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Periodic nonlinear Schrödinger equation with

distributional potential and invariant measures

Arnaud DEBUSSCHE and Antoine MOUZARD

Abstract

In this paper, we continue some investigations on the periodic NLSE started by Lebowitz, Rose
and Speer [16] and Bourgain [6] with the addition of a distributional multiplicative potential. We
prove that the equation is globally wellposed for a set of data ϕ of full normalized Gibbs measure,
after suitable L2-truncation in the focusing case. The set and the measure are invariant under
the flow. The main ingredients used are Strichartz estimates on periodic NLS with distributional
potential to obtain local well-posedness for low regularity initial data.

1 – Introduction

Consider the nonlinear Schrödinger equation (NLSE) in the periodic setting

i∂tu = −∂2
xu+ V u+ λ|u|p−2u (1.1)

where u is a function on T×R with T = R/Z for p ≥ 2, λ ∈ R and V a distributional potential. The
difficulty of this equation lies in the roughness of the potential which makes the question of local
well-posedness unclear. Indeed, the solution needs a priori to be regular enough for the product
V u to make sense even for the linear equation

i∂tu = −∂2
xu+ V u (1.2)

with initial data u(0) = u0. Our motivation comes from stochastic PDEs with V = ξ the spatial
white noise on T, a random distribution in C− 1

2−κ(T) for any κ > 0. It corresponds to the derivative
in the sense of distributions of a Brownian bridge and was first constructed by Paley and Zygmund
[23, 24] as the random series

ξ(x) =
∑

n∈Z

ξke
ikx

where (ξk)k≥0 is a family of independent and identically distributed random variables of centered
standard complex Gaussian and ξ−k = ξk. In this work, we consider a potential V ∈ C−1+κ(T) for
any κ ∈ (0, 1). This corresponds to the Young regime which does not involve any renormalization
procedure and includes the particular case of white noise. Other examples of such distributionnal
potential can be random potential with different correlation or highly oscillatory potential such as

V (x) =
∑

n≥0

vn cos(nx)

with a suitable growth condition on (vn)n≥0 in order to ensure V ∈ C−1+κ. For the singular case,
see for exemple [11] with V a spatial white noise on T

2 where the authors consider a regularization
of the noise or [14, 18, 20] on the Anderson Hamiltonian using paracontrolled calculus. We follow
the second approach which is a priori necessary in order to deal with low regularity initial data.

For such rough potential, the mild formulation

u(t) = eit∂
2
xu0 − i

∫ t

0

ei(t−s)∂2
x(V u(s))ds

is a priori doomed to fail for low regularity initial data due the singular product V u(s). For our
purpose, we study the Hamiltonian

H = −∂2
x + V
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which can be defined via its quadratic form a(u, v) = 〈Hu, v〉 with form domain H1(T). One can
prove that there exist an associated operator with domain

D(H) =
{

u ∈ L2(T) ; ∃v ∈ L2(T), ∀ϕ ∈ H1(T), a(u, ϕ) = 〈v, ϕ〉
}

and discrete spectrum (λn)n≥0 with an orthonormal basis of eigenfunctions (en)n≥0. The paracon-
trolled calculus gives an explicit caracterization of the domain as

D(H) =
{

u ∈ L2(T) ; u− PuX ∈ H2(T)}

with X a solution to −∂2
xX = V and P denotes Bony’s paraproduct constructed in [4] with the

Paley-Littlewood decomposition, see Appendix A.

In order to study the nonlinear equation (1.1), one needs to understand the linear equation.
The study of this equation without potential on a periodic domain goes back to Bourgain [6]. On
the circle, the two major dispersive results on the free propagator are the inequalities

‖eit∂2
xu0‖L4([0,1]×T) . ‖u0‖L2(T)

and
‖eit∂2

xSNu0‖L6([0,1]×T) . Nε‖u0‖L2(T)

for any ε > 0 and SN the spectral projector on Fourier modes |k| ≤ N . This has to be understood
as a trade of integrability between time and space. Indeed, the solution u(t) = eit∆u0 of the
linear equation with initial data u0 ∈ L2(T) has conserved mass hence u ∈ L∞(R, L2(T)) hence
the trade of time integrability for space integrability, the second being at the cost of an arbitrary
small positive Sobolev regularity for the initial data. This was used by Bourgain to prove local
well-posedness for (1.1) for initial data in Hσ with σ ≥ 0 in the cubic case p = 4 and σ > 0 in the
case 4 < p ≤ 6. Following ideas from Burq, Gérard and Tzvetkov [7] and Mouzard and Zachhuber
[20], we obtain Strichartz inequalities for the linear propagator associated to H. This allows to use
dispersive properties of the equation to get local well-posedness for low regularity initial data for
equation (1.1). We believe that Strichartz inequalities with such general deterministic potential are
of independent interest.

In order to extend local to global well-posedness, one usually relies on conserved quantity. For
equation (1.1), the conserved quantities are the mass

‖u‖2L2(T) =

∫

T

|u(x)|2dx

and the energy

E(u) =
∫

T

|∂xu(x)|2dx+

∫

T

|u(x)|2V (dx) + λ

∫

T

|u(x)|pdx.

The inital data needs to have finite energy in order to use these conservations, that is u0 ∈ H1(T).
For low regularity initial data, the only conserved quantity is the mass hence local well-posedness
in L2(T) yields global solutions, this was proved for the cubic equation p = 4 without potential by
Bourgain [5] while in the case 4 < p ≤ 6, he obtained local well-posedness in Hσ(T) for σ > 0. In
the following work [6], he constructed global solution for random initial data distributed according
to the Gibbs measure associated to the equation, using the invariance of the measure instead of
conserved quantity. This is the path we follow here and prove global solution for random initial data
given by the Gibbs measure. We insist on the fact that low regularity solution are challenging due
to irregularity of the potential making it impossible to interpret equation (1.1) as a mild formulation
associated to −∂2

x even in the linear case.

The Gibbs measure associated to equation (1.1) is formaly given by

ν(du) =
1

Z
e−E(u)

∏

x∈T

du(x)

where
∏

x∈T
du(x) is the Lebesgue measure in infinite dimension and E the energy. A first step in

a rigorous definition of ν is to consider only the quadratic part with the Gaussian measure

µ(du) =
1

Z
e−〈Hu,u〉

∏

x∈T

du(x)
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assuming for example that the operator is positive. Considering a basis of eigenfunctions with
(λn)n≥1 and (un)n≥1 respectively the eigenvalues of H and the coefficients of a function u in the
basis, the measure can be rigorously interpreted at the product measure

µ(du) =
∏

n≥1

√

λn

π
e−λn|un|

2

dun

assuming for example that the operator H is positive. We prove that this Gaussian measure
associated to H is supported in C

1
2−κ for any κ > 0, using a comparaison with the case V = 0 which

correspond to the law of the Brownian bridge. In particular, the potential energy
∫

Td |u(x)|pdx
makes sense for µ-almost all functions u. In the defocusing case λ > 0, the Gibbs measure

ν(du) =
1

Z
e−λ

∫
Td

|u(x)|pdxµ(du)

is well-defined as the density is bounded by one. In the focusing case λ < 0, this is not true
anymore and one has to consider a cut-off. Since the norm ‖u(t)‖L2(T) is conserved, a natural
family of measure is given by

νB(du) =
1‖u‖L2≤B

ZB

e−λ
∫
Td

|u(x)|pdxµ(du)

for any B > 0. In the case 4 ≤ p < 6, we prove that this measure is invariant for generic cut-off
parameter B while a smallness assumption on B is needed in the case p = 6. This goes back to
Lebowitz, Rose and Speer [16], see also [21] for a recent result for the critical parameter B and
Remark 4.3 for the relation with our measure.

We start with the description of the Hamiltonian H and its associated Schrödinger group eitH

using paracontrolled calculus in Section 2. In Section 3, we prove Strichartz inequalities which yields
local well-posedness for low regularity initial data for equation (1.1). We also consider the truncated
version of the equation with the spectral projector associated to H and prove the convergence of
the solutions to the one of the untruncated equation. In Section 4, we construct the associated
Gibbs measure, with a suitable cut-off in the focusing case, and prove global well-posedness on its
support with invariance of the measure for p ≤ 6. The Paley-Littlewood decomposition and the
paraproduct are presented in Appendix A.

Acknoledgments : The first author benefits from the support of the French government
“Investissements d’Avenir” program integrated to France 2030, bearing the following reference ANR-
11-LABX-0020-01 and is partially funded by the ANR project ADA. The second author is grateful
to Tristan Robert and Hugo Eulry for interesting discussions about this work.

