
ar
X

iv
:2

40
5.

00
58

4v
1 

 [
cs

.I
T

] 
 1

 M
ay

 2
02

4

Construction of extremal Type II Z8-codes
via doubling method

Sara Ban (sban@math.uniri.hr), ORCID: 0000-0002-1837-8701

Sanja Rukavina (sanjar@math.uniri.hr), ORCID: 0000-0003-3365-7925

Faculty of Mathematics, University of Rijeka
Radmile Matejčić 2, 51000 Rijeka, Croatia

Abstract

Extremal Type II Z8-codes are a class of self-dual Z8-codes with Euclidean weights
divisible by 16 and the largest possible minimum Euclidean weight for a given length.
We introduce a doubling method for constructing a Type II Z2k-code of length n

from a known Type II Z2k-code of length n. Based on this method, we develop an
algorithm to construct new extremal Type II Z8-codes starting from an extremal
Type II Z8-code of type (n2 , 0, 0) with an extremal Z4-residue code and length 24, 32
or 40.
We construct at least ten new extremal Type II Z8-codes of length 32 and type
(15, 1, 1). Extremal Type II Z8-codes of length 32 of this type were not known
before. Moreover, the binary residue codes of the constructed extremal Z8-codes are
optimal [32, 15] binary codes.
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1 Introduction

The discovery of good nonlinear binary codes arising via the Gray map from Z4-linear
codes motivated the study of codes over rings in general (see [14]). Construction of uni-
modular lattices with large minimum norm has motivated the construction of new self-dual
Z2k-codes with large minimum Euclidean weights (see, for example, [4, 10]). Especially,
Z8-codes have received attention by many researchers. For instance, some construction
methods for self-dual codes over Z8 for arbitrary length greater than 8 are given in [1].

Extremal Type II Z8-codes are a class of self-dual Z8-codes with Euclidean weights
divisible by 16 and the largest possible minimum Euclidean weight for a given length. For
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lengths 8 and 16, every Type II Z8-code is extremal (see [15]). In [13], the previously known
results on the existence of extremal Type II Z8-codes for greater lengths are summarized:
there are three such codes of length 24 (see [4, 11]), five codes of length 32, a large number of
codes of length 40 and one such code of length 48 (see [8, 9]), up to equivalence. In addition,
a new extremal Type II Z8-code Dn is constructed for each of the lengths n ∈ {24, 32, 40}
(see [[13], Subsection 5.2]).

The doubling method for a construction of Type II Z4-codes is introduced in [7]. It
was used for the construction of extremal Type II Z4-codes of length 32 and 40 in [2] and
[3], respectively. In this paper, we introduce a doubling method for constructing a Type
II Z2k-code of length n from a known Type II Z2k-code of length n. We also develop
an algorithm that uses this method to construct a Type II Z2m-code of length n from a
known Type II Z2m-code of length n. Finally, by specifying the method for m = 3 and
n ∈ {24, 32, 40}, we obtain an algorithm that is then used to construct at least 10 new
extremal Type II Z8-codes of length 32.

The paper is organized as follows. The next section gives definitions and basic prop-
erties of codes over Z2k that will be needed in our work. In Section 3, we introduce the
doubling method to construct new Type II Z2k-codes starting from a Type II Z2k-code.
Especially, we consider the codes over Z2m . Finally, in the last section, we present a method
to construct new extremal Type II Z8-codes starting from an extremal Type II Z8-code
of type (n

2
, 0, 0) with an extremal Z4-residue code and length 24, 32 or 40. Using this

method, we construct 68850 extremal Type II Z8-codes of type (15, 1, 1) and length 32.
We give the weight distributions of the corresponding binary residue codes. With respect
to these weight distributions, all constructed extremal Type II Z8-codes are divided into
ten classes. For each of them we give a generator matrix in the standard form for one class
representative.

2 Preliminaries

For terms not defined in this paper and the basic facts of coding theory we refer the reader
to [5, 16, 18].

