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To restart, or not to restart, that is the question

R. K. Singlﬂ
Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel

The mean time taken by a Brownian particle to cover a distance L is L?/2D, with D being
its diffusion coefficient. We find that restarts increase this mean time. This is because restarts
naturally introduce time overheads which need to be taken into account while addressing the escape
properties. In addition, restarts impose a constraint on allowed overhead functions if they are to
provide an advantage, that is, a reduced mean escape time. We explicitly study these constraints for
Poisson and sharp restarts. Implementing an overhead function to control escape times means that
the physical properties of the Brownian particle need to be appropriately modified. When restarts
are non-instantaneous, an additional delay is introduced increasing the mean escape time further.
Can restarts overcome the delays incurred due to finite return times? To restart, or not to restart,

should be the question.

Introduction: Random processes under stochastic
restarts have emerged as one of the most investigated
topics in nonequilibrium statistical physics [TH3]. These
studies have lead to a general consensus that the comple-
tion of a stochastic process can be expedited via restarts
[4HI1]. This has been notably seen in the field of com-
puter science where restarting randomized algorithms
[12, 3] leads to an improved performance [14]. In the
realm of search processes restarts render mean search
time finite [IGHI8]. The fundamental reason for this ad-
vantage is that intermittent restarts tend to prevent the
trajectories from flying off to infinity, resulting in finite
search times in infinite domains. However, in most cases
of practical interest search often takes place in a bounded
domain [I9-24]. Does it mean that restarts possess a
definitive advantage for search in finite domains? While
the question has been addressed in previous studies [25-
28], a few fundamental points pertaining to the practical
significance of restarts for expediting search remain un-
addressed. For example, if a protein is searching for a
target DNA [29] [30] or a general search in cellular me-
dia [31] 2], is it viable for the searcher to continue its
search solely under the effect of thermal fluctuations or
employ some restart protocol? A straightforward answer
to this question is that restarts can be employed as a
means of expediting search if and only if a restart pro-
tocol actually expedites the completion of the stochas-
tic process. For example, for escape over a fluctuating
barrier it was shown in Ref. [28] that restart expedites
escape only when the restart location is far from the po-
tential well. However, escape over a fluctuating barrier
involves an external dichotomous noise on top of which a
restart strategy is employed, hence it becomes imperative
to single out search processes with restarts and address
the above question. Furthermore, search processes under
restarts naturally give rise to time overheads, as it would
take, for example, a finite amount of time to take the par-
ticle from the bottom of the potential well to the restart
location. While a number of previous works have studied
the effects of time overheads for search with restarts, like
the Michaelis-Menten reaction scheme [5, [6] 33], inspec-

tion paradox [34], queues with restarts [35], search in a
potential [36, [37], etc., overheads have been accounted
for as a source of delay arising independent of the search
process, not a natural consequence of the process itself.
The importance of these questions cannot be overempha-
sized in light of the fact that controlling a search process
is important to optimize search [38] [39].

We address the above questions using the simple ex-
ample of a Brownian particle diffusing in one dimension
as it is often the first model of choice to address stochas-
tic search [40]. We ask a simple question: given that
the mean time taken by a Brownian particle to cover a
distance L is (T) = L?/2D, with D being the diffusion
coefficient [41] [42], can we reduce this mean travel time
employing restarts? To answer this question, consider a
Brownian particle moving in an interval [0, L] with a re-
flecting wall at x = 0 and an absorbing wall at © = L.
Moreover, let us measure distance(s) in units of L and
time(s) in units of L?/D, thus reducing the motional
quantities to dimensionless forms. As a result, our study
is now reduced to a Brownian motion in the unit interval
[0, 1], with (T) = 1.