2 – Schrödinger operator with distributional potential

In this section, we study the Hamiltonian

H = −∂2
x + V

with V ∈ C−1+κ(T) for κ ∈ (0, 1). Due to the roughness of the potential, the domain of the operator
does not contain smooth functions since Hu ∈ C−1+κ(T) for u ∈ C∞(T). On the other hand, the
associated quadratic form

a(u, v) = 〈Hu, v〉
is well-defined with form domain H1(T), this is the content of the following proposition. In the
following, we do not keep the space T in the notation since we always work on the circle.

Proposition 2.1. The form (a, H1) is a closed continuous symmetric form. It is quasi-coercive, that
is there exists a constant c > 0 such that

a(u, u) + c‖u‖2L2 ≥ 1

2
〈∂xu, ∂xu〉

for any u ∈ H1.

Proof : We have
|〈V u, u〉| . ‖u2‖B1−κ

1,1
‖V ‖C−1+κ . ‖u‖2H1−κ‖V ‖C−1+κ
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using ii) and iii) from Proposition A.1. Then for any ε > 0, there exists a constant cε > 0 such that

‖u‖2H1−κ ≤ ε‖u‖2H1 + cε‖u‖2L2

from standard interpolation inequality hence there exists a constant c > 0 such that

|〈V u, u〉| ≤ 1

2
‖∂xu‖2L2 + c‖u‖2L2.

We get

〈(H + c)u, u〉 = 〈∂xu, ∂xu〉+ 〈V u, u〉+ c〈u, u〉

≥ 1

2
〈∂xu, ∂xu〉

hence the quasi-coercive property. The symmetry of the form directly follows from an integration
by part and that the potential is real, it only remains to prove closedness. Let (un)n ⊂ H1 such
that

lim
n→∞

‖u− un‖L2 + a(u − un, u− un) = 0

for some u ∈ L2. The previous bounds gives that (∂xun)n is a Cauchy-sequence in L2 thus converges
to a limit, that is ∂xu hence u ∈ H1.

�

Remark 2.2. The derivative of a Brownian bridge V = dB ∈ C− 1
2−ε for any ε > 0 corresponds to

the Anderson Hamiltonian, this was its first construction by Fukushima and Nakao [13] on a finite
segment. See also [17, 19] for a construction of the form in the singular case.

It follows from the previous proposition that there exists a self-adjoint operator H with dense
domain

D(H) =
{

u ∈ L2(T) ; ∃v ∈ L2, ∀ϕ ∈ H1, a(u, ϕ) = 〈v, ϕ〉
}

⊂ H1,

see for example Ouhabaz’s book [22]. Moreover, the operator is self-adjoint, densely defined and
bounded from below. Since H1 is compactly imbedded in L2, H has discrete spectrum λ1 ≤ λ2 ≤ . . .
with an associated basis (en)n≥1 of L2. Since the form domain of H and the Laplacian are the same,
the first eigenvalue is simple, that is λ1 < λ2 and there exists a positive ground state Ψ ∈ D(H),
see [19, Theorem 4.1] for the details. The flow of the Schrödinger linear equation associated to H
has the following spectral representation

eitHu0 =
∑

n≥1

eitλn〈u0, en〉en

for any t ∈ R and u0 ∈ L2. This yields a weak solution to the linear equation

i∂tu = −∂2
xu+ V u

with initial data u(0) = u0, the equation holding in the dual of the domain D(H)∗. This is coherent
with the case V = 0 where the linear propagator solve the equation in H−2 = (H2)∗. However,
the main difference here is that the domain D(H) does not contain smooth functions hence its
dual D(H)∗ is not a subspace of distributions and the equation is not satisfied in the sense of
distributions. For the nonlinear equation (1.1), we will need a finer description of the operator as
well as its domain.

In the following, we use the paracontrolled calculus to construct a map Γ : L2 → L2 depending
on V such that the operator

H♯ = Γ−1HΓ

is a better behaved perturbation of the Laplacian than H. In particular, for any u ∈ C∞, we have

(H+ ∂2
x)u = V u ∈ C−1+κ

while it will be crucial that
(H♯ + ∂2

x)u ∈ C2κ ⊂ L2.

However, our application Γ is not a unitary transformation of L2 thus H♯ is not longer self-adjoint.
The idea of such transformation was first used by Gubinelli, Ugurcan and Zachhuber [14] and
Mouzard [18] to study the Anderson Hamiltonian in two dimensions. This was crucially used
to obtain Strichartz inequalities by Mouzard and Zachhuber [20] as well as precise small time
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asymptotic and two-sided Gaussian bounds for the heat semigroup e−tH by Bailleul, Dang and
Mouzard [3]. We refer to Appendix A for the definitions of the tools from paracontrolled calculus
such as the paraproduct P and the resonant product Π.

For u ∈ D(H), we have Hu ∈ L2 hence

∆u = V u−Hu

= PuV + PV u+ Π(u, V )−Hu

with ∆ = ∂2
x hence

u = ∆−1
PuV +∆−1

(

PV u+ Π(u, V )−Hu
)

= PuX + [∆−1,Pu]V +∆−1
(

PV u+ Π(u, V )−Hu
)

with X = ∆−1V ∈ C1+κ. We denote here as ∆−1 the inverse of the Laplacien defined on centered
function on T hence the rigorous definition of X is

X := ∆−1(V − 〈V, 1〉).

Since u ∈ D(H) ⊂ H1, the roughest term is given by X and this yields the ansatz

DV := {u ∈ L2 ; u− PuX ∈ H2}

for the domain. Following the previous computation, one has Hu ∈ L2 for any u ∈ DV thus
DV ⊂ D(H) and it remains to prove that DV is dense in L2 and that (H,DV ) is a closed operator.
The map

u 7→ u− PuX

is continuous from Hσ to itself for any σ ≤ 1 + κ and it is invertible from L2 to itself as a
perturbation of the identity for ‖X‖C1+κ small enough. Using the truncated paraproduct P

N

introduced in Appendix A, there exists N(V ) ≥ 1 such that ‖PN
u X‖H1+κ ≤ 1

2‖u‖L2 for N ≥ N(V )
hence

ΦN (u) := u− P
N
u X

is an invertible perturbation of the identity from H1+κ to itself, denote ΓN its inverse. The map
ΦN is a compact perturbation of the identity and since P− P

N is a regularizing operator, we have

DV = Φ−1(H2) = Φ−1
N (H2) = ΓNH2

hence DV is parametrized by H2 via the map ΓN . The following proposition gives the needed
continuity results on ΓN . We denote as W σ,p the Lp based Sobolev spaces associated to the
Laplacian

W σ,p = {u ∈ D′(T) ; (1− ∂2
x)

σ
2 u ∈ Lp}.

Proposition 2.3. For N ≥ N(V ), the application ΓN is continuous from Hσ to itself and Cσ to
itself for any σ ≤ 1 + κ. It is also continuous from L∞ to itself and from W σ,p to itself for any
p ∈ [1,∞) and σ < 1 + κ.

Proof : The map ΦN is a perturbation of the identity in Hσ with

‖(Id − ΦN)u‖Hσ = ‖PN
u X‖Hσ ≤ 1

2
‖u‖L2

for N ≥ N(V ) and σ ≤ 1 + κ. Thus ΦN : Hσ → Hσ is invertible with inverse ΓN continuous.
The results in Hölder spaces and L∞ follows from the same type of computations. For W σ,p with
p ∈ [1,∞) and σ < 1 + κ, one needs to use continuity of the paraproduct in general Besov spaces
with the inclusion Bσ

p,2 →֒ W σ,p →֒ Bσ
p,∞.

�

In particular, ΓNH1+κ = H1+κ ⊂ DV thus DV is dense in L2 and we have the explicit formula

HΓNv = −∆v + PV u+ Π(u, V ) + 2P∇u∇X + P∆uX + Pu〈V, 1〉+ (Pu − P
N
u )ξ

for v ∈ H2 and u = ΓNv, where the product rule gives

[Pu,∆]X = 2P∇u∇X + P∆uX. (2.1)

We first prove the following lemma which controls HΓN as a perturbation of the Laplacian. In the
following, we will denote Γ = ΓN and keep the dependence on N implicit to lighten the notation.
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Lemma 2.4. There exists a constant c > 0 such that

1

2
‖v‖H2 ≤ ‖Hu‖L2 + c‖u‖L2

for any u ∈ DV and v = Φ(u).

Proof : Let u ∈ DV = ΓH2 and denote v = Φ(u) ∈ H2. The expression of HΓv yields

‖∆v +Hu‖L2 = ‖PV u+ Π(u, V ) + 2P∇u∇X + P∆uX + Pu〈V, 1〉‖L2

. ‖V ‖C−1+κ‖u‖H1 + ‖∇X‖Cκ‖∇u‖H−κ + ‖X‖C1+κ‖∆u‖H−1−κ

. ‖V ‖C−1+κ‖v‖H1

≤ 1

2
‖v‖H2 + c‖v‖L2

for a constant c > 0 large enough. Using that Γ is continuous from L2 to itself, we get

‖∆v +Hu‖L2 ≤ 1

2
‖v‖H2 + c‖Γ‖L2→L2‖u‖L2

which completes the proof.

�

This lemma states that the norm induced by Γ is equivalent to the norm domain. In particular,
this allows to prove that DV corresponds indeed to the domain of H.

Proposition 2.5. The operator (H,DV ) is a closed operator in L2 thus DV = D(H).

Proof : Let (un)n ⊂ DV and u, v ∈ L2 such that

lim
n→∞

‖un − u‖L2 + ‖Hun − v‖L2 = 0.

Using Lemma 2.4, u♯
n := Γ−1un is a Cauchy sequence in H2 thus converges to a function u♯ ∈ H2.

Since Γ−1 is continuous from L2 to itself, we have u♯ = Γ−1u. One gets v = Hu with

‖Hu− v‖L2 . ‖Hu−Hun‖L2 + ‖Hun − v‖L2

. ‖u♯ − u♯
n‖H2 + ‖u− un‖L2 + ‖Hun − v‖L2

and the proof is complete.

�

Remark 2.6. Instead of the paracontrolled calculus, one could use the exponential transform as in
[15, 19] or the generalized Sturm-Liouville theory as in [12] and references therein to study the
operator H. These representation of the operator H implies a first order term which is problematic
to obtain Strichartz inequalities. For example with the exponential transform, we have

e−XHeX = −∂2
x − 2∂xX · ∂x − |∂xX |2

hence the first order term in the equation. One of the major advantage of paracontrolled calculus
is that this first order term does not appear.

The Sobolev spaces associated to H can be defined as the closure

Dσ := Vect(en ; n ≥ 1)
‖·‖Dσ

with the norm
‖u‖2Dσ :=

∑

n≥1

(1 + λn)
σ|〈u, en〉|2

for σ ∈ R. The previous results give the form domain D1 = H1 similar to the Laplacian while the
domain D2 = DV depends on V .

Proposition 2.7. For any |σ| ≤ 1 + κ, we have Dσ = Hσ.

Proof : Since the operator is closed, D2 corresponds to the domain hence D2 = DV = ΓH2. One
also has D0 = L2 = H0 = ΓH0 thus interpolation gives

Dσ ⊂ ΓHσ

for any σ ∈ (0, 2). Since Γ−1 = Φ is also continuous, we get

Dσ = ΓHσ

and the result follows for 0 ≤ σ ≤ 1 + κ from the fact that Γ is invertible from Hσ to itself under
this condition. For negative exponent, the result follows from duality with D−σ = (Dσ)′.

6



�

This proves useful since a number of properties are natural to prove in the Sovolev spaces asso-
ciated to H. An example is this continuity result for the Schrödinger propagator which follows from
the conservation of Dσ norm. In particular, this can not be obtained a priori with a perturbative
argument.

Corollary 2.8. For any t ∈ R and |σ| ≤ 1 + κ, the Schrödinger propagator eitH is continuous from

Hσ to itself. In particular, the same holds for eitH
♯

.

In order to prove Strichartz inequalities for H♯, the comparison with the Laplacian given by
the following lemma is needed. This is exaclty where paracontrolled calculus comes into play and
improve the naive bound

‖Hu+∆u‖H−1+κ . ‖u‖H1−κ+δ

for any δ > 0.

Proposition 2.9. For any δ ∈ (0, κ], we have

‖H♯v +∆v‖Hδ . ‖v‖H1−κ+δ .

Proof : This follows directly from formula (2.1), that is

H♯v +∆v = PV u+ Π(u, V ) + 2P∇u∇X + P∆uX + Pu〈V, 1〉

for u = Γv. Because of the resonant product

Π(u, V ) = Π(PuX,V ) + Π(v, V ),

one needs v to be of regularity higher than 1 − κ for H♯v to make sense, just as H, and we have
Π(u, V ) ∈ Hδ for v ∈ H1−κ+δ for δ ≤ κ. In any case, the roughest term is given by the noise, for
example Π(PuX,V ) ∈ Hκ hence the result.

�

3 – Strichartz inequalities and low regularity initial data

A solution theory with initial data u0 ∈ L2 only yields a solution in L2 since the Schrödinger
flow does not improve regularity hence the product V u is a priori singular. However following the
previous section, the Hamiltonian

H = −∂2
x + V

allows to consider u(t) = e−itHu0 as a solution in L∞(R, L2) which satisfies (1.2) in D−2. In
particular, the space D2 = D(H) does not contain smooth functions thus D−2 = (D2)∗ is not a
space of distributions. We want to use this approach to solve the nonlinear equation (1.1) for low
regularity initial data with the mild formulation

u(t) = e−itHu0 +

∫ t

0

e−i(t−s)H|u(s)|p−2u(s)ds

with u(0) = u0 ∈ Hσ. Since Hσ is an algebra for σ > 1
2 , this gives local well-posedness in Hσ and

global solution for u ∈ H1 with the conservation of energy. In this section, we prove Strichartz
inequalities for H to obtain local well-posedness for low regularity initial data, that is below the
algebra condition. In the cubic case without potential, Bourgain obtained local well-posedness in
L2 thus global solution using the conservation of mass. Even in the cubic case, we have a positive
critial threshold σc > 0 which prevents us from obtaining global solution below H1. Our argument
is perturbative and relies on Bourgain’s result

‖eit∆∆Nu0‖L6([0,1]×T) . 2Nε‖∆Nu0‖L2(T)

proved in [5], with ∆N the Paley-Littlewood projector defined in Appendix A supported on fre-
quencies less than 2N . Because of the roughness of the potential V , we consider the conjugated
operator

H♯ = Γ−1HΓ

7



with Γ defined by the implicit relation Γu♯ = PΓu♯X + u♯ introduced in the previous section. We
insist that Γ is invertible but not unitary hence H♯ is not self-adjoint. With the variable u = Γu♯,
one gets the new equation

u♯(t) = e−itH♯

u0 +

∫ t

0

e−i(t−s)H♯

Γ−1
(

|Γu♯(s)|p−2Γu♯(s)
)

ds

with u♯(0) = Γ−1(u0). While the non-linearity seems more complicated, the linear part is better
behaved since H♯ is a better behaved perturbation of the Laplacian as explained. Our proof follows
the idea of splitting the time interval into small frequency dependent pieces which goes back to
Bahouri and Chemin [1] and Tataru [26].

Theorem 3.1. For any potential V ∈ C−1+κ with κ ∈ (0, 1), we have

‖eitH♯

u0‖L6([0,1]×T) . ‖u0‖
H

1−κ
6

+ε

for any ε > 0.

Remark 3.2. The loss of derivative here is similar in spirit to the one of Burq, Gérard and Tzvetkov
[7] with the Laplacian on an arbitrary manifold and Mouzard and Zachhuber [20] with the Anderson
Hamiltonian on a compact surfaces. This is due to the fact that our knowledge of the spectral
properties of the operator is not precise enough to adapt Bourgain’s method based on Fourier’s
series.

Proof : We work with the Paley-Littlewood projectors ∆j on annulus of size 2j in frequencies and
consider k, j ≥ 0, see Appendix A. For any N ≥ 1, we have

‖∆je
itH♯

∆kv‖6L6([0,1]×T) =
N−1
∑

n=0

‖∆je
itH♯

∆kv‖6L6([tn,tn+1]×T)

with tn = n
N

for 0 ≤ n ≤ N . For t ∈ [tn, tn+1], we have

eitH
♯

∆kv = ei(t−tn)H
♯

e−itnH
♯

∆kv

= e−i(t−tn)∆e−itnH
♯

∆kv +

∫ t

tn

e−i(t−s)∆
(

H♯ +∆
)

e−itnH
♯

∆kvds

using the mild formulation for ei(t−tn)H
♯

with respect to −∆ hence

‖∆je
itH♯

∆kv‖6L6([0,1]×T) ≤
N−1
∑

n=0

‖∆je
−i(t−tn)∆e−itnH

♯

∆kv‖6L6([tn,tn+1]×T)

+ ‖
∫ t

tn

∆je
−i(t−s)∆

(

H♯ +∆
)

e−itnH
♯

∆kvds‖6L6([tn,tn+1]×T).

A crucial point is that the projector ∆j commutes with eit∆ while this is not true for eitH
♯

. For
the first term, we have

‖∆je
−i(t−tn)∆e−itnH

♯

∆kv‖L6([tn,tn+1]×T) = ‖e−i(t−tn)∆∆je
−itnH

♯

∆kv‖L6([tn,tn+1]×T)

. 2jε‖∆je
−itnH

♯

∆kv‖L2

. 2−jδ‖e−itnH
♯

∆kv‖Hε+δ

. 2−jδ‖∆kv‖Hε+δ

. 2−jδ2−kδ′‖∆kv‖Hε+δ+δ′

for any δ, δ′, ε > 0 using Bernstein lemma and that the Sobolev spaces Hσ associated to H and ∆
are equivalent for σ ∈ [0, 1 + κ]. For the second term, we have

‖
∫ t

tn

∆je
−i(t−s)∆

(

H♯ +∆
)

e−itnH
♯

∆kvds‖L6([tn,tn+1]×T) ≤
∫ tn+1

tn

‖∆j

(

H♯ +∆
)

e−itnH
♯

∆kv‖Hεds

. N−12−jσ‖
(

H♯ +∆
)

e−itnH
♯

∆kv‖Hε+σ

. N−12−jσ‖e−itnH
♯

∆kv‖Hε+σ+1−κ

. N−12−jσ‖∆kv‖Hε+σ+1−κ

. N−12−jσ2−kσ′‖∆kv‖Hε+σ+σ′+1−κ
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for any σ, σ′, ε > 0 with the same arguments in addition to Proposition 2.9 to control H♯ +∆ in a
positive Sobolev space. We get

‖∆je
itH♯

∆kv‖L6([0,1]×T) . N
1
6 2−jδ2−kδ′‖∆kv‖Hε+δ+δ′ +N− 5

6 2−jσ2−kσ′‖∆kv‖Hε+σ+σ′+1−κ

and we choose different parameters do deal with the sums k ≤ j and k > j. For the first sum,
consider

δ =
1

6
γ′ + κ, δ′ > 0, σ > 0, σ′ > 0, N = 2γ

′j , γ =
5

6
γ′, γ′ = 1− κ

which gives

‖
∑

k≤j

∆je
itH♯

∆kv‖L6([0,1]×T) .
∑

j≥0

∑

k≤j

N
1
6 2−jδ2−kδ′‖∆kv‖Hε+δ+δ′ +N− 5

6 2−jσ2−kσ′‖∆kv‖Hε+σ+σ′+1−κ

.
∑

j≥0

N
1
6 2−jδ‖∆≤jv‖Hε+δ+δ′ +N− 5

6 2−jσ‖∆≤jv‖Hε+σ+σ′+1−κ

.
∑

j≥0

N
1
6 2−jδ‖∆≤jv‖Hε+δ+δ′ +N− 5

6 2−jσ2γj‖∆≤jv‖Hε+σ+σ′+1−κ−γ

.
∑

j≥0

2−jκ‖∆≤jv‖
H

1
6
γ′+ε+κ+δ′ + 2−

5
6γ

′j2−jσ2
5
6 γ

′j‖∆≤jv‖
H

ε+σ+σ′+1−κ−
5
6
γ′

. ‖v‖
H

1
6
γ′+ε+κ+δ′ + ‖v‖

H
1−κ−

5
6
γ′+ε+σ+σ′

. ‖v‖
H

1−κ
6

+ε′

for any ε′ > 0. For the sum k > j, we take

δ > 0, δ′ =
1

6
γ′ + κ, σ > 0, σ′ > 0, N = 2γ

′k, γ =
5

6
γ′, γ′ = 1− κ

hence

‖
∑

k>j

∆je
itH♯

∆kv‖L6([0,1]×T) .
∑

k≥0

∑

j<k

N
1
6 2−jδ2−kδ′‖∆kv‖Hε+δ+δ′ +N− 5

6 2−jσ2−kσ′‖∆kv‖Hε+σ+σ′+1−κ

.
∑

k≥0

2
1
6γ

′k2−kδ′‖∆kv‖Hε+δ+δ′ + 2−
5
6γ

′k2−kσ′

2kγ‖∆kv‖Hε+σ+σ′+1−κ−γ

. ‖v‖
H

1
6
γ′+ε′ + ‖v‖

H
1−κ−

5
6
γ′+ε′

. ‖v‖
H

1−κ
6

+ε′

for any ε′ > 0 which completes the proof.

�

In order to deal with general power in equation (1.1), one can interpolate between this result
with the L∞([0, 1], L2) bound given by the conservation of mass, this is the content of the following
corollary.

Corollary 3.3. Let V ∈ C−1+κ with κ ∈ (0, 1). For any θ ∈ [0, 1], we have

‖eitH♯

u0‖Lp([0,1],Lq) . ‖u0‖1−θ
L2 ‖u‖θ

H
1−κ
6

+ε

for any t ∈ R and ε > 0 with p ∈ [6,∞] and q ∈ [2, 6] such that

1

p
=

θ

6
and

1

q
=

1− θ

2
+

θ

6
.

Using the dispersive properties of the equation allows to obtain local well-posedness with any
κ ∈ (0, 1) for initial data below the algebra condition with critical threshold

σκ(p) =
1

3
− κ

6

when p ≤ 8 and

σκ(p) =
4− κ

6
− 2

p− 2

when p > 8.
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Theorem 3.4. Let V ∈ C−1+κ and p ≥ 2. For any σ > σκ(p), there exists a unique solution

u ∈ C([0, T ], Hσ) to equation (1.1) for u0 ∈ Hσ up to time T of order ‖u0‖
− 6(p−2)

p−8

Hσ and we have

sup
t∈[0,T ]

‖u(t)‖Hσ ≤ 2‖u0‖Hσ .

Moreover, we have
sup

t∈[0,T ]

‖u(t)− v(t)‖Hσ . ‖u0 − v0‖Hσ

for two solutions u and v with respective initial data u0 and v0 with T of order ‖u0‖
− 6(p−2)

p−8

Hσ ∧
‖v0‖

− 6(p−2)
p−8

Hσ .

Proof : To solve equation (1.1), we consider the new variable v(t) = Γ−1u(t) which satisfies the
equation

i∂tv = H♯v + λΓ−1(|Γv|p−2Γv)

with initial data v(0) = Γ−1u0 ∈ Hσ. We prove existence and uniqueness of solutions for this
equation, this will gives a unique solution to the initial equation using that Γ is continuous from
Hσ to itself for σ ≤ 1 + κ. For T > 0, consider the solution space

ST = C([0, T ], Hσ) ∩ L6([0, T ],W
1
6+ε,6)

with the norm
‖v‖ST

:= sup
t∈[0,T ]

‖v(t)‖Hσ + ‖v‖
L6([0,T ],W

1
6
+ε,6)

for σ ∈ (σκ,
1
2 ) and ε ∈ (0, σ − σκ]. We prove that the map

Φ(v)(t) := e−itH♯

v0 + iλ

∫ t

0

e−i(t−s)H♯

Γ−1
(

|Γv(s)|p−2Γv(s)
)

ds

is a contraction on a ball of ST for T small enough. We have

‖Φ(v)(t)‖Hσ . ‖v0‖Hσ +

∫ t

0

‖|Γv(s)|p−2Γv(s)‖Hσds

. ‖v0‖Hσ +

∫ t

0

‖v(s)‖Hσ‖v(s)‖p−2
L∞ ds

. ‖v0‖Hσ + ‖v‖L∞([0,t],Hσ)T
1−p−2

6 ‖v‖p−2
L6([0,t],L∞)

using that Γ is continuous from Hσ to itself, from L∞ to itself and Hölder inequality for p < 8 for
t ∈ [0, T ]. Since σ < 1

2 , the space Hσ is not an algebra and one needs to control the L∞ norm, this
is where Strichartz inequalities are crucial with the embedding

W
1
q
+ε,q →֒ L∞

which gives the bound

sup
t∈[0,T ]

‖Φ(v)(t)‖Hσ . ‖v0‖Hσ + T
8−p
6 ‖v‖p−1

ST
.

Since the spaces Dδ and Hδ are equivalent for |δ| ≤ 1+ κ and using the continuity results on Γ, we
have

‖e−itH♯

v‖L6([0,T ],W δ,6) . ‖v‖
H

1−κ
6

+ε+δ

hence

‖Φ(v)‖
L6([0,t],W

1
6
+ε,6)

. ‖v0‖
H

1−κ
6

+ε+1
6
+

∫ t

0

‖v(s)‖
H

1−κ
6

+ε+1
6
‖v(s)‖p−2

L∞ ds

. ‖v0‖
H

1−κ
6

+ε+1
6
+ ‖v‖

L∞([0,t],H
1−κ
6

+ε+1
6 )
T 1−p−2

6 ‖v‖p−2

L6([0,t],W
1
6
+ε,6)

. ‖v0‖Hσ + T
8−p
6 ‖v‖p−1

ST

since σ ≥ σκ + ε. This gives

‖Φ(v)‖ST
. ‖v0‖Hσ + T

8−p
6 ‖v‖p−1

ST
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hence for any A ≥ 0, the ball centered in 0 of size A is stable by Φ for T > 0 small enough. The
same computation gives

‖Φ(v)− Φ(v′)‖ST
. T

8−p
6 (1 + ‖v‖p−2

ST
+ ‖v′‖p−2

ST
)‖v − v′‖ST

for v, v′ ∈ ST with v(0) = v′(0). This gives that for any A > 0 and v0 ∈ Hσ, the map Φ is a
contraction on

{

v ∈ ST ; v(0) = v0 and ‖v‖ST
≤ A

}

for T = T (A, v0) small enough, that is T < CA− 6(p−2)
(p−8) for a constant C > 0. For the Lipschitz

continuity, consider two solutions u and v with respective initial data u0 and v0 in Hσ. We have

‖u(t)− v(t)‖Hσ . ‖e−itH(u0 − v0)‖Hσ +

∫ t

0

‖e−i(t−s)H(|u(s)|p−2u(s)− |v(s)|p−2v(s))‖Hσds

. ‖u0 − v0‖Hσ +

∫ t

0

‖|u(s)|p−2u(s)− |v(s)|p−2v(s)‖Hσds

. ‖u0 − v0‖Hσ +

∫ t

0

(1 + ‖u(s)‖p−2
Hσ + ‖v(s)‖p−2

Hσ )‖u(s)− v(s)‖Hσds

hence Grönwall’s Lemma gives

‖u(t)− v(t)‖Hσ ≤ ‖u0 − v0‖Hσe
∫

t
0
(1+‖u(s)‖p−2

Hσ +‖v(s)‖p−2
Hσ )ds

which completes the proof using that ‖u‖L∞([0,T ],Hσ) . ‖u0‖Hσ with the local well-posedness. To
deal with p ≥ 8, one needs to control higher integrability in time. Corollary 3.3 gives

‖eitH♯

u‖
Lp−2([0,T ],W

1
q
+ε,q

)
. ‖u‖

H
1−κ
6

+ 1
q
+ε

for any p > 8 and 1
q
= 1−θ

2 + θ
6 with θ = 6

p−2 . Similar computations as before give

‖v(t)‖
Lp−2([0,T ],W

1
q
+ε,q

)
. ‖u0‖

H
1−κ
6

+ 1
q
+ε

+ ‖v‖
L∞([0,T ],H

1−κ
6

+1
q
+ε

)
‖v‖p−2

Lp−2([0,T ],L∞)

hence the condition

σ >
1− κ

6
+

1

q
.

With the relation between q and p, we have

σκ(p) =
1− κ

6
+

1

2
− 2

p− 2

when p > 8.

�

It is a priori not clear if this local well-posedness result is optimal in general. The important
fact is that the mild formulation

u(t) = e−it∆u0 + i

∫ t

0

e−i(t−s)∆V u(s)ds+ iλ

∫ t

0

e−i(t−s)∆|u(s)|p−2u(s)ds

can not be used to deal with low regularity initial data due to the singular product V u. This
prevents the use of methods based on explicit space-time Fourier transform as done by Bourgain in
[5] to prove local well-posedness since one has to deal with the Hamiltonian H and its Schrödinger
group eitH which is not explicit. Nevertheless our proof of local well-posedness does not rely too
much on the form on the non-linearity and one can consider the truncated equation

i∂tuN = HuN + λΠN (|uN |p−2uN) (3.1)

with uN(0) = ΠNu0. Here ΠN denotes the spectral projector associated to H on the space EN =
Vect(e1, . . . , eN) hence equation (3.1) is a finite dimensional system. Since Γ is an isomorphism,
the space FN := ΓEN is also of finite dimension. We have the following proposition.
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Proposition 3.5. Let V ∈ C−1+κ with κ ∈ (0, 1) and p < 8. For any σ ∈ (σκ,
1
2 ), there exists a

unique solution uN ∈ C([0, T ], Hσ) to equation (3.1) for u0 ∈ Hσ up to time T of order ‖u0‖
− 6(p−2)

p−8

Hσ

uniform with respect to N ≥ 1 and we have

sup
t∈[0,T ]

‖uN(t)‖Hσ ≤ 2‖u0‖Hσ .

Moreover, we have
sup

t∈[0,T ]

‖uN(t)− u(t)‖Hσ′ . Nσ′−σ(1 + ‖u0‖p−2
Hσ )

for any σ′ < σ where u is the solution to the untruncated equation (1.1) with initial data u0.

Proof : As for the untruncated equation, we consider the new variable vN = Γ−1uN which satisfies
the mild formulation

vN (t) = e−itH♯

ΠNv0 + iλ

∫ t

0

e−i(t−s)H♯

Γ−1ΠN

(

|ΓvN (s)|p−2ΓNv(s)
)

ds

with initial data vN (0) = ΠNΓ−1u0. Since ΠN is continuous from Dσ to itself for any σ ∈ R

uniformly with respect to N ≥ 1, it is continuous from Hσ to itself for |σ| ≤ 1 + κ. Thus the fixed
point argument applies also to the truncated equation with a solution up to a time T uniform with

respect to N ≥ 1 of order ‖u0‖
− 6(p−2)

p−8

Hσ with

sup
t∈[0,T ]

‖uN(t)‖Hσ ≤ 2‖u0‖Hσ .

For the convergence, we consider the difference wN := u− uN which satisfies the equation

i∂twN = HwN + λ|u|p−2u− λΠN (|uN |p−2uN )

with initial condition wN (0) = (Id −ΠN )u0. The mild formulation yields

‖wN (t)‖Hσ′ . ‖wN (0)‖Hσ′ +

∫ t

0

∥

∥|u|p−2u−ΠN (|uN |p−2uN)
∥

∥

Hσ′ds

. Nσ−σ′‖u0‖Hσ ,+

∫ t

0

∥

∥|u|p−2u−ΠN (|u|p−2u)
∥

∥

Hσ′ds+

∫ t

0

∥

∥ΠN (|u|p−2u− |uN |p−2uN )
∥

∥

Hσ′ds

. Nσ−σ′‖u0‖Hσ ,+

∫ t

0

Nσ−σ′∥

∥|u|p−2u
∥

∥

Hσds+

∫ t

0

∥

∥|u|p−2u− |uN |p−2uN

∥

∥

Hσ′ds

. Nσ−σ′‖u0‖Hσ ,+

∫ t

0

Nσ−σ′‖u‖p−2
L∞ ‖u‖Hσds+

∫ t

0

(1 + ‖u‖p−2
L∞ + ‖uN‖p−2

L∞ )‖wN‖Hσ′ds

. Nσ−σ′‖u0‖Hσ ,+Nσ−σ′‖u‖p−1
ST

+ T
8−p
6 (1 + ‖u‖p−2

ST
+ ‖uN‖p−2

ST
) sup
t∈[0,T ]

‖wN (t)‖Hσ′

for any σ′ < σ. Since we have
‖uN‖ST

+ ‖u‖ST
. ‖u0‖Hσ ,

we get
sup

t∈[0,T ]

‖wN (t)‖Hσ . Nσ−σ′

(1 + ‖u0‖p−2
Hσ )

for T of order ‖u0‖
− 6(p−2)

p−8

Hσ .