Let Z2k denote the ring of integers modulo 2k. A linear code C of length n over Z2k

(i.e., a Z2k-code) is an additive subgroup of Zn
2k. Two codes over Z2k are equivalent if one

can be obtained from the other by permuting the coordinates and (if necessary) changing
the signs of certain coordinates. Codes differing by only a permutation of coordinates are
called permutation-equivalent. An element of C is called a codeword of C. A generator
matrix of C is a matrix whose rows generate C.

The dual code C⊥ of C is defined as

C⊥ = {x ∈ Z
n
2k | 〈x, y〉 = 0 for all y ∈ C},

where 〈x, y〉 = x1y1 + x2y2 + · · · + xnyn (mod 2k) for x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn). The code C is self-orthogonal when C ⊆ C⊥ and self-dual if C = C⊥.
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The Euclidean weight of a codeword x = (x1, x2, . . . , xn) ∈ Z
n
2k is

wtE(x) =
n∑

i=1

min{x2
i , (2k − xi)

2}.

It holds
wtE(x+ y) ≡ wtE(x) + wtE(y) + 2 〈x, y〉 (mod 4k) (1)

for all x, y ∈ Z
n
2k (see [4]). We denote the number of coordinates i (where i = 0, 1, . . . , 2k−1)

in a codeword x ∈ Z
n
2k by ni(x).

The minimum Euclidean weight dE of C is the smallest Euclidean weight among all
nonzero codewords of C. A self-dual Z2k-code is called Type II if it has the property that
every Euclidean weight is divisible by 4k. Type II Z2k-codes are a remarkable class of self-
dual codes related to even unimodular lattices. There is a Type II Z2k-code of length n
if and only if n is divisible by eight [4]. For Type II Z2k-codes C of length n, the upper
bound on the minimum Euclidean weight

dE(C) ≤ 4k
⌊ n

24

⌋
+ 4k (2)

holds for k = 1 and 2, and for k ≥ 3 it holds under the assumption that
⌊

n
24

⌋
≤ k − 2 (see

[4]). We say that a Type II Z2k-code meeting (2) with equality is extremal.
If C is a Z2m-code, then the code C(2k) = {x (mod 2k) | x ∈ C}, 1 ≤ k ≤ m− 1, is the

Z2k-residue code of C. Each code C over Z2m is permutation-equivalent to a code with a
generator matrix in standard form




Ik1 A1,2 A1,3 A1,4 · · · · · · A1,m+1

0 2Ik2 2A2,3 2A2,4 · · · · · · 2A2,m+1

0 0 4Ik3 4A3,4 · · · · · · 4A3,m+1
...

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...
0 0 0 · · · 0 2m−1Ikm 2m−1Am,m+1




,

where the matrix Ai,j has elements in Z2j−1 . We say that C is of type (k1, k2, k3, . . . , km).
The code C has

∏m

j=1(2
m−j+1)kj codewords.

In this work, we have used computer algebra systems GAP [17] and Magma [6].

3 Method of construction

In [7], the doubling method for a construction of Type II Z4-codes is introduced. In the next
theorem, we generalize results from [7] and give the doubling method for a construction of
Type II Z2k-codes.
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Theorem 3.1. Let k ≥ 2. Let C be a Type II Z2k-code of length n and let ni(x) denote the
number of coordinates i in x ∈ Z

n
2k. Let ku ∈ Z

n
2k \ C be a codeword with all coordinates

equal to 0 or k with the following property: if k is odd, nk(ku) is divisible by four, if k
is even and not divisible by four, nk(ku) is even. Let C0 = {v ∈ C | 〈ku, v〉 = 0}. Then

C̃ = C0 ⊕ 〈ku〉 is a Type II Z2k-code.

