
ar
X

iv
:2

40
5.

00
38

2v
1 

 [
m

at
h.

N
A

] 
 1

 M
ay

 2
02

4

Modified least squares method and a review of its applications in

machine learning and fractional differential/integral equations

Abhishek Kumar Singh1,2, Mani Mehra∗1, and Anatoly A. Alikhanov3

1Deptartment of Mathematics, Indian Institute of Technology Delhi, India
2Institute of Mathematics and Computer Science, Universität Greifswald,

Walther-Rathenau-Straße 47, 17489 Greifswald, Germany
3North-Caucasus Center for Mathematical Research, North-Caucasus Federal University,

Russia

assinghabhi@gmail.com, mmehra@maths.iitd.ac.in, aaalikhanov@gmail.com

May 2, 2024

Abstract

The least squares method provides the best-fit curve by minimizing the total squares error. In this
work, we provide the modified least squares method based on the fractional orthogonal polynomials
that belong to the space Mλ

n := span{1, xλ, x2λ, . . . , xnλ}, λ ∈ (0, 2]. Numerical experiments demon-
strate how to solve different problems using the modified least squares method. Moreover, the results
show the advantage of the modified least squares method compared to the classical least squares
method. Furthermore, we discuss the various applications of the modified least squares method in
the fields like fractional differential/integral equations and machine learning.

Keywords. Modified least squares method; Müntz-Legendre polynomials; Machine learning; Fractional
differential/integral equations.

1 Introduction

The least squares method is one of the oldest methods of modern statistics used to obtain the physical
parameters from the experimental data. The first use of the least squares method is generally attributed
to Gauss in 1795, although Legendre concurrently and independently used it [12]. Gauss invented the least
squares method to estimate planets’ orbital motion from telescopic measurements. In modern statistics,
Galton [2] was the first to use the least squares method in his work on the heritability of size, which
laid down the foundations of correlation and regression analysis. Nowadays, the least squares method is
widely used to find the best-fit curve while finding the parameter involved in the curve. There are many
versions of the least squares method available in the literature. The simpler version is called the ordinary
least squares method, and the more advanced one is the weighted least squares method, which performs
better than the ordinary least squares method. The recent version of the least squares method is the
moving least squares method [6], and the partial least squares method [27].

One of the areas where the least squares method is frequently used is machine learning, where we
analyze data for regression analysis and classification [24]. Machine learning is a field of artificial intelli-
gence that allows computer systems to learn using available data. Recently machine learning algorithms
(regression analysis and classification) have become very popular for analyzing data and making predic-
tions. Another application of the least squares method is solving fractional differential/integral equations.
Fractional differential/integral equations give an excellent way to deal with complex phenomena in na-
ture, such as biological systems, control theory, finance, signal and image processing, sub-diffusion and

∗Corresponding author

1

http://arxiv.org/abs/2405.00382v1


super-diffusion process, viscoelastic fluid, electrochemical processes, and so on [3, 13, 28, 26, 18]. The
fractional differential equations are equivalent to the Hammerstein form of Volterra’s second kind in-
tegral equations for the specific choice of kernel (for more details see [9]). Due to the importance of
fractional differential/integral equations, people are interested in solving them numerically because of
the non-availability of exact solutions. Many numerical methods are available in the literature to solve
fractional differential/integral equations, such as finite difference [17, 19], compact finite difference [22, 4],
finite element [8, 15] , and wavelet methods [16, 25]. Recently, the least squares method based on classical
polynomials is also used to solve fractional differential/integral equations [23].

The aforementioned discussion concludes with the importance of the least squares method in various
disciplines. In this work, we proposed the modified least squares method based on fractional polynomials.
The main contribution of this paper consists of the following aspects:

• A modified least squares method based on fractional orthogonal polynomials belongs to the space
Mλ

n := span{1, xλ, x2λ, . . . , xnλ}, λ ∈ (0, 2] has been proposed.

• Applications of the modified least squares method have been discussed in detail, especially in the
field of fractional differential/integral equations and machine learning.

The paper has been arranged in the following pattern: Section 2 describes some basic concepts of ap-
proximation theory and orthogonal polynomials like Müntz-Legendre polynomials. Section 3 deals with
the review of a least squares method. In Section 4, we develop a modified least squares method based on
fractional orthogonal polynomials. Section 5 provides the numerical results to validate the modified least
squares method. Section 6 summarizes the applications part of the method. Finally, Section 7 gives the
brief conclusion.

2 Preliminaries

In this Section, some necessary results from approximation theory and orthogonal polynomials are sum-
marized. Let define the space

Mλ := span{xλ0 , xλ1 , . . . , xλn , . . .}, (2.1)

and for its subspaces we define
Mλ

n := span{xλ0 , xλ1 , . . . , xλn}, (2.2)

with 0 ≤ λ0 < λ1 < . . . → ∞. The space Mλ is known as Müntz space. Now, we recall one of the
fundamental theorems of approximation theory called Müntz-Szász theorem, which is related to the
denseness of polynomial belonging to space Mλ.

Theorem 2.1. (Müntz-Szász Theorem) The Müntz polynomials of the forms
∑n

i=0 aix
λi ∈ Mλ

n with real
coefficients are dense in L2[0, 1] if and only if

∞
∑

i=1

1

λi
= +∞. (2.3)

Moreover, if λ0 = 0, then Müntz polynomials are dense in C[0, 1].

Proof. See [7].
In this work, we assume that λi = iλ, i = 0, 1, . . . , n, . . ., where λ is a real constant and λ ∈ (0, 2].

Now, we review one of the general forms of classical orthogonal polynomials called Jacobi polynomials.
Moreover, we also review the Müntz-Legendre polynomials, and because of some advantage in terms of
computational accuracy, we define the Müntz-Legendre polynomials with the help of Jacobi polynomials.

2.1 Jacobi polynomials

The Jacobi polynomials with parameters a, b > −1, denoted by P a,b
n , is defined in the interval −1 ≤ x ≤ 1

as

P a,b
n (x) =

n
∑

i=0

(−1)n−i(1 + b)n(1 + a+ b)i+n

i!(n− i)!(1 + b)i(1 + a+ b)n

(

1 + x

2

)i

, (2.4)

2



where (1 + b)i = (1 + b)(2 + b) . . . (i+ b) and (1 + b)0 = 1.
In practice, one can compute the Jacobi polynomials using the following recurrence relation

P a,b
0 (x) = 1, P a,b

1 (x) =
1

2
[(a− b) + (a+ b+ 2)x],

ca,b1,nP
a,b
n (x) = ca,b2,n(x)P

a,b
n (x)− ca,b3,nP

a,b
n−1(x),

(2.5)

where
ca,b1,n = 2(n+ 1)(n+ a+ b+ 1)(2n+ a+ b),

ca,b2,n(x) = (2n+ a+ b+ 1)[(2n+ a+ b)(2n+ a+ b+ 2)x+ a2 − b2],

ca,b3,n = 2(n+ a)(n+ b)(2n+ a+ b+ 2).

(2.6)

2.2 Müntz Legendre polynomials

One can defined Müntz Legendre polynomials on the interval [0, 1] as follows

Ln(x) =

n
∑

i=0

ηn,ix
λi , ηn,i =

∏n−1
k=0 (λi + λ̄k + 1)

∏n
k=0,k 6=i(λi − λk)

. (2.7)

These polynomials satisfy the following orthogonality condition with respect to weight function W (x) = 1

∫ 1

0

Ln(x)Lm(x)dx =
δn,m

λn + λ̄n + 1
. (2.8)

Since we assumed that λi = iλ, where λ is a real constant, then the Müntz-Legendre polynomials on the
interval [0, 1] are represented by the formula

Ln(x;λ) :=

n
∑

i=0

ηn,ix
iλ, ηn,i =

(−1)n−i

λni!(n− i)!

n−1
∏

k=0

((i+ k)λ+ 1). (2.9)

From Equation (2.7), one can observe that evaluating Müntz-Legendre polynomials, mainly when n is
vast, and x is closed to 1, is problematic in finite arithmetic. Milovanovic has addressed these problems
[20]. We will use a method for evaluating Müntz-Legendre polynomials, which is based on three-term
recurrence relation induced from the accompanying theorem with the help of Jacobi polynomials.

Theorem 2.2. Let λ > 0 be a real number and x ∈ [0, 1]. Then the representation

Ln(x;λ) = P (0,1/λ−1)
n

(

2xλ − 1
)

holds true.

Proof. See [10]. �

So in view of Theorem 2.2 and Equations (2.5) and (2.7), the Müntz-Legendre polynomials Ln(x;λ)
can be evaluated by means of three-terms recurrence relation

L0(x;λ) = 1, L1(x;λ) =

(

1

λ
+ 1

)

xλ −
1

λ
,

d1,nLn+1 = d2,n(t)Ln(x;λ) − d3,nLn−1(x;λ),

(2.10)

where
d1,n = c

0,1/λ−1
1,n , d2,n(x) = c

0,1/λ−1
2,n

(

2xλ − 1
)

, d3,n = c
0,1/λ−1
3,n .

3



3 Least squares method

For approximating the continuous function y(x) defined on the interval [a, b] with an algebraic polynomial
Pn(x; 1) =

∑n
i=0 aix

i ∈ M1
n using least squares method, we choose the constants a0, a1, . . . , an, which

minimize the least squares error EC(a0, a1, . . . , an), where

EC(a0, a1, . . . , an) =

∫ b

a

(y(x)− Pn(x))
2dx.

A necessary condition for real coefficient a0, a1, . . . , an that minimize the error EC(a0, a1, . . . , an) is that

∂EC

∂ai
= 0, for each i = 0, 1, . . . , n.

Thus, one can get the following linear system of equations

AC
LSMX = bC , (3.1)

where X = [a0, a1, . . . , an]
T , AC

LSM is the (n + 1)× (n+ 1) coefficient matrix and bC is the (n + 1)× 1
column vector. The (i, j)th element of the matrix AC

LSM and ith element of the column vector bC are
given by

(AC
LSM )i,j =

∫ b

a

xi+j−2dx, and, (bC)i =

∫ b

a

y(x)xi−1dx,

respectively. Similarly, in discrete case, for approximating a data set (xk, yk), k = 1, 2, . . . ,m, with an
algebraic polynomial Pn(x; 1) ∈ M1

n using least squares method, we choose the constants a0, a1, . . . , an
which minimize the least squares error ED(a0, a1, . . . , an), where

ED(a0, a1, . . . , an) =
m
∑

k=1

(yk − Pn(xk))
2,

=

m
∑

k=1

y2k − 2

n
∑

i=0

ai(

m
∑

k=1

ykx
i
k) + 2

n
∑

i=0

n
∑

j=0

aiaj(

m
∑

k=1

xi+j
k ).

For ED to be minimized it is necessary that ∂ED

∂ai
= 0, for each i = 0, 1, . . . , n. Thus, one can get following

linear system of equations
AD

LSMX = bD, (3.2)

where AD
LSM is the (n + 1) × (n + 1) coefficient matrix and bD is the (n + 1) × 1 column vector. The

(i, j)th element of the matrix AD
LSM and ith element of the column vector bD are given by

(AD
LSM )i,j =

m
∑

k=1

xi+j−2
k , and, (bD)i =

m
∑

k=1

ykx
i−1
k ,

respectively.

4 Modified least squares method

In this Section, we proposed a modified least squares method based on a fractional polynomials that be-
longs to the space Mλ

n . Apply a similar technique which is discussed in Section 3 for any algebraic polyno-
mial Pn(x;λ) =

∑n
i=0 aix

iλ ∈ Mλ
n to approximating the continuous function y(x) defined on the interval

[a, b], we choose the constants a0, a1, . . . , an which minimize the least squares error EC(a0, a1, . . . , an;λ),
where

EC(a0, a1, . . . , an;λ) =

∫ b

a

(y(x)− Pn(x;λ))
2dx. (4.1)

A necessary condition for real coefficient a0, a1, . . . , an, that minimize the error EC(a0, a1, . . . , an;λ) is
that

∂EC

∂ai
= 0, for each i = 0, 1, . . . , n.

4



Thus, one can get the following linear system of equations

AC
MLSMX = dC , (4.2)

where AC
MLSM is the (n + 1)× (n+ 1) coefficient matrix and dC is the (n + 1)× 1 column vector. The

(i, j)th element of the matrix AC
MLSM and ith element of the column vector dC are given by

(AC
MLSM )i,j =

∫ b

a

xλi−1+λj−1dx, and, (dC)i =

∫ b

a

y(x)xλi−1dx,

respectively. Similarly, in discrete case, for approximating the data set (xk, yk), k = 1, 2, . . . ,m, with an
algebraic polynomial Pn(x;λ) using least squares method, we choose the constants a0, a1, . . . , an, which
minimize the least square error ED(a0, a1, . . . , an;λ), where

ED(a0, a1, . . . , an;λ) =

m
∑

k=1

(yk − Pn(xk;λ))
2,

=

m
∑

k=1

y2k − 2

m
∑

k=1

Pn(xk;λ)yk +

m
∑

k=1

(Pn(xk;λ))
2,

=

m
∑

k=1

y2k − 2

n
∑

i=0

ai(

m
∑

k=1

ykx
λi

k ) + 2

n
∑

i=0

n
∑

j=0

aiaj(

m
∑

k=1

x
λi+λj

k ).

(4.3)

For ED to be minimized it is necessary that ∂ED

∂ai
= 0, for each i = 0, 1, . . . , n. Thus, one can get following

linear system of equations
AD

MLSMX = dD, (4.4)

where AD
MLSM is the (n+ 1)× (n+ 1) coefficient matrix and dD is the (n+ 1)× 1 column vector. The

(i, j)th element of the matrix AD
MLSM and ith element of the column vector dD are given by

(AD
MLSM )i,j =

m
∑

k=1

x
λi−1+λj−1

k , and, (dD)i =

m
∑

k=1

ykx
λi−1

k ,

respectively. We know that the large value of n, the matrix AC
MLSM and AD

MLSM become ill-conditioned,
which causes significant errors in estimating the parameters ai, i = 0, 1, . . . , n. This difficulty can be
avoided if the functions belonging to the space Mλ

n , denoted by Li(x;λ,W ), i = 0, 1, . . . , n, are so chosen
that they are orthogonal with respect to the weight function W (x) over the interval [a, b]. In this case
the error function in the continuous and discrete case becomes

EC(a0, a1, . . . , an;λ) =

∫ b

a

W (x)(y(x) −

n
∑

i=0

aiLi(x;λ,W ))2dx, (4.5)

and

ED(a0, a1, . . . , an;λ) =
m
∑

k=1

W (xk)(yk −
n
∑

i=0

aiLi(xk;λ,W ))2, (4.6)

respectively. The necessary condition for real coefficients a0, a1, . . . , an which minimize the error gives
the normal equations. The normal equations in the continuous and discrete cases are

∫ b

a

W (x)(y(x) −
n
∑

i=0

aiLi(x;λ,W ))Lj(x;λ,W )dx = 0, j = 0, 1, . . . , n, (4.7)

and
m
∑

k=1

W (xk)(yk −

n
∑

i=0

aiLi(xk;λ,W ))Lj(xk;λ,W ) = 0, j = 0, 1, . . . , n, (4.8)

respectively. One can observe from the Equations (4.7) and (4.8) the parameter value can be determined
directly. Thus the use of orthogonal functions not only avoids the problem of ill-conditioning but also

5



determines the constants ai, i = 0, 1, . . . , n, directly. As discussed in Section 2, the Müntz-Legendre
polynomials Li(x;λ) ∈ Mλ

n , i = 0, 1, . . . , n, are orthogonal for the weight function W (x) = 1 on the
interval [0, 1]. If we consider the following error function in the continuous and discrete case

EC(a0, a1, . . . , an;λ) =

∫ 1

0

W (x)(y(x) −

n
∑

i=0

aiLi(x;λ))
2dx, (4.9)

and

ED(a0, a1, . . . , an;λ) =
m
∑

k=1

W (xk)(yk −
n
∑

i=0

aiLi(xk;λ))
2, (4.10)

respectively. One can easily observe that if we find the necessary condition for the parameters a0, a1, . . . , an,
we get the systems of equations. For finding the value of ai, i = 0, 1, . . . , n, we have to solve the equa-
tion system because Müntz-Legendre polynomials are not orthogonal with respect to the weight function
W (x) 6= 1. Therefore, one may face the problem of ill-conditioning for a large value of n. This problem
can be avoided if we generate the orthogonal polynomials with respect to the weight function W (x).

Remark 1. The modified least squares method is based on the fractional polynomials, which depend on
the fractional parameter λ. If we put λ = 1 in the Equations (4.2) and (4.4) then we get (3.1) and (3.2)
respectively. Therefore, in the modified least squares method, we have one additional degree of freedom
compared to the classical least squares method in the form of fractional parameter λ. So, we tune the
parameter λ to get the desired results.

Remark 2. Since Müntz-Legendre polynomials are orthogonal with respect to weight function W (x) = 1.
We know that the fractional derivative/integral of the polynomial belonging to space Mλ

n is again in space
Mλ

n when λ and fractional order are the same. Hence, while solving the fractional differential equations
using the least squares method and avoiding the difficulty due to ill-conditioning, we need polynomials
belonging to the space Mλ

n , which are orthogonal to weight function (b − x)−λ or (x − a)−λ. Moreover,
usually, in applications, only a part of the given data needs more attention; for example, in some cases,
the data may have more accuracy in some regions than in others. In such cases, the weight function
indicates where data should be given more importance, and it should be chosen accordingly.

Now, we are going to discuss the Theorem, which helps us to generate the fractional orthogonal
polynomials belonging to the space Mλ

n with respect to the weight function W (x).

Theorem 4.1. The set of fractional polynomial functions {L0(x;λ,W ), L1(x;λ,W ), . . . , Ln(x;λ,W )}
defined in the following way is orthogonal on [a, b] with respect to the weight function W (x).

L0(x;λ,W ) = 1, L1(x;λ,W ) = xλ −B1,

where

B1 =

∫ b

a
W (x)xλ(L0(x;λ,W ))2dx

∫ b

a W (x)(L0(x;λ,W ))2dx
,

and when i ≥ 2,
Li(x;λ,W ) = (xλ −Bi)Li−1(x;λ,W )− CiLi−2(x;λ,W ),

where

Bi =

∫ b

a
W (x)xλ(Li−1(x;λ,W ))2dx

∫ b

a W (x)(Li−1(x;λ,W ))2dx
, Ci =

∫ b

a
W (x)xλLi−1(x;λ,W )Li−2(x;λ,W )dx

∫ b

a W (x)(Li−2(x;λ,W ))2dx
.

Proof. We prove that the above result holds by mathematical induction; firstly, we will consider
L0(x;λ,W ) and L1(x;λ,W ) and show that they are orthogonal.

∫ b

a

W (x)L0(x;λ,W )L1(x;λ,W )dx =

∫ b

a

W (x)(xλ −B1)dx

=

∫ b

a

W (x)xλdx−B1

∫ b

a

W (x)dx

= 0.

6



Now, For the induction hypothesis, assume that {L0(x;λ,W ), L1(x;λ,W ), . . . , Ln−1(x;λ,W )} is orthog-
onal on [a, b] with respect to the weight function W (x). Consider the following

∫ b

a

W (x)Li(x;λ,W )Ln(x;λ,W )dx, i = 0, 1, . . . , n− 1.

If we will prove the above integral value is zero then we are done. Take i = n− 1 in the above expression
and using the recurrence relation for Ln(x;λ,W ), we get

∫ b

a

W (x)Ln−1(x;λ,W )Ln(x;λ,W )dx =

∫ b

a

W (x)xλL2
n−1(x;λ,W )dx −Bn

∫ b

a

W (x)L2
n−1(x;λ,W )dx

= 0.

Similarly, we can show that integral value is zero for i = n− 2. Now, consider the integral for i = n− 3
and using the recurrence relation for Ln(x;λ,W ), we get

∫ b

a

W (x)Ln−3(x;λ,W )Ln(x;λ,W )dx =

∫ b

a

W (x)xλLn−3(x;λ,W )Ln−1(x;λ,W )dx. (4.11)

Using the relation xλLn−3(x;λ,W ) = Ln−2(x;λ,W ) + Bn−2Ln−3(x;λ,W ) + Cn−2Ln−4(x;λ,W ) and
orthogonal property in the Equation (4.11), we get

∫ b

a

W (x)Ln−3(x;λ,W )Ln(x;λ,W )dx = 0.

From the similar argument, we can show for i = 0, 1, 2, . . . , n− 4. Therefore, the set of fractional polyno-
mial functions {L0(x;λ,W ), L1(x;λ,W ), . . . , Ln(x;λ,W )} defined in the following way is orthogonal on
[a, b] with respect to the weight function W (x). �

We can generalize the above Theorem in the discrete case. The following Theorem will help us to
generate the fractional orthogonal polynomials over a set of points xk, k = 1, 2, . . . ,m with respect to
the weight function W (x).

Theorem 4.2. The set of fractional polynomial functions {L0(x;λ,W ), L1(x;λ,W ), . . . , Ln(x;λ,W )}
defined in the following way is orthogonal over a set of points xk, k = 1, 2, . . . ,m, with respect to the
weight function W (x).

L0(x;λ,W ) = 1, L1(x;λ,W ) = xλ −B1,

where

B1 =

∑m
k=1 W (xk)x

λ
k(L0(xk;λ,W ))2

∑m
k=1 W (xk)(L0(xk;λ,W ))2

,

and when i ≥ 2,
Li(x;λ,W ) = (xλ −Bi)Li−1(x;λ,W )− CiLi−2(x;λ,W ),

where

Bi =

∑m
k=1 W (xk)x

λ
k(Li−1(xk;λ,W ))2

∑m
k=1 W (xk)(Li−1(xk;λ,W ))2

, Ci =

∑m
k=1 W (xk)x

λ
kLi−1(xk;λ,W )Li−2(xk;λ,W )

∑m
k=1 W (xk)(Li−2(xk;λ,W ))2

.

Proof. Proof is similar to the proof of the Theorem 4.1, but we take discrete inner product in this case.
�

After generating the fractional orthogonal polynomials with respect to weight function W (x) using
the Theorems 4.1 and 4.2, we can directly compute the value of ai. Hence, while minimizing the error
defined by the Equations (4.5) and (4.6), we get

ai =

∫ b

a W (x)y(x)Li(x;λ,W )dx
∫ b

a
W (x)(Li(x;λ,W ))2dx

, i = 0, 1, . . . , n, (4.12)

and

ai =

∑m
k=1 W (xk)y(xk)Li(xk;λ,W )
∑m

k=1 W (xk)(Li(xk;λ,W ))2
, i = 0, 1, . . . , n, (4.13)

respectively.

7



5 Test examples

This Section is devoted to illustrate the accuracy and efficiency of the proposed modified least squares
method discussed in Section 4. All the numerical simulation were run on an Intel Core i5 − 1135G7,
2.42GHz machine with 16GB RAM. To demonstrate the efficiency of the proposed method, we consider
the following Examples:

Example 1. In this Example, we consider the function y(x) = x0.75 + x1.5 defined on the interval [0, 1].

Here, we approximate y(x) with the P2(x;λ) = a0 + a1x
λ + a2x

2λ ∈ Mλ
2 . After implementation of

the proposed method discussed in Section 4, the results are described in detail as below:

• One can clearly observed that, for choises of a0 = 0, a1 = 1 and a2 = 1 with λ = 0.75, we get the
P2(x; 0.75) exact as a y(x).

• Table 1 shows the least squares error EC by the proposed method and CPU time with different
value of λ.

• Also, Table 1 shows our proposed method’s well accurate than the classical least squares method
due to the additional parameter λ.

λ y(x) = x
0.75 + x

1.5 Total Error EC CPU time (in second)
0.75 y(x) ≈ 0.0000 + 1.0000x0.75 + 1.0000x1.5 2.70e-24 0.0558
1 y(x) ≈ 0.0329 + 1.7039x+ 0.2597x2 1.40e-5 0.0702
1.5 y(x) ≈ 0.1388 + 2.5269x1.5 − 0.7126x3 8.78e-4 0.0631

Table 1: Comparison of the least squares error EC in Example 1 corresponding to n = 2 and with
different value of λ.

Example 2. In this Example, we consider the function y(x) = x0.5 − π
4 defined on the interval [0, 1].

Here, we consider the two cases : first we approximate y(x) with the a0L0(x;λ,W ) + a1L1(x;λ,W ),
where W (x) = (1 − x)−λ, while in second case we approximate y(x) with b0L0(x;λ) + b1L1(x;λ). Both
the cases, we will consider the followings residual error

EC(a0, a1;λ) =

∫ 1

0

W (x)(y(x) −
1

∑

i=0

aiLi(x;λ,W ))2dx,

and

EC(b0, b1;λ) =

∫ 1

0

W (x)(y(x) −

1
∑

i=0

biLi(x;λ))
2dx,

respectively. After implementation of the proposed method discussed in Section 4, the results are de-
scribed in detail as below:

• For λ = 0.5, if one can generate the fractional orthogonal polynomials up to order 1 with re-
spect to weight function W (x) = (1 − x)−0.5 using Theorem 4.1, they get L0(x; 0.5,W ) = 1 and
L1(x; 0.5,W ) = x0.5 − π

4 .

• In first case, one can clearly observed that, for choices of a0 = 0 and a1 = 1 with λ = 0.5, we get
the a0L0(x; 0.5,W ) + a1L1(x; 0.5,W ) exact as a y(x), without solving system of equations.

• In second cases, we get the value of b0 = −0.1187 and b1 = 0.3333, with solving the system of
equations and b0L0(x; 0.5) + b1L1(x; 0.5) exact as a y(x).

• From the discussion of the above results, we can conclude that generating the orthogonal polynomial
with respect to weight function W (x) gives the result without solving the system of equations and
avoiding the ill-conditioning situation.

8



Example 3. In this Example, we consider the function y(x) = x1.5 defined on the interval [10, 20] to
generate the data set of length 20.

Here, we approximate y(x) with the P1(x;λ) = a0 + a1x
λ ∈ Mλ

1 . After implementation of the proposed
method discussed in Section 4, the results are described in detail as below:

• One can clearly observed that, for choices of a0 = 0 and a1 = 1 with λ = 1.5, we get the P1(x; 1.5)
exact as a y(x).

• Table 2 shows the least squares error ED by the proposed method with different value of λ and
CPU time taken by the proposed method.

• Also, Table 2 displays the results for the noisy data set with generated by the function y(x) with
5% and 10% noise. Table results show the our proposed method is robust to noise.

• From Table 2, one can observe that, in the case of no noise, our proposed method captures the
exact features of data for λ = 1.5, while the classical least squares method does not capture the
data exactly. Moreover, when we increase the noise level, our proposed method is also accurate
within two points significant digits.

λ y(x) = x
1.5 Total Error ED CPU time (in second)

No Noise
1.50 y(x) ≈ 0.0000 + 1.0000x1.5 8.20e-28 0.0149
1.25 y(x) ≈ −11.1149+ 2.3609x1.25 2.02e-0 0.0145
1.00 y(x) ≈ −27.7817+ 8.1671x 8.17e-0 0.0143

5% Noise
1.50 y(x) ≈ −0.0001 + 1.0000x1.5 2.20e-2 0.0135
1.25 y(x) ≈ −11.1136+ 2.3609x1.25 2.05e-0 0.0212
1.00 y(x) ≈ −27.7792+ 5.7898x 8.19e-0 0.0141

10% Noise
1.50 y(x) ≈ −0.0013 + 1.0000x1.5 8.80e-2 0.0142
1.25 y(x) ≈ −11.1162+ 2.3610x1.25 2.10e-0 0.0142
1.00 y(x) ≈ −27.7859+ 5.7902x 8.26e-0 0.0198

Table 2: Comparison of the least squares error ED in Example 3 corresponding to n = 1 and with
different value of λ.

Example 4. In this Example, we consider the data given in the Table 3.

x 0.0000 0.2500 0.5000 0.7500 1.0000
y with no noise 0.0000 0.1340 0.3660 0.6589 0.6589
y with 5% noise −0.0062 0.0745 0.0705 0.0709 0.0336
y with 10% noise −0.0062 0.0745 0.0705 0.0709 0.0336

Table 3: Data with no noise, 5% noise and 10% noise.

Here, data given in the Table 3 with no noise, 5% noise and 10% noise. For this Example, we search a
best fit curve of the form of P1(x;λ) = a0 + a1x

λ ∈ Mλ
1 . After implementation of the proposed method

discussed in Section 4, the results are described in detail as below:

• Table 4 shows the least squares error ED by the proposed method for n = 1 and different value of
λ.

• Also, Table 4 displays the results for the noisy data set given in the Table 3. Table results show
the our proposed method is robust to noise.

• From Table 4, one can observe that, in the case of no noise, we get more accurate results for λ = 1.5,
while for noisy data, we get the precise result for a different choice of λ.

9



λ P1(x;λ) Total Error ED CPU time (in second)

No Noise
1.50 0.0071 + 0.9977x1.5 1.3042e-4 0.0123
1.00 −0.0732 + 0.0164x 1.6400e-2 0.0109
0.5 −0.1409 + 0.9318x0.5 1.2320e-1 0.0115

5% Noise
1.50 0.0420 + 0.0157x1.5 4.7000e-3 0.0115
1.00 0.0335 + 0.0304x 4.3000e-3 0.0107
0.50 0.0159 + 0.0533x0.5 3.1000e-3 0.0131

10% Noise
1.50 0.1789− 0.2227x1.5 3.5000e-2 0.0111
1.00 0.2139− 0.2596x 2.5400e-2 0.0113
0.50 0.2705− 0.3033x1.5 1.1130e-2 0.0111

Table 4: Comparison of the least squares error ED in Example 4 corresponding to n = 1 and with
different value of λ.

Example 5. In this Example, we consider the function y(x) = x0.75 defined on the interval [0, 1] to
generate the data set of length 30.

To demonstrate the advantage of choosing the weight functions, we consider Example 5. For this, we
divide the interval [0, 1] into two parts [0, 0.8] and [0.8, 1]. In [0, 0.8], we take the data sets as it is.
However, in [0.8, 1], we add 10% Gaussian noise in the data set. We generate fractional orthogonal
polynomials concerning the two different weight functions. The outcome of these numerical experiments
are described below:

• In the first case, if one can generate the fractional orthogonal polynomials up to order 1 with
respect to weight function W (x) = (1 − x) using Theorem 4.1, they get L0(x; 0.75,W ) = 1 and
L1(x; 0.75,W ) = x0.75 − 0.5020.

• In the second case, if one can generate the fractional orthogonal polynomials up to order 1 with
respect to weight function W (x) = 1, they get L0(x; 0.75,W ) = 1 and L1(x; 0.75,W ) = x0.75 −
0.7870.

• The least-squares error ED in the first case is 2.020e-2, while in the second case, we get 4.2040e-1.

• From the above discussion one can conclude that choosing the appropriate weight function according
to the data in the least squares method provides better results.

Example 6. In this Example, we will implement our proposed method to predict the value of Ameri-
can put options, where the risk-neutral stock price process satisfies the following stochastic differential
equation:

dS(x) = rS(x)dx + σS(x)W (x), (5.1)

where r and σ are constant, and W (x) is the standard Brownian process. Here the variable x is denoted
the time.

The well known solution of the Equation (5.1) is

S(x) = S0 exp((r −
1

2
σ2)x+ σW (x)), (5.2)

where S0 is the initial stock price. The least square regression analysis is an essential part of machine
learning. Therefore, we are interested in the predicted value of the American put option using our
proposed method. We assume S0 = 38, r = 5%, σ = 71%, options strike price is 48 and possible exercise
time is 60 days (see [14] for details). Also, in the [14], the authors give the value of the American put
option for the same data described above, which is 10.822. After implementation of our proposed method,
we get the following results:

• Firstly we generate the data of length 60 from the Equation (5.2) in the interval [0, 16 ] and then we
fit the data using modified least square method in the space Mλ

2 . The data is stochastic in nature,
therefore, we use 10000 simulation for prediction.

10



• Using the algorithm described in [14] combined with the modified least square method, the value
of predicated American put options are shown in Table 5 for different value of λ.

• From Table 5, one can easily observe that the predicted value of American put options in the case
of λ = 0.75 is much closer to the given value of the put options than other values of λ.

Table 5: Prediction of American put options in Example 6 with different value of λ.

λ 0.25 0.5 0.75 1.00
Predicated Value 10.743 10.730 10.790 10.714

CPU Time (in seconds) 10.720 10.723 10.756 10.856

6 Application of modified least squares method

The modified least squares method will have many practical applications in physics, finance, and other
engineering problems. In this Section, we have demonstrated the application of the modified least squares
method in particular areas like solving fractional differential/integral equations and in machine learning.

6.1 Application in solving fractional differential/integral equations

The theory of non-integer derivatives is an emerging topic of applied mathematics, which attracted
many researchers from various disciplines. The non-local properties of fractional operators attract a
significant level of intrigue in the area of fractional calculus. It can give an excellent way to deal with
complex phenomena in nature, such as biological systems, control theory, finance, signal and image
processing, sub-diffusion and super-diffusion process, viscoelastic fluid, electrochemical process, and so
on (see [13, 21, 26, 18] and references therein). The main advantage of fractional differential/integral
equations is that it provides a powerful tool for depicting the system with memory, long-range interactions
and hereditary properties of several materials instead of the classical differential/integral equations in
which such effects are difficult to incorporate. The fractional differential equations are equivalent to the
Volterra’s second kind integral equations for the specific choice of kernel. Consider the following Volterra
second kind integral equation of the form

y(x) = a+

∫ x

0

k(x, t)f(t, y(t))dt, (6.1)

where a ∈ R, f(x, t) to be a continuous function whereas k(x, t) may be singular. When k(x, t) =
(x− t)α−1, 0 < α < 1, then Equation (6.1) is equivalent to the following fractional differential equation

CD
α
0,xy(x) = Γ(α)f(x, y(x)),

y(0) = a.
(6.2)

However, in many cases, it is not possible to find the exact solution for fractional differential equations.
Therefore, it is essential to acquire its approximate solution by using some numerical methods. In the
literature there are a paper for solving fractional differential equations using least squares method based
on polynomials Pn(x; 1) ∈ M1

n [23]. But the fractional derivative of the polynomials Pn(x; 1) does not
belong to the space M1

n. Therefore, we introduce some extra error while solving the fractional differential
equations using least squares method based on Pn(x; 1). For example, n = 2, consider the space

Mλ
2 := {1, xλ, x2λ}.

The fractional derivative (in Caputo sense) of order α of any polynomial Pi(x;λ) ∈ Mλ
2 , i = 0, 1, 2 are

also in the space Mλ
2 for the choice α = λ. Hence, we feel that when solving the fractional differential

using the least squares method in the space Mλ
n is beneficial than the space M1

n.

11



Example 7. Consider the following fractional differential/integral equation

CD
α
0,xy(x) =

1

Γ(2− α)
x1−α, 0 < x ≤ 1, (6.3)

with the analytical solution y(x) = x when y(0) = 0 and f(x) = 1
Γ(2−α)x

1−α.

We are using the modified least squares method to solve Example 7 in space Mλ
2 . Let the solution

of fractional differential equation y(x) be approximated by the polynomial a0 + a1x
λ + a2x

2λ. In this
case, we define the residual error as R(x, a0, a1, a2;λ) = f(x) − CD

α
0,x(a0 + a1x

λ + a2x
2λ). So, our error

function becomes

EC(a0, a1, a2;λ) =

∫ 1

0

(R(x, a0, a1, a2;λ))
2dx. (6.4)

For fix n = 2, the least square error EC for Example 7 has been shown in Table 6 for α = 0.5 and various
values of λ. From Table 6, one can observe that when λ = α, we get the best result. This will happen
because fractional derivatives of xλ and x2λ belong to the space Mλ

2 when λ = α.

Table 6: Comparison of the least square error EC in Example 7 corresponding to α = 0.5 and with
different value of λ.

λ 0.5 0.75 1.00 1.25 1.50
EC 0 6.11e-4 5.19e-4 2.70e-3 8.60e-3

Example 8. In this Example, we consider the following multi-term fractional/integral differential equa-
tion

CD
α1

0,xy(x) + CD
α1

0,xy(x) + y(x) = f(x), 0 < x ≤ 1, (6.5)

with the exact solution y(x) = x3.5 + x4 when y(0) = 0 and f(x) = x4 + x3.5 + Γ(5)
Γ(5−α1)

x4−α1 +
Γ(4.5)

Γ(4.5−α1)
x3.5−α1 + Γ(5)

Γ(5−α2)
x4−α2 + Γ(4.5)

Γ(4.5−α2)
x3.5−α2 , where α1 = 0.5 and α2 = 0.25.

We are using the modified least squares method to solve Example 8 in space Mλ
n . Let the so-

lution of fractional differential equation y(x) be approximated by the Müntz-Legendre polynomials
∑n

i=0 aiLi(x;λ). In this case, we define the residual error as

R(x, a0, a1, . . . , an;λ) = CD
α1

0,x(

n
∑

i=0

aiLi(x;λ)) + CD
α2

0,x(

n
∑

i=0

aiLi(x;λ))

+
n
∑

i=0

aiLi(x;λ) − f(x) +
n
∑

i=0

aiLi(0;λ)− y(0).

So, our error function becomes

EC(a0, a1, . . . , an;λ) =

∫ 1

0

(R(x, a0, a1, . . . , an;λ))
2dx. (6.6)

The least square error EC and absolute error (A.E.) at x = 1.00 for Example 8 and corresponding CPU
time have been shown in Table 7 for various values of λ and n. One can easily observe that for λ = 1, the
approximate solution does not capture the exact features involved in the solutions of the Example 8 for
any value of n. However, for some values of λ 6= 1, the approximate solution captures the exact features
involved in the solutions of the Example 8. Thus, for the conclusion of the results of this Example, we
can say that one can get a good approximation for the solution of fractional differential equations in the
case of λ 6= 1. Figure 1 shows the trajectory of the exact solution and modified least square solution
(MLSS) for Example 8 with λ = 0.75 and different values of n. Figure 1 shows that our approximate
solution converges to the exact solution when we increase the value of n.

12



Table 7: Comparison of the least square error EC and A.E. in Example 8 corresponding for different
values of λ and n.

λ 0.50 0.75 1.00 1.25

n = 2
Ec 5.96e-1 3.19e-1 1.29e-1 4.31e-2
A.E. 2.22e-0 2.08e-1 3.28e-2 2.67e-4

CPU Time (in seconds) 2.69 3.08 3.28 3.16

n = 4
Ec 7.93e-3 2.33e-4 5.10e-7 1.85e-9
A.E. 2.09e-0 2.19e-2 4.27e-4 3.45e-5

CPU Time (in seconds) 5.89 9.33 10.67 13.90

n = 6
Ec 4.59e-6 2.57e-11 9.79e-10 3.05e-10
A.E. 1.72e-1 8.81e-6 3.27e-5 1.18e-5

CPU Time (in seconds) 16.55 31.06 34.29 37.73

n = 8
Ec 3.08e-45 6.61e-14 1.53e-11 2.16e-11
A.E. 4.40e-16 1.34e-6 5.79e-6 3.98e-6

CPU Time (in seconds) 39.55 75.15 77.97 81.87

n = 10
Ec 2.69e-47 2.27e-15 6.45e-13 2.35e-12
A.E. 4.40e-16 3.12e-7 1.53e-6 1.59e-6

CPU Time (in seconds) 80.23 149.29 183.23 241.30

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

Exact Solution

MLSS n = 2

MLSS n = 4

MLSS n = 6

MLSS n = 8

MLSS n = 10

MLSS n = 12

Figure 1: Exact solution and approximate solution for Example 8 with λ = 0.75 and different values of
n.

