), the linear operator L is required to be self-adjoint
while using the Nevanlinna-Odeh approach in [25] can also deal with £ which is not self-adjoint.

5. STABILITY AND ERROR ANALYSIS OF (2.11)) FOR NONLINEAR PARABOLIC TYPE EQUATIONS

In this section, we use the stability result established in the last section to carry out a stability
and error analysis of (2.11)) for nonlinear parabolic equations.

5.1. Stability. Under the local Lipschitz condition (2.2)) on the nonlinear operator G, we can derive
a local stability result for (2.11)) similarly as in the proof of the linear case (cf. Theorem [2]) if we
further assume

CL(9") € By(un+s), (5.1)
with 8 > 1 for k = 2,3, and 8 > 2 for k = 4. Note that formally (5.1)) must be true when At small

enough since C’ﬂ (¢™) is a k-th order approximation to ¢(t"*5). We shall defer the rigorous proof of
- to subsectlon E 5.3| by induction together with the error analysis.
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5.2. Truncation errors. Using the notations introduced in previous sections, we define the trunca-
tion errors for k = 2,3,4 as

Ertl = Atgy (t"1P) — AL (o(t" ), (5.2a)
Rt = g(t"7) — B (s(t" 1)), (5.2b)
Py = (") — CR(g(t™)). (5.2¢)
It follows from (2.4)), (2.6) and (2.8 that
Epth = O0(At Y, R = 0(AER), PP = O(AR). (5.3)
More precisely, one can verify
1 k ¢ntB
B = LS, 0) / (g ra—k gk (kD) () g, (5.4a)
k! g ’ tn+ltqg—k
1 k—1 B
Rn+1 - - b / tn+2+q—k k-1 (k) d 5.4b
k (k* 1)| qgo k:,q(ﬁ) tn+2+q—k( S) ql) (S) S, ( )
= 8
pr_ - tn-‘rl-‘rq—k k-1 (k) ds. 5.4
=PI Y 560 (3)ds (5.4¢)
Therefore, under suitable regularity requirements, we have
T
(BT < CAN™2, IR < Can®,  IPEP < C(An®, Vn+1< (5.5)

5.3. Error estimate. We denote e™ := ¢™ — ¢(t"™), where ¢(t") is the exact solution of at
time t™, i.e.,
Ge(t™) + LOE™) + Glo(t™)] = f(t™). (5.6)
We will use the following discrete version of the Gronwall lemma [26].
Lemma 2. Let y*, hE, g%, f* be four nonnegative sequences satisfying
n n T/A¢
Yt ALY WP <B4 ALY (PP 4 fF) with At Y gF <M, V0 <n < T/AL
k=0 k=0 k=0
We assume At gF < 1 for all k, and let o = maxg<p<r/at(l — Atg*)~1. Then

n n
y" 4+ Achk < exp(ocM)(B + Athk), Vn < T/At.
k=1 k=0
Theorem 3. Assume (2.2) and the solution of (1.1)) is sufficiently smooth such that (5.5)) is true,
and the following stability condition
m(B) —vy=p>0 (5.7)
is satisfied. Given ¢ = ¢(0) € V, we assume B > 1 for k = 2,3, and B8 > 2 for k = 4, and that
o'i=1,....k—1, are computed with a proper initialization procedure such that
0" — &t (16" = $(t)IIP < C(ANM,i =1,k = 1, and O (¢"") € Bygn-11s); (5.8)
then for At sufficiently small, we have

T
C£(¢n+1) S B¢(tn+l+ﬁ')7 Vn + 1 S E, (59)
and
n+1
n+1(2 4 2 —1 o2k T
gkle" T + DAL > ICk(eD|? < Cexp ((1— CA)T'T) (AL, Yn+1< L (5.10)

q=k—1
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where gy is a positive constant depending only on k, C is a constant independent of At.

Proof. We shall prove (5.9) and (5.10]) by induction. Suppose we already have

CL(@") € Bygniny, ¥n<m, (5.11)
and ([5.10) is satisfied with all n < m — 1, we need to prove
CR(@™™) € Bypmir+s), (5.12)

and (5.10) is satisfied with all n < m.
Subtracting (5.6) with m = n + 8 from (2.11)) and multiplying by At, we obtain

AL (") + ALLB] (€)= —AL(G[CY (¢M)] — Glo(t"P)]) + BT + AtLR (5.13)
where Ept!, R are given in (5.2). We split Q[C’,f((b”)] — Glp(t"*P)] as

Gl (6M)] = Glo(t™ 7)) = (GICY (6™)] — GICL (6(t™))]) + (GICY (s(t™))] — Gl (1™ 7))
=17 +17.

(5.14)

Taking the inner product of (5.13) with C,f (e"*1), and splitting B,/j (e"*1) as in (3.5, we obtain
(AL(en1), O (1)) + Atm(BICE ()P + At(£DL (1), CF (em+)
= =AU CRe) = AT, G + (B CLe) + ALRE, CLe™).

Next, we bound the right hand side of (5.15) with the help of the consistency estimate. First, it
follows from (2.8)) that with At sufficiently small, we have C’,f (#(t")) € By(nts), then for the terms
with T7* and T, it follows from (2.2)) and (5.11)) that for any given £ > 0,

(5.15)

mn n n n € n n 1 n
(77, G N < ITTILACL DI < SGICEEMIP + UG + I NI, (5.16)

With P defined in (5.2), we have

(73, CLe )] < ITFILICE (e < %wnpsu? +ulPEP) + Ll e P, .
< c@an* + Llof e )P, o
Similarly,
(B CL ) < ol B P+ BHCR e )P < o 4 2Hode (1)
and
(LRI, CR(e) < %nRz“n? + LGl e P < oo + Bici e . (5.19)

Now, under the stability condition , combining the assumption on the initial steps and
estimations in (5.16)-(5.19), taking e = % in (5.16), and following the same process as in the proof
of Theorem [2| to handle the terms on the left hand side of , we can obtain the following from
515 n+1 n+1
grle™ T + gAt Z ||C’,’f(eq)|\2 < CAt Z le?)? + C(At)%k, VYn <m. (5.20)
q=k—1 q=0
Therefore, by applying the discrete Gronwall lemma |2| to , we can obtain

m—+1

grle™ T2 4 gAt > eN]? < Cexp (1 — CAYTIT) (A, ¥m+1 < A%, (5.21)
q=k—1
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with C' a constant independent of At which implies (5.10)). Finally, it follows from (5.21)) and (2.8)
that

ICF (™) — p(t™F1HP) |2 < 2)|CF (6™ HY) — O (p(t™ )12 + 2I|CY (S(1™+1)) — (™ H1+0))12
< 2|CF (em™H)|? + O(AtF)

< CALPF—1
(5.22)

with C' a constant independent of At, which implies (5.12)) for At sufficiently small. Thus, the proof
is complete with the induction. O

Remark 6. Note that 7, (8) in (3.6) monotonically increases as 8 increases. On the other hand, for
many applications, given 6 > 0, one can choose 7 < § with a suitable p such that (2.2)) is satisfied
[6]. Hence, the stability condition (5.7]) can always be satisfied with these applications.

Remark 7. The analysis in Theorem 2 and Theorem 3 can not be directly extended to the standard
BDF methods (with 8 = 1) since n(1) = 0.

5.4. Comparison to the classical BDF and IMEX schemes. In this subsection, we compare
the stability condition to that of the classical BDF and IMEX methods (with Taylor expansion
at time t"*1) for which the stability condition does not apply. So we shall derive below a corre-
sponding stability condition for the classical BDF and IMEX methods. To simplify the presentation,
we assume p = 0 in since the general case can be handled by applying the discrete Gronwall
lemma as in Theorem [3

The stability condition in Theorem [3|is derived from

(LB(e), CP(eM) = (m(B)CL (") + Di(e"), C (€M) = m(B)ICL (e)? + (D ("), Ty (™)),

(5.23)
and
(G167 (6] - GIC{ (6], G (em) < min (SIGICL (™) - GICE G + 5 IChle™)]?)
< min (TICLI? + o ICLE)IP) (521)

ENGi leACR]

As aresult, the stability condition is derived by requiring nx (3) > /7 since the term (Df (e™), C’,f(e”))
can be handled by Lemma [T] and Theorem

On the other hand, for the classical IMEXk (k = 2,3,4) schemes, i.e., with 8 = 1, the
suitable multipliers are given as e — fje™ ! [25] and the smallest possible values of 7j; are

fis =0, 3 =0.0836, ;= 0.2878. (5.25)
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Hence, the corresponding versions of ([5.24) and (5.23) become

k-1 k—1
(Q[Z Crg(1)g"HHIHI) — Q[Z Ch,g (P FHHN)], ™ — e )
q=0 q=0
n— n— 1 n =~ n—
< min (5191 ch,q Jor i) chq SN2 4+ " — e ")
57 o1 . (5.26)
. I n—k+14q |2 T, 12
< min (5 q2| Dllle 2+ 5o le = e )
57 = 1
. I n—k+1+q 2 n|2 ~21 .n—1(2
< min (5 Zolcze,q e I+ 5 (eI + alle™ %),
q=
where ¢y 4(1) are defined in (2.12)-(2.14) with 8 =1, and
n n -~ n— n =~ n n— n ﬁk n n—
(Le™se™ —ipe™ 1) = fle"[|* = i (Le™, €™ 71) > fle™ 17 = - (lle™ 1 + e %), (5.27)

Combining (5.26]) and (5.27)), we obtain the following stability condition for the classical IMEX type
scheme with multiplier e — 7je" !,

11— > mln Z lck,q(1) (1 +12)) > /a1 +72), (5.28)

with &, = Zs;é |ck,q(1)]. Comparing with (5.28), we have two remarks:

e From and , we observe that for the classical IMEX schemes, higher-order (i.e.,
larger k) requires stronger stability condition on the parameter v appearing in (2.2). It is
this requirement on the time step that limits the use of high order scheme in practice

e On the other hand, for the new class of IMEX schemes, we observe from and .
that the stability condition on -y becomes weaker as we increase 5. In partlcular the new
higher-order schemes with a suitable 8 can be stable with a larger time step than that is
allowed with a classical IMEX scheme of the same-order. For example, we have from
that 12(2) = 13(3) = na(5) = 1/2 which indicates that the stability condition of the new
fourth-order scheme with § = 5 and third-order scheme with 5 = 3 is the same as that of
the second-order classical scheme. Our numerical results in Example 3 below indicate that
we can use the maximum allowable time step of the second-order classical scheme in our new
third- and fourth-order schemes to obtain more accurate results.

Remark 8. Note that a new multiplier e — 12@6"_1 - 116196” 2 for the classical BDF3 scheme is
reported in [4] and since A3 1= 25 + &5 < 73 = 0.0836, one can obtain milder conditions on vy

compared to adopting the Nevanlinna-Odeh multipliers. Nevertheless, we can derive even milder
conditions on 7 by choosing larger 5 in our new methods.

6. EXTENSION TO FIFTH-ORDER

In Theorem [1} we found suitable multipliers for the second- and third-order scheme with 5 > 1
and for the fourth-order scheme with 8 > 2. In this section, we would like to show numerically that
the multiplier we found in section [3] also works for the fifth-order scheme.

Following the same notations as before, we can obtain the coefficients a5 (8), bs,4(5), ¢5,4(8) by
solving the linear systems , and with k& = 5, respectively. Then we can define
AZ(6"), B (¢%),CP(#') as in (B-1). Next, we split B (¢"*1) as

B (6™) = ms(A)CE () + D™, with ns(8) = 5

m, (6.1)
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and define A?(c),éﬁ(g),bg(g) as in (3.2). Following the key steps in the proof of Theorem
we present a sequence of numerical results to show that C5’6 (¢"*1) is a suitable multiplier for the
fifth-order scheme with 6.5 < 8 < 100.

o We have gcd(Ag(C),(Cg(C)) = gcd(f)?((), Cg(@)) = 1 since Af(()) =as5, # 0 and

det Sly(AZ, CF) = g2 1B 63550 789375° | 5528098° 63838347

T 221184 ' 110592 ' 663552 ' 14929920 ' 29859840 @ 14929920 (6.2)
98017698° 491261985  7656833% 2251578% 614332 20713 1L,
149299200 ' 74649600 ' 18662400 @ 15552000 ' 2488320 ' 10368000 ' 160000 ~

and
B3(B% +68%+ 115 +6)3
13824

e Let ri,7o,...,75 be the five roots of C'g(() = 0, and denote rp.x = nax |ri]. In Fig. {4 we
1’_

plot the numerif:al values of 1.y for 0 < 8 < 100. We observe that ry.x < 1 for 0 < g < 100,
which implies 056 (¢) is holomorphic outside the unit disk in the complex plane.

det Sly(DZ, C) =

> 0. (6.3)

7ﬂuh‘*\){

0.9

0 20 40 60 80 100

FIGURE 4. rp.x with different f.

e Following the same process as in the proof of Theorem we can derive that Re C’Lé%(fg) >
Ofor|¢| > 1 is equivalent to
(- 9f) 20, Vye[-11)
where
f5(y) = oa(B)y* + 03(8)y” + 02(B)y* + 01(B)y + 00 > 0, Vy € [-1,1], (6.4)
with
o4(B) = 588 + 7087 + 3908° + 10905 + 15396* + 82083 — 35032 — 5408 — 144, (6.5a)
o3(B) = —208% — 28087 — 15504° — 42608° — 58363% — 30243° + 95052 4 13963 + 336,  (6.5b)
02(B) = 308°% + 42087 + 23108° + 62408° + 82444* + 39324% — 12608% — 13403 — 204,  (6.5¢)
o1(B) = —208% — 28087 — 15304° — 40608° — 51363% — 20723% + 107082 + 6523 + 36,  (6.5d)
o0(B) = 58% + 7087 + 380835 + 9905° 4 11895* + 3443 — 41032 — 1683 + 336. (6.5¢)

DZ (¢)
cl©

hs(y) = na(B)y" + us(B)y® + n2(B)y® + 11 (B)y + po(8) 2 0, Wy € [-1,1], (6.6)

e On the other hand, we can also show that Re > 0for|¢| > 1 is equivalent to
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with
1a(B) = B(B* + 3B + 2)??(@"’:3@ +486 —27) (6.7)
1s(8) =  B(24B87 + 29253° + 13663° + 3(;;??4;1?)88%3 +19358% — 13918 — 618)’ (6.7b)
(B = B(1287 + 1468° + 6708° + 132?234:1;)21@ — 55332 — 11278 — 402)7 (6.70)
1 (6) = — (246°% + 29267 + 13143° 4 25274° ;(1;0351‘;)— 24054% — 31176% — 100883 — 270)’ (6.7d)
o(B) = 68° + 738" +3228° + 571B51;r(glf4157) 9263° — 9958% — 31283 + 18 (6.7¢)

In Fig. |5} we plot the minimum values of f5(y) and hs(y) in [—1,1] with 1 < 8 < 100, which
show (6.4)) is true for 1 < 3 < 100 and is true for 6.5 < B8 < 100. Therefore, we have
numerically verified that Theorem [I|is also true for (2.11]) with k¥ =5 and 6.5 < g < 100.

Remark 9. The choice of 75(5) in is not unique, and the range 6.5 < 5 < 100 is not
necessarily the largest possible. But our numerical results indicate and do not
hold for some 8 > 100.

For the sixth-order scheme, our numerical results show there exists |rg| > 1, which is one
root of C'g (¢) = 0 and this implies that it is not holomporphic outside the unit disk. Hence,
the proof in Theorem [I] can not be extended to the sixth-order.

(a) (b)
450 0.5
0.4
400
0.3
3350 = 02
2 300 g o1
0 .xs.s
250 Y 0.0304633
0.1
200 02
0 20 40 60 80 100 20 40 60 80 100
B8 Ié]

FIGURE 5. Minimum value of f5 and hs in [—1, 1] with different S.

7. NUMERICAL EXAMPLES

In this section, we provide some numerical approximation of the Allen-Cahn [7] and Cahn-Hilliard
[11] equations to validate our theoretical results, and to show the advantages of the new IMEX

schemes ([2.11)).

Given a free energy

elé) = [ 51V0P + (1 - ¢ de, ()
We consider the H ¢ gradient flow,
0
O — m(-A)(~ A6~ o(1— ) + (), a=0 or 1, (7.2)

where f is the given source term. When o = 0, (7.2) is the standard Allen-Cahn equation; when
a =1, it becomes the standard Cahn-Hilliard equation.
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Ezample 1. In the first example, we validate the convergence order of the new schemes. Considering
a two-dimensional domain (0,2)? with periodic boundary conditions, let a = 0, m = ¢ = 0.2 in ([7.2)
and f is chosen such that the exact solution of (7.2) is

Bz, y, t) = ST ST gin (), (7.3)

We use the Fourier Galerkin method with Nx = Ny = 40 in space so that the spatial discretization
error is negligible compared to the time discretization error. In Fig. [6] we plot the convergence rate of
the L? error at T = 1 by using the second- to fourth- order schemes . We observe the expected
convergence order for all the cases with different 5. We also observe that for the same order, the
error increases slightly with larger 5.

L 2-error
L 2-error
L %-error

10710

FIGURE 6. Convergence test for the general IMEX type methods. From left to
right: second order, third order and fourth order schemes with different .