Proof. The Euclidean weight wtE(ku) = nk(ku) · k
2 is divisible by 4k and 〈ku, ku〉 = 0. It

follows from (1) that C̃ is self-orthogonal with all Euclidean weights divisible by 4k.
The codeword ku /∈ C, so there is a codeword w ∈ C such that 〈ku, w〉 = k. Suppose

w̃ ∈ C \ C0. Then 〈ku, w̃〉 = k. Therefore, w̃ ∈ C0 + w and C0 and C0 + w are the only

cosets of C0 in C. Since |C̃| = |C0| · 2 = |C| , C̃ is a Type II Z2k-code.

When considering Type II Z2m-codes, we can restrict the possible choices for ku =
2m−1u ∈ Z

n
2m \ C.

Theorem 3.2. Let m ≥ 2. Let C be a Type II Z2m-code of length n and type (k1, k2, . . . , km).
The choice of 2m−1u ∈ Z

n
2m \C in Theorem 3.1 can be limited to codewords with zeroes on

the first k1 + k2 + · · ·+ km coordinates.

Proof. For every 2m−1u ∈ Z
n
2m \ C satisfying the conditions of Theorem 3.1, there exists

a unique codeword 2m−1v ∈ C with all coordinates equal to 0 or 2m−1 such that 2m−1u
coincides with 2m−1v on the first k1 + k2 + · · · + km entries. Then C0 ⊕ 〈2m−1u〉 = C0 ⊕
〈2m−1u− 2m−1v〉 .

Now, we generalize the statement of [[3], Theorem 5] to Type II Z2m-codes.

Theorem 3.3. Let m ≥ 2. Let C be a Type II Z2m-code of length n and type (k1, k2, . . . , km).
Let G be a generator matrix of C in standard form and Gi the ith row of G. Let 2m−1u ∈
Z
n
2m \C be a codeword with zeroes on the first k1 + k2 + · · ·+ km coordinate positions such

that n2m−1(2m−1u) is even if m = 2. Let B = {G1, . . . , Gk1+k2+···+km}. The following process

yields a generator matrix G̃ of the Z2m-code C̃ obtained from C and 2m−1u by the doubling
method.

Step 1: Let BE = {Gi ∈ B | 〈Gi, 2
m−1u〉 = 0} and BO = B \BE .

Step 2: Pick Gi ∈ BO arbitrarily. Define B′

O = {Gi +Gj |Gj ∈ BO}.

Step 3: Let G̃ be a matrix whose rows are the elements of the set B′

O∪BE ∪{2m−1u}.

The resultant code C̃ is of type




(k1 − 1, k2 + 2), if m = 2,
(k1 − 1, k2 + 1, k3 + 1), if m = 3,

(k1 − 1, k2 + 1, k3, . . . , km−1, km + 1), if m ≥ 4.

The code C̃ is independent of the choice of Gi in Step 2.
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Proof. The set BO is not empty because C is self-dual and 2m−1u /∈ C. Further, for all
t = k1 + 1, . . . , k1 + k2 + · · ·+ km it follows Gt ∈ BE . For Gi, Gj ∈ BO, we have

〈
Gi +Gj, 2

m−1u
〉
=

〈
Gi, 2

m−1u
〉
+
〈
Gj, 2

m−1u
〉
= 0,

and Gi +Gj is an codeword with all even coordinates if and only if i = j.

Note that 〈B′

O ∪ BE〉 = {v ∈ C | 〈2m−1u, v〉 = 0}. It follows that C̃ is of type





(k1 − 1, k2 + 2), if m = 2,
(k1 − 1, k2 + 1, k3 + 1), if m = 3,

(k1 − 1, k2 + 1, k3, . . . , km−1, km + 1), if m ≥ 4.

The independence follows from the fact that

Gk +Gj = (Gi +Gk) + (Gi +Gj) + (2m−1 − 1)(Gi +Gi).

4 Construction of extremal Type II Z8-codes

Here we consider an extremal Type II Z8-code C of length n ∈ {24, 32, 40} and type
(n
2
, 0, 0) which has an extremal residue code C(4). Using the doubling method given in

the previous chapter, we developed an algorithm for a construction of extremal Type II
Z8-codes C̃ of length n and type (n

2
− 1, 1, 1).

