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Abstract— This paper presents a convex optimization frame-
work for eco-driving and vehicle energy management problems.
We will first show that several types of eco-driving and
vehicle energy management problems can be modelled using
the same notions of energy storage buffers and energy storage
converters that are connected to a power network. It will be
shown that these problems can be formulated as optimization
problems with linear cost functions and linear dynamics, and
nonlinear constraints representing the power converters. We
will show that under some mild conditions, the (non-convex)
optimization problem has the same (globally) optimal solution
as a convex relaxation. This means that the problems can
be solved efficiently and that the solution is guaranteed to
be globally optimal. Finally, a numerical example of the eco-
driving problem is used to illustrate this claim.

I. INTRODUCTION

Improving vehicle energy efficiency is an important topic
of research for the automotive industry in order to reduce
the carbon footprint of vehicles as well as increase the
vehicle’s range per charge. These goals can be obtained
by applying optimization methods, such as eco-driving and
energy management. The eco-driving problem, see, e.g.,
[1]–[4], uses a longitudinal vehicle model and information
on the route to predict the most energy or time optimal
velocity profile in order to reach the destination and can be
implemented to actively coach the driver to drive in a more
energy efficient way. Vehicle energy management, see, e.g.,
[5]–[11] attempts to optimize the energy flow in the vehicle
to use the least amount of energy as possible. This leads
to a decrease in operational cost, or an increase in driving
range. Both methods are often at the basis of many current
developments, such as platooning [12], time-optimal control
in traffic scenarios [13], optimal component sizing [14] and
emission management for heavy-duty vehicles [15].

The optimization problems that arise in eco-driving and
energy management may be solved in different ways, such as
Dynamic Programming (DP), see, e.g., [4], [5], or Pontrya-
gin’s maximum principle (PMP), see, e.g., [6], [7], but these
methods can typically not appropriate when the complexity
of the problem increases. A recent trend is therefore to
consider static optimization to handle the complexity of
the problem, which can then be solved by off-the-shelve
solvers. High-fidelity powertrain models lead to nonlinear
optimization problems that can be solved using derivative-
free methods, see, e.g., [16], or by sequentially linearizing
the problem, as is done in SQP, see, e.g., [1], [15]. These

The authors are with the Department of Electrical Engineering,
Eindhoven University of Technology, Netherlands {y.j.j.heuts,
m.c.f.donkers}@tue.nl

methods do not scale well in terms of number of components
and do not always warrant optimality, as it is possible to end
up in a local minimum. Therefore, problem formulations that
lead to convex optimization problems are very desirable, as
they scale well and lead to globally optimal solutions.

Formulations of eco-driving and energy management that
are either convex or use convex relaxations have been
considered in the literature, e.g., in [2], [3], [8]–[10]. The
main difference between the approaches in these papers are
the properties that are required for the component models.
In [10], it is shown that models needs to be monotonous
in one argument. On the other hand, it is argued in [8], [9]
that energy management problems can be modelled as power
networks, where converters, such as the electric machine or
internal combustion engine, are limited to quadratic func-
tions. Finally, [2], [3] utilizes hyperbolic functions, such that
they become second-order constraints when relaxed, though
a formal proof on exactness of this relaxation is not given.
Hence, convex modelling techniques are restrictive in the
allowed component models and/or problem structure and
statements on exactness of the relaxation are not sufficiently
general.

In this paper, we generalize the framework for complete
vehicle energy management problems of [8], [9], and we
will show that examples from [1]–[3], [10], [11] also fit
this framework. If the problem has been set up to fit the
framework, it can be solved as a convex optimization prob-
lem by relaxing the (nonlinear) equalities representing the
energy converter models into inequalities. We will prove that
under some mild conditions on the network and the converter
models, the solution of the relaxed problem will also be the
global solution of the original non-convex problem. These
conditions generalize the conditions of [9] and [10] warrant
that the constraints are linearly independent, meaning that
strong duality between the primal and dual problem holds.
Then, using the dual optimization problem, it will be shown
that the convex relaxation solution is equal to the non-convex
solution and can therefore be used to solve the problem using
more efficient tools. Moreover, we show that for several
converter models, it is possible to formulate second-order
conic constraints, for which a wide variety of solvers exist.

The remainder of this paper is organized as follows,
Section II introduces the modelling framework, and gives
examples of problems that fit within the framework. In
Section III, we will present the convex relaxation and give
conditions under which the relaxation is exact. A numerical
example is provided in Section IV and the conclusions are
drawn in Section V.
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Fig. 1: Schematic of a vehicle power network.

II. MODELLING FRAMEWORK

In this section, we will first discuss a description of a
power network on which our framework is based. Subse-
quently, the optimal control problem is presented underlying
the energy management problems. Finally, by introducing
three examples, we show that the framework is general
enough to capture all these problems.

A. General description

Energy management problems aim to minimize the energy
consumption for a network of subsystems m ∈ M :=
{1 . . .M}, where M is the total number of subsystems.
These subsystems can be composed of buffers and convert-
ers, see Fig. 1. Buffers model the available stored energy
within the network, e.g., the amount of charge in a battery.
Converters, on the other hand, model the energy conversion
from one domain to another, e.g., from chemical to mechan-
ical energy. Furthermore, converters are connected to each
other in a specific topology via nodes j ∈ J := {1 . . . J},
where J indicates the number of nodes in the network.

B. Optimal Control Problem

The optimal control problem in the above power network
aims to minimize the total energy usage of the components
over a time horizon k ∈ {0 . . .K − 1}. A cost function
adhering to this goal can be expressed as

min
ym,k,um,k,xm,k

∑
k∈K

∑
m∈K

a⊤mum,k + bmym,k, (1a)

where am and bm are coefficients to define the cost function,
and um,k are the inputs and ym,k are scalar outputs. The
minimization is subject to the input-output behaviour of the
converters that are given by,

hm(xm,k, um,k, ym,k) = 0, (1b)

for all m ∈ M and all k ∈ K, for which additional conditions
will be introduced in the next section. When compared to
[8], [9], the concept of energy conversion is broadened in
this paper to include also the state xm,k and more general
classes of functions. The converters are subject to the linear
system dynamics of the energy buffer, given by

xk+1 = Axk +Buk + fk, (1c)

where the A and B matrices are typically block diagonal (as
the buffers are only connected though the converters), xk =
[x⊤

1,k . . . x
⊤
M,k]

⊤ is the state of all buffers, with x0 = xinit

are the initial states of the buffers, uk = [u⊤
1,k . . . u

⊤
M,k]

⊤ is
the inputs to all the buffers, and fk is a known disturbance
to the system. In case the buffer is nonlinear, it can often
be decomposed in a linear dynamic part (1c) and a static
nonlinearity (1b), see the example in [9]. In order to connect
the buffers and the converters, we require power network
nodes, which are given by

Exk + Fuk +Gyk + sk = vk, (1d)

where E, F and G describe the network connections, yk =
[y1,k . . . yM,k]

⊤, and sk ⩾ 0 is a slack variable which is
used to differentiate between a conservative node in which
all energy that passes through the node is conserved, leading
to that element of sk being zero and a dissipative node,
where part of the energy may be dissipated, i.e., through
the brakes, leading to that element of sk to be non-negative.
Furthermore, the load signal, vk is assumed to be known at
each time instant k ∈ K. Lastly, the states and inputs have
to adhere to physical upper and lower bounds, i.e.,

x ⩽ xk ⩽ x and u ⩽ uk ⩽ u. (1e)

C. Examples

In order to show that a wide variety of energy management
problems fit in this framework, examples are given of an
eco-driving problem, and an energy management problem
either defined using powers and energies or using a port-
Hamiltonian representation.

Example 1. Eco-driving aims to find an optimal velocity
profile and corresponding input power. Examples from liter-
ature are given in, e.g., [1], [4]. A simplified longitudinal
vehicle model is considered, and this model can be given
as function of time or travelled distance. The longitudinal
vehicle model is given by Newton’s second law

me
dv
dt = Fp − cgv

2 −mgcr cosα,−mg sinα, (2)

where v is the longitudinal velocity, cg is the lumped aerody-
namic drag constant and cr is the rolling resistance constant,
Fp is the propulsion force defined by the brake (br) force
and electric machine (em) force Fp = Fbr + Fem, g is
the gravitational acceleration, me is the equivalent vehicle
mass including the actual mass m, and estimated induced
inertia by rotational parts to make the model linear. The
road gradient is indicated by α. The vehicle’s kinetic energy
is given by

Ek = 1
2mev

2. (3)

We can introduce the coordinate transformation from the time
to distance domain

dv
dt = v dv

ds = 1
2

d
dsv

2, (4)

which leads to

d
dsEk = Fp −mg(sinα(s)+cr cosα(s))− cg

me
Ek. (5)



Ekin

ukin

vbryem

yv=
1
2
mu2

v y�u� = 1 t
xkin yv uv u�

y�

Fig. 2: Block diagram of eco-driving problem

In addition, we need the concept of lethargy, ℓ = dt
ds , which

satisfies v dt
ds = 1 and is used to keep time in our problem

formulation. The complete block diagram of the eco-driving
problem can be seen in Fig. 2.