6.2 Application in machine learning

Machine learning is a field of artificial intelligence which gives computer systems the ability to learn
using available data. Recently machine learning algorithms become very popular for analyzing of data
and make predictions. The least-squares method is widely used in machine learning to analyze data for
regression analysis and classification. In particular, in the regression analysis, the goal of people is to
plot a best fit curve or line between data. If someone is interested in discovering the best fit line for
one variable using the least squares method for the data, then, in this case, the form of polynomials

13



(hypothesis/model) is
P1(x; 1) = a0 + a1x.

We have already shown the advantage of the modified least squares method in Section 5 while searching
the best fit curve between data. Also, some data need to have features vector like xλ, for example x0.5.
Therefore, we must choose the polynomials (hypothesis/model) of the form

P2(x; 0.5) = a0 + a1x
0.5.

Example 9. Consider the data in Table 8, which is related to pharmaceutical sales of some company.

Table 8: Pharmaceutical sales of some company [1]

Years 2014 2015 2016 2017 2018
Sales 10000 21000 50000 70000 71000

For Example 9, we fit the data with the P1(x;λ) = a0 + a1x
λ ∈ Mλ

1 . To simplify the calculation,
the years in Table 8 are replaced by the coded values. For example, 2014 is 1, 2015 is 2, and so forth
on. We use the data from 2014 to 2017 to fit the curve a0 + a1x

λ and predict the sales in 2018. After
implementation of the proposed method discussed in Section 4, the results are described in the Table 9.
From the Table 9, one can observe that for λ = 0.5, the predicted sales in 2018 is close to the real value
in 2018.

Table 9: Prediction of pharmaceutical sales of some company in the year 2018 with different values of λ

λ 0.5 0.75 1.00 1.25 1.5
Predicted sales in 2018 69692 80546 90000 98307 105870

Example 10. In this Example, we will fit the data generated by the solution of the fractional differential
equation, which describes the dynamics of the world population.

CD
α
0,xy(x) = Py(x), 0 < x ≤ 1,

y(0) = y0
(6.7)

The solution of the fractional differential equations is given by y(x) = y0Eα(Pxα), where y0 is the
population of the world at initial time, Eα(·) is the Mittage-Leffler function, P is the production rate,
and α is the fractional order of the model.

In [5], authors are finding the values of P and α using the world population data from 1910 to 2010,
which are 1.3502e− 2 and 1.39, respectively. For this Example, we generating the data of y(x) with the
help of the exact solution of the fractional differential equation (6.7) at 11 equispaced points on the interval
[0, 1] for the values of P and α. Here, we consider the two cases: first, we approximate y(x) with the
∑n

i=0 aix
iλ, while in the second case, we approximate y(x) with the

∑n
i=0 biPi(x;λ), where Pi(x;λ), i =

0, 1, . . . , n, are the orthogonal fractional polynomials with respect to data {xj , j = 0, 1, . . . , 10}, and we
generated Pi(x;λ), i = 0, 1, . . . , n, with help of the Theorem 4.2. In the first case for finding the value
of parameter ai, i = 0, 1, . . . , n, we have to solve the system of equations because {1, xλ, . . . , xnλ} are
non-orthogonal fractional polynomials with respect to data {xj , j = 0, 1, . . . , 10}, and for a large value
of n, we may end with the ill-conditioned coefficient matrix. In the second case, we are directly finding
the parameter values bi, i = 0, 1, . . . , n using Equation (4.13). Table 10 demonstrates the absolute error
(A.E.) at x = 0.55 with different values of λ and n for both cases. From Table 10, one can observe that
in the case of λ = 1.39, we get the better results compared to other values of λ for each n. This happens
because the exact data is generated for α = 1.39.

14



Table 10: A.E. at x = 0.55 for Example 10 with different values of λ and n.

For non-orthogonal fractional polynomials
n λ = 0.50 λ = 1.00 λ = 1.50 λ = 1.39
2 1.96e-4 4.16e-5 4.78e-7 6.68e-10
3 8.79e-7 1.61e-5 1.50e-5 6.86e-13
4 4.19e-7 7.01e-6 1.62e-6 5.10e-15
5 2.64e-8 2.00e-6 4.79e-6 5.11e-15
6 3.61e-9 1.35e-6 8.31e-7 2.21e-13

For orthogonal fractional polynomials
n λ = 0.50 λ = 1.00 λ = 1.50 λ = 1.39
2 4.61e-4 2.01e-3 1.08e-4 8.36e-9
3 1.05e-5 9.55e-5 8.68e-5 4.76e-12
4 1.98e-6 6.29e-5 1.00e-4 3.18e-15
5 2.63e-7 4.93e-5 1.54e-4 4.83e-15
6 5.57e-8 4.24e-5 3.12e-4 2.09e-16

7 Conclusions and future work

The introductory Section shows the demands of the least squares method in various fields. So the
modification in the least squares method is the demand of time due to its application. The main idea of
this work has been to modify the least squares method using the space Mλ

n . The numerical results for
test Examples have been reported to show the efficiency of the modified least squares method over the
classical least squares method. We can use the current work in the support vector machines in the future.
Support vector machines are part of machine learning to analyze data for classification and regression
analysis. In most cases, data are non-linear. So, we find some non-linear transformation φ that can be
mapped the data onto high-dimensional feature space. The transformation is chosen in such a way that
their dot product leads the kernel style function

K(x, xi) = φ(x).φ(xi).

If we choose the polynomial classifiers [11] of degree 2 and we have n data set xi, i = 1, . . . , n, in this
case

φ(x) = (1 x1 x2 . . . xn x2
1 x1x2 . . . x

2
2 . . . x

2
n)

T .

However, one can use fractional polynomial classifiers instead of classical polynomial classifiers for more
accurate results. Further, one can also use fractional orthogonal polynomials as an activation function in
the neural networks to avoid the vanishing gradient problem.