Note that wtE(x) = n1(x) + n7(x) + 4(n2(x) + n6(x)) + 9(n3(x) + n5(x)) + 16n4(x), for
x ∈ Z

n
8 .

Theorem 4.1. Let n ∈ {24, 32, 40}. Denote by Si(w) the set of positions with the element
i ∈ Z8 in w ∈ Z

n
8 . Let C be an extremal Type II Z8-code of length n and type (k1, k2, k3)

where C(4) is extremal. Suppose 4u ∈ Z
n
8 is a codeword with all coordinates equal to 0 or 4

such that S4(4u) ⊆ {k1 + k2 + k3 + 1, . . . , n}, where |S4(4u)| ≥ 2. If there is no codeword
v of C that satisfies any of the following conditions:

1. S3(v) ∪ S4(v) ∪ S5(v) ⊆ S4(4u) ⊆ S2(v) ∪ S3(v) ∪ S4(v) ∪ S5(v) ∪ S6(v) and

wtE(v (mod 4)) = 16,

2. |S4(4u) \ S4(v)|+ |S4(v) \ S4(4u)| = 1 and wtE(v (mod 4)) = 0,

then the Type II Z8-code C̃ generated by 4u and C using the doubling method is extremal.
These choices of 4u are the only candidates for the code C in the doubling method which
lead to an extremal code.
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Proof. It follows from Theorem 3.2 that the choices of 4u can be limited to codewords with
zeroes on the first k1+k2+k3 coordinates. Let us assume that the code C̃ is not extremal.
Then it contains a codeword of Euclidean weight 16 of the form w = v + 4u, where v ∈ C
is such a codeword that 〈v, 4u〉 = 0, and

wtE(w) = W + 8(n3(w) + n5(w)) + 16n4(w),

where W = n1(w)+n7(w)+n3(w)+n5(w)+4(n2(w)+n6(w)). It holds W = 0 or W ≥ 16,
since C(4) is extremal. There are three cases to consider.
Case 1: W > 16.
Then wtE(w) ≥ 32.
Case 2: W = 16.
For wtE(w) to be equal to 16, n3(w) = n4(w) = n5(w) = 0, which is impossible because of
the first condition.
Case 3: W = 0.
This condition implies that w and v have all coordinates equal to 0 or 4. Then, for wtE(w) =
16n4(w) to be equal to 16, n4(w) = 1, which is impossible because of the second condition.

The resulting choices for 4u are the only candidates for the code C in the doubling
method, since the conditions of the theorem exclude all choices that lead to a code C̃
which is not extremal.

For an extremal Type II Z8-code C of length n ∈ {24, 32, 40} and type (n
2
, 0, 0) which

has an extremal residue code C(4), the next algorithm returns all unsuitable candidates
4u, i.e., the candidates for which the application of the doubling method leads to a Type
II Z8-code C̃ which is not extremal. Thus, performing the given steps will find all possible
candidates 4u for code C to produce a new extremal Type II Z8-code C̃ by the doubling
method.

Algorithm C
Let n ∈ {24, 32, 40}. Denote by Si(w) the set of positions with the element i ∈ Z8 in
w ∈ Z

n
8 . Let C be an extremal Type II Z8-code of length n and type (n

2
, 0, 0), where C(4)

is extremal, with the generator matrix G =
[
In

2
A

]
in the standard form.

1. Let v = (v1, . . . , vn) ∈ C(4) be a codeword of Euclidean weight 16.

1.2. Let Fv = {v1, . . . , vn
2
}, Av = S2(v) ∩ Fv and Bv = S3(v) ∩ Fv.

1.3. Repeat the following steps on all A ⊆ Av :

1.3.1. Calculate v′ = v + 4sA + 4sBv
, where sA is the sum of rows in the generator

matrix G of C with row indices in A and sBv
is the sum of rows in G with row

indices in Bv.
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1.3.2. Let
Ov′ = (S2(v

′) ∪ S6(v
′)) ∩

{n

2
+ 1, . . . , n

}
,

Pv′ = S4(v
′) ∩

{n

2
+ 1, . . . , n

}
,

Qv′ = (S3(v
′) ∪ S5(v

′)) ∩
{n

2
+ 1, . . . , n

}
.

1.3.3. Let B be the collection of all sets

B = O ∪ Pv′ ∪Qv′ , O ⊆ Ov′,

where |B| ≥ 2.

2. For all i ∈ {1, . . . , n
2
}, do the following.

2.1. Let Oi = S4(4Gi) ∩
{

n
2
+ 1, . . . , n

}
, where Gi is the ith row of G.

2.2. Include all Oi such that |Oi| ≥ 2 in B.

Our method of construction is based on the following theorem.

Theorem 4.2. Let n ∈ {24, 32, 40}. Denote by Si(w) the set of positions with the element
i ∈ Z8 in w ∈ Z

n
8 . Let C be an extremal Type II Z8-code of length n and type (n

2
, 0, 0),

where C(4) is extremal. Furthermore, let S be the collection of all S ⊆
{

n
2
+ 1, . . . , n

}
such

that |S| ≥ 2. Then G = S \B is the set of all possible S4(4u) for the code C in the doubling

method which lead to an extremal Type II Z8-code C̃ of length n and type (n
2
− 1, 1, 1),

where B is the set obtained by applying Algorithm C.

Proof. The first condition in Theorem 4.1 is checked in Step 1. of Algorithm C. Since the
condition requires that S3(v)∪ S4(v)∪ S5(v) ⊆ S4(4u), the coefficients of the rows of G in
the linear combination of v cannot be 3, 4 or 5. Step 1.3.1. generates all such codewords
v′ with wtE(v

′ (mod 4)) = 16. All subsets B = S4(4u) satisfying the first condition are
included in B in Step 1.3.3.

The second condition of Theorem 4.1, implies that v is one of the rows of G with
coefficient 4. These codewords are considered in Step 2.

4.1 New extremal Type II Z8-codes of length 32

Six inequivalent extremal Type II Z8-codes of length 32 are known: C8,32,i, i = 1, . . . , 5
from [15] and D32 from [13]. Since all of them are of type (16, 0, 0), we investigate the pos-
sibility of constructing new extremal Type II Z8-codes of length 32 by using the introduced
doubling method. The result of our analysis is given in Proposition 4.3.

Proposition 4.3. There are at least 10 inequivalent extremal Type II Z8-codes of length
32 and type (15, 1, 1).
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Proof. The extremal Type II Z8-codes C8,32,1 and C8,32,2 are of type (16, 0, 0) and length 32
and have extremal Z4-residue codes. So, we can apply Theorem 4.2. We applied Algorithm
C and found 23067 candidates 4u for a construction of extremal Type II Z8-codes of type
(15, 1, 1) and length 32 from C8,32,1 by doubling method. Also, we found 22818 candidates
4u for a construction of extremal Type II Z8-codes of type (15, 1, 1) and length 32 from
C8,32,2 by doubling method.

The extremal Type II Z8-codes C8,32,i, i = 3, 4, 5 are of type (16, 0, 0) and length 32
and have Z4-residue codes of minimum Euclidean weight 8. So, we cannot apply Theorem
4.2 to obtain new extremal Type II Z8-codes from C8,32,i, i = 3, 4, 5 using the doubling
method.

Further, the extremal Type II Z8-code D32 is of type (16, 0, 0) and length 32 and it
has an extremal Z4-residue code. So, we can apply Theorem 4.2. We applied Algorithm
C and found 22965 candidates 4u for a construction of extremal Type II Z8-codes of type
(15, 1, 1) and length 32 from D32 by doubling method.

