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Preference elicitation explicitly asks users what kind of recommendations they would like to receive. It is a popular technique for
conversational recommender systems to deal with cold-starts. Previous work has studied selection bias in implicit feedback, e.g.,
clicks, and in some forms of explicit feedback, i.e., ratings on items. Despite the fact that the extreme sparsity of preference elicitation
interactions make them severely more prone to selection bias than natural interactions, the effect of selection bias in preference
elicitation on the resulting recommendations has not been studied yet. To address this gap, we take a first look at the effects of selection
bias in preference elicitation and how they may be further investigated in the future. We find that a big hurdle is the current lack of
any publicly available dataset that has preference elicitation interactions. As a solution, we propose a simulation of a topic-based
preference elicitation process. The results from our simulation-based experiments indicate (i) that ignoring the effect of selection bias
early in preference elicitation can lead to an exacerbation of overrepresentation in subsequent item recommendations, and (ii) that
debiasing methods can alleviate this effect, which leads to significant improvements in subsequent item recommendation performance.
Our aim is for the proposed simulator and initial results to provide a starting point and motivation for future research into this
important but overlooked problem setting.
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1 INTRODUCTION

Traditional recommender systems provide a single-shot human-system interface that is static in nature. They often rely
on the user’s past interactions to infer their preferences and generate a recommendation based on that. Traditional
collaborative filtering (CF)-based methods fall into this category [4, 6, 7]. However, these methods have trouble handling
settings where user preferences are dynamic – in practice, preferences often drift over time due to external covariates [7]
– or single-shot recommendation settings where user intent has to be inferred from contextual information, instead of
past interactions [14]. Additionally, these methods struggle to generate good recommendations for cold-start users and
items. These issues, coupled with the sparse nature of user-item interaction data, make learning a good recommendation
model difficult. A solution to these issues could be asking for a user’s preferences directly at a coarser granularity
in a preference elicitation (PE) stage. Users are generally very willing to indicate or clarify their preferences, when
prompted [15].

PE can be used in a variety of settings, including so-called question-based conversational recommender systems
(CRSs) [2, 10, 23], which consist of the following main components: (i) preference elicitation (PE), where the user’s
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Fig. 1. Rating distribution over item topics on the Coat Music dataset (Left), and Genre popularity in the MovieLens dataset (Right).

preferences on items or item topics are collected or elicited, and, subsequently, (ii) item recommendation, where the
system generates recommendations for users, conditioned on their response during the PE stage. The interactive aspect
of CRSs can help in dealing with dynamic user preferences and the lack of intent information. It can also help with the
cold-start problem, by collecting user’s preferences on a group of items, instead of on an item directly [1].

Recommender systems are commonly optimized based on logged user interactions. However, such interactions
provide a biased view of the actual user preferences [12, 13, 18, 22]. In particular, ratings are generally not evenly spread
over all items but are heavily affected by popularity bias, resulting in a small number of items receiving most ratings.
Figure 1 (left) demonstrates this effect on the rating distribution of item topics in Coat, a popular recommendation
dataset with an unbiased test set [19]. Popularity bias can be seen as a specific form of selection bias, due to which only
part of the user preferences are observed in ratings [13]. Importantly, selection bias on the item level propagates to
the topic level; for example, Figure 1 demonstrates the popularity distribution over movie genres in the MovieLens
dataset. Similar to how selection bias in item ratings results in a biased view over topic preferences, it seems likely
that selection bias in a PE stage could negatively affect the subsequent recommendation stage. While selection bias
in user interaction data is widely studied [12, 13, 13, 18, 19, 22], to the best of our knowledge, previous work has not
considered the effects of selection bias in PE. To address this gap, this work takes a first look at the problem of selection
bias in PE for recommendation. We focus on elicitation on the topic-level followed by subsequent item recommendation.
Because there is currently no publicly available recommendation dataset that represents PE, we introduce a method
for simulating a PE stage from static recommendation datasets. Our experimental results in the simulator reveal that
selection bias in the PE stage does, indeed, have negative effects on subsequent item recommendation. We find that
existing debiasing methods can be adapted to reduce these effects, leading to significantly better recommendations.