Restarts and associated overheads: If the restart lo-
cation coincides with the initial location x = 0, then
restarts delay escape [28]. This is because there’s a cur-
rent from every = € (0, 1) towards the origin, thus reduc-
ing the natural tendency of the particle to move away
from = = 0. This implies that a necessary condition for
restarts to be useful is that zy € (0,1). For an appro-
priately chosen xg, restarts can expedite escape to the
absorbing wall by removing the trajectories which tend
to move towards the origin. It is important to notice here
that we are talking about an escape from z = zgtoxz =1
and not for the full length of the unit interval, that is,
from x = 0 to x = 1. So what happens to the motion
from z = 0 to = 9?7 The particle cannot just vanish
at the origin and reappear at xg, there has to be some
way for the particle to cover the sub-interval [0, zo]. And
it is this motion from = = 0 to x = x¢ which constitutes
the hidden cost associated with restarts and needs to be
taken into account in order to fully understand the effect



of restarts on escape properties. Why does this hidden
cost arise for a Brownian motion under restarts? Answer
to this question lies in the fact that the mean time to
cover the unit interval can be written as:

<T> = <T0,r0> + <Tzo,1>7 (1)
where (T 5,) = 12 % is the mean time taken by the Brown-

ian partlcle to cover the sub-interval [0, zo] and (T4, 1) =
11—z

% is the mean time to go from z = ¢ to x = 1 [41,42].
And whenever the motion is restarted at xg, it directly
affects the second term (T3, 1) in Eq. (1) while indirectly
modifying (T .,). Moreover, restarts enter only once
the Brownian particle reaches xg. The time incurred in
going from x = 0 to © = x, thus constitutes the over-
head which needs to be taken into account when applying
a restart protocol. As a result, in presence of restarts:
TR = TO,IO + I(TZL’OJ > R)(R+ TI/%) + I(Tro 1< R) zo,1»
where I is an indicator variable which takes value one
when its argument is true and zero otherwise, R denotes
the time of restart, and T is the completion time with
restarts [9] [10] B5], 43]. Taking the expectation we have

<T0,Io>
(I(Tzy1 < R))

(min{Ty, 1, R})
(I(Tyo1 < R))

(Tr) = (2)
In absence of any restarts T,,: < R, thus reducing
Eq. to . Furthermore, overheads become more pro-
nounced due to restarts (as (I(Ty,1 < R)) < 1). Physi-
cally, every time motion restarts, an overhead is incurred.
Hence the advantage gained by restarts for motion from
r = x9 to x = 1, if any, should overcome time over-
heads incurred in going from x = 0 to « = x¢ in order to
prove beneficial in such a way that (Tr) < (T'). Let us
now investigate the conditions under which this inequal-
ity would hold true.

In Eq. the first term accounts for the time over-
heads while the second term, (min{Ty, 1, R})/{I(Ty,1 <
R)) = (Trug,1) is the mean time to go from z =
2o to x = 1 in presence of restarts [10]. As dis-
cussed above, zg = 0 = (Tg) > (T). On the
other hand, lim,, ,1- (TR,ze,1) = 0 which implies that
meo—>1’<TR> = hmxu—ﬂ’ <T0,I0>/< zo, 1 < R)> =
() /[(I(Teg1 < R)) > (To1) since (I(Ty, 1 < R)) <
This implies that for g € {0,1} = (Tg) > (T). Let
us now study (Tr) for zp € (0,1). As restarts expedite
escape by removing trajectories moving away from the
target (at = 1) there would exist a 2o, € (0,1) such
that lim <TR790071> = (1 - JJ(QJ’C)/Q = <TR,10)1> >

To —>x
(Twpo1) Y o < 2o,c and (Trz,1) < (Twp1) ¥V To > Zoc
[28], thus dissecting the unit interval such that (0,1) =
(0,20,c) U (x0,c,1). The exact value of xp . would, how-
ever, depend on the specific details of the distribution of
R and the stochastic process (here Brownian motion).
Now zo < Zoe = (ITr) = (Toz)/I(Tw,1 < R)) +
(Thyo1) > (23/2)/{I(Tzp1 < R))+(1—28)/2 > (T). On

the other hand, even though (Tg ., 1) < (1 — 23)/2 for
xo > To,c, the fact that (Tg) > (T) and (Tr,zy1)