We use Theorem 3.3 to obtain the generator matrices for the 68850 constructed ex-
tremal Type II Z8-codes of type (15, 1, 1) and length 32. Using Magma ([6]), we calculated
the weight distributions of the corresponding 68850 binary residue codes and obtained
that, with respect to the weight distribution of their binary residue codes, all constructed
extremal Type II Z8-codes are distributed into 10 classes. The corresponding weight dis-
tributions are given in Table 1.

i 0 8 12 16 20 24 32

C1
(2) Wi 1 316 6912 18310 6912 316 1

C2
(2) Wi 1 332 6848 18406 6848 332 1

C3
(2) Wi 1 337 6888 18259 7000 283 0

C4
(2) Wi 1 305 6952 18259 6936 315 0

C5
(2) Wi 1 308 6944 18262 6944 308 1

C6
(2) Wi 1 300 6976 18214 6976 300 1

C7
(2) Wi 1 364 6720 18598 6720 364 1

C8
(2) Wi 1 380 7168 17670 7168 380 1

C9
(2) Wi 1 324 6880 18358 6880 324 1

C10
(2) Wi 1 340 6816 18454 6816 340 1

Table 1: Weight distributions of the binary residue codes

For each of the obtained weight distribution classes we give the generator matrix in
standard form of one extremal Type II Z8-code of length 32 and type (15, 1, 1), namely,
the generator matrices for the following class representatives:

C1 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {17, 19, 21, 22},

C2 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {17, 18, 20, 21},

8



C3 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {17, 19, 21},

C4 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {17, 19, 20, 21, 22},

C5 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {17, 18, 19, 20},

C6 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {17, 18, 19, 20, 21, 22},

C7 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {18, 24, 25, 27},

C8 = C8,32,10 ⊕ 〈4u〉 , S4(4u) = {20, 25},

C9 = C8,32,20 ⊕ 〈4u〉 , S4(4u) = {17, 18, 19, 21},

C10 = C8,32,20 ⊕ 〈4u〉 , S4(4u) = {17, 21, 24, 25}.

Those are, respectively:

G1 =



























































10000000000000003476716356020474
01000000000000001703275645602047
00100000000000002574363514560204
00010000000000010615011726731415
00001000000000001365303604145602
00000100000000013130517745777155
00000010000000012611632063324043
00000001000000011163700305167532
00000000100000003474020675235254
00000000010000002347402047523525
00000000001000000234740234752352
00000000000100013461057440750622
00000000000010011200362013622110
00000000000001011426617330117347
00000000000000100100242336536347
00000000000000022004046042646062
00000000000000004040440000000000



























































, G2 =



























































10000000000000003032756356020474
01000000000000011003437173330306
00100000000000002574363514560204
00010000000000003257436341456020
00001000000000001721343604145602
00000100000000002532574360414560
00000010000000001657657406041456
00000001000000010665127256332404
00000000100000013130222123763513
00000000010000002347402047523525
00000000001000010770142562400611
00000000000100012163276311123574
00000000000010010346541764075062
00000000000001000464634753634752
00000000000000111142225713011734
00000000000000020200404664264606
00000000000000004404400000000000



























































,

G3 =



























































10000000000000010034371733303061
01000000000000012301250222165434
00100000000000002574363514560204
00010000000000003257436341456020
00001000000000001365343604145602
00000100000000002532574360414560
00000010000000001213657406041456
00000001000000011163740305167532
00000000100000003474020675235254
00000000010000002347402047523525
00000000001000000234740234752352
00000000000100002063074063475235
00000000000010011200362013622110
00000000000001000020634753634752
00000000000000100100202336536347
00000000000000022004046042646062
00000000000000004040400000000000



























































, G4 =



























































10000000000000003472716356020474
01000000000000012305210222165434
00100000000000002574363514560204
00010000000000003257436341456020
00001000000000012767326261420277
00000100000000013130517745777155
00000010000000001217617406041456
00000001000000000561765720604145
00000000100000003474020675235254
00000000010000013745425424006112
00000000001000000234740234752352
00000000000100002067034063475235
00000000000010011200362013622110
00000000000001011422617330117347
00000000000000100104242336536347
00000000000000022004046042646062
00000000000000004044440000000000



























