The discretized problem with time constraint can then be
formulated as

min
∑
k∈K

yem,k (6a)

s.t. yv,k = 0.5mu2
v,k (6b)

uℓ,kyℓ,k = 1 (6c)
xkin,k+1 = Adxkin,k +Bdukin,k + ukin,k (6d)
xℓ,k+1 = xℓ,k + δs · uℓ,k (6e)
ukin,k + yem,k + sbr,k = 0 (6f)
yℓ,k + uv,k = 0 (6g)
yv,k − xkin,k = 0 (6h)
xt,K ⩽ Tmax, (6i)

with Ad = e−cgδs/me , Bd = me

cg
(1−Ad), and K being the

horizon length, δs being the sample distance and the lethargy
uℓ,k = ds

dt . Eqns. (6b) and (6c) describe the converters, (6d)
and (6e) cover the dynamics of the problem, and (6f), (6g)
and (6h) describe the power network.

Example 2. Vehicle energy management has the goal to
distribute the vehicle’s energy requirements, resulting from
propelling the vehicle, as well as the vehicle’s auxiliary
systems, optimally over one or multiple energy sources (i.e.,
internal combustion engine, battery, or fuel cell) [7]. This
problem can be extended to a ‘complete vehicle energy man-
agement’ problem by adding auxiliary vehicle subsystems to
the topology in order to optimize the energy flow for all
consumers and generators inside the vehicle [8].

One possible power network is shown in Fig. 3. In this
example, we consider two energy buffers, namely a fuel-
based converter, such as an internal combustion engine, and
a battery, one node and three converters. The buffers can be
modelled as

Ėj = −Pj , m ∈ {f, s}, (7)

where f denotes fuel and s the stored battery energy. Both
buffers are upper and lower bounded, and the flow of fossil
fuel can only be positive, i.e., Pf > 0. The converters are
given by quadratic relations in [9], such that

ym,k = α2,mu2
m,k + α1,mum,k + α0,m (8)

Ef FBC
Pf

Es BATPs

Battery system

EM

Electric machine

Pe

Pbr

Pp

Primary mover

Fig. 3: Block diagram power network series hybrid vehicle

for m ∈ {f, bat, em}, where um,k and ym,k denote the input
and output of the converter. The energy balance within a
node is given by

yf + yem = vp + ubr with ubr ⩾ 0 (9)

where vp is the required power from the drive train, which
is given in this case. The CVEM problem of Fig. 3 can then
be given by

min
∑
k∈K

yf (10a)

s.t. α2,mu2
m,k + α1,mum,k + α0,m − ym,k = 0, (10b)

xk+1 = xk + δTus,k, (10c)
yf,k + yem,k + sbr,k = vp,k, (10d)
ys,k + uem,k = 0, (10e)

with δT is the sampling time, and m ∈ {f, s, em}. Moreover,
to fit the problem in the framework, the brake power becomes
the slack variable for dissipating energy from the network,
such that ubr,k = sk ⩾ 0. Here, (10b) is the converter model,
(10c) are the dynamics, and (10d) and (10e) are the network
constraints.

Example 3. While the previous example covered a
power/energy-based problem formulation, it is also pos-
sible to model energy management problems in a port-
Hamiltonian manner, where each converter has inputs and
outputs which often represent voltages and currents, see [11].
In this framework, each subsystem has its internal energy
expressed as,

Hm(xm) = 1
2x

⊤
mQmxm, (11)

where the change in energy

∆H = Hm(xm,K)−Hm(xm,0) (12)

can be used in the cost function in order to penalize
dissipating systems. The remainder of the formulation is rep-
resented as an input-state-output port-Hamiltonian system
with continuous time dynamics,

ẋm=J(xm)∂Hm

∂xm
+ b(xm)um (13a)

ym=b⊤(xm)∂Hm

∂xm
(xm), (13b)

where J(xm) is a skew symmetric matrix called the inter-
connection matrix and b(xm) is the input matrix. Moreover,



the network is (fully) connected through the network nodes∑
m∈M

fj,mum + gj,mym = 0, (14a)

fj,mym + gj,mum = 0, for all m ∈ M (14b)

where depending on if the node is an additive, in case
of (14a), or equality node, i.e., (14b), fj,m, gj,m ∈ {0, 1}
depending on if the system m is connected to the node
j. Moreover, energy conserving converters, such as dc-dc
converters, are modelled as

y⊤j,kuj,k + y⊤j+1,kuj+1,k = 0, (15)

which can be decomposed as two converter models and one
additional power node.

In order to model this example into the canonical form,
(1), the cost function needs to be converted to a linear func-
tion, which is possible by adding another decision variable
and constraint. Moreover, (13) is linearized and discretized,
such that the optimal control problem becomes

min
∑

m∈M

∑
k∈K

ym,k (16a)

s.t. 1
2x

⊤
m,k+1Qmxm,k+1 − 1

2x
⊤
m,kQmxm,k − ym,k = 0

(16b)
ym,kum,k = um+j,k (16c)
xm,k+1 = Axm,k +Buk (16d)
ym,k = Cxm,k +Dum,k (16e)
Fu+Gy = 0 (16f)
x ⩽ xk ⩽ x, u ⩽ uk ⩽ u, (16g)

with m ∈ M are the converters in the network. Finally,
(16b) and (16c) are the converters, (16d) are the dynamics
and (16e) and (16f) are the network constraints.

It can be seen that the modelling framework, consisting
of buffers, converters and network nodes, can be used to
formulate all these examples, thus allowing the examples
to be formulated in the form of Problem (1). An example
of a more complex problem with more converters has been
studied in [8] and a problem with more complex buffer
models (in Wiener-Hammerstein form) have been studied in
[9] and also fit the form of Problem (1). The next section
will focus on finding a solution to the posed problems.

III. SOLUTION FRAMEWORK

As motivated in the previous section, the modelling frame-
work is sufficiently general. Still, the optimization problem
(1) is non-convex because of the nonlinear energy converter
(1b). In this section, we will present a solution strategy
based on a convex relaxation of (1) and show that this
convex problem has the same (global) solution as (1), thereby
generalizing the results of [8]–[10].

For the convex relaxation to have the same solution, we
require that the converters models

i) can be relaxed to a convex function, i.e.,
∇2hm(x, u, y) ⪰ 0

y

u

h1(u, y) = 0

h2(u, y) = 0

Fig. 4: Two common forms of convertor models hm = 0. It
can be seen that for h1, we have ∂y

∂u ⩾ 0 and ∂y
∂u ⩾ 0 for h2.

ii) are strictly decreasing in its output, i.e., ∂hm(x,u,y)
∂y < 0

for all feasible x, u and y. Furthermore, we require the power
network to be such that

iii) the entries of bm and the matrix G are positive
iv) if an output of a converter ym,k is connected to the node,

the states xm,k and inputs um,k cannot be connected to
that node

v) rank
(
F +Gdiag(

∂y1,k

∂u1,k
, . . . ,

∂yM,k

∂uM,k
)
)
= J , for all feasi-

ble xm,k, um,k and ym,k, with J the number of network
nodes, which corresponds to the number of rows in E,
F and G, and diag(·) is a block-diagonal matrix with
its arguments on the block diagonal.

It should be noted that these requirements are mild require-
ments. Namely, Requirement i) enables a convex relaxation,
while Requirements ii) and Requirements v) are related to
monotonicity, where ∂ym,k

∂um,k
= −( ∂hm

∂ym,k
)−1 ∂hm

∂um,k
. Examples

of such functions are given in Fig. 4. Finally, self-loops,
as excluded by Requirement iv) would make a converter
redundant, and implies that the entries of E and G, and F
and G, cannot have the same nonzero entries, which could
violate Requirement v).

A. Global Solutions using Convex Relaxations

Since the only non-convex constraint in (1) is
hm(x, u, y) = 0, we relax this constraint into an inequality
leading to

min
yk,uk,xk,sk

∑
k∈K

a⊤uk + b⊤yk (17a)

s.t. hm(xm,k, uh,k, ym,k) ⩽ 0 (17b)
Exk + Fuk +Gyk + sk = vk, (17c)
xk+1 = Axk +Buk + fk (17d)
x ⩽ xk ⩽ x, u ⩽ uk ⩽ u, sk ⩾ 0 (17e)

with a = [a⊤1 . . . a⊤M ]⊤ and b = [b1 . . . bM ]⊤, and where
some elements of sk are zero, namely for the energy conserv-
ing nodes. It should be noted that because of Requirement
i), the above problem is convex. This means that it can be
solved efficiently and that all solutions are global solutions.

The question remains whether solutions to (17) are also
solutions to (1), or at least how to obtain solutions to (1)



using (17). To address this question, let us consider the fact
that the solutions to the above optimization problems satisfy

dCR ⩽ pCR ⩽ pNC, (18)

where pNC is the (primal) optimal value of (1), and pCR

and dCR are the primal and dual optimal value of (17),
respectively, see [17]. The fact that pCR ⩽ pNC follows
from the fact that the feasible set of the convex relaxation
is larger than the original problem. However, we will show
below that pCR = pNC and we need dCR = pCR in its proof,
for which we need the constraints to satisfy some form of
constraint qualification, see [17]. The following lemma will
also generalize Lemma 1 of [9].

Lemma 4. Optimization problem (17) satisfies linear inde-
pendence constraint qualification (LICQ), leading to dCR =
pCR, if Requirements ii,iv,v) are satisfied.

Proof. LICQ holds if the gradient of all the
active constraints are linearly independent, see
[17]. If we define ω = [x⊤ u⊤ y⊤]⊤, with
x = [x⊤

0 . . . x⊤
K−1]

⊤, and u and y defined similarly,
collect the constraints (17b) as h(xk, uk, yk) =
[h1(x1,k, u1,k, y1,k) . . . hM (xM,k, uM,k, yM,k)]

⊤ and
collect the constraints (17c) as Γx[x

⊤x⊤
K ]⊤ + Γuu =

[x⊤
init f⊤

1 f⊤
2 . . .]⊤, with

Γx =


I 0 . . . 0

−A I
. . .

...

0
. . .

. . . 0
0 −A I

, Γu =


0 . . . 0

−B 0
...

0
. . . 0

0 . . . −B

 (19)

the gradient of constraints of (17b-d) are given by

Ξ(x, u, y) =

I ⊗ ∂h
∂xk

I ⊗ ∂h
∂uk

I ⊗ ∂h
∂yk

Γx Γu 0
I ⊗ E I ⊗ F I ⊗G

 . (20)

We excluded constraints (17e) as they are always linearly
independent. It should be noted that ∂h

∂xk
, ∂h

∂uk
, and ∂h

∂yk
are

block-diagonal. Now because Γx and ∂h
∂yk

are both invertible
(the latter because of Requirement ii)), we can premultiply
(20) as follows: I⊗( ∂h

∂yk
)−1 0 0

0 Γ−1
x 0

−I⊗G( ∂h
∂yk

)−1 (I⊗(G ∂y
∂x − E))Γ−1

x I

 Ξ(x, u, y)

=

−I⊗ ∂y
∂x −I⊗ ∂y

∂u I
I Γ−1

x Γu 0
0 Ψ 0


(21)

with implicit derivatives ∂y
∂x = −(∂h∂y )

−1 ∂h
∂x , ∂y

∂u =

−(∂h∂y )
−1 ∂h

∂u , which are block diagonal, and

Ψ = I ⊗ (F +G ∂y
∂u )− (I⊗(E +G ∂y

∂x ))Γ
−1
x Γu. (22)

We now conclude that (20) loses rank, only when (22) looses
rank. Because Γ−1

x Γu is strictly lower-triangular (with zeros

on the block diagonal), (22) and the other elements are block-
diagonal, (22) can only loose rank when the block-diagonal
elements lose rank, i.e., when F +G ∂y

∂u is not full row rank.
Therefore, LICQ is satisfied when Requirement v) is met,
which completes the proof.

The main result of this section shows that pCR = pNC,
in which the dual optimization problem of (17) is used and
generalizes [8] to beyond quadratic converter models.