Acknowledgements

The First author acknowledges the support provided by University Grants Commission (UGC), India,
under the grant number 20/12/2015(ii)EU-V. The second author acknowledges the support provided by
the SERB India, under the grant number SERB/F/3060/2021−2022. The third author acknowledges the
financial support from the North-Caucasus Center for Mathematical Research under agreement number
075− 02− 2021− 1749 with the Ministry of Science and Higher Education of the Russian Federation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

15



References

[1] Mohammad Abazid and Duaa Alkoud. A least-squares approach to prediction the future sales of
pharmacy. Int. J. Innov. Technol. Explor. Eng, 7:1–4, 2018.

[2] Hervé Abdi et al. The method of least squares. Encyclopedia of Measurement and Statistics. CA,
USA: Thousand Oaks, 2007.

[3] Anatoly A Alikhanov. A time-fractional diffusion equation with generalized memory kernel in differ-
ential and difference settings with smooth solutions. Computational methods in applied mathematics,
17(4):647–660, 2017.

[4] Anatoly A Alikhanov, Murat Beshtokov, and Mani Mehra. The crank-nicolson type compact differ-
ence schemes for a loaded time-fractional hallaire equation. Fractional Calculus and Applied Analysis,
24(4):1231–1256, 2021.

[5] Ricardo Almeida, Nuno RO Bastos, and M Teresa T Monteiro. Modeling some real phenomena by
fractional differential equations. Mathematical Methods in the Applied Sciences, 39(16):4846–4855,
2016.

[6] Rahul Bale, Amneet Pal Singh Bhalla, Boyce E Griffith, and Makoto Tsubokura. A one-sided direct
forcing immersed boundary method using moving least squares. Journal of Computational Physics,
440:110359, 2021.

[7] Peter Borwein, Tamás Erdélyi, and John Zhang. Müntz systems and orthogonal müntz-legendre
polynomials. Transactions of the American Mathematical Society, 342(2):523–542, 1994.

[8] Weihua Deng. Finite element method for the space and time fractional fokker–planck equation.
SIAM journal on numerical analysis, 47(1):204–226, 2009.

[9] Kai Diethelm and Neville J Ford. Volterra integral equations and fractional calculus: do neighboring
solutions intersect? The Journal of Integral Equations and Applications, pages 25–37, 2012.

[10] Shahrokh Esmaeili, Mostafa Shamsi, and Yury Luchko. Numerical solution of fractional differential
equations with a collocation method based on müntz polynomials. Computers & Mathematics with
Applications, 62(3):918–929, 2011.

[11] Ingo Graf, Ulrich Kreßel, and Jürgen Franke. Polynomial classifiers and support vector machines.
In International Conference on Artificial Neural Networks, pages 397–402. Springer, 1997.

[12] W Leon Harter. The method of least squares and some alternatives: Part i. International Statistical
Review/Revue Internationale de Statistique, pages 147–174, 1974.

[13] Richard Herrmann. Folded potentials in cluster physics—a comparison of yukawa and coulomb
potentials with riesz fractional integrals. Journal of Physics A: Mathematical and Theoretical,
46(40):405203, 2013.

[14] Xuejun Huang and Xuewen Huang. The least-squares method for american option pricing, 2009.

[15] Bangti Jin, Raytcho Lazarov, Yikan Liu, and Zhi Zhou. The galerkin finite element method for a
multi-term time-fractional diffusion equation. Journal of Computational Physics, 281:825–843, 2015.

[16] Nitin Kumar and Mani Mehra. Legendre wavelet collocation method for fractional optimal con-
trol problems with fractional bolza cost. Numerical Methods for Partial Differential Equations,
37(2):1693–1724, 2021.

[17] Mark M Meerschaert, Hans-Peter Scheffler, and Charles Tadjeran. Finite difference methods for
two-dimensional fractional dispersion equation. Journal of Computational physics, 211(1):249–261,
2006.

16



[18] Vaibhav Mehandiratta, Mani Mehra, and Günter Leugering. Existence and uniqueness results for
a nonlinear caputo fractional boundary value problem on a star graph. Journal of Mathematical
Analysis and Applications, 477(2):1243–1264, 2019.

[19] Vaibhav Mehandiratta, Mani Mehra, and Gunter Leugering. Optimal control problems driven by
time-fractional diffusion equations on metric graphs: Optimality system and finite difference approx-
imation. SIAM Journal on Control and Optimization, 59(6):4216–4242, 2021.

[20] Gradimir V Milovanović. Müntz orthogonal polynomials and their numerical evaluation. In Appli-
cations and computation of orthogonal polynomials, pages 179–194. Springer, 1999.

[21] Tatiana Odzijewicz, Agnieszka Malinowska, and Delfim Torres. Noether’s theorem for fractional
variational problems of variable order. Open Physics, 11(6):691–701, 2013.

[22] Kuldip Singh Patel and Mani Mehra. Fourth order compact scheme for space fractional advection-
diffusion reaction equations with variable coefficients. Journal of Computational and Applied Math-
ematics, page 112963, 2020.

[23] Parisa Rahimkhani, Yadollah Ordokhani, and Esmail Babolian. Fractional-order bernoulli functions
and their applications in solving fractional fredholem–volterra integro-differential equations. Applied
Numerical Mathematics, 122:66–81, 2017.

[24] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

[25] Abhishek Kumar Singh and Mani Mehra. Uncertainty quantification in fractional stochastic integro-
differential equations using legendre wavelet collocation method. In Krzhizhanovskaya V. et al. (eds)
Computational Science – ICCS 2020. Lecture Notes in Computer Science, volume 12138, pages 58–
71. Springer, 2020.

[26] Abhishek Kumar Singh and Mani Mehra. Wavelet collocation method based on legendre polynomials
and its application in solving the stochastic fractional integro-differential equations. Journal of
Computational Science, 51:101342, 2021.

[27] Brian V Smoliak, John M Wallace, Mark T Stoelinga, and Todd P Mitchell. Application of partial
least squares regression to the diagnosis of year-to-year variations in pacific northwest snowpack and
atlantic hurricanes. Geophysical Research Letters, 37(3), 2010.

[28] Nikhil Srivastava, Aman Singh, Yashveer Kumar, and Vineet Kumar Singh. Efficient numerical algo-
rithms for riesz-space fractional partial differential equations based on finite difference/operational
matrix. Applied Numerical Mathematics, 161:244–274, 2021.

17



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Exact Solution

Least Square Solution



0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Exact Solution

LSS n = 2

LSS n = 4

LSS n = 6

LSS n = 8

LSS n = 10

LSS n = 12


	Introduction
	Preliminaries
	Jacobi polynomials
	Müntz Legendre polynomials

	Least squares method
	Modified least squares method
	Test examples
	Application of modified least squares method
	Application in solving fractional differential/integral equations
	Application in machine learning

	Conclusions and future work