,
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G5 =



























































10000000000000003072356356020474
01000000000000011003437173330306
00100000000000002574363514560204
00010000000000013753230677104367
00001000000000011465545132673141
00000100000000002532574360414560
00000010000000011313051734577715
00000001000000000161325720604145
00000000100000003474020675235254
00000000010000002347402047523525
00000000001000010730542562400611
00000000000100012163276311123574
00000000000010000602347436347523
00000000000001000424234753634752
00000000000000111102625713011734
00000000000000020200404664264606
00000000000000004444000000000000



























































, G6 =



























































10000000000000003072716356020474
01000000000000001307275645602047
00100000000000012270525042216543
00010000000000003257436341456020
00001000000000001761303604145602
00000100000000002532574360414560
00000010000000001617617406041456
00000001000000010665127256332404
00000000100000003474020675235254
00000000010000002347402047523525
00000000001000000234740234752352
00000000000100002467034063475235
00000000000010010306501764075062
00000000000001010120036201362211
00000000000000111102265713011734
00000000000000020200404664264606
00000000000000004444440000000000



























































,

G7 =



























































10000000000000000736356436520474
01000000000000011641650322265434
00100000000000001274363114560204
00010000000000013455451236631415
00001000000000001525743364045602
00000100000000000232574170214560
00000010000000000553257246041456
00000001000000002425325130604145
00000000100000011472043462110641
00000000010000001247402747023525
00000000001000003034740664752352
00000000000100000623474443275235
00000000000010003002347646347523
00000000000001002460234433134752
00000000000000101440602576736347
00000000000000022204046442046062
00000000000000004000000440400000



























































, G8 =



























































10000000000000010576150634556733
01000000000000013007437113330306
00100000000000010630165062216543
00010000000000013313230677104367
00001000000000013465545112673141
00000100000000002536574320414560
00000010000000013313051714577715
00000001000000011661127206332404
00000000100000012534622173763513
00000000010000013403204365251064
00000000001000012370542542400611
00000000000100011163276321123574
00000000000010012746141744075062
00000000000001010120036201362211
00000000000000102402023415363475
00000000000000022204404604264606
00000000000000004004000000000000



























































,

G9 =



























































10000000000000003076052565220712
01000000000000003743645266522071
00100000000000010566173551245033
00010000000000003637436417665220
00001000000000000723343601766522
00000100000000002436374360176652
00000010000000013075046441402411
00000001000000000164763736601766
00000000100000010041231556227000
00000000010000003221702247363425
00000000001000002762570234736342
00000000000100002350263252546347
00000000000010000663221746347363
00000000000001001066322154634736
00000000000000103546232225463473
00000000000000020024026046066460
00000000000000004440400000000000



























































, G10 =



























































10000000000000003436052125220712
01000000000000011653420430260330
00100000000000010204547300310546
00010000000000003637436417665220
00001000000000012273526053424061
00000100000000002436374360176652
00000010000000013153412630555124
00000001000000012434146100347225
00000000100000002217022573634254
00000000010000003221702247363425
00000000001000002322570674736342
00000000000100002632617423473634
00000000000010012573404550005622
00000000000001001066322154634736
00000000000000111016015037121732
00000000000000020620046064204606
00000000000000004000400440000000



























































.

So, we obatined at least 10 new inequivalent extremal Type II Z8-codes of length 32.

Proposition 4.3, together with results from [13] and [15], yields the following theorem.

Theorem 4.4. There are at least 16 inequivalent extremal Type II Z8-codes of length 32.
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Remark 4.5. According to [12], binary [32, 15, 8] codes are the optimal binary [32, 15]
codes. Therefore, all constructed extremal Type II Z8-codes of length 32 have optimal
binary residue codes.
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