To=T0,c
is a monotonically decreasing function of x implies that
YV xo > xo,c, (Tr) > (T). In summary,

(Tg) > (T) V¥ 0 € [0,1]. (3)

This is the main result of this paper and it implies that
restarts always delay the mean travel time from one point
to another. It is for this same reason that restarts delay
escape over a fluctuating barrier when the restart loca-
tion lies at the bottom of the potential well [28]. Fur-
thermore, the above result holds true for any distribution
of restart times R. More importantly, the above analy-
sis for Brownian motion is straightforwardly extended to
any random walk traversing the unit interval and satisfy-
ing Eq. , provided (T 4,) is a monotonically increasing
function of zo while (T}, 1) is a monotonically decreasing
function of z.

Coming back to @), (Tr) > (T) not because restarts
are beneficial only over a sub-interval but that they tend
to enhance the effect of time overheads incurred in bring-
ing the particle from the origin to the restart location.
The question now is, can we modify the mean overhead
time (T 4,) rendering the escape under restarts benefi-
cial, that is, (Tg) < (I)? We only require (Tp ,) to
be a monotonically increasing function of xy such that
lim,, 0+ (T0,2,) = 0, as larger distances take longer time
on an average. Under these constraints, the requirement

(Tr) < (To,40) + (Tuy1) alongwith Eq. implies

(L(Too 1 < R)) (min{T%, 1, R})

<TO,I0> < <TI0,1> ; -

1-— <I(Tw071 < R)> 1-— <I<T$O’1 < R))

(4)

The above inequality describes the set of allowed over-
head functions (Tp ,) such that restarts are beneficial.
The RHS of the above inequality provides an upper
bound for (Tp,,) and let us denote it by U(zg). We
now study in detail the upper bound U(zg) in for
specific restart protocols.

Poisson and sharp restarts: Poisson restarts are char-
acterized by an exponential distribution of restart times,
P.(R) = re "R with r being the rate of restart. As
a result, (I(Tyy1 < R)) = F(zo,7) where F(zg,r) =
Jo© dt e "' F(wo,t) is the Laplace transform of the first
passage time distribution for escape from x = 1 starting

at * = xo. Similarly, (min{T,, 1, R}) = ﬂ As a
result, for Poisson restarts:
1 — 22 F(xo T) 1
T < U"(xzn) = 0 S N 5
< O,I0> _ ( O) 2 1 — F(l,o,,r,) r ( )

On the other hand, for sharp restarts the inter-restart
times are a fixed, hence Pr(R) = §(R — 7). As a result,
(I(Tyyp < R)) = [ dt F(xo,t) and (min{Ty,1,R}) =
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FIG. 1. Upper bound of the overhead U(z) for Poisson and
sharp restart protocols following the right hand side of in-
equalities and @ respectively for Brownian motion in the
unit interval. Rate of Poisson restart » = 1 and time for sharp
restart 7 = 1.

Jo dt q(wo,t), where q(zo,t) = [~ du F(xo,u) is the sur-
vival probability. Using these results in we have, for
sharp restarts:

1—a22 1—q(xe,7) [y dt q(xo,t)
TTm < U™ (xq) = 0 % ’ _Jo .
T ST =57 S0y~ o)
(6)
Now for Brownian motion in [0,1], F(zg,r) =
cosh(y/rxg)/ cosh(y/T) whereas q(zo, 1) =
25, (_/\1) cos(Anzo)e ™t with A, = (n + 1/2)7

[41, [42]. Using these results we study the upper bounds
U(xo) and find that U(xg) = 0 for z( less than a critical
value, depending on the restart protocol (see Fig. .
Moreover, U™ (xg) > U"(zp) and for a wider range of
restart locations. In other words, even when Poisson
restarts prove detrimental to escape (region above red
curve in Fig. [1)), sharp restarts still work such that
(TR) < (To,) + (Tao,1) (the region between the black
and red curves in Fig. . Furthermore, changing the
value of the restart rates r or 1/7 does not result in a
qualitative modification of the overhead functions U(xg),
that is, it remains a monotonically increasing function of
xo beyond some critical point (dependent on r or 1/7).
Escape under restarts: The upper bounds U (z¢) and
U™ (z0) impose additional constraint on the overhead. As
a representative example, we choose (Tp 4,) = /5 (see
red line in Fig. [1)). The solution of (T ,) = U(zo) de-
fines the critical location zg . for a given restart protocol
such that for o > 2o, (Tr) < (To,z) + (Tuo,1). In
addition, time overheads tend to reduce the domain of
applicability of restarts, that is, zo . shifts towards right.
This is easily seen, for example, for Poisson restarts where
g, is determined by the condition CV?(zo.) = 1 [10],
with CV? = (T2 1) = (Tu,1)?]/(Tiy,1)? being the coef-
ficient of variation of F(zg,t). For Brownian motion in

FIG. 2. Mean escape time (Tr) under restarts for Poisson (o)
and sharp restart () protocols in presence of time overheads
with (Tp,z,) = #3/5 as a function of the restart rate r or 1/7
calculated using Eq. . The black dashed line represents
<T0,Io> + <T1071>'

the unit interval CV?2(xq) = ggtzég = z0. = 1/V/5, in
absence of any overheads. It is also evident from Fig.
that when overheads are present, we have zg. > 1/ NG
(see the solution of U"(zo) = 22/5 in Fig. [1)). The case
of sharp restarts can be similarly addressed. We see
from Fig. [2 that (Tr) exhibits a non-monotonic behav-
ior for the two restart protocols, with the dashed line
representing (1o z,) + (Top1) = %g + 1;x3 More im-
portantly, (Tr) < (To,z,) + (Tx,,1) for appropriately cho-
sen rate of restart. It is also evident from Fig. [2| that
(TF) < (TR). Even though choosing any other function
for (Tp,z,) would result in quantitative modifications, we
believe that the relation (T'R) < (Tf;) would hold true in-
dependent of the specific nature of the overhead (Tp 4,)
[35], though we do not furnish any proof in support of
this assertion.

Implementing overheads and finite time restarts: As
seen above, modifying the overhead function (T ,,) leads
to a reduction of (Tg). But what does it physically mean
by the phrase “modifying the overhead function”? This is
a very important question, particularly in light of the fact
that a proper physical basis for modifying (Tp 4,) would
provide a better handle to control search under restarts.
In order to answer this question, we numerically study
the Langevin equation

(t) = n(t), (7)

under sharp restarts. Here 7(¢) is a Gaussian white noise
with mean zero and correlation (n(t)n(t')) = 2Dy (t—t'),
and Dy is a dimensionless quantity. Physically, Dy rep-
resents a multiplying factor modifying the diffusion co-
efficient of the Brownian particle. As a result, the mean
time for the Brownian particle to go from the origin to
xg is ¥3 /2Dy and for Dy = 5/2 reduces to (Tp »,) = /5
(the overhead function studied in Fig.[2). In other words,
if the Brownian particle covers the sub-interval [0, o]
with a modified diffusion coefficient, this could lead to
a reduced time overhead. We implement this as follows:
we numerically solve Eq. for a particle starting at
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FIG. 3. Mean escape time (T%) to cover the unit interval
under sharp restarts taking into account time overheads and
delay associated with restart. Time overheads arising due
to a modified diffusion coefficient (o) and using an overhead
function (O) give identical results. The black dashed line
follows Eq. |[2| with restart location x9, g = 0.8. Bringing back
the particle to zo,r is at a fixed speed v further delays the

mean time to cover the unit integval. T he2 dot-dashed line
Zo,R + l-azg R

5 in absence of

represents the mean time (T') =
any restarts (see Eq. (T))).

