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ABSTRACT

Automatic grading and feedback have been long studied using
traditional machine learning and deep learning techniques
using language models. With the recent accessibility to high
performing large language models (LLMs) like LLaMA-2,
there is an opportunity to investigate the use of these LLMs
for automatic grading and feedback generation.

Despite the increase in performance, LLMs require signifi-
cant computational resources for fine-tuning and additional
specific adjustments to enhance their performance for such
tasks. To address these issues, Parameter Efficient Fine-
tuning (PEFT) methods, such as LoRA and QLoRA, have
been adopted to decrease memory and computational require-
ments in model fine-tuning. This paper explores the efficacy
of PEFT-based quantized models, employing classification
or regression head, to fine-tune LLMs for automatically as-
signing continuous numerical grades to short answers and
essays, as well as generating corresponding feedback.

We conducted experiments on both proprietary and open-
source datasets for our tasks. The results show that predic-
tion of grade scores via finetuned LLMs are highly accurate,
achieving less than 3% error in grade percentage on average.
For providing graded feedback fine-tuned 4-bit quantized
LLaMA-2 13B models outperform competitive base mod-
els and achieve high similarity with subject matter expert
feedback in terms of high BLEU and ROUGE scores and
qualitatively in terms of feedback.

The findings from this study provide important insights into
the impacts of the emerging capabilities of using quantiza-
tion approaches to fine-tune LLMs for various downstream
tasks, such as automatic short answer scoring and feedback
generation at comparatively lower costs and latency.

Keywords

*This work was completed during an internship at Coursera.

Alexander Gain
Coursera

again@coursera.org

Yen-Yun Yu
Coursera
yyu@coursera.org

Automated grading, LLMs, QLoRA, Finetuning

1. INTRODUCTION

With the rapid advancements of artificial intelligence (AI)
and natural language processing (NLP) approaches, there
has been increasing interest in developing more Al-powered
grading and feedback systems for educational purposes [21,
, 3, 29, 38, 25]. Research has extensively explored auto-
matic scoring and feedback generation, yet natural language
responses, specifically short answers and essays, present on-
going challenges due to their varying length, focus, and level
of openness. [6] With the advent and wider availability of
language models, the potential for leveraging these technolo-
gies to enhance the capabilities of automatic grading and
feedback systems has been a focus of investigation. These ad-
vancements are not intended to supplant educators but rather
to augment their capabilities, offering time-saving benefits
and enabling personalized feedback for students, a particu-
larly valuable asset in settings where instructor resources are
constrained, such as online education environments.

The introduction of high-capacity large language models
(LLMs) like OpenAT’s GPT [26] and its successors, along with
Meta’s LLaMA-2 [31], opens new avenues for exploring the
application of cutting-edge LLMs in automated grading and
feedback provision. While access to top-tier LLMs including
GPT-3 [5], GPT-4 [23], Chinchilla [14], and both iterations
of PaLM [7, 2] remains restricted, the release of models
like Falcon [1], LLaMA [30], and LLaMA-2 [31] under open-
access terms has democratized access to powerful LLMs. This
newfound accessibility enables their fine-tuning for a range
of specialized tasks, including the automation of grading and
feedback generation.

Fine-tuning LLMs involve adapting the expansive knowl-
edge of the pretrained LLMs for a target task, leading to
the successful impacts of LLMs across many fields and ap-
plications [33]. In the context of automatic grading and
feedback generation, fine-tuning these LLM often require two
distinct approaches: For automatic grading, one common
approach involves using discriminative techniques, such as
classification and regression; whereas generative methods,
which have grown in popularity due to the rise of GenAl,
utilize generative models. With most high-performing LLMs
primarily designed for generative tasks, our work aims to
investigate the use of these LLMs for regression purposes as
well, marking an innovative approach by integrating both
capabilities into a unified system for advanced grading and



feedback generation.

Despite their improved performance, a significant challenge
with LLMs is their demand for considerable computational
resources during fine-tuning and inference phases. To miti-
gate this, there has been a growing interest in quantization
techniques [34, 37]. Quantization is done by compressing
floating-point numbers to lower bit width numbers like int8
and int4. These techniques aim to reduce memory and
computational demands without substantially compromis-
ing the model’s performance. Such strategies fall under the
umbrella of Parameter-efficient fine-tuning (PEFT), as dis-
cussed in [19], where the focus is on fine-tuning a small
number of parameters while retaining the core capabilities
of LLMs. However, PEFT has mainly been applied for gen-
erative fine-tuning tasks as opposed to discriminative tasks
like classification and regression.

In this work, we explored the effectiveness of fine-tuned 4-bit
quantized LLama-2 models for automatically grading grading
and feedback generation on our proprietary dataset and an
open source dataset [13]. We conducted several experiments
to examine the possibilities for an LLM-based grading and
feedback system using quantized models. Specifically, we
made adjustment to the model architecture for a regression
tasks and then utilized supervised instruction fine-tuning, a
well-known approach for finetuning LLMs. In particular, we
investigate the following research questions:

e RQ1: Can fine-tuning quantized LLaMA-2 be lever-
aged to improve upon existing ML /DL approaches for
automatic grading?

e RQ2: Can fine-tuning quantized LLaMA-2 be lever-
aged to improve upon existing ML /DL approaches for
automatic feedback generation?

e RQ3: Can combining the regression and generative
approaches lead to higher quality feedback generation?

To this end, we conducted experiments on open-source and
proprietary datasets for our tasks. We demonstrate that
fine-tuned LLMs, including a 4-bit quantized version of the
LLaMA-2 13B model, can predict grades with remarkable
accuracy, averaging less than 3% error in grade percentage.
For providing graded feedback fine-tuned 4-bit quantized
LLaMA-2 13B models outperform competitive base mod-
els and achieve high similarity with subject matter expert
feedback in terms of high BLEU and ROUGE scores and
qualitatively in terms of feedback. The findings from this
study will provide important insights into the impacts of the
emerging capabilities of using quantization approaches to
fine-tune LLMs for various downstream tasks, such as auto-
matic short answer scoring and feedback generation, offering
a more cost-effective and efficient solution while maintaining
high accuracy and quality of feedback.

2. BACKGROUND & RELATED WORK

The emergence of transformer models in 2017 have revolu-
tionalized NLP, with transformer models serving as state-of-
the-art (SOTA) baselines for the many NLP tasks [32]. Pre-
trained transformer-based models (PTMs) such as Bert [11],

RoBerTa [20], T5 [27], GPT-2 [26], which have served as the
foundation of advanced LLMs such as OpenAl's GPT-4 [23],
Google’s PaLM-2 [2] and Meta’s Llama-2 [30] are becoming
increasingly popular. The main difference between LLMs is
the pretraining strategies utilized. Based on the transformer
architecture, LLMs can be trained based on an encoder-only,
decoder-only, or encoder-decoder transformer-based archi-
tectures [32]. Another important difference between LLMs
is whether the model was trained for discriminative or gen-
erative purposes. Discriminative model training involves
classifying or predicting an output from a set of categories,
focusing on understanding and categorizing input data. This
is different from generative models, which aim to generate
new content. Discriminative models are commonly used in
encoder-only and encoder-decoder based models, such as
BERT [11], XLNet [36], RoBERTa [20], and T5 [27], mainly
applying masked language modeling. Generative model train-
ing, on the other hand, has become a common approach for
some of the most popular LLMs such as GPT-3 [5], GPT-4
[23], PaLM [7], Llama [30], and Llama-2 [31]. These mod-
els are autoregressive in nature and have been trained for
next-word prediction.

Pretraining LLMs provides an effective starting point for
many NLP tasks; as they can be fine-tuned for specific tasks
to yield better performance. Fine-tuning LLMs has been
found to improve model performance and generalization
[35]. Recently, researchers have explored supervised instruct-
tuning, especially for newer LLMs using PEFT quantization
approaches such as LoRA, QLoRA. PEFT is used to down-
cast the data types from 32-bit float into lower precision
data types. Down-casting data types to make model training
faster is not a new idea. PERT with LoRA involves using
the low-ranking matrices to recover the fine-tuned weight
matrix and then added to the original model weight to get
the final weights. [9]

3. EXPERIMENT SETTINGS

In this section we present our experiments for automatic
scoring using regression models and feedback generation using
the generative large language models. We experimented on
two datasets: an open-source short answer and feedback
dataset (English version)[13] ' and an proprietary short-
answer and essay dataset. Our goal was to test the hypotheses
that the 4-bit quantized version of LLaMA-2 model will
perform on-par or better than other LLMs for both regression
and generative tasks, with the idea that combining the two
approaches can lead to even better performance. We describe
this approach is section 4.

3.1 Datasets

Short Answer and Feedback (SAF) dataset [13]: The SAF
dataset was recently introduced by Filighera et al. as a
comprehensive dataset that can be used for both automatic
grading and feedback generation. The original dataset pre-
sented in the paper is comprised of an assortment of both
English and German short answer questions. For our study,
we are using the version that contains 31 English-only ques-
tions covering a college level communications networks topics.
The dataset was split into 1700 instances for training, 427

Link to dataset on HuggingFace
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instances for validation, 375 instance for testing unseen an-
swers to the questions in the train set and 479 instances of for
testing unseen question that do not appear in the train set.
Each student’s answer was scored by two graduate students,
who had completed the communications networks course and
two experienced appJobber employees using an annotation
guide provided by the researcher. All English answers were
annotated twice.

Proprietary dataset: This is a proprietary dataset consisting
of assessment questions, student answers, with accompanying
graded scores and feedback for the answers, in a variety of
subjects.

3.2 Choice of Pretrained Models

The transformer model architecture, introduced by Vaswani
et al. [32], has emerged as a powerful paradigm for natu-
ral language processing tasks. Unlike traditional recurrent
or convolutional architectures, transformers leverage self-
attention mechanisms to capture global dependencies and
contextual information efficiently. This capability makes
transformers highly effective for various natural language
discriminative and generative tasks. Pretrained Transformer
Models (PTM) have significantly advanced the field of Nat-
ural Language Processing (NLP), thanks to the extensive
knowledge derived from vast training data. For this work,
we will be fine-tuning the following pretrained transformer
models:

3.2.1 RoBERTa

RoBERTa [20], Robustly Optimized BERT approach, builds
on the original BERT and modifies the pretraining strategies,
such as using byte-pair encoding [28, 4], modifying BERT’s
static MLM objective to a dynamic MLP, removing the next-
sentence pretraining objectives and modifying key training
parameters. Recently, RoOBERTa has been found to outper-
form other traditional deep learning and BERT models for
DA classification tasks [12].

3.2.2 GPT-2

GPT-2 [20] is a second generation variant of the GPT, pro-
posed by Radford et al., focusing on generative language
modeling. GPT models are decoder-only transformer-based
models pretrained on large-scale datasets. GPT uses a causal
language modeling objective and is therefore powerful at pre-
dicting the next token in a sequence. GPT-based models
have been successful in tasks such as text classification, sum-
marization, and question answering. The models leverage
the autoregressive nature of the Transformer architecture to
generate high-quality text samples.

3.2.3 LLaMA-2

LLaMA-2 [31] is a collection of newly released open-source
LLMs based on the LLaMA [30] by Meta GenAl The release
of these open-source LLaMA-2 models creates opportunities
for the research community to fine-tune the actual weights
and biases of the models with transparency and visibility to
the model architecture and pretraining process. However, like
most recent LLMs, LLaMA-2 is a decoder-only transformer
model developed mainly for generative tasks.

4-bit Quantization of LLaMA-2: Despite the open access

to LLaMA-2 models, the high computational demands pose
significant challenges. For instance, fine-tuning a LLaMA-2
7B model with full precision requires approximately 112GB of
GPU memory, exceeding the capacity of consumer GPUs. To
mitigate this, there has been a growing interest in parameter
efficient fine-tuning (PEFT) [15] quantization approaches.
Recently, 4-bit quantization has shown optimal performance
resulting in reduced latency and memory use [10]. Equation
1 shows the formula for quantizing a 32-bit Floating Point
(FP32) tensor into a Int4 tensor with magnitude of [-7,7].
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3.3 Implementation details

In our experiments, all implementation was done in PyTorch
[24]. For each fine-tuning experiment with both variants of
RoBERTa, we set the following hyperparameters: we used a
batch size of 16 with an AdamW Optimizer with a learning
rate of 1 e-5 and weight decay of 0.01. We trained for 20
epochs, with early stopping set at 10. For LLaMA-2 model
variants, we use the bitandbytes [3] library for the model
quantization configuration. We attempted to use QLoRA [9]
with LoRA [16], which enabled us to fine-tune only about 1%
of the parameters, but we faced the challenge of fine-tuning
the LoRA and the 4bit model with the second corpus for our
cross-corpora fine-tuning approaches, so we used the QLoRA
configuration without LoRA, fine-tuning about 3.9% of the
parameters. We trained the quantized model for 10 epochs
using a batch size of 4 with a learning rate of 2 e-4 and a
maximum sequence length of 512. To save memory, we use a
paged 32-bit AdamW optimizer[18] and weight decay of 0.05
and mixed precision [22]. All training was done using single
NVIDIA A100 GPU.

3.4 Evaluation Metrics

For the regression tasks, we evaluated the models based on
their Root Mean Square Error (RMSE). Mean Absolute Error
(MAE), and Pearson’s correlation coefficient (p), providing
a dual perspective on both the accuracy and correlation
strength of predictions relative to the true values.

The lower values of MAE and RMSE, and the higher values
for p, BLEU, & ROUGE correspond to bette rmodel outputs.

4. RESULTS AND DISCUSSION

To evaluate the performance of the fine-tuned grading re-
gression model, we compared the performance of the 4-bit
quantized LLaMa-2 models with other existing open-source
LLMs for the open-source and proprietary datasets. We then
conduct experiments on graded feedback generation using
similar methods and comparisons.

For feedback generation, comparison is done between LLMs
that are supplied predicted grade scores versus those that are
not. We show the former leads to better performance. Figure
1 shows an overview of our highest performing systems in
terms of graded feedback and feedback generation.

4.1 Regression Models for Scores Prediction -
SAF dataset



Question + Stu-

dent Answer —> Grade Score Model

Grading rubric

.Q.ﬁ

Finetuned LLM

a —> Grade and feedback

Figure 1: An overview of our most performant models in terms of grading scores and grading feedback. Assessment questions,
student answers, and grading rubrics are supplied as inputs to our grade score and feedback generation models. The grade score
model outputs are supplied as input to our finetuned LLMs leading to higher performance. A highly accurate, w.r.t. domain

expert ground-truth, grade score and feedback is outputted.

Similarly to the original paper, we compared the models with
and without questions, Models with_questions received the
questions as additional inputs, while models without_questions
did not. Table 1 reports the results of the regression models
with fine-tuned RoBERTa, GPT-2 and LLaMa-2 7B evalu-
ated on the unseen answers test set, and also highlights the
results of the T5 model from the original paper.

Table 1: Comparison of scoring results on SAF dataset with
former approaches

Model RMSE MAE p
SAF dataset - Unseen Answers

T5wo,quest 0290 - -
T'Buw_quest 0.269 - -
RoBERT awo_quest 0.268 0.151 0.939
GPT2wo,quest 0.317 0.194 0.910

LLaM A — 2(7B) o quest(iora) 0.353  0.230 0.888
LLaMA = 2(7B)wo_quest(qioray ~ 0:265  0.179  0.931
LLaM A — 2(7B)., quest(giora) 0.257 0.168 0.934

The results showed that the base RoOBERTa model trained
without questions in the input outperformed the bench-
marked T5 model [13] with an RMSE of 0.268 and a p value
of 0.939. The quantized LLaMA-2 7B model outperformed
the benchmarked T5 model with an RMSE of 0.257. Inter-
estingly, though the LLaMA-2 models were trained primarily
for generative tasks, the model is able to outperform other
models when fine-tuning is applied for regression tasks.

4.2 Regression Models for Scores Prediction -

Proprietary dataset
The experimental results presented in Table 2 showcase
the performance of various models on both the proprietary
dataset and its upsampled version. In the context of the pro-
prietary dataset, it is evident that the LLaMA-2-13B model
with QLoRA consistently outperforms other models in terms
of Root Mean Square Error (RMSE) and Mean Absolute

Error (MAE), achieving an impressive RMSE of 0.036 and
MAE of 0.028. Despite RoBERTa and GPT-2 displaying
competitive results, with RoOBERTa achieving an RMSE of
0.052 and GPT-2 achieving an RMSE of 0.050, their per-
formance lags behind that of LLaMA-2-13B with QLoRA.
However, it is noteworthy that RoOBERTa and GPT-2 exhibit
relatively weaker performance in terms of Spearman’s rank
correlation coefficient (p), with values of 0.423 and 0.115,
respectively, compared to LLaMA-2-13B’s p of 0.512.

Table 2: Experimental Results

Model RMSE MAE p
Proprietary dataset

RoBERTa 0.052  0.039 0.423
GPT-2 0.050 0.036 0.115

LLaMA-2-7B w/QLoRA 0.039 0.030 0.337
LLaMA-2-13B w/QLoRA  0.036 0.028 0.512
Proprietary upsampled

RoBERTa 0.049  0.038 0.552
GPT-2 0.043 0.034 0.383
LLaMA-2-7B w/QLoRA 0.040 0.030 0.401
LLaMA-2-13B w/QLoRA  0.032 0.022 0.657

Upon examining the results on the upsampled version of
the proprietary dataset, we observe significant improvements
across all models. Notably, LLaMA-2-13B with QLoRA
achieves remarkable performance, yielding an RMSE of 0.032
and MAE of 0.022, which are notably lower compared to other
models. This underscores the efficacy of the LLaMA-2-13B
architecture combined with QLoRA in handling upsampled
data. Additionally, the Spearman’s rank correlation coeffi-
cient (p ) for LLaMA-2-13B with QLoRA notably increases
to 0.657, indicating its robustness in capturing the underlying
relationships within the upsampled dataset. Overall, these
results emphasize the importance of model architecture and
data preprocessing techniques in enhancing the predictive
performance of regression models, particularly in scenarios



involving imbalanced datasets.

4.3 Models for Feedback Generation

For feedback generation, we compare the performance of
our quantized LLaMA-2 models with LoRA to the base
LLM model GPT-2. The outcomes of these experiments are
valuable for two primary reasons: One is to test whether we
are able to achieve high-similarity to expert domain ground-
truth scores and feedback via the finetuning and quantization
methods. Two is to test whether supplying of accurate grade
score outputs is beneficial to performance.

The outcomes of these experiments and the answers to the
questions are seen in Table 3. We finetune models for 20
epochs each with a constant learning rate of 2e-4, weight
decay of 1le-3, and AdamW optimizer. The same 4-bit quan-
tization and lora settings prior described are used.

We see that LLaMA-13B are most performnant with respect
to expert feedback similarity as reported by relatively higher
BLEU and ROUGE scores for both the SAR dataset and
the proprietary dataset. The w/ grade rows of the table
correspons to models where the outputted predicted score is
supplied to the models as additional input. It’s evident that
supplying the grade scores provides increase in performance
with LLaMA-13 variant with grade score supplied achiev-
ing the best results with BLEU, ROUGE-1, and ROUGE-2
scores of 0.396, 0.232, and 0.137 respectively for the SAR
dataset and scores of 0.707, 0.775, and 0.737 for the propri-
etary dataset. This is further emphasized in Figure 2 where
there is clear advantage in terms of the validation loss and
generalization error when supplying the grade score.

To provide qualitative assessment of some questions and an-
swers from the SAR dataset, we show two randomly selected
question, answer pairs in Tables 4 and 5. We show the ques-
tion, provided answer, and ground truth score and feedback
for each. We also show the predicted scores and feedback
for the highest and lowest performing models, the LLaMA-2
model finetuned model with grade score supplied and the
GPT-2 model without grade score supplied for contrast in
terms of closeness to the ground-truth score, and quality of
graded feedback. In terms of quality, the example in Table
4 shows how the LLaMA-2 model has learned to give feed-
back that is similar in both style and content to the expert
feedback. The example in Table 5 showcases relatively more
how the LLaMA-2 model is closer in technical content than
the GPT-2 model with respect to the expert feedback.

4.4 Implications

The performance of the quantized LLaMA-2 models suggests
that we can augment the automatic grading and feedback
process in educational technologies, thereby significantly
enhancing the efficiency and scalability of online learning
environments. These advancements are intended to aug-
ment instructor capabilities, offering time-saving benefits
and enabling personalized feedback for students, a particu-
larly valuable asset in settings where instructor resources are
constrained, such as online education environments.

S. CONCLUSION AND FUTURE WORK

In this study, we have presented preliminary work towards
developing an auto-scoring method for student response and

Table 3: Experimental results for feedback generation on the
SAR dataset

Model BLEU ROUGE-1 ROUGE-2
SAR dataset

GPT-2 0.17 0.025 0.012
GPT-2 w/ grade 0.206 0.058 0.017
LLaMA-7B 0.24 0.060 0.026
LLaMA-7B w/ grade 0.352 0.187 0.099
LLaMA-13B 0.31 0.12 0.053
LLaMA-13B w/ grade 0.396 0.232 0.137
Proprietary dataset

GPT-2 0.0218 0.292 0.062
GPT-2 w/ grade 0.061 0.315 0.085
LLaMA-2-7B 0.617 0.716 0.642
LLaMA-2-7B w/ grade 0.657 0.759 0.682
LLaMA-2-13B 0.667 0.732 0.697
LLaMA-2-13B w/ grade  0.707 0.775 0.737

Validation Loss of Llama 13B Model With vs. Without Grade Score
30 — witho,

Figure 2: The plot shows the validation loss of the Llama
13B model over a subset of the training steps, comparing the
performance with and without the application of a grade score
supplied by the regression model. This plot highlights the
impact of the grade score leading to better generalization and
lower validation loss over time.

feedback generation using quantized LLaMA-2 models. The
quantized LLaMA-2 13B model, fine-tuned with QLoRA, has
shown exceptional performance in terms of accuracy, achiev-
ing a remarkable reduction in error rates and outperforming
baseline models in grading short answers and essays.

Furthermore, the application of these models to feedback
generation has yielded promising results, with quantized
LLaMA-2 models surpassing traditional LLMs like GPT-2
in generating feedback that closely aligns with expert eval-
uations. The incorporation of predicted grade scores as
additional input further enhanced the model’s performance.

Our results offer significant insights into the implications
of employing quantization techniques for fine-tuning large
language models (LLMs) for a variety of downstream appli-
cations, including automatic scoring of short answers and
generating feedback, at reduced costs and lower latency.

Limitations

Due to computing limitations, we were unable to investigate
the scaling behavior of the LLMs, such as investigating with
different precision and with larger models. Further experi-



Question

State at least 4 of the differences shown in the lecture between the UDP and TCP
headers.

Provided_Answer

While both (UDP and TCP headers) have source and destination port fields, every other
part of their headers differ. For UDP, only a packet length and a checksum field follows
the two previously mentioned fields. TCP needs more information. So after the source
and destination port, the header is followed by a sequence number field as well as a
field for the ack number. The TCP header also stores information on HL/RESV /Flags,
Window size, checksum (as in UDP), Urgent Pointer, and Options.

Ground Truth Score &
Feedback

1.0
The response correctly identifies four differences between TCP and UDP headers.

LLaMA-2 Model

Predicted Score &

1.0
The response correctly identifies four differences between TCP and UDP headers. full
marks will be awarded for this.

Feedback
GPT-2 Model
1.0
Predicted Score & It correctly answers the request correctly.
Feedback
Table 4: Example inputs and outputs of the LLAMA-2 and GPT-2 models
In the lecture you have learned about congestion control with TCP. Name the 2 phases
(@t of congestion control and explain how the Congestion Window (cwnd) and the Slow Start
Threshold (ss_thresh) change in each phase (after initialization, where cwnd = 1 and
ss_thresh = advertised window size) in 1-4 sentences.
The first phase is called “slow start”. After the initialisation, the sender starts sending
segments, and waits for the receiver to acknowledge them all. This number will double
every Round Trip Time (RTT) until the advertised window size is reached. If a timeout
Provided Answer happens beforehand, phase one is restarted immediately.

When ss_thresh is reached, phase two - “congestion avoidance” - is entered, when the
RTT will be increased linearly until a timeout occurs. When this occurs, phase one is
initialized again. These two phases will be repeated over and over again, the sending
rate will never be constant with TCP.

Ground Truth Score & Feedback

0.75

The response is correct except that in both the phases when the congestion occurs,
ss_thresh is set to half of the current size of the congestion window and the congestion
window is reset to one, which is not the same as the initialized value where cwnd = 1
and ss_thresh = advertised window.

LLaMA-2 Model

Predicted Score & Feedback

0.65

The response correctly explains the slow start and congestion avoidance phases of TCP.
However, the slow start phase is not entered immediately after the initialisation. Instead,
the sender waits for the acknowledgement of the first segment before entering the slow
start phase. In the congestion avoidance phase, the sender will decrease the congestion
window by 50% of the current window size.

GPT-2 Model

Predicted Score & Feedback

0.50

The response incorrectly describes a latency factor of 6. On the other hand, ss_thresh
uses 2x the latency factor with TCP only because its TCP latency factor is higher. The
error incorrectly refers to slow start (RTT) as a time lag. The response correctly identifies
different stages of slower start with TCP. The timings are not updated

Table 5: Example inputs and outputs of the LLAMA-2 and GPT-2 models.



ments and studies are need in the future to investigate the
impact of fine-tuning significantly larