
ar
X

iv
:2

40
5.

00
35

9v
1

 [
cs

.D
S]

 1
 M

ay
 2

02
4

Subquadratic Submodular Maximization

with a General Matroid Constraint∗

Yusuke Kobayashi† Tatsuya Terao†

Abstract

We consider fast algorithms for monotone submodular maximization with a general ma-
troid constraint. We present a randomized (1− 1/e− ǫ)-approximation algorithm that requires
Õǫ(
√
rn) independence oracle and value oracle queries, where n is the number of elements in

the matroid and r ≤ n is the rank of the matroid. This improves upon the previously best
algorithm by Buchbinder-Feldman-Schwartz [Mathematics of Operations Research 2017] that
requires Õǫ(r

2 +
√
rn) queries.

Our algorithm is based on continuous relaxation, as with other submodular maximization
algorithms in the literature. To achieve subquadratic query complexity, we develop a new round-
ing algorithm, which is our main technical contribution. The rounding algorithm takes as input
a point represented as a convex combination of t bases of a matroid and rounds it to an integral
solution. Our rounding algorithm requires Õ(r3/2t) independence oracle queries, while the pre-
viously best rounding algorithm by Chekuri-Vondrák-Zenklusen [FOCS 2010] requires O(r2t)
independence oracle queries. A key idea in our rounding algorithm is to use a directed cycle
of arbitrary length in an auxiliary graph, while the algorithm of Chekuri-Vondrák-Zenklusen
focused on directed cycles of length two.

1 Introduction

1.1 Submodular Maximization

Submodular maximization is a fundamental and well-studied problem in theoretical computer sci-
ence and combinatorial optimization. This is because a number of important problems can be
regarded as special cases of submodular maximization, including maximum coverage, generalized
assignment, and facility location. Furthermore, submodular maximization has many practical ap-
plications in machine learning, economics, and many other areas. In the submodular maximization
problem, the input consists of a (monotone) submodular set function f : 2V → R+ and a feasible
region F ⊆ 2V specified by some constraints, and the aim is to find a set S ∈ F maximizing f(S).

The study of submodular maximization was initiated by a seminal work of Fisher, Nemhauser,
andWolsey in the 1970’s [26,34,35]. They showed that, for monotone submodular maximization, the
greedy algorithm achieves (1−1/e)-approximation for a cardinality constraint and 1

2 -approximation
for a matroid constraint. The advantage of their algorithm is that it is very simple and fast,
indeed, it runs in quadratic time. It is known that unless P = NP, for any ε > 0, there is no
(1− 1/e + ε)-approximation algorithm for the maximum coverage problem [24], which is a special

∗The authors thank the three anonymous reviewers for their valuable comments. This work was partially supported

by the joint project of Kyoto University and Toyota Motor Corporation, titled “Advanced Mathematical Science

for Mobility Society”, by JST ERATO Grant Number JPMJER2310, and by JSPS KAKENHI Grant Numbers

JP20K11692, JP22H05001, JP24KJ1494, and JP24K02901.
†Research Institute for Mathematical Sciences, Kyoto University. E-mail: {yusuke, ttatsuya}@kurims.kyoto-

u.ac.jp

1

http://arxiv.org/abs/2405.00359v1

case of monotone submodular maximization with a cardinality constraint or a matroid constraint.
Thus, the factor 1− 1/e is optimal for a cardinality constraint.

To obtain an optimal (1 − 1/e)-approximation algorithm for a matroid constraint, Calinescu-
Chekuri-Pál-Vondrák [13] developed a framework based on continuous optimization and rounding
technique. In their algorithm, they first solve the continuous optimization problem of maximizing
the multilinear extension F of f , a natural continuous extension of f . By using a continuous
greedy algorithm, they obtain a (1 − 1/e)-approximation solution for the continuous optimization
problem. In order to round the obtained fractional solution to an integral one, they use a variant
of the pipage rounding technique of Ageev-Sviridenko [1]. Consequently, their algorithm achieves
the optimal (1−1/e)-approximation. Note that, although their algorithm runs in polynomial time,
its running time is very high.

Since submodular maximization has a number of applications, providing efficient approximation
algorithms is a fundamental task both in theory and in practice. Thus, it has received considerable
attention to develop fast submodular maximization algorithms that achieve an approximation close
to the optimal factor, typically with an approximation factor of 1− 1/e− ε for any ε > 0.

In the submodular maximization problem with a general matroid constraint, it is standard to
suppose that the objective function f is given as a value oracle, and the feasible region F ⊆ 2V

is given as an independence oracle of a matroid. In such a case, the efficiency of an algorithm is
usually measured by the number of value and independence oracle queries used in it.

Badanidiyuru-Vondrák [3] presented a fast algorithm that achieves an almost optimal ap-
proximation factor 1 − 1/e − ε, for any ε > 0, for a matroid constraint. Their algorithm uses

O
(

rn
ε4

log2
(

n
ε

))

value oracle queries and O
(

n
ε2

log
(

n
ε

)

+ r2

ε

)

independence oracle queries, where n

is the number of elements in the matroid and r is the rank of the matroid. To achieve this query
complexity, they developed a fast implementation of the continuous greedy algorithm that uses
Õε(rn) value oracle queries and Õε(n) independence oracle queries.1 The output of their contin-
uous greedy algorithm is a fractional solution represented as a convex combination of 1/ε bases.
Then, they apply the swap rounding algorithm of Chekuri-Vondrák-Zenklusen [18] to round the
obtained fractional solution to an integral solution, which requires O(r2/ε) independence oracle
queries.

Buchbinder-Feldman-Schwartz [12] presented a (1−1/e−ε)-approximation algorithm that has a
trade-off between the number of value oracle queries and the number of independence oracle queries
used in the algorithm. In their algorithm, they combine a variant of the residual random greedy
algorithm of Buchbinder-Feldman-Naor-Schwartz [11] and the fast continuous greedy algorithm of
Badanidiyuru-Vondrák described above. Then, for a parameter λ ∈ [1, r], their algorithm uses
Õε(rλ + rn

λ) value oracle queries and Õε(λn + r2) independence oracle queries. We note that the

Õε(r
2) term in the independence query complexity is due to the rounding algorithm in the same

way as the algorithm of Badanidiyuru-Vondrák. If we evaluate the algorithm by the total number
of queries regardless of their types, then the query complexity is minimized when λ = Θ(

√
r). In

this case, their algorithm uses Õε(r
2 +
√
rn) value and independence oracle queries. This query

complexity is better than that of Badanidiyuru-Vondrák [3] when r = o(n), but a quadratic number
of queries is still required when r is large.

Recently, for several important classes of matroids, faster algorithms for monotone submodular
maximization with a matroid constraint have been investigated. Ene-Nguy˜̂en [22] presented a
(1 − 1/e − ε)-approximation algorithm for graphic matroid and partition matroid constraints in
time nearly-linear in the size of their representation. Henzinger-Liu-Vondrák-Zheng [27] presented
a (1 − 1/e − ε)-approximation algorithm for laminar matroid and transversal matroid constraints
in nearly-linear time. A key ingredient in these algorithms is a fast dynamic data structure for

1The Õε notation hides polylogarithmic factors in n and polynomial factors in ε
−1.

2

maintaining an (approximate) maximum weight basis of the matroid.

1.2 Our Results

This paper focuses on the monotone submodular maximization problem with a general matroid
constraint. In the problem, this input consists of a monotone submodular set function f : 2V → R+

given as a value oracle, and a matroidM = (V,I) given as an independence oracle. The objective
is to find an independent set S ∈ I that maximizes f(S). For α ∈ [0, 1], a randomized algorithm is
said to be an α-approximation algorithm if it returns a solution S ∈ I with E[f(S)] ≥ α·max{f(T) |
T ∈ I}. A randomized algorithm is often called simply an algorithm throughout the paper. Our
main result is to give a first (1 − 1/e − ε)-approximation algorithm for this problem that requires
a subquadratic number of queries. Recall that n = |V | and r is the rank ofM.

Theorem 1.1. For any ε > 0, there is a randomized algorithm that achieves (1 − 1/e − ε)-
approximation for maximizing a monotone submodular function subject to a matroid constraint
and uses O(

√
rn poly(1/ε, log n)) value and independence oracle queries.

It is worth mentioning that, for the case of r = Θ(n), our algorithm uses Õε(n
3/2) oracle queries,

whereas the algorithm of Buchbinder-Feldman-Schwartz [12] uses Õε(n
2) oracle queries.

Our algorithm is based on continuous relaxation and rounding technique in the same way as
previous algorithms [3,12,13]. In this framework, currently, the bottleneck of the query complexity
comes from the rounding algorithm. Indeed, the swap rounding algorithm by Chekuri-Vondrák-
Zenklusen [18] requires O(r2t) independence oracle queries if the input point is represented as a
convex combination of t bases of the matroid. Then, this rounding algorithm requires a quadratic
number of independence oracle queries even when t is small. Therefore, in order to break the
quadratic-independence-query barrier in this framework, it is necessary to devise a faster rounding
algorithm.

The key technical contribution of this paper is to develop a new rounding algorithm that uses
o(r2t) independence oracle queries.

Theorem 1.2. For any ε > 0, there is a randomized algorithm satisfying the following conditions:

• the input consists of a matroid M = (V,I) given as an independence oracle and a point x in
the base polytope of M that is represented as a convex combination of t bases,

• the output is a basis S of M such that E[f(S)] ≥ (1 − ε)F (x) for any submodular function
f : 2V → R and its multilinear extension F , and

• it uses O(r3/2t log3/2(rtε)) independence oracle queries.

By combining this theorem with the submodular maximization algorithm by Buchbinder-Feldman-
Schwartz [12], we obtain Theorem 1.1; see Section 3 for details.

We also show that if the matroid is given as a rank oracle instead of an independence oracle,
then we obtain a (1 − 1/e − ε)-approximation algorithm using Õε(n+ r3/2) value and rank oracle
queries.

Theorem 1.3. For any ε > 0, there is a randomized algorithm that achieves (1 − 1/e − ε)–
approximation for maximizing a monotone submodular function subject to a matroid constraint
and uses O((n+ r3/2) poly(1/ε, log n)) value and rank oracle queries.

1.3 Overview of Our Rounding Algorithm

In this subsection, we give a technical overview of our new rounding algorithm. Since our rounding
algorithm is based on that of Chekuri-Vondrák-Zenklusen [18], we first review their algorithm and
then explain the key ideas behind ours.

3

Swap Rounding Algorithm of Chekuri-Vondrák-Zenklusen. The rounding algorithm by
Chekuri-Vondrák-Zenklusen is called the swap rounding algorithm. Their algorithm takes as input
a point x represented as a convex combination of t bases ofM and returns an integral solution S
such that E[f(S)] ≥ F (x) for any submodular function f and its multilinear extension F . In each
phase of the algorithm, we pick up two bases in the representation of x and merge them into a
single basis. By applying this procedure t− 1 times, we obtain a single basis ofM.

In order to merge two bases, say B1 and B2, their swap rounding algorithm uses a strongly
exchangeable pair of elements, that is, a pair of elements u ∈ B1 \ B2 and v ∈ B2 \ B1 such that
B1 + v − u ∈ I and B2 + u − v ∈ I. Since we can find a strongly exchangeable pair using O(r)
independence oracle queries and we need to find such a pair O(rt) times in the algorithm, the total
number of queries is O(r2t). It is still not clear whether we can develop an algorithm for finding
a strongly exchangeable pair using o(r) independence oracle queries, and hence their algorithm is
now stuck at Ω(r2t) independence oracle queries.

See Section 4 for details of the swap rounding algorithm of Chekuri-Vondrák-Zenklusen.

Our Faster Rounding Algorithm. We develop a new rounding algorithm that requires Õ(r3/2t)
independence oracle queries with high probability. Our rounding algorithm is based on that of
Chekuri-Vondrák-Zenklusen in a sense that we update bases by swapping a pair of elements O(rt)
times. Therefore, in each step of our algorithm, we need to update some basis by using only Õ(

√
r)

independence oracle queries. To achieve this, we need substantially new ideas.
First, we introduce a digraph that represents exchangeability of the elements in the matroid

(see Definition 5.2), and provide a new interpretation of the swap rounding algorithm of Chekuri-
Vondrák-Zenklusen using this auxiliary graph. Indeed, each step of their algorithm can be seen as
an update using a directed cycle of length two in the auxiliary graph. This interpretation motivates
us to focus on a directed cycle of arbitrary length in the auxiliary graph instead of a directed cycle
of length two. By extending the argument of Chekuri-Vondrák-Zenklusen, we show that we can
appropriately update bases using a directed cycle of arbitrary length in the auxiliary graph.

Second, we show that we can find a directed cycle in the auxiliary graph using o(r) independence
oracle queries with high probability, which is the most technical part in our argument. To achieve
this, we combine sampling technique and binary search technique. In our algorithm for finding a
directed cycle in the auxiliary graph, we first sample Õ(

√
r) vertices, and define D′ as the subgraph

induced by the sampled vertex set. If every vertex in D′ has an incoming edge, then we can easily
find a directed cycle in D′ by traversing such directed edges in the opposite direction. Otherwise,
by using a vertex with no incoming edge, we find a directed cycle of length two using Õ(

√
r)

independence oracle queries with high probability. We can check whether each vertex in D′ has
an incoming edge or not using Õ(1) independence oracle queries with the aid of the binary search
technique proposed by Nguy˜ên [36] and Chakrabarty-Lee-Sidford-Singla-Wong [14]; see Lemma
2.1 for details. Note that this technique was used in recent studies on fast matroid intersection
[8,10,14,36,39] and matroid partition [38] algorithms. Therefore, we obtain an algorithm that finds
a directed cycle using Õ(

√
r) independence oracle queries with high probability.

In our rounding algorithm, we update bases using a directed cycle in the auxiliary graph re-
peatedly. Since we update bases O(rt) times and each update requires Õ(

√
r) independence oracle

queries, the total number of independence oracle queries is Õ(r3/2t) with high probability.

1.4 Related Work

We have mentioned several recent studies on fast submodular maximization with matroid con-
straints in Section 1.1. Other than these, there are a lot of studies on fast submodular maximization
algorithms in the literature [2, 3, 15,20,25,30,32].

4

Badanidiyuru-Vondrák [3] developed a (1−1/e−ε)-approximation algorithm using O(nε log(
n
ε))

value oracle queries for the cardinality constraint. Mirzasoleiman-Badanidiyuru-Ashwinkumar-
Karbasi-Vondrák-Krause [32] developed a (1−1/e−ε)-approximation algorithm using O(n log(1/ε))
value oracle queries for the cardinality constraint. Ene-Nguy˜̂en [20] developed a (1 − 1/e − ε)-
approximation algorithm using (1/ε)O(1/ε4)n log2 n value oracle queries for the knapsack constraint.
Filmus-Ward [25] presented a combinatorial (1− 1/e)-approximation algorithm for monotone sub-
modular maximization with a matroid constraint, which uses O(n7r2) oracle queries. They also
obtain a (1 − 1/e − O(ε))-approximation algorithm that uses O(ε−3n4r) value oracle queries and
O(ε−1n2r log n) independence oracle queries.

Studies on fast submodular maximization algorithms have developed also in the direction of
parallelized settings [4, 5, 16,21,23], distributed settings [7, 31], and dynamic settings [6, 19,29,33].

Chekuri-Quanrud-Torres [17] developed a fast swap rounding algorithm for graphic matroid
constraints to obtain fast approximation algorithms for the Bounded Degree MST problem and the
Crossing Spanning Tree problem.

1.5 Paper Organization

The remaining of this paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, we show how to derive Theorem 1.1 from our fast rounding algorithm in Theorem 1.2. In
Section 4, we describe the swap rounding algorithm by Chekuri-Vondrák-Zenklusen [18] in detail,
because it is the basis of our rounding algorithm. In Section 5, we describe our fast rounding
algorithm and prove Theorem 1.2, which is the main technical part of this paper. In Section 6, we
discuss the rank oracle setting and prove Theorem 1.3.

2 Preliminaries

Basic Notation. Let R+ denote the set of non-negative real numbers. Throughout this paper,
let V be a finite set and let n denote its cardinality. For a set A ⊆ V and an element v ∈ V , we
will often write A + v := A ∪ {v} and A − v := A \ {v}. For two sets A,B ⊆ V , their symmetric
difference is denoted by A△B := (A \ B) ∪ (B \ A). For A ⊆ V , the characteristic vector of A is
defined as the vector x ∈ {0, 1}V with xv = 1 for v ∈ A and xv = 0 for v ∈ V \ A. We will denote
by 1A the characteristic vector of A. For v ∈ V , we will write 1v := 1{v}.

Submodular Functions and Multilinear Extension. Let f : 2V → R+ be a set function on a
finite ground set V of size n. The function is submodular if f(A)+ f(B) ≥ f(A∪B)+ f(A∩B) for
any two subsets A,B ⊆ V . The function is monotone if f(A) ≤ f(B) for any subsets A ⊆ B ⊆ V .
In this paper, we only consider monotone submodular functions.

For a function f : 2V → R+, we define its multilinear extension F : [0, 1]V → R+ by

F (x) =
∑

S⊆V

f(S)
∏

v∈S

xv
∏

v∈V \S

(1− xv)

for x ∈ [0, 1]V . Note that this value is equal to E[f(R(x))], where R(x) is a random set that
contains each element v ∈ V independently with probability xv. In particular, F (1S) = f(S) for
any S ⊆ V .

Matroids. A pair M = (V,I) of a finite set V and a non-empty set family I ⊆ 2V is called a
matroid if the following properties are satisfied.

5

(Downward closure property) if S ∈ I and S′ ⊆ S, then S′ ∈ I.

(Augmentation property) if S, S′ ∈ I and |S′| < |S|, then there exists v ∈ S \ S′ such that
S′ + v ∈ I.

A set S ⊆ V is called independent if S ∈ I and dependent otherwise. The rank ofM is defined
as the size of a largest independent set. In addition, for a subset S ⊆ V , the rank of S is defined
as the size of a largest independent set contained in S. Inclusionwise maximal independent sets
are called bases. Note that every basis has the same size. For an independent set S ∈ I, let
M/S = (V \ S,I ′) be the matroid obtained by contracting S inM, that is, S′ ∈ I ′ if and only if
S′ ∪ S ∈ I.

Let B be the set of all bases of a matroidM = (V,I) and let B,B′ ∈ B be two bases. It is well-
known that, for any u ∈ B \B′, there exists v ∈ B′ \B such that B−u+ v ∈ B and B′− v+u ∈ B
(see e.g., [37, Theorem 39.12]). This property is called strong basis exchange property of matroids.

LetM = (V,I) be a matroid whose rank function and basis family are denoted by rM and B,
respectively. The matroid polytope P (M) is defined as the convex hull of the characteristic vectors
of all the independent sets of M. The matroid base polytope B(M) is defined as the convex hull
of the characteristic vectors of all the bases of M. It is well-known that P (M) and B(M) are
described as follows (see e.g., [37, Section 40.2]):

P (M) := conv{1I | I ∈ I} =
{

x ∈ R
V
+

∣

∣

∣

∣

∣

∑

v∈S

xv ≤ rM(S) for any S ⊆ V

}

,

B(M) := conv{1B | B ∈ B} =
{

x ∈ P (M)

∣

∣

∣

∣

∣

∑

v∈V

xv = rM(V)

}

.

Oracles. When we consider the submodular maximization problem, we assume that the sub-
modular function f is given as a value oracle, which takes as input any subset S ⊆ V and outputs
f(S). We also assume that we access a matroidM through an oracle. Given a subset S ⊆ V , an
independence oracle outputs whether S ∈ I or not. Given a subset S ⊆ V , a rank oracle outputs
the rank of S, i.e., the size of a largest independent set contained in S. Note that the rank oracle
is more powerful than the independence oracle, since one query of the rank oracle can determine
whether a given subset is independent or not.

Binary Search Technique. For a matroid M = (V,I), an independent set S ∈ I, an element
u ∈ V \ S, and T ⊆ S, we consider a procedure that finds an element v ∈ T with S + u− v ∈ I if
one exists. Chakrabarty et al. [14] and Nguy˜ên [36] independently proved that this procedure can
be implemented efficiently by using the binary search technique in the independence oracle model.
Their result is formally described as follows.

Lemma 2.1 ([14, 36]). There is an algorithm FindExchangeElement which, given a matroid
M = (V,I), an independent set S ∈ I, an element u ∈ V \ S, and T ⊆ S, finds an element v ∈ T
such that S + u− v ∈ I or otherwise determines that no such element exists, and uses O(log |T |)
independence oracle queries.

3 Submodular Maxmization Algorithm (Proof of Theorem 1.1)

In this section, we give a proof of Theorem 1.1 by combining the algorithm of Buchbinder-Feldman-
Schwartz [12] and our rounding algorithm in Theorem 1.2. Note that a proof of Theorem 1.2 is
given in Section 5 later.

6

For monotone submodular maximization with a matroid constraint, Buchbinder-Feldman-Schwartz
presented a (1−1/e−ε)-approximation algorithm that has a trade-off between the number of value
oracle queries and the number of independence oracle queries used in the algorithm. The main part
of their algorithm is to solve the continuous relaxation of the submodular maximization problem
efficiently.

Let λ ∈ [1, r] be a parameter that controls the trade-off. In their algorithm for solving the
continuous relaxation problem, they first apply a variant of the residual random greedy algo-
rithm of Buchbinder-Feldman-Naor-Schwartz [11]. This residual random greedy algorithm outputs
S ⊆ V and uses Õε(rλ + n) value oracle queries and Õε(λn) independence oracle queries; see [12,
Lemma 3.3]. Then they apply a variant of the fast continuous greedy algorithm of Badanidiyuru-
Vondrák [3]. This continuous greedy algorithm outputs a point x′ represented as a convex combi-
nation of 1/ε bases of M/S and uses Õε(

rn
λ) value oracle queries and Õε(n) independence oracle

queries; see [12, Corollary 3.1]. Then x = 1S ∨ x′ is an approximate solution for the continuous
relaxation problem, which can be represented as a convex combination of 1/ε bases of M. Here,
for vectors y and z, let y ∨ z denote the vector such that (y ∨ z)i = max{yi, zi} for all i.

Overall, Buchbinder-Feldman-Schwartz [12] presented an efficient algorithm for solving the con-
tinuous relaxation problem, which is formally stated as follows.

Theorem 3.1 (follows from [12, Corollary 3.1] and [12, Lemma 3.3]). Given a non-negative mono-
tone submodular function f : 2V → R+, a matroidM = (V,I) of rank r, and parameters ε > 0 and
λ ∈ [1, r], there is an algorithm satisfying the following conditions:

• the algorithm outputs a point x ∈ B(M) represented as a convex combination of 1/ε bases
such that E[F (x)] ≥ (1 − 1/e − ε) ·max{f(T) | T ∈ I} holds, where F : [0, 1]V → R+ is the
multilinear extension of f ,

• it uses O
(

rλ+
rn

λε5
log2

(n

ε

))

value oracle queries, and

• it uses O

(

λn

ε2
log
(n

ε

)

)

independence oracle queries.

Suppose that x ∈ B(M) is a point as in Theorem 3.1. In the submodular maximization
algorithm of Buchbinder-Feldman-Schwartz, they round x to an integral solution with the aid of
the swap rounding algorithm of Chekuri-Vondrák-Zenklusen [18] using O(r2/ε) independence oracle
queries. Therefore, their entire algorithm requires Õε(rλ+

rn
λ) value oracle queries and Õε(λn+ r2)

independence oracle queries.

Remark 3.2. Theorem 3.1 is not explicitly stated in the paper by Buchbinder-Feldman-Schwartz [12],
because they do not separately evaluate the query complexity for solving the continuous relaxation
problem and for the rounding algorithm. Indeed, they just state that the entire algorithm requires
O(r

2

ε + λn
ε2

log
(

n
ε

)

) independence oracle queries; see [12, Theorem 1.1]. The O(r
2

ε) term in this
query complexity comes from [12, Corollary 3.1], which states that the continuous greedy algorithm

together with the rounding algorithm requires O(n
ε2

log(nε) +
r2

ε) independence oracle queries. This

corollary is a direct consequence of [3, Claim 4.4], whose proof shows that the O(r
2

ε) term comes
from the rounding algorithm, while the O(n

ε2
log(nε)) term comes from the continuous greedy algo-

rithm. Therefore, the O(r
2

ε) term is not needed to solve the continuous relaxation problem.

We now show that our submodular maximization algorithm with subquadratic query complexity
is derived from Theorems 1.2 and 3.1.

7

Proof of Theorem 1.1. Let λ = Θ(
√
r) and let ε′ = ε/2. Note that we can compute r using O(n)

independence oracle queries by a greedy algorithm. We first run the algorithm in Theorem 3.1 with
parameters λ and ε′ to obtain a point x ∈ B(M), in which we use O(

√
rn poly(1/ε, log n)) value

and independence oracle queries. For the obtained point x, we apply our fast rounding algorithm
in Theorem 1.2 with an error parameter ε′. Then, we obtain a basis S ofM such that

E[f(S)] ≥ (1− ε′) · E[F (x)]

≥ (1− ε′) · (1− 1/e− ε′) ·max{f(T) | T ∈ I}
≥ (1− 1/e − ε) ·max{f(T) | T ∈ I}.

Since x is represented as a convex combination of 1/ε′ bases of M by Theorem 3.1, our rounding
algorithm requires O(r3/2 poly(1/ε, log n)) independence oracle queries by Theorem 1.2. Therefore,
we obtain a (1 − 1/e − ε)-approximation algorithm that uses O(

√
rn poly(1/ε, log n)) value and

independence oracle queries, which completes the proof.

4 Swap Rounding Algorithm in Previous Work

In this section, we describe the swap rounding algorithm of Chekuri-Vondrák-Zenklusen [18] for a
matroid base polytope, which we denote SwapRound. As described in Section 1.3, our new rounding
algorithm is based on SwapRound. In SwapRound, we are given a point x ∈ B(M) that is represented
as a convex combination of the characteristic vectors of t bases ofM. The output is a single basis
S of M such that E[f(S)] ≥ F (x) for any submodular function f : 2V → R and its multilinear
extension F . In each phase of SwapRound, we pick up two bases in the representation of x and
merge them into a basis. By applying this procedure t−1 times, SwapRound finally returns a single
basis ofM; see Algorithm 1.

The procedure for merging two bases is denoted by MergeBases (Algorithm 2). The input of
MergeBases consists of two bases B1 and B2 together with their coefficients β1 and β2. In the
procedure, until B1 and B2 coincide, we repeatedly update B1 and B2 so that |B1 \B2| decreases
monotonically. In each update of B1 and B2, we need a strongly exchangeable pair of elements, that
is, a pair of elements u ∈ B1 \ B2 and v ∈ B2 \ B1 such that B1 + v − u ∈ I and B2 + u− v ∈ I.
As described in UpdateViaStrongBasisExchange (Algorithm 3), for a strongly exchangeable pair
u and v, we apply B1 ← B1 + v − u with probability β2

β1+β2
and apply B2 ← B2 + u − v with the

remaining probability. Note that, in UpdateViaStrongBasisExchange, B1 and B2 are updated to
B′

1 and B′
2 so that E[β11B′

1
+β21B′

2
] = β11B1

+β21B2
, which is a key property to show the validity

of the algorithm.
The most time consuming part in MergeBases is to find a strongly exchangeable pair. By

the strong basis exchange property of matroids, we can find such a pair of elements using O(r)
independence oracle queries in the following way: fix an element u ∈ B1 \B2 arbitrarily and check
the conditions for each element v ∈ B2 \B1 one by one. Since we update the bases |B1 \B2| = O(r)
times, MergeBases requires O(r2) independence oracle queries in total. Hence, SwapRound requires
O(r2t) independence oracle queries.

It is not clear whether we can develop an algorithm that finds a strongly exchangeable pair using
o(r) independence oracle queries. Therefore, their implementation of SwapRound is now stuck at
Ω(r2t) independence oracle queries.

5 Faster Rounding Algorithm

In this section, we present our fast rounding algorithm. We first show the following theorem, and
then prove Theorem 1.2 using this theorem.

8

Algorithm 1: SwapRound(x =
∑t

i=1 βi1Bi
)

1 C1 ← B1

2 γ1 ← β1
3 for i = 1 to t− 1 do
4 Ci+1 ← MergeBases(γi, Ci, βi+1, Bi+1)
5 γi+1 ← γi + βi+1

6 return Ct

Algorithm 2: MergeBases(β1, B1, β2, B2)

1 while B1 6= B2 do
2 Pick arbitrary u ∈ B1 \B2

3 Find v ∈ B2 \B1 such that B1 + v − u ∈ I and B2 + u− v ∈ I
4 UpdateViaStrongBasisExchange(β1, B1, β2, B2, v, u)

5 return B1

Theorem 5.1. There is a randomized algorithm satisfying the following conditions:

• the input consists of a matroid M = (V,I) given as an independence oracle and a point
x ∈ B(M) represented as a convex combination of t bases,

• the output is a basis S ofM such that E[f(S)] ≥ F (x) for any submodular function f : 2V → R

and its multilinear extension F , and

• it uses O(r3/2t log3/2(rt)) independence oracle queries with probability at least 1− (rt)−1.

To show this theorem, we propose an algorithm that merges the bases one by one in the same
way as SwapRound. Our contribution is to improve MergeBases, that is, we give a faster algorithm
for merging two bases into a single basis. The following auxiliary graph plays an important role in
our algorithm.

Definition 5.2. Let M = (V,I) be a matroid, and let B1, B2 be two bases of M. Then we define
the bipartite directed graph DM(B1, B2) whose vertex set and edge set are B1△B2 and E1(B1, B2)∪
E2(B1, B2), respectively, where

E1(B1, B2) = {(u, v) | u ∈ B1 \B2, v ∈ B2 \B1, B1 + v − u ∈ I},
E2(B1, B2) = {(v, u) | u ∈ B1 \B2, v ∈ B2 \B1, B2 + u− v ∈ I}.

In terms of this auxiliary graph, each step of MergeBases can be interpreted as follows: it finds
a directed cycle of length two (or a bidirected edge) in DM(B1, B2) and updates the bases B1

and B2 using this directed cycle as in UpdateViaStrongBasisExchange. Note that we use O(r)
independence oracle queries to find a directed cycle of length two.

A key idea in our algorithm is to focus on a directed cycle of arbitrary length in DM(B1, B2)
instead of a directed cycle of length two. More precisely, our contribution consists of the following
two technical results.

1. We can find a directed cycle in DM(B1, B2) using o(r) independence oracle queries with high
probability.

2. We can appropriately update the bases using a directed cycle of arbitrary length inDM(B1, B2).

We discuss the first and second technical results in Sections 5.1 and 5.2, respectively. Then, we
describe the entire algorithm and give proofs for Theorems 1.2 and 5.1 in Section 5.3.

9

Algorithm 3: UpdateViaStrongBasisExchange(β1, B1, β2, B2, v, u)

Input: β1, β2 ∈ R+, two bases B1, B2, and elements v ∈ B2 \B1 and u ∈ B1 \B2 such that
B1 + v − u ∈ I and B2 + u− v ∈ I

1 Flip a coin with Heads probability
β2

β1 + β2
2 if coin flipped Heads then
3 B1 ← B1 + v − u
4 else
5 B2 ← B2 + u− v

5.1 Finding a Directed Cycle

The objective of this subsection is to show the following proposition, which states that we can find
a directed cycle in DM(B1, B2) using o(r) independence oracle queries with high probability.

Proposition 5.3. Suppose we are given two bases B1 and B2 of a matroid M and an integer
t ≥ 2. Then, we can find a directed cycle in DM(B1, B2) using O(

√
r log3/2(rt)) independence

oracle queries with probability at least 1− (rt)−2.

To show this proposition, we first show that a directed cycle of length two can be found efficiently
if we have an element whose indegree is small in DM(B1, B2).

Lemma 5.4. Suppose we are given two bases B1 and B2 of a matroid M, and an element a ∈
B1△B2 whose indegree is d in DM(B1, B2). Then, we can find a directed cycle of length two in
DM(B1, B2) using O(d log r) independence oracle queries.

Proof. By symmetry, it suffices to consider the case when a ∈ B1 \B2.
We give an algorithm that finds an element v ∈ B2\B1 such that B1+v−a ∈ I and B2+a−v ∈ I.

In our algorithm, let A ⊆ B2 \ B1 denote the set of elements v such that we have already checked
that B1 + v − a 6∈ I. We initialize A = ∅.

In each step of our algorithm, by applying Lemma 2.1 in which u = a, S = B2, and T =
B2 \ (B1 ∪ A), we can find an element v ∈ T such that B2 + a − v ∈ I if it exists. For such v, we
check whether B1 + v − a ∈ I holds or not. If B1 + v − a ∈ I holds, then a and v induce a desired
directed cycle. Otherwise, we add v to A, and repeat the procedure.

This algorithm finds a directed cycle correctly by the strong basis exchange property. Since we
apply Lemma 2.1 at most d times and |T | ≤ r, this algorithm uses O(d log r) independence oracle
queries.

We now describe our algorithm for finding a directed cycle in DM(B1, B2). In our algorithm,
we first sample 2

√

r log(rt) elements from B1 \ B2 (resp. B2 \ B1) uniformly at random with
replacement, where the base of the logarithm is e, and let L (resp. R) be the sampled vertex set,
ignoring the multiplicity. Note that 1 ≤ |L| ≤ 2

√

r log(rt) and 1 ≤ |R| ≤ 2
√

r log(rt) as we ignore
the multiplicity. Let D′ be the subgraph of DM(B1, B2) induced by L ∪R.

For each vertex u in D′, we find a directed edge in D′ that enters u or conclude that such a
directed edge does not exist. This can be done by calling FindExchangeElement exactly once for
each u. If every vertex in D′ has an incoming edge, then we can easily find a directed cycle in D′

by traversing such directed edges in the opposite direction. Otherwise, we pick up a vertex a in
L ∪ R that has no incoming edge in D′, and then apply Lemma 5.4 with this vertex a to find a
directed cycle of length two.

Since the correctness of this algorithm is clear, it suffices to analyze the independence query
complexity. We use the following lemma in our analysis.

10

Lemma 5.5. Let u ∈ B1△B2 be an element whose indegree in DM(B1, B2) is at least 2
√

r log(rt).
Then, the probability that DM(B1, B2) has no directed edge from L ∪R to u is at most (rt)−4.

Proof. By symmetry, it suffices to consider the case when u ∈ B1 \ B2. Let N = {v ∈ B2 \ B1 |
(v, u) ∈ E(B1, B2)}. Since R is obtained by sampling 2

√

r log(rt) vertices from B2 \ B1 and
r ≥ |B2 \B1| ≥ |N | ≥ 2

√

r log(rt), we have the following:

Pr [{v ∈ R | (v, u) ∈ E(B1, B2)} = ∅] = Pr [N ∩R = ∅]

=

(

1− |N |
|B2 \B1|

)2
√

r log(rt)

≤
(

1− 2
√

r log(rt)

r

)2
√

r log(rt)

≤
(

e−1
)4 log(rt)

= (rt)−4,

which completes the proof.

We are now ready to prove Proposition 5.3.

Proof of Proposition 5.3. We analyze the independence query complexity of the algorithm de-
scribed above. First, since we call FindExchangeElement for each vertex u ∈ L ∪ R exactly
once to find an incoming edge in D′, the number of calls of FindExchangeElement is |L ∪ R| =
O(
√

r log(rt)). Hence, by Lemma 2.1, the number of independence oracle queries used in this part
is O(

√

r log(rt) log r).
We next analyze the number of independence oracle queries when there exists a vertex a ∈ L∪R

that has no incoming edge in D′.
We call a vertex u ∈ L ∪ R bad if D′ has no directed edge entering u and DM(B1, B2) has at

least 2
√

r log(rt) directed edges entering u. By Lemma 5.5, for each u ∈ L∪R, the vertex u is bad
with probability at most (rt)−4. Thus, by taking the union bound over all vertices in L ∪ R, we
see that there exists a bad vertex in L ∪R with probability at most (rt)−2.

We now consider the case where there is no bad vertex in L ∪ R. Suppose that there exists
a vertex a ∈ L ∪ R that has no incoming edge in D′. Then, since a is not bad, the indegree
of a is at most 2

√

r log(rt) in DM(B1, B2). Therefore, we can apply Lemma 5.4 with a using
O(
√

r log(rt) log r) independence oracle queries.
Therefore, the total number of independence oracle queries used in the algorithm isO(

√

r log(rt) log r)
with probability at least 1− (rt)−2, which completes the proof.

5.2 Update with a Directed Cycle

In this subsection, we describe how to update the bases using a directed cycle in DM(B1, B2).
Let C be a directed cycle in DM(B1, B2) that traverses u0, v0, u1, v1, . . . , vl−1 in this order, where
ui ∈ B1 \B2 and vi ∈ B2 \B1 for each i. In our algorithm, we first choose B1 with probability β2

β1+β2

and choose B2 with the remaining probability. If we choose B1, then we pick up an index i uniformly
at random from {0, . . . , l− 1} and update B1 by B1 ← B1 + vi − ui. If we choose B2, then we pick
up an index i uniformly at random from {0, . . . , l−1} and update B2 by B2 ← B2+ui+1−vi, where
we denote ul = u0. The pseudocode of this algorithm is shown in UpdateWithCycle (Algorithm 4).
We note that, if the length of the directed cycle is two, then UpdateWithCycle coincides with
UpdateViaStrongBasisExchange.

In order to show the validity of the algorithm, we use the following two lemmas.

11

Algorithm 4: UpdateWithCycle(β1, B1, β2, B2, C)

Input: β1, β2 ∈ R+, two bases B1, B2, and a directed cycle C in the bipartite directed
graph DM(B1, B2)

1 Denote by V (C) = {u0, v0, u1, v1, . . . , vl−1} the vertices in C in this order (with
ui ∈ B1 \B2 and vi ∈ B2 \B1 for each i)

2 Flip a coin with Heads probability
β2

β1 + β2
3 if coin flipped Heads then
4 Pick an index i uniformly at random from {0, . . . , l − 1}
5 B1 ← B1 + vi − ui
6 else
7 Pick an index i uniformly at random from {0, . . . , l − 1}
8 B2 ← B2 + ui+1 − vi // We define ul = u0.

Lemma 5.6. Given two bases B1 and B2 and a directed cycle C in the bipartite directed graph
DM(B1, B2), the procedure UpdateWithCycle updates B1 and B2 to B′

1 and B′
2, respectively, so

that E[β11B′

1
+ β21B′

2
] = β11B1

+ β21B2
.

Proof. Recall that C traverses u0, v0, u1, v1, . . . , vl−1 in this order, where ui ∈ B1 \ B2 and vi ∈
B2 \ B1 for each i. In the procedure UpdateWithCycle, we obtain B′

1 = B1 + vi − ui for some
i ∈ {0, . . . , l − 1} and B′

2 = B2 with probability β2/(β1 + β2), and we obtain B′
1 = B1 and

B′
2 = B2 + ui+1 − vi for some i ∈ {0, . . . , l − 1} with probability β1/(β1 + β2). Thus, we have the

following equation:

E[β11B′

1
+ β21B′

2
] =

β2
β1 + β2

(

β1

(

1B1
+

1

l

l−1
∑

i=0

(1vi − 1ui
)

)

+ β21B2

)

+
β1

β1 + β2

(

β11B1
+ β2

(

1B2
+

1

l

l−1
∑

i=0

(

1ui+1
− 1vi

)

))

=β11B1
+ β21B2

.

This completes the proof.

Lemma 5.7 ([18, Lemma VI.2]). Let x ∈ R
n
+ be a non-negative vector and X = (X1, . . . ,Xn) be

a non-negative vector-valued random variable satisfying the following properties:

• E[X] = x, and

• X− x has at most one positive coordinate and at most one negative coordinate.

Then, we have E[F (X)] ≥ F (x) for any function F that is a multilinear extension of some sub-
modular function.

By combining these lemmas, we obtain the following proposition, which shows the validity of
UpdateWithCycle.

Proposition 5.8. Let x =
∑t

i=1 βi1Bi
be a point represented by a convex combination of the

characteristic vectors of t bases of a matroid M. Suppose that the procedure UpdateWithCycle

updates B1 and B2 to B′
1 and B′

2 using a directed cycle in DM(B1, B2). Let B′
i = Bi for i ∈

{3, . . . , t} and let x′ =
∑t

i=1 βi1B′

i
. Then, we obtain E[F (x′)] ≥ F (x) for any function F that is a

multilinear extension of some submodular function.

12

Proof. It is obvious that x′ − x has at most one positive coordinate and at most one negative
coordinate, since only two coordinate are involved in UpdateWithCycle, and exactly one of them
increases and the other decreases. We also see that E[x′] = x holds by Lemma 5.6. Therefore,
Lemma 5.7 shows that E[F (x′)] ≥ F (x) for any function F that is a multilinear extension of some
submodular function.

5.3 Whole Algorithm

We now prove Theorem 5.1 by giving our fast swap rounding algorithm. See FastMergeBases

(Algorithm 5) for the pseudocode of our algorithm.

Proof of Theorem 5.1. Suppose that x =
∑t

i=1 βi1Bi
is a point represented by a convex combination

of the characteristic vectors of t bases of a matroid M. We pick up two bases, say B1 and B2,
in the representation and merge them into a single basis in the following way: until B1 and B2

coincide, we find a directed cycle C in DM(B1, B2) using Proposition 5.3, and update B1 and B2

by UpdateWithCycle using C. Our algorithm repeats this process t− 1 times so that all the bases
are merged into a single basis.

Since the correctness of this algorithm is shown by Proposition 5.8, it remains to analyze the
independence query complexity of this rounding algorithm.

For merging two bases into a single basis, since we apply Proposition 5.3 at most r times,
we require O(r3/2 log3/2(rt)) independence oracle queries with probability at least 1 − r−1t−2.
Furthermore, since we apply this procedure t− 1 times in our swap rounding algorithm, the entire
algorithm requires O(tr3/2 log3/2(rt)) independence oracle queries with probability at least 1 −
(rt)−1. This completes the proof of Theorem 5.1.

We can remove the condition ‘with probability at least 1− (rt)−1’ by losing a sufficiently small
approximation factor ε > 0. That is, we obtain Theorem 1.2, which we restate here.

Theorem 1.2. For any ε > 0, there is a randomized algorithm satisfying the following conditions:

• the input consists of a matroid M = (V,I) given as an independence oracle and a point x in
the base polytope of M that is represented as a convex combination of t bases,

• the output is a basis S of M such that E[f(S)] ≥ (1 − ε)F (x) for any submodular function
f : 2V → R and its multilinear extension F , and

• it uses O(r3/2t log3/2(rtε)) independence oracle queries.

Proof. Recall that the algorithm in Theorem 5.1 (Algorithm 5) uses O(r3/2t log3/2(rt)) indepen-
dence oracle queries with probability at least 1 − (rt)−1. If Algorithm 5 returns a basis using
O(r3/2t log3/2(rt)) independence oracle queries, then we say that it succeeds. Otherwise, we say that
it fails. By a slight modification, when the algorithm fails, we suppose that it usesO(r3/2t log3/2(rt))
independence oracle queries and terminates without returning a basis. This modified algorithm is
denoted by Algorithm 5’. Note that Algorithm 5’ fails with probability at most (rt)−1.

Let q := ⌈log(rt)−1 ε⌉ = ⌈ log(1/ε)log rt ⌉ = O
(

log(rt/ε)
log rt

)

. In our algorithm, we run Algorithm 5’ q

times. If at least one execution of Algorithm 5’ succeeds, then our algorithm returns a basis that
is obtained in the first successful execution of Algorithm 5’. If all the executions of Algorithm 5’
fail, then our algorithm returns an arbitrary basis. Then, we use O(r3/2t log3/2(rtε)) independence
oracle queries in total. Furthermore, the probability that all the executions of Algorithm 5’ fail is
at most (rt)−q ≤ ε. Therefore, the output S satisfies E[f(S)] ≥ (1 − ε)F (x) for any submodular
function f and its multilinear extension F . This completes the proof.

13

Algorithm 5: FastMergeBases(β1, B1, β2, B2)

1 while B1 6= B2 do

2 Sample a set L of 2
√

r log(rt) elements drawn uniformly and independently from
B1 \B2 with replacement.

3 Sample a set R of 2
√

r log(rt) elements drawn uniformly and independently from
B2 \B1 with replacement.

4 a← ∅
5 E ← ∅
6 for u ∈ L do
7 v ← FindExchangeElement(M, B2, u,R)
8 if v = ∅ then
9 a← u

10 else
11 E ← E ∪ {(u, v)}
12 for v ∈ R do
13 u← FindExchangeElement(M, B1, v, L)
14 if u = ∅ then
15 a← v
16 else
17 E ← E ∪ {(v, u)}
18 if a = ∅ then
19 Find a directed cycle C in the bipartite directed graph (L ∪R,E)
20 UpdateWithCycle(β1, B1, β2, B2, C)

21 else
22 if a ∈ B1 \B2 then
23 A← ∅
24 while v = FindExchangeElement(M, B2, a,B2 \ (B1 ∪A)) satisfies v 6= ∅ do
25 if B1 + v − a ∈ I then
26 UpdateViaStrongBasisExchange(β1, B1, β2, B2, v, a)
27 break

28 A← A+ v

29 else
30 A← ∅
31 while u = FindExchangeElement(M, B1, a,B1 \ (B2 ∪A)) satisfies u 6= ∅ do
32 if B2 + u− a ∈ I then
33 UpdateViaStrongBasisExchange(β1, B1, β2, B2, a, u)
34 break

35 A← A+ u

36 return B1

14

6 Submodular Maximization with Rank Oracle

In this section, we present a fast submodular maximization algorithm in the rank oracle model and
prove Theorem 1.3. In the rank oracle setting, the input consists of a monotone submodular set
function f : 2V → R+ given as a value oracle, and a matroid M = (V,I) given as a rank oracle.
The objective is to maximize f(S) subject to S ∈ I. We restate Theorem 1.3 here.

Theorem 1.3. For any ε > 0, there is a randomized algorithm that achieves (1 − 1/e − ε)–
approximation for maximizing a monotone submodular function subject to a matroid constraint
and uses O((n+ r3/2) poly(1/ε, log n)) value and rank oracle queries.

In the same way as the independence oracle setting, our algorithm is based on continuous
relaxation and rounding technique.

Algorithm for the Continuous Relaxation Problem. Let F be the multilinear extension of
f and let P (M) be the matroid polytope ofM. Ene-Nguy˜̂en [22] presented a framework to solve the
continuous optimization problem maxx∈P (M) F (x) in near-linear time for several important classes
of matroids. In their algorithm, they use a data structure for maintaining a maximum weight basis
of the matroid, where each element has a weight and the weights are updated. In each update,
the weight of exactly one element decreases, while all the other weights do not change. The data
structure supports an operation that decreases the weight of an element and updates the current
basis to a maximum weight basis with respect to the updated weights. This operation is called
the maximum weight basis data structure operation. With this terminology, their result is stated
as follows.

Lemma 6.1 (follows from Lemmas 8 and 9 in the arXiv version of [22]). Given a non-negative
monotone submodular function f : 2V → R+, a matroid M = (V,I) of rank r, and a parameter
ε > 0, there is a randomized algorithm satisfying the following conditions:

• the algorithm finds a point x ∈ P (M) represented as a convex combination of 1/ε bases such
that E[F (x)] ≥ (1 − 1/e − ε) ·max{f(T) | T ∈ I}, where F : [0, 1]V → R+ is the multilinear
extension of f ,

• it uses O
(n

ε5
log2

(n

ε

))

value oracle queries,

• it uses O
(n

ε
log
(n

ε

))

independence oracle queries, and

• it uses O
(r

ε
log2

(n

ε

))

maximum weight basis data structure operations.

Maximum Weight Basis Data Structure Operation. To implement a maximum weight
basis data structure operation by using rank oracle queries efficiently, we use the following lemma
obtained by the binary search technique of Nguy˜̂en [36] and Chakrabarty et al. [14]; see also [39,
Lemma 2].

Lemma 6.2 ([14, Lemma 10]; see also [39, Lemma 2] and [10]). There is an algorithm FindFreeElement

which, given a matroid M = (V,I), a weight function w : V → R, an independent set S ∈ I, and
T ⊆ V \ S, finds an element u ∈ T maximizing w(u) such that S + u ∈ I or otherwise determines
that no such element exists, and uses O(log |T |) rank oracle queries.

This lemma shows that the maximum weight basis data structure operation can be easily
implemented in the rank oracle model as follows.

15

Lemma 6.3. Let M = (V,I) be a matroid given as a rank oracle and let w : V → R be a weight
function. Let w′ : V → R be a weight function such that w′(v) < w(v) for some v ∈ V and
w′(u) = w(u) for any u ∈ V − v. Given a maximum weight basis B of M with respect to w, we
can compute a maximum weight basis B′ of M with respect to w′ using Õ(1) rank oracle queries.

Proof. If v 6∈ B, then B′ := B is a desired basis, because w′(v) < w(v). Otherwise, we apply
FindFreeElement with the weight function w′ in which S = B − v and T = (V \ B) ∪ {v}. Let
u be the element found by the procedure (possibly, u = v). Then our algorithm returns a basis
B′ := B − v + u, which is a maximum weight basis with respect to w′ (see e.g., [28, Lemma 3.1]
and Section 6 of the arXiv version of [9]). By Lemma 6.2, this algorithm requires Õ(1) rank oracle
queries.

Putting Them Together (Proof of Theorem 1.3). We now prove Theorem 1.3. Lemma 6.3
shows that we can execute the maximum weight basis data structure operation using Õ(1) rank
oracle queries without a sophisticated data structure. Hence, by Lemma 6.1, we can solve the
continuous optimization problem maxx∈P (M) F (x) using Õε(n) value and rank oracle queries, where
we note that the rank oracle is more powerful than the independence oracle.

For the obtained point x, we apply our fast rounding algorithm given in Theorem 1.2 to obtain
an integral solution. Note again that the rank oracle is more powerful than the independence oracle,
and hence this rounding algorithm requires Õε(r

3/2) value and rank oracle queries.
By replacing ε with ε/2 in the same way as in the proof of Theorem 1.1, we obtain a (1−1/e−ε)-

approximation algorithm that uses Õε(n+ r3/2) value and rank oracle queries, which completes the
proof.

References

[1] Alexander A Ageev and Maxim I Sviridenko. Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. Journal of Combinatorial Optimization, 8:307–
328, 2004. doi:10.1023/B:JOCO.0000038913.96607.c2.

[2] Yossi Azar and Iftah Gamzu. Efficient submodular function maximization under linear packing
constraints. In Proceedings of the 39th International Colloquium on Automata, Languages, and
Programming (ICALP 2012), pages 38–50, 2012. doi:10.1007/978-3-642-31594-7_4.

[3] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2014), pages 1497–1514, 2014. doi:10.1137/1.9781611973402.110.

[4] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An optimal approximation for submod-
ular maximization under a matroid constraint in the adaptive complexity model. Operations
Research, 70(5):2967–2981, 2022. doi:10.1287/opre.2021.2170.

[5] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular
function. In Proceedings of the 50th annual ACM SIGACT Symposium on Theory of Computing
(STOC 2018), pages 1138–1151, 2018. doi:10.1145/3188745.3188752.

[6] Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman
Jabbarzade, and Morteza Monemizadeh. Dynamic algorithms for matroid submodular maxi-
mization. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2024), pages 3485–3533, 2024. doi:10.1137/1.9781611977912.125.

16

https://doi.org/10.1023/B:JOCO.0000038913.96607.c2
https://doi.org/10.1007/978-3-642-31594-7_4
https://doi.org/10.1137/1.9781611973402.110
https://doi.org/10.1287/opre.2021.2170
https://doi.org/10.1145/3188745.3188752
https://doi.org/10.1137/1.9781611977912.125

[7] Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward. A new
framework for distributed submodular maximization. In Proceedings of the 57th An-
nual Symposium on Foundations of Computer Science (FOCS 2016), pages 645–654, 2016.
doi:10.1109/FOCS.2016.74.

[8] Joakim Blikstad. Breaking O(nr) for matroid intersection. In Proceedings of the 48th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 198,
pages 31:1–31:17, 2021. doi:10.4230/LIPIcs.ICALP.2021.31.

[9] Joakim Blikstad, Sagnik Mukhopadhyay, Danupon Nanongkai, and Ta-Wei Tu. Fast algo-
rithms via dynamic-oracle matroids. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC 2023), pages 1229–1242, 2023. arXiv version is arXiv:2302.09796.
doi:10.1145/3564246.3585219.

[10] Joakim Blikstad, Jan van den Brand, Sagnik Mukhopadhyay, and Danupon Nanongkai.
Breaking the quadratic barrier for matroid intersection. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2021), pages 421–432, 2021.
doi:10.1145/3406325.3451092.

[11] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the 25th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2014), pages 1433–1452, 2014. doi:10.1137/1.9781611973402.106.

[12] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query
trade-off in submodular maximization. Mathematics of Operations Research, 42(2):308–329,
2017. doi:10.1287/moor.2016.0809.

[13] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a mono-
tone submodular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011. doi:10.1137/080733991.

[14] Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.
Faster matroid intersection. In Proceedings of the 60th Annual Symposium on Foundations of
Computer Science (FOCS 2019), pages 1146–1168, 2019. doi:10.1109/FOCS.2019.00072.

[15] Chandra Chekuri, TS Jayram, and Jan Vondrák. On multiplicative weight updates
for concave and submodular function maximization. In Proceedings of the 6th Confer-
ence on Innovations in Theoretical Computer Science (ITCS 2015), pages 201–210, 2015.
doi:10.1145/2688073.2688086.

[16] Chandra Chekuri and Kent Quanrud. Parallelizing greedy for submodular set function maxi-
mization in matroids and beyond. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing (STOC 2019), pages 78–89, 2019. doi:10.1145/3313276.3316406.

[17] Chandra Chekuri, Kent Quanrud, and Manuel R Torres. Fast approximation al-
gorithms for bounded degree and crossing spanning tree problems. In Proceed-
ings of the 24th International Conference on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX 2021), volume 207, pages 24:1–24:21, 2021.
doi:10.4230/LIPIcs.APPROX/RANDOM.2021.24.

[18] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized round-
ing via exchange properties of combinatorial structures. In Proceedings of the 51st An-
nual Symposium on Foundations of Computer Science (FOCS 2010), pages 575–584, 2010.
doi:10.1109/FOCS.2010.60.

17

https://doi.org/10.1109/FOCS.2016.74
https://doi.org/10.4230/LIPIcs.ICALP.2021.31
https://doi.org/10.1145/3564246.3585219
https://doi.org/10.1145/3406325.3451092
https://doi.org/10.1137/1.9781611973402.106
https://doi.org/10.1287/moor.2016.0809
https://doi.org/10.1137/080733991
https://doi.org/10.1109/FOCS.2019.00072
https://doi.org/10.1145/2688073.2688086
https://doi.org/10.1145/3313276.3316406
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.24
https://doi.org/10.1109/FOCS.2010.60

[19] Xi Chen and Binghui Peng. On the complexity of dynamic submodular maximization. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (FOCS
2022), pages 1685–1698, 2022. doi:10.1145/3519935.3519951.

[20] Alina Ene and Huy L. Nguyen. A nearly-linear time algorithm for submodular maximiza-
tion with a knapsack constraint. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019), volume 132, pages 53:1–53:12, 2019.
doi:10.4230/LIPIcs.ICALP.2019.53.

[21] Alina Ene and Huy L Nguyen. Submodular maximization with nearly-optimal ap-
proximation and adaptivity in nearly-linear time. In Proceedings of the 30-th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages 274–282, 2019.
doi:10.1137/1.9781611975482.18.

[22] Alina Ene and Huy L. Nguyen. Towards nearly-linear time algorithms for submodular max-
imization with a matroid constraint. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019), volume 132, pages 54:1–54:14, 2019.
arXiv version is arXiv:1811.07464. doi:10.4230/LIPIcs.ICALP.2019.54.

[23] Alina Ene, Huy L Nguyen, and Adrian Vladu. Submodular maximization with matroid and
packing constraints in parallel. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing (STOC 2019), pages 90–101, 2019. doi:10.1145/3313276.3316389.

[24] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998. doi:10.1145/285055.285059.

[25] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization
subject to a matroid constraint. In Proceedings of the 53rd Annual Symposium on Foundations
of Computer Science (FOCS 2012), pages 659–668, 2012. doi:10.1109/FOCS.2012.55.

[26] ML Fisher, GL Nemhauser, and LA Wolsey. An analysis of approximations for maxi-
mizing submodular set functions–II. Mathematical Programming Studies, 8:73–87, 1978.
doi:10.1007/BFb0121195.

[27] Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng. Faster submodular maximiza-
tion for several classes of matroids. In Proceedings of the 50th International Colloquium on
Automata, Languages, and Programming (ICALP 2023), volume 261, pages 74:1–74:18, 2023.
doi:10.4230/LIPIcs.ICALP.2023.74.

[28] Felix Hommelsheim, Nicole Megow, Komal Muluk, and Britta Peis. Recoverable robust opti-
mization with commitment, 2023. arXiv:2306.08546.

[29] Silvio Lattanzi, Slobodan Mitrović, Ashkan Norouzi-Fard, Jakub M Tarnawski, and Morteza
Zadimoghaddam. Fully dynamic algorithm for constrained submodular optimization. Advances
in Neural Information Processing Systems 33: Proceedings of the 34th Annual Conference on
Neural Information Processing Systems (Neurips 2020), 33:12923–12933, 2020.

[30] Wenxin Li, Moran Feldman, Ehsan Kazemi, and Amin Karbasi. Submodular maximization
in clean linear time. Advances in Neural Information Processing Systems 35: Proceedings
of the 36th Annual Conference on Neural Information Processing Systems (Neurips 2022),
35:17473–17487, 2022.

18

https://doi.org/10.1145/3519935.3519951
https://doi.org/10.4230/LIPIcs.ICALP.2019.53
https://doi.org/10.1137/1.9781611975482.18
https://doi.org/10.4230/LIPIcs.ICALP.2019.54
https://doi.org/10.1145/3313276.3316389
https://doi.org/10.1145/285055.285059
https://doi.org/10.1109/FOCS.2012.55
https://doi.org/10.1007/BFb0121195
https://doi.org/10.4230/LIPIcs.ICALP.2023.74
https://arxiv.org/abs/2306.08546

[31] Paul Liu and Jan Vondrák. Submodular optimization in the MapReduce model. In Proceedings
of the 2nd Symposium on Simplicity in Algorithms (SOSA 2019), volume 69, pages 18:1–18:10,
2019. doi:10.4230/OASIcs.SOSA.2019.18.

[32] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and An-
dreas Krause. Lazier than lazy greedy. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI 2015), volume 29, 2015. doi:10.1609/aaai.v29i1.9486.

[33] Morteza Monemizadeh. Dynamic submodular maximization. Advances in Neural Information
Processing Systems 33: Proceedings of the 34th Annual Conference on Neural Information
Processing Systems (Neurips 2020), 33:9806–9817, 2020.

[34] George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maxi-
mum of a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.
doi:10.1287/moor.3.3.177.

[35] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approxi-
mations for maximizing submodular set functions–I. Mathematical Programming, 14:265–294,
1978. doi:10.1007/BFb0121195.

[36] Huy L Nguyen. A note on Cunningham’s algorithm for matroid intersection. arXiv preprint
arXiv:1904.04129, 2019. doi:10.48550/arXiv.1904.04129.

[37] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

[38] Tatsuya Terao. Faster matroid partition algorithms. In Proceedings of the 50th International
Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261, pages
104:1–104:20, 2023. doi:10.4230/LIPIcs.ICALP.2023.104.

[39] Ta-Wei Tu. Subquadratic weighted matroid intersection under rank oracles. In Proceedings
of the 33rd International Symposium on Algorithms and Computation (ISAAC 2022), volume
248, pages 63:1–63:14, 2022. doi:10.4230/LIPIcs.ISAAC.2022.63.

19

https://doi.org/10.4230/OASIcs.SOSA.2019.18
https://doi.org/10.1609/aaai.v29i1.9486
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1007/BFb0121195
https://doi.org/10.48550/arXiv.1904.04129
https://doi.org/10.4230/LIPIcs.ICALP.2023.104
https://doi.org/10.4230/LIPIcs.ISAAC.2022.63

	Introduction
	Submodular Maximization
	Our Results
	Overview of Our Rounding Algorithm
	Related Work
	Paper Organization

	Preliminaries
	Submodular Maxmization Algorithm (Proof of Theorem 1.1)
	Swap Rounding Algorithm in Previous Work
	Faster Rounding Algorithm
	Finding a Directed Cycle
	Update with a Directed Cycle
	Whole Algorithm

	Submodular Maximization with Rank Oracle