Example 2. In the second example, we solve a benchmark problem for the Allen-Cahn equation
[12]. Consider a two-dimensional domain (—128,128)% with a circle of radius Ry = 100. In other
words, the initial condition is given as

1, 2%+ y% <1002

7.4
-1, 2?4y >100% (74)

oz, y,0) = {
By mapping the domain to (—1,1)?, the parameters in (7.2]) are given by m = 6.10351 x 1075,
€ =0.0078, « = 0 and f = 0. In the sharp interface limit, the radius at time ¢ is given by

R=\/R2 -2t (7.5)

We use the Fourier Galerkin method with Nx = Ny = 512 in space. Then we fix At = 0.75, which is
the maximum time step we can use for the classical second-order scheme to get acceptable numerical
results, and use with different orders and different 8. We plot the computed radius R(t) in
Fig. which shows that we can use higher-order schemes with the same large time step as the
second-order schemes by choosing 5 > 1. More importantly, we can get much more accurate results
with higher-order schemes. Here, k = 1,5 = 1 represents the usual first-order scheme.

Ezample 3. In the third example, we consider the Cahn-Hilliard equation in a two-dimensional
domain (0,1)? with periodic boundary condition and let o =1, m =1, ¢ = 0.02 in (7.2). The initial
condition is given as ¢(0) = 0.2+ and r is a random perturbation variable with uniform distribution
in [—0.02,0.02]. We use the Fourier Galerkin method with Nx = Ny = 128 in space. In Fig. |8 we
compare the first- to the fourth-order schemes with different 3, the reference solution is generated by
using the classical fourth-order scheme with sufficiently small time step At =5 x 1079,

Several observations are in order:

o 1. We take At = 7.5 x 1078 which is the maximum allowable time step for the classical
second-order scheme, and observe in Fig. a) that we can use the same time step for the
higher-order schemes by choosing a suitable S > 1, and obtain more accurate results.
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FIGURE 7. The evolution of radius R with At = 0.75 under different schemes.

e 2. We observe in Fig. (b) that the usual third- and fourth-order schemes with f = 1
are unstable, but we can get correct solutions with the third- and fourth-order schemes by
choosing a suitable g > 1.

e 3. We also observe in Fig. b) that g too large may lead to inaccurate results due to larger
truncation errors.

600 . . , 600 | ; .
——k=4,8=1,At =5x 1077, reference At =5 x 1079, reference
-—=k=1,/=1,At=75x10"% , At =7.5 x 107%, unstable

k=2,8=1,At=75x10"% | LAt =7.5x%x10"%

500 —_—k=3,0=2,At=75x10"% 500 JAL=75x%x10"%
—_—k=4, =23, At="75x10"% k=4,3=1, At = 7.5 x 1078, unstable

—_—k=4,8=23,At=T75x10"°
>400 >400 4B _ -
3 57 | k=4,8=3At=75x10"
2 2
[ (9] -
c c SN
W 300 | W 300 f N
\
Y
1
200 | 200 | i
8 10
100 100
25 2 25
t %1073 t %1073
(a) Comparisons of different order schemes (b) Effect of S8 in high order schemes

FicUurE 8. Comparisons of different order schemes with different S for the Cahn-
Hilliard equation

8. CONCLUDING REMARKS

We presented in this paper a new class of BDF and IMEX schemes for parabolic type equations
based on the Taylor expansion at time ¢"*# with f > 1 being a tunable parameter. The new
schemes are a simple generalization of the classical BDF or IMEX schemes with essentially the same
computational efforts. However, they enjoy a remarkable property that their stability regions increase
as the parameter [ increases, making it possible, by choosing a suitably large 3, to use high-order
schemes with larger time steps that are only allowed with lower-order classical schemes. We also
identified an explicit uniform multiplier for the new schemes of second- to fourth-order, and carried
out a rigorous stability and error analysis by using the energy argument. We also presented numerical
examples to show the benefit of using higher-order schemes with a suitable 5 > 1.
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This class of new BDF and IMEX schemes makes it possible to use higher-order schemes for highly
stiff systems with reasonably large time steps, and can be easily implemented with a minimal effort by
modifying the code based on the classical BDF or IMEX schemes. Thus, it provides a much needed
improvement on the stability of higher-order schemes. The idea behind the new class of BDF and
IMEX schemes is very simple but original, and can be extended to other type of numerical schemes.
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