2 CORRECTING FOR SELECTION BIAS IN PREFERENCE ELICITATION

In this section, we discuss how common debiasing methods for item recommendation can be applied to topic-level
PE [19]. Let𝑈 be the set of all users, 𝐼 the set of all items, and𝑇 the set of all item-topics (referred to as topics hereafter)
in the dataset, and 𝑌 ∈ {0, 1} |𝑈 | · |𝑇 | the user-topic complete rating matrix; 𝑌𝑢,𝑡 is the true rating for the pair (𝑢, 𝑡).
𝑇 ∈ {0, 1} |𝐼 | · |𝑇 | is the indicator matrix where 𝑇𝑖,𝑡 = 1 if item 𝑖 belongs to the topic 𝑡 . 𝑅 ∈ {0, 1} |𝑈 | · |𝐼 | is the rating
matrix, with entry 𝑅𝑢,𝑖 indicating user 𝑢’s rating for item 𝑖 . In reality, not all entries in the 𝑌 matrix are observed; let
𝑂 ∈ {0, 1} |𝑈 | · |𝑇 | be the observation matrix, with 𝑂𝑢,𝑡 indicating whether the rating 𝑌𝑢,𝑡 is observed or not. The entries
in the 𝑌𝑢,𝑡 matrix are affected by selection bias. 𝑂 controls the selection bias, where certain ratings are overrepresented
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or underrepresented in the dataset; we use 𝜌𝑢,𝑡 = 𝑃 (𝑂𝑢,𝑡 = 1) to denote the probability of observing a rating 𝑌𝑢,𝑡 in the
dataset.

Ideal rating estimator. An ideal rating prediction loss can be defined as follows:

Lideal =
1

|𝑈 | |𝑇 |
∑︁
𝑢,𝑡

𝐿(𝑦𝑢,𝑡 , 𝑦𝑢,𝑡 ) . (1)

The loss function 𝐿(𝑦𝑢,𝑡 , 𝑦𝑢,𝑡 ) used for rating prediction could be mean squared error (MSE).

Naive rating estimator. One could naively ignore selection bias in the observed rating data and estimate the prediction
loss by simple averaging, resulting in the naive training loss estimator:

Lnaive =
1

|{𝑢, 𝑡 : 𝑂𝑢,𝑡 = 1}|
∑︁

𝑢,𝑡 :𝑂𝑢,𝑡=1
𝐿(𝑦𝑢,𝑡 , 𝑦𝑢,𝑡 ), (2)

where |{𝑢, 𝑡 : 𝑂𝑢,𝑡 = 1}| is the number of observed ratings in the dataset. It is clearly a biased estimator of the ideal-loss
(Eq. 1) [19].

Unbiased preference elicitation. To debias the loss function in Eq. 2, we apply inverse propensity scoring (IPS) [8, 18,
19], where the propensity value 𝜌𝑢,𝑡 = 𝑝 (𝑂𝑢,𝑡 = 1) is used as a weight in the loss function. The modified loss function
is defined as follows:

Lips =
1

|𝑈 | |𝑇 |
∑︁

𝑢,𝑡 :𝑂𝑢,𝑡=1

𝐿(𝑦𝑢,𝑡 , 𝑦𝑢,𝑡 )
𝜌𝑢,𝑡

. (3)

The modified Lips is an unbiased estimate of the ideal-loss defined in Eq. 1 [18, 19], i.e., E𝑂 [Lips] = Lideal .

3 EXPERIMENTS

Below, we discuss the semi-synthetic experimental setup, fully-synthetic setup, followed by empirical results. For details
on simulating preference elicitation data, and the synthetic topic generation, we defer to Appendix A.

Yahoo! R3 dataset. This dataset is collected as part of a music-recommendation service; it includes rating information
from 15,400 users on 1,000 items, which are self-selected by users, i.e., these are MNAR ratings [21]. A separate test-set
comprises of ratings from a uniformly-random policy, ensuring the ratings are free from selection bias. Topic information
is not present in the dataset, hence we use the synthetic topic generation method discussed in Appendix A. We use 20%
of the unbiased test data to generate the bipartite user-item graph and generate item embeddings, followed by synthetic
topic generation, and finally the unbiased PE data (Appendix A). For clustering, we experiment with different numbers
of clusters to evaluate the robustness of the method under different setups.
Fully-synthetic dataset. Along with simulating conversations from user-item interactions, we also experiment with a
fully-synthetic dataset setting, where we simulate user-topic interactions directly. Following [5], the following two
stage process is applied: (i) Given 𝑁 users and 𝑇 topics, their corresponding latent-factors for users (P ∈ R𝑁 ∗𝑑 ) and
topics (Q ∈ R𝑇 ∗𝑑 ) are generated via Gaussian distributionN(0, 1). The rating scores are generated via a dot-produce of
user and topic latent factors. And (ii) the MNAR logged data is generated via the following mechanism:

𝑃 (𝑜𝑢,𝑡 | 𝑦𝑢,𝑡 ) = 𝛼𝑃 (𝑜𝑢,𝑡 | 𝑦𝑢,𝑡 , pos-bias) + (1 − 𝛼)𝑃 (𝑜𝑢,𝑖 | uniform) (4)

The simulator is available at: https://github.com/shashankg7/Bias-Preference-Elicitation.
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Table 1. Performance of the debiasing method on the unbiased
rating prediction task on the Yahoo! R3 dataset. Significant im-
provements over the baseline (MF) are marked with † (𝑝 < 0.01).
Average values over 10 different runs are reported.

Exp. setting Method MAE↓ MSE↓ NDCG@3↑

#clusters = 25
MF 1.3041 2.5634 0.7461
ExpoMF 1.3075 2.8213 0.7503
MF-IPS 0.8327† 1.0832† 0.7511†

#clusters = 50
MF 1.3094 2.5857 0.7476
ExpoMF 1.3050 2.8138 0.7511
MF-IPS 0.8268† 1.0777† 0.7553†

#clusters = 75
MF 1.3112 2.5887 0.7460
ExpoMF 0.8451 1.1530 0.7505
MF-IPS 0.8451† 1.1530† 0.7521†

#clusters = 100
MF 1.3057 2.5403 0.7460
ExpoMF 1.3109 2.8316 0.7499
MF-IPS 0.8464† 1.1553† 0.7518†

Table 2. Performance of the debiasing method on the unbiased
rating prediction task on the fully-synthetic dataset. Significant
improvements over the baseline (MF) are marked with † (𝑝 <

0.01). Average values over 10 different runs are reported.

Exp. setting Method MAE↓ MSE↓ NDCG@3↑

𝛼 = 0.25
MF 0.8449 1.0847 0.7611
ExpoMF 1.6643 3.9344 0.6638
MF-IPS 0.7894† 0.9874† 0.7511

𝛼 = 0.5
MF 0.8666 1.1461 0.7852
ExpoMF 1.6506 3.9178 0.6838
MF-IPS 0.7670† 0.9185† 0.7836

𝛼 = 0.75
MF 0.9012 1.2383 0.8053
ExpoMF 1.6469 3.9708 0.6984
MF-IPS 0.7330† 0.8322† 0.8230†

𝛼 = 1.0
MF 0.9622 1.3974 0.8179
ExpoMF 1.6473 4.0386 0.7121
MF-IPS 0.7254† 0.8078† 0.8362†

4 RESULTS

We evaluate the effect of debiasing PE on the unbiased test set. We use mean average error (MAE) and mean squared
error (MSE) as evaluation metrics [19] for measuring accuracy in rating prediction. To evaluate the quality of rankings,
we use NDCG@3, following Saito [17]. We use ExpoMF [11] as a baseline for debiasing, which uses a generative model
to correct for the bias.

Results for the semi-synthetic dataset are presented in Table 1. Results are reported for different numbers of item
clusters in the synthetic topic generation (see Section A). Different numbers of clusters represent a different PE setting
where the number of item topics varies. Metric values suggest that a naive method for learning rating prediction (using
the objective in Eq. 2) results in sub-optimal performance across all settings of clusters. The results suggest that, even
for a small-scale PE system (with 35 item-topics), a selection-bias exists, and using IPS for debiasing helps.

For the fully-synthetic setup, results are presented in Table 2. Results are reported for different values of 𝛼 (see Eq. 4),
which represent different levels of selection bias. A lower value of 𝛼 represents a setting where the second term (with
uniform observation probability) dominates, simulating a setting where data is sampled from a uniformly-random
policy. Similarly, a higher 𝛼 value represents a setting with higher positivity-bias. The value of 𝛼 controls the degree
of positivity bias in the simulated logged data. The results from a debiasing rating-prediction method (MF-IPS) are
consistent with the results in the semi-synthetic setting for the rating prediction task, for the MAE and MSE metrics.
However, for lower values of 𝛼 (0.25, 0.5), the baseline matrix factorization (MF) outperforms other methods in terms of
NDCG. We suspect this is caused by the uniform data generation part dominating the biased counterpart, hence there
is less signal for learning user preferences. For higher 𝛼 values, the results are consistently better for the IPS method. It
is also interesting to note that even for the case where the uniformly-random policy dominates (𝛼 = 0.25), debiasing
improves the performance in terms of MAE and MSE.

The results in this section show that a naive method for rating prediction in the PE stage results in a sub-optimal
system, which we consistently observe across all experimental setups.
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5 CONCLUSION

We have explored the effect of selection bias in PE for recommender systems. We have shown that user-item interactions
(ratings) in the preference elicitation stage suffer from the issue of selection bias, which is a common issue when dealing
with ratings at the item-level [19]. We have also explored how training a PE system on biased data can lead to error
propagation in downstream tasks. To the best of our knowledge, we are the first to explore and identify the issue of bias
in the PE stage. We have shown that, similar to the case of static item recommendations, selection bias exists in a PE
setting as well.

We have also investigated the application of existing debiasing methods used in item-based recommendation methods,
and have shown that these methods can be successfully applied in our setting. Importantly, given a lack of unbiased
test collections for evaluating bias in a PE, we have proposed, and are sharing, a simulation method to generate an
unbiased test collection for evaluating debiasing methods. Finally, with the release of our simulator and experimental
source code, in addition to our comparison of existing methods, we wish to provide a starting point and motivation for
future research to further investigate the problem of bias in similar areas. As part of future work, we propose a joint
debiasing method for the PE stage and the corresponding downstream tasks.
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A EXPERIMENTS

Simulating preference elicitation. To evaluate the effects of an unbiased recommendation method, ideally, we need
an unbiased held-out dataset collected with a randomized logging policy at the item-topic level, free from the effects
of selection bias [5, 19]. Unfortunately and to the best of our knowledge, no such dataset exists for PE. As a solution,
we propose a simple method to simulate a benchmark dataset to evaluate the effects of selection bias in PE. For each
topic 𝑡 , we aggregate the ratings from each item 𝑖 which belongs to the topic, for both the biased training set and the
unbiased test set. As a result, we get a biased training set with user-topic interactions and an unbiased test set without
the effects to selection bias, to evaluate the performance of various debiasing methods.

Synthetic topic generation. An item’s topic category information is not always guaranteed to be present, for reasons
such as privacy constraints from external vendors, noisy or unreliable topic labelling, etc. To deal with this issue, we
propose a synthetic topic generation method that only relies on user-item interaction information. Given user-item
interactions, we create a bipartite graph𝐺 = ⟨𝑉 , 𝐸⟩, where the set of vertices𝑉 is divided into two groups, one of which
consists of nodes representing users, and the other has nodes representing items. The set 𝐸 consists of edges between
the two groups. Each interaction pair (𝑢, 𝑖) results in an edge between the node corresponding to 𝑖 and 𝑢. Given this
bipartite-graph, we learn node embeddings via graph representation learning bipartite network embedding (BINE) [3].
We make use of a small unbiased test set to generate the bipartite graph, in an attempt to learn unbiased network
embeddings. Given the vector representation of all items from the graph embedding method, we use clustering to group
the items in the embedding space. We use Gaussian mixture models [16] to cluster the embeddings. The cluster centers
are considered as the topics.

Coat dataset. This dataset consists of user interactions for a coat-recommendation service, which includes ratings
from 290 users on 300 items which are self-selected by users, i.e., these are MNAR ratings [19]. For the unbiased test, a
uniformly-random policy is deployed to collect unbiased ratings on 10 items. Items are labelled with topics in the dataset,
where each item can belong to multiple categories. Propensity scores 𝑃 (𝑂𝑢,𝑖 = 1) are computed using logistic-regression
with item covariates.

Hyperparameters.We use 5-fold cross-validation for hyper-parameter tuning in all our experiments. We use Adam
[9] for optimizing the model-parameters for the loss-functions defined previously. For hyper-parameter tuning, we use
the self normalizing importance sampling (SNIPS) estimator [20], and optimize for MAE.
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