�

4 – Invariance of the Gibbs measure and global

well-posedness

A natural question is the existence of an invariant measure for equation (1.1), it goes back to
Lebowitz, Rose and Speer [16] and Bourgain [6]. The equation being Hamiltonian, it is expected
that the formal Gibbs measure

ν(du) =
1

Zν

e−E(u)
∏

x∈T

du(x)
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with energy

E(u) =
∫

T

|∂xu(x)|2dx+

∫

T

|u(x)|2V (dx) + λ

∫

T

|u(x)|pdx

for u ∈ H1 leaves the dynamic invariant. This is only formal since the Lebesgue measure in infinite
dimension does not exist and considering only the quadratic part, one gets the Gaussian measure

µ(du) =
1

Zµ

exp
(

−
∫

T

|∂xu(x)|2dx−
∫

T

|u(x)|2V (dx)
)

∏

x∈T

du(x)

which can be understood as the Gaussian measure with covariance function given by the kernel of
(−∂2

x + V )−1. However, this is a positive operator only if the smallest eigenvalues λ1 is positive
hence in general one has to shift the operator to obtain a probability measure with

µ(du) =
1

Zµ

e−
〈

(H−λ1+1)u,u
〉

∏

x∈T

du(x)

which is well-defined, see for example Da Prato’s book [9] for an introduction to Gaussian measure
in infinite dimensions. In order to keep the same measure ν, we get

ν(du) =
1

Z
e(1−λ1)

∫
T
|u(x)|2dx−λ

∫
T
|u(x)|pdxµ(du)

with the normalisation constant Z = ‖e(1−λ1)
∫
T
|u(x)|2dx−λ

∫
T
|u(x)|pdx‖L1(µ). The measure µ corre-

sponds to the law of the Gaussian Free Field (GFF) associated to H− λ1 + 1, that is the random
serie

φ(x) =
∑

n≥1

γn√
λn − λ1 + 1

en(x)

with (γn)n≥1 a sequence of independent and identically distributed standard Gaussian random
variables N (0, 1). The unshifted case V = 0 corresponds to the law of the Brownian bridge,
µ describes here a model of random bridge in the irregular environment V . The fact that the
measure is supported in H

1
2−ε(T) follows immediatly from the spectral representation of H, we

prove Hölder regularity here.

Proposition 4.1. For any ε > 0, the measure µ is supported in C
1
2−ε.

Proof : Let φ be a random field of law µ, that is a centered Gaussian field with covariance given by

E
[

φ(x)φ(y)
]

= G(x, y)

for x, y ∈ T and G the Green function associated to H− λ1 + 1. We have

E
[

|φ(x) − φ(y)|2
]

= G(x, x) +G(y, y)− 2G(x, y)

since G is symmetric hence the statement comes down to a regularity estimates on G. We have the
semigroup representation

(H− λ1 + 1)−1 =

∫ 1

0

e−tHe(λ1−1)tdt+H−1e−Heλ1−1

which gives

G(x, y) =

∫ 1

0

pt(x, y)e
(λ1−1)tdt+ r1(x, y)e

λ1−1

with pt(x, y) the heat kernel associated to e−tH and r1(x, y) the kernel of H−1e−H. One has
δx ∈ H− 1

2−ε for any ε > 0 with a continuous dependance with respect to x ∈ T. This implies

pt(x, y) = (e−tHδx)(y) and r1(x, y) = (H−1e−Hδx)(y)

belongs to D∞ ⊂ C1+κ in each variable uniformly with respect to the other. For t > 0 small, the
Lipschitz norm of pt(x, ·) diverges as t goes to 0. Schauder estimates in Dσ follows directly from
the boundeness from below of the spectrum of H, indeed

‖pt(x, ·)‖2Dσ =
∑

n≥1

(1 + λn)
σe−tλn |en(x)|2

=
∑

n≥1

(1 + λn)
σ+ 1

2+εe−tλn(1 + λn)
− 1

2−ε|en(x)|2

. t−σ− 1
2−ε

∑

n≥1

(1 + λn)
− 1

2−ε|en(x)|2

. t−σ− 1
2−ε‖δx‖2

D−
1
2
−ε

13



for any ε > 0 and σ > − 1
2 − ε. Since D− 1

2−ε = H− 1
2−ε for ε > 0 small enough, this gives

∥

∥

∫ 1

0

pt(x, ·)e(λ1−1)tdt
∥

∥

Dσ .

∫ 1

0

t−
σ
2 −

1
4−ε‖δx‖

H
−

1
2
−2εdt < ∞

for σ < 3
2 − 2ε. Using Besov injection in one dimension, we get that G is of Hölder regularity 1− δ

for any δ > 0 in each coordinates hence

E
[

|φ(x) − φ(y)|2
]

. |x− y|1−δ.

Since φ is a Gaussian random field, the Hölder regularity follows from Kolmogorov theorem, see
for example Theorem 3.3.16 from Strook’s book [25].

�

Since the measure is supported on continuous functions, the potential energy ‖u‖p
Lp(T) is finite

for µ-almost all functions and the definition of the measure

ν(du) =
1

Z
exp

(

(1− λ1)

∫

T

|u(x)|2dx− λ

∫

T

|u(x)|pdx
)

µ(du)

amounts to proving exp
(

(1 − λ1)
∫

T
|u(x)|2dx − λ

∫

T
|u(x)|pdx

)

∈ L1(µ). In the defocusing case

λ > 0, this follows from the fact that µ is a probability measure since the exponential is bounded
for p > 2 using the injection Lp →֒ L2. Indeed, one has

exp
(

(1− λ1)

∫

T

|u(x)|2dx− λ

∫

T

|u(x)|pdx
)

≤ exp
(

(1− λ1)

∫

T

|u(x)|2dx− λcp
(

∫

T

|u(x)|2dx
)

p
2

)

≤ sup
r>0

e(1−λ1)r
2−λcpr

p

< ∞

for any λ > 0 with cp > 0 a positive constant and p > 2. In the focusing case, one needs to
introduce a cut-off B > 0 following [6, 16] with the measure

νB(du) =
1‖u‖L2≤B

ZB

exp
(

(1 − λ1)

∫

T

|u(x)|2dx− λ

∫

T

|u(x)|pdx
)

µ(du)

since a scaling argument gives that the measure can not be finite without truncation even in the case
V = 0. This appears as the most natural truncation since the mass is the only conserved quantity
for (1.1) with low regularity initial data. The following proposition guarantees that ZB < ∞.

Proposition 4.2. For p < 6 and any B > 0, we have

1‖u‖L2≤B exp
(

(1− λ1)

∫

T

|u(x)|2dx− λ

∫

T

|ϕ(x)|pdx
)

∈ L1(µ).

The result still holds for p = 6 and B small enough.

Proof : Since
1‖u‖L2≤Be

(1−λ1)
∫
T
|u(x)|2dx ≤ e(1−λ1)B

2

,

we only have to deal with the potential energy term. Our goal is to use Fernique’s theorem which
ensures

E
[

eβ‖u‖
2
Hσ

]

< ∞
for any σ < 1

2 and β = β(σ) small enough, see for example Da Prato and Zabczyk’s book [10].
Sobolev embedding gives Hσ(T) →֒ Lp(T) for any σ ≥ p−2

2p , that is

∫

T

|u(x)|pdx ≤ C‖u‖p
H

p−2
2p

for a constant C > 0. In order to use the previous exponential moments, we interpolate with
∫

T

|u(x)|pdx ≤ C‖u‖(1−θ)p
L2 ‖u‖θpHσ

14



with θ ∈ (0, 1) and σθ = p−2
2p . Since we need σ < 1

2 as well as σp < 2 in order to conclude with
Young inequality, this imposes p < 4. To extend the result to p < 6, one needs interpolation with
spaces based on Lq with q > 2. Besov injections and interpolation give

∫

T

|u(x)|pdx . ‖u‖2L2‖u‖p−2
L∞

. ‖u‖2L2‖u‖p−2

B
1
q
+ε

q,q

. ‖u‖2L2‖u‖(1−θ)(p−2)

B0
2,2

‖u‖θ(p−2)
Bσ

∞,∞

for any q ≥ 2, ε > 0, θ ∈ (0, 1) and

σθ =
1

q
+ ε,

1

q
=

1− θ

2
.

We get

σθ =
1− θ

2
+ ε ⇐⇒ θ =

1 + 2ε

1 + 2σ

and the condition σ < 1
2 implies

θ(p− 2) >
1 + 2ε

2
(p− 2).