Theorem 5. Assume that Requirements i-v) are satisfied and,
thus, Problem (1) satisfies LICQ. Then, the solution to (17)
satisfies (17b) with equality, i.e., it solves (1), or a solution
to (17) exists that satisfies (17b) with equality. Either way,
pCR = pNC.

Proof. Because of LICQ, we have that dCR = pCR and we
can consider the dual problem

max
µk⩾0,λk

min
xk,uk,yk

∑
k∈K

a⊤u+b⊤y + µ⊤
k h(xk, uk, yk)

+λ⊤k(Exk+Fuk+Gyk+sk− vk)

+ iΩ(xk, uk, sk) (23)

where iΩ(xk, uk, sk) denotes the indicator function
for constraints (17d,e) and h(xk, uk, yk) =
[h1(x1,k, u1,k, y1,k) . . . hM (xM,k, uM,k, yM,k)]

⊤. The
stationary condition with respect to yk (one of the
conditions for optimality) is given by

b⊤ +G⊤λk + ∂h(xk,uk,yk)
∂yk

µk = 0 (24)

Now because b and G only have positive elements and
∂h(x,u,y)

∂y < 0, we cannot have, λ < 0 as it would violate the
necessary condition that µ ⩾ 0. Therefore b⊤ + G⊤λ ⩾ 0,
either means that rows of b⊤ + G⊤λ are positive, which
means that the corresponding elements of µ are positive,
thus that the constraints in (17b) are satisfied with equality,
or rows in b⊤+G⊤λ and the corresponding elements of µ are
equal to zero. In the latter case, those terms will disappear
from the dual optimization problem (23), meaning that a y
can be selected so that it satisfies (17b) with equality. This
means that pCR = pNC, which completes the proof.

B. Enforcing Exact Relaxations

As can be concluded from Theorem 5, it is not guaranteed
that (17) provides a solution where (17b) is satisfied with
equality, though a solution exists that does. Namely, (17) can
have multiple global minima, i.e., different solutions that all
achieve the same minimal cost, of which at least one satisfies
(17b) with equality. This can happen, for instance, when two
converter models are connected to a dissipative node at the
output. One of the branches will be minimized, whereas the
other branch is left with too much energy.

Since (17) has multiple global minima, we can add regu-
larization to ensure the global minimum is found of (17) that
is also a global minimum of (1). An approach that results in
the relaxed constraints being satisfied with equality is to first
solve (17), check whether the constraints of (1) are satisfied.
If this is not the case, add the outputs, yk, that are not directly



satisfied with equality to the cost function and multiply them
with a small weight, and solve again using (17). Since the
original optimization problem has only one global minimum,
adding the output of a carefully chosen converter to the cost
function will steer the solution towards a solution that has
the smallest possible feasible y, i.e., having (1) with equality.
For Example 1, we can also add the output of the lethargy
to the cost function and in the case of Example 2 the output
power of the EM could be added.

C. Second-order Cone Formulation

Even though the relaxed problem (17) is a convex opti-
mization problem, it still may be difficult to solve as we
did not further specify the form of the function hm(x, u, y).
If Requirements i-v) are satisfied, a general nonlinear pro-
gramming solver can find a global optimal solution, though
the computational complexity might be large, and global
optimization methods, such as multi-shooting or genetic al-
gorithms are no longer needed. More interestingly, for some
very common functions hm(x, u, y), the convex relaxations
actually lead to second-order cone problems, where the
feasible set is a Lorenz cone, given by

QN = {x = [x0 x̄]⊤ ∈ RN : x0 ⩾ ∥x̄∥2}, (25)

or equally x ≥QN
0, depending on the form of h(·) ∈ QN ,

see [18]. For Examples 1, 2 and 3, it can be seen that the
modelling framework is general enough to fit these problems,
as they all have linear dynamics, linear network constraints
and nonlinear converters that can be written as second-order
conic constraints by relaxing the equality into an inequality.

The non-linearities found in Examples 1-3 are very com-
mon, and can all expressed as quadratic functions of the form

1
2ξ

⊤Qξ + a⊤ξ + β = 0, (26)

with ξ = [x⊤ u⊤ y]⊤. For a linear function, we have that
Q = 0 and this leads to a polyhedral constraint. This enables
the use of variations of the following converter models

1
2εu

2
m,k + um,k − ym,k = 0 (27)

ym,k(um,k + ε) = 1 (28)

with either um > −ε or um < −ε, which ensure monotonic-
ity, as needed for Requirement v). All these conditions can
be rewritten as a second-order conic constraint [19], leading
to a SOCP for which efficient solvers exist.

IV. SIMULATION STUDY SHOWING THE EXACTNESS OF
RELAXATIONS

This section contains a simulation study of Example 1 with
values from Table I. The nonlinear constraints are relaxed
into second-order conic constraints as proposed in (17e). For
the simulation, we consider three cases, namely:

• Case 1, where an upper bound of Tmax = 700 seconds
is given to complete the route.

• Case 2, in which the upper time limit is set to a large
number (Tmax = 105 seconds in this case)

• Case 3, where in addition to case 2 the lethargy is
added to the cost function as regularization, resulting

in the cost function min
∑

k∈K yem,k + σyℓ,k, where σ
is chosen to be 0.01.

First, we show that the example satisfies the requirements
given in Section III, since, the converter models can be re-
laxed into convex functions (i), both (6b) and (6c) are strictly
decreasing in the output (ii) and the network requirements
iii)-iv) are satisfied. Requirement v) is also satisfied as can
be shown by considering the network matrices,

F =

[
0 0 0
0 1 0

]
and G =

[
0 1 0
0 0 1

]
,

with

uk=
[
ukin,k uv,k uℓ,k

]⊤
and yk=

[
ykin,k yv,k yℓ,k

]⊤
,

the partial derivatives of the converter models,

diag(
y1,k
u1,k

, . . . ,
yM,k

uM,k
) =

0 0 0
0 uv,k 0
0 0 − 1

uℓ,k


and substituting these into Requirement v), which results into
the rank condition being fulfilled for uv,k > 0 and uℓ,k > 0.

In every case, the optimal control problem can be solved
by MOSEK with an average computation time of 0.55,
0.49 and 0.51 seconds for Case 1 to 3, respectively. These
computations times are achieved using a horizon length of
2500 on a pc with an Intel Core i7-9750H at 2.6Ghz and
8Gb of RAM. The corresponding solution to the three cases
can be seen in Fig. 5, which shows the produced velocity
profile, and Fig. 6, which shows the required propulsion
force to reach each of the velocity profiles. The residual
for the relaxed converter models are plotted in Fig. 7. By
examining these residuals, it can be seen that Case 1 has
residuals in the order of 10−7 to 10−4, which is in most
cases enough for the solution to be exact with respect to the
non-convex formulation. However, in Case 2 it is clear that
the magnitude of the residual is much higher than in Case
1. This can be attributed to the fact that after 3000 meters,
the vehicle starts rolling down the hill, which increases the
kinetic energy, but is not properly propagated through the
network. In Case 3, the same simulation is performed, but
now the lethargy is added to the cost function. Looking at
the residuals in Fig. 7, shows that the magnitude of the error
has decreased 250 times. This change is also reflected in the
velocity profile in Fig. 5, where a slightly higher velocity
can be observed. From this, it can be concluded that adding
a regularization term to the cost function, leads to (17b) in
our solution framework satisfying the equality in (1b), which
shows that the problem is solved using an exact relaxation.
Moreover, it can be seen that the input forces in Fig. 6 are

TABLE I: Parameters and values for numerical example.

symbol Parameter Value
m mass 13,400 kg
δs Sampling distance 5 m
A 0.9981
B 0.005
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Fig. 5: Velocity profile resulting from solving the eco-driving
problem subject to a given height map. The velocity is given
in m/s.
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Fig. 6: Applied propulsion force corresponding to the veloc-
ity profiles in Fig. 5.

indistinguishable between Case 2 and 3, which means that
although the cost function was changed, the optimal cost has
remained the same.

V. CONCLUSION

In this paper, we have generalized multiple methods for
solving energy management problems into a general frame-
work. We have shown that a large variety of problems and
models can be used within the framework, as illustrated by
the examples in this paper. Moreover, the resulting non-
convex optimization problem can be relaxed into a convex
optimization problem. Conditions are given such that the
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Fig. 7: Relative error of the two non-linear functions given
for the cases in Fig. 5

resulting solution is also the solution of the original non-
convex problem. A mathematical proof of this property of
the framework was given by using linear independence con-
straint qualification and optimality conditions of the relaxed
problem. Moreover, we show that certain converter models
can be solved using second-order cone programs, which
means that off the shelf solvers can be used to solve the
problem.
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