x = 0 with Dy = 5/2 and once the particle reaches zg g,
we start applying the sharp restart protocol with time
7 and the associated overhead Tp 4, ,,. The restart lo-
cation is now zp r. The instance of first crossing the
absorbing wall at x = 1 provides us the first passage
time 7 with overheads coming from a dynamical pro-
cess. Alternatively, we can solve the Brownian motion
under restarts with the particle at ¢ = 0 at © = zo.r
and every time the motion restarts, add an overhead time
(To,20.r) = mg,R/IS. The fact that these two methods pro-
vide identical results justifies the physical basis of time
overheads Tg 4, ,, arising due to a modified dynamics in
the sub-interval [0, zg g]. Numerical estimation of (T'})
corroborates our assertion (see Fig. [3). The example of
modifying overheads choosing a quadratic overhead func-
tion serves as a proof of concept for alternative measures
like (0.4 ) ~ To,r (the particle moving ballistically to
cover the sub-interval [0, zo r]), etc.

While getting a handle on the overhead function
(To,z0 ) is important to control escape under restarts,
a practical constraint needs to be taken into account- it
takes a finite amount of time to bring the particle from

€ (0,1) back to its restart location z9 r. We imple-
ment this by taking the particle back to zg r at a fixed
speed, thus introducing a time delay Tp = |z — zo r|/v
[44], further exacerbating the situation due to the over-
heads. We solve Eq. @ in presence of overheads and
implement sharp restarts by bringing the particle back
to xo,r at a speed v. We see from Fig. |3| that Tp in-
creases (T;) as compared to the case with instantaneous
restarts. Furthermore, the range of restart times 7 such

4

that (T;) < (T') is reduced. And if the time to relocate
the particle to xg g is very high (a low value of v), it can
lead to a situation in which the advantage brought about
by restarts is lost, resulting in (T';) > (T') (for example,
v =>5 in Fig. |3).

Discussion: Extensive research on stochastic restarts
over the past decade or so have shown that if the rate
of restart is appropriately chosen, then restarts can ex-
pedite the completion of a random search process. In
this paper we revisit this thought by studying the simple
example of a Brownian particle moving in the unit inter-
val and ask one question: can restarts reduce the mean
time taken by a Brownian particle to go from one end of
the unit interval to another? We find the answer in the
negative. In other words, restarts always delay the mean
time to cover the whole interval. The reason for this
certain delay lies in the fact that a restart location some-
where in the interval naturally introduces time overheads
which become more pronounced under restarts. We find
that if these overheads come from the same process (here
Brownian motion, but true for any stochastic process fol-
lowing Eq. ), then restarts certainly delay the escape.
The situation is not as bad as it seems, as introduction
of restarts impose constraints on the set of allowed over-
heads and if those constraints are respected, restarts do
tend to reduce the mean time. The downside is that the
dynamical properties of the Brownian particle, say its
diffusion coefficient, needs to be modified. Furthermore,
if restarts are non-instantaneous, then the mean time is
further increased, and might lead to a situation in which
restarts prove detrimental to escape.

While it may seem simple from a theoretical point of
view, modifying the dynamical properties like the dif-
fusion coefficient is an added cost to the already costly
affair of restarts [45]. Hence, application of restarts in
a search problem should be thought over thoroughly in
terms of associated costs and advantages gained. On one
hand we a have bare random walk searching for a tar-
get with a mean search time, and on the other hand we
have the full machinery of controlling dynamical proper-
ties and restart strategies applied to the random walk to
get a better control on the search times. For example, a
higher diffusion coefficient can be realized by increasing
the temperature, but doing it over and over again every
time the motion is restarted may require a much more
precision in control than would be actually needed for a
search in absence of restarts. Hence, to restart, or not
to restart, is the question which should be answered in
terms of costs incurred and advantages gained before we
decide whether to restart or not.
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