Since our goal is to have θ(p− 2) < 2, this yields the condition

1

2
(p− 2) < 2 ⇐⇒ p < 6

which is indeed the optimal condition. We get

E

[

1‖u‖L2≤Be
∫
T
|u(x)|pdx

]

≤ E

[

eCB2+(1−θ)(p−2)‖u‖
θ(p−2)
Cσ

]

≤ E

[

e
C 1

q′
B2q′+(1−θ)(p−2)q′+ 1

q
‖u‖

θ(p−2)q

Cσ

]

≤ e
C 1

q′
B2q′+(1−θ)(p−2)q′

E

[

e
Cε
q

‖u‖2
L2+

ε
q
‖u‖2

Cσ′

]

≤ e
C 1

q′
B2q′+(1−θ)(p−2)q′+Cε

q
B2

E

[

e
ε
q
‖u‖2

Cσ′

]

for q = 1
θ(p−2) > 2, q′ its conjugated exponent, any ε > 0, a constant Cε > 0 large enough and

σ < σ′ < 1
2 together with Young inequality. Using Fernique’s theorem and that µ is a Gaussian

measure on the Banach space Cσ′

, we get

E

[

1‖u‖L2≤Be
∫
T
|u(x)|pdx

]

< ∞

for any B ≥ 0 and p < 6. The results for p = 6 follows for B small enough.

�

Remark 4.3. Since (1Y≤Be
X)q = 1Y ≤Be

qX , this also implies the result for Lq insteand of L1 with
a condition on B depending on q for p = 6. An alternative definition of the measure could have
been with a density depending on V with respect to the case V = 0 studied in [6, 16, 21]. Denoting
as ν0B the case V = 0, we have

νB(du) =
1

ZV

e−〈V u,u〉ν0B(du)

where 〈V u, u〉 is almost surely well-defined. Indeed, the measure ν0B is supported in C
1
2−ε for any

ε > 0 and we have

|〈V u, u〉| . ‖V ‖C−1+κ‖u2‖B1−κ
1,1

. ‖V ‖C−1+κ‖u‖2
B

1−κ
2

2,2

. ‖V ‖C−1+κ‖u‖2
C

1
2
−

κ
2

using duality, product and injection of Besov spaces from Proposition A.1. One can also prove that
ZV is finite using the cut-off, this is also an alternative proof of Proposition 4.1. Since the optimal
parameter B is known in the case V = 0 from [21], the same is true here.
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Since the measure µ is supported in C
1
2−ε(T) for any ε > 0, so is νB with the previous proposition

and Theorem 3.4 guarantees that there exist almost surely a local solution for initial data distributed
as νB in the focusing case, or ν in the defocusing case. In order to prove that the measure is
invariant, we will show invariance for a truncated dynamic and pass to the limit following Bourgain
[6]. In particular, this allows to construct global solutions. Recall that the truncated dynamic

i∂tuN = HuN + λΠN (|uN |p−2uN)

with uN (0) = ΠNu0 is an approximation as N goes to infinity of equation (1.1). Since this is a
finite dimensional system, Liouville’s Theorem states that the Lebesgue measure is invariant and
the Hamiltonian being invariant, the projected measure νN := ΠNν is an invariant measure for
equation (3.1) defined on the finite dimensional space

ΩN := ΠNL2(T).

We only consider the focusing case which is harder, the defocusing case following from the same
type of arguments. We first prove the following result.

Proposition 4.4. Let σ ∈ (σκ,
1
2 ) and 2 ≤ p ≤ 6. For any δ > 0, there exist a subset Ω1 of ΩN

such that ν(ΩN\Ω1) < δ and for u0 ∈ Ω1, there exists a unique global solution uN to (3.1) which
satisfies

‖uN(t)‖Hσ ≤ C
(

log
1 + |t|

δ

)σ+

for any t ∈ R and σ+ > σ with C > 0 a constant depending on p and σ.

Proof : For σ ∈ (σκ,
1
2 ) and A > 0, let

Bσ
N,A := {u ∈ ΩN ; ‖u‖Hσ ≤ A}.

We proved with Proposition 3.5 that for any u0 ∈ Bσ
N,A, there exists a local solution uN to the

truncated equation up to a time of order A− 6(p−2)
p−8 . Then equation (3.1) is a finite dimensional

system with values in ΩN and Liouville’s Theorem implies the invariance of the Lebesgue measure.
Using the conservation of the mass and the truncated Hamiltonian

EN (u) =
1

2
〈Hu, u〉+ λ

p

∫

T

|ΠNu(x)|pdx,

this implies the invariance of the truncated Gibbs measure

νN (du) =
1

ZB,N

1‖u‖L2≤Be
−EN(u)

N
∏

n=1

dun.

Let τA = C0A
−

6(p−2)
p−8 be the time of existence from Proposition 3.5 and consider the map

SτA :

∣

∣

∣

∣

Bσ
N,A → ΩN

u0 7→ u(τA)

which satisfies ‖SτA(u0)‖Hσ ≤ 2‖u0‖Hσ . For any m ≥ 1, introduce the set

Ωm
N,A,σ := Bσ

N,A ∩ S−1
τA

(Bσ
N,A) ∩ . . . ∩ S−m

τA
(Bσ

N,A).

Since the measure νN is invariant by the map SτA , we have

νN (ΩN\Ωm
N,A,σ) ≤ (m+ 1)C1e

−C2A
2

for positive constants C1, C2 > 0 using that νN is absolutely continuous with respect to µN which is
a Gaussian measure thus has exponential tails. For initial data u0 ∈ Ωm

N,A,σ, there exists a solution

up to time mτA = mC0A
− 6(p−2)

p−8 which satisfies ‖u(jτA)‖Hσ ≤ A for any j ∈ J0,mK. For any T > 0
and δ ∈ (0, 1), consider the set

Ωδ,T
N,σ := Ωm

N,A,σ

with A = C
√

log
(

1+T
δ

)

and m = ⌊TC−1
0 A

6(p−2)
p−8 ⌋ and C > 0 a large enough constant such that

(m + 1)C1e
−C2A

2 ≤ δ. Then for any u0 ∈ Ωδ,T
N,σ, there exists a solution uN to equation (3.1) to

time T such that

‖uN(T )‖Hσ ≤ C

√

log
(1 + T

δ

)
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and we have
νN (ΩN\Ωδ,T

N,σ) ≤ δ.

The proof is complete if one takes

Ω1 =
⋂

n≥1

Ω2−nδ,2n

N,σ

using an interpolation between the H
1
2−ε norm and the mass conservation for ε small enough since

σ is any exponent in (σκ,
1
2 ).

�

Using the convergence of the truncated dynamic to the solution of equation (1.1), we get the
following proposition with Ω = L2(T).

Proposition 4.5. Let σ ∈ (σκ,
1
2 ) and 2 ≤ p ≤ 6. For any δ > 0, there exist a subset Ω1 of Ω such

that ν(Ω\Ω1) < δ and for u0 ∈ Ω1, there exists a global solution to (1.1) which satisfies

‖u(t)‖Hσ ≤ C
(

log
1 + |t|

δ

)σ+

for any t ∈ R and σ+ > σ.

Proof : Let T > 0 and δ > 0. First, note that for any set S ⊂ Ω, we have

ν(S) ≤ C2µ(S)
1
2

with C2 > 1 the L2(µ) norm of the density of ν with respect to µ which is finite from Proposition
4.2. For any σκ < σ < σ+ < 1

2 , the previous proposition gives a set Ω1,N ⊂ ΩN such that
ν(ΩN\Ω1,N) ≤ δ and that equation (3.1) admits a unique global solution uN for any u0 ∈ Ω1,N

with

‖uN(t)‖Hσ ≤ C
(

log
1 + |t|

δ

)σ+

for any t ∈ R with a constant C > 0. Let

Ωδ
1,N := {u ∈ Hσ ; ‖u‖Hσ ≤ A and ΠNu ∈ Ω1,N}

with A = C1

(

log 1
δ

)σ+

. Recall that Bσ
N,A denotes the unit ball of ΠNL2(T) with respect to the

Hσ norm and consider Ω>N := (Id −ΠN )L2(T) and

Bσ
>N,A := {u ∈ (Id −ΠN )L2(T) ; ‖u‖Hσ ≤ A}.

We have

ν(Ω\Ωδ
1,N ) ≤ C2

√

µ(Ω\Ωδ
1,N)

≤ C2

√

µ(Ω\[(Ω1,N ∩Bσ
N,A) ⊔Bσ

>N,A])

≤ C2

√

µ(ΩN\(Ω1,N ∩Bσ
N,A))µ(Ω>N\Bσ

>N,A])

≤ C2

√

(δ + Cδ)Cδε(δ)

≤ δ

for δ > 0 small enough, using that µ is a product of probability measures on eigenspaces, C2 ≥ 1
the L2(dµ) norm of the density of ν, finite by Proposition 4.2 and that ε(δ) goes to 0 as δ goes
to 0 since σ+ < 1

2 . For u0 ∈ Ωδ
1,N , there exists a unique solution u to equation (1.1) up to time

τA = CA−c(p) and we have

sup
t∈[0,τA]

‖u(t)− uN (t)‖Hσ′ . Nσ′−σ(1 +Ap−2)

from Proposition 3.5 for σ′ > σ. We are going to propagate this error up to time T . Assume for
t ≤ t0 that we proved

‖u(t)− uN (t)‖Hσ′ ≤ ε < 1

and consider vN the solution to the untruncated equation (1.1) on [t0, t0+τA] with vN (t0) = uN(t0).
We bound u− uN using

‖u(t)− uN (t)‖Hσ′ ≤ ‖u(t)− vN (t)‖Hσ′ + ‖vN (t)− uN(t)‖Hσ′

17



for t ∈ [t0, t0 + τA]. For the first term, we have

sup
t∈[t0,t0+τA]

‖u(t)− vN (t)‖Hσ′ ≤ 2‖u(t0)− vN (t0)‖Hσ′ ≤ 2ε

using Theorem 3.4. For the second term, this follows from Proposition 3.5 and we have

sup
t∈[t0,t0+τA]

‖vN (t)− uN(t)‖Hσ′ . Nσ′−σ(1 + ‖uN(t0)‖p−2
Hσ ).

Using that ΠNu0 ∈ Ω1, we get ‖uN(t0)‖Hσ ≤ C
(

log 1+T
δ

)σ+ for t0 ≤ T hence

‖u(t)− uN(t)‖Hσ′ ≤ 2ε+Nσ′−σ
(

1 + Cp−2
(

log
1 + T

δ

)(p−2)σ+
)

for any t ∈ [t0, t0 + τA]. Set tj = jτA and δj = ‖u(jτA)−uN (jτA)‖Hσ′ . We have δ0 ≤ Nσ′−σA and
the previous computations yield

δj+1 . 2δj +Nσ′−σ
(

1 + Cp−2
(

log
1 + T

δ

)(p−2)σ+
)

for τj ≤ T hence

‖u(T )− uN (T )‖Hσ′ . CJ+1Nσ′−σ
(

1 + Cp−2
(

log
1 + T

δ

)(p−2)σ+
)

+ CJNσ′−σA

for J = ⌊ T
τA

⌋ and C > 0 a positive constant. Taking N large enough depending on T and δ gives

‖u(T )‖Hσ ≤ C
(

log
1 + T

δ

)σ+

+ 1

hence u is well-defined up to T . The proof is complete with

Ω1 =
⋂

n≥1

Ω2−nδ
1,Nn

with Nn an increasing sequence to get a global solution.

�

This finally gives the following theorem with the invariance of the measure.

Theorem 4.6. The measure ν is invariant under the flow of equation (3.1) and the equation is
globally well-posed for ν-almost all initial data.

Proof : Let S ⊂ Hσ be a bounded measurable set with σ ∈ (σκ,
1
2 ). We have

|ν(ΦtS)− ν(S)| ≤ |ν(ΦtS)− νN (ΦN
t ΠNS)|+ |νN (ΦN

t ΠNS)− νN (ΠNS)|+ |νN (ΠNS)− ν(S)|

for anu t ∈ R and N ≥ 1. The second term is equal to zero by invariante of νN under the truncated
flow ΦN

t . For the third term, we have

|νN (ΠNS)− ν(S)| ≤ |νN (ΠNS)− ν(ΠNS)|+ |ν(ΠNS)− ν(S)|

where as N goes to infinity, the first term goes to 0 with Proposition 4.2 and the second term with
dominated convergence. The same holds for the first term with

|ν(ΦtS)− νN (ΦN
t ΠNS)| ≤ |ν(ΦtS)− ν(ΦN

t ΠNS)|+ |ν(ΦN
t ΠNS)− νN (ΦN

t ΠNS)|

hence the proof is complete for bounded S. The general result follows from the fact that
⋃

n≥0

Ω1,2−n

is an event of full measure for ν in L2(T) with Ω1,2−n ⊂ Hσ the set given by the previous proposition
with δ = 2−n for any σ < 1

2 .

�
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A – Paley-Littlewood theory

We give here results on Paley-Littlewood theory needed in our work. We omit the proofs and refer
for example to the book of Bahouri, Chemin and Danchin [2]. Consider two functions χ, ρ : Rd → R

such that χ is supported in a ball, ρ in an annulus

χ(z) +
∑

j≥0

ρ(2−jz) = 1

for all z ∈ R
d, supp(χ) ∩ supp(ρ(2−j·)) = ∅ and supp(ρ(2−i·)) ∩ supp(ρ(2−j ·)) = ∅ for |i − j| > 1,

this is called a dyadic parition of the unity. The Paley-Littlewood blocks are defiend as

∆−1u = F
−1χFu and ∆ju = F

−1ρ(2−j ·)Fu, j ≥ 0

and we have
u =

∑

j≥−1

∆ju.

Following the idea that decay of Fourier coefficient measures spatial regularity, one can consider
the Besov spaces defined by the norm

‖u‖Bα
p,q

=
(

∑

j≥−1

2αjq‖∆ju‖qLp

)
1
q

for p, q ∈ [1,∞] and α ∈ R with an ad hoc definition for q = ∞. One recovers the Sobolev spaces
Hα = Bα

2,2 for α ∈ R and the Hölder spaces Cα = Bα
∞,∞ for α ∈ R

+\N. We have the following
embeddings, duality and interpolation results.

Proposition A.1. The Besov spaces have the following properties.

i) For α ∈ R and p1, p2, q1, q2 ∈ [1,∞] such that p1 ≤ p2, q1 ≤ q2, we have

Bα
p1,q1

⊂ B
α−d( 1

p1
− 1

p2
)

p2,q2 .

ii) Let α1, α2 ∈ R such that α1 + α2 > 0 and p1, p2 ∈ [1,∞]. Then for any κ > 0, we have

‖uv‖Bα−κ
p,p

. ‖u‖Bα1
p1,p1

‖v‖Bα2
p2,p2

with α = α1 ∧ α2 and 1
p
= 1

p1
+ 1

p2
.

iii) Let α ∈ R and p, q ∈ [1,∞]. We have

|〈u, v〉| . ‖u‖Bα
p,q

‖v‖B−α

p′,q′

with 1 = 1
p
+ 1

p′ =
1
q
+ 1

q′
.

iv) For any θ ∈ (0, 1), let p, p1, p2, q, q1, q2 ∈ [1,∞] such that

1

p
=

1− θ

p1
+

θ

p2
,

1

q
=

1− θ

q1
+

θ

q2

and α, α1, α2 ∈ R such that
α = (1− θ)α1 + θα2.

Then we have
‖u‖Bα

p,q
. ‖u‖1−θ

B
α1
p1,q1

‖u‖θ
B

α2
p2,q2

.

The Paley-Littlewood decomposition can be used to define the paraproduct

Puv =
∑

n<m−1

∆nu∆mv

and resonant product
Π(u, v) =

∑

|n−m|≤1

∆nu∆mv,

this goes back to Coifman and Meyer [8] and Bony [4]. One can describe a produt as

uv = Puv + Π(u, v) + Pvu

and each operator satisfies the following continuity result.
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Proposition A.2. For α, β ∈ R, we have

‖Puv‖Cα∧0+β . ‖u‖Cα‖v‖Cβ .

If moreoever α+ β > 0, we have

‖Π(u, v)‖Cα+β . ‖u‖Cα‖v‖Cβ .

In Sobolev spaces, we have for α > 0

‖Puv‖Hβ . ‖u‖Hα‖v‖Cβ and ‖Puv‖Hβ . ‖u‖Cα‖v‖Hβ

while for α < 0 we get

‖Puv‖Hα+β . ‖u‖Hα‖v‖Cβ and ‖Puv‖Hα+β . ‖u‖Cα‖v‖Hβ

and finally if α+ β > 0,
‖Π(u, v)‖Hα+β . ‖u‖Hα‖v‖Cβ .

Finally, we introduce the truncated paraproduct

P
N
u v :=

∑

n<m−1
2n,2m≥N

∆nu∆mv

for any N ≥ 1. Since P
N −P only depends on a finite number of modes, it is a smoothing operator

while P
N satisfies the same continuity result as P for fixed N .

Proposition A.3. Let α > 0. Then for any N ≥ 1 and γ ∈ [0, α), we have

‖PN
u v‖Hγ (T) . N

α−β
2 ‖u‖L2(T)‖v‖Cα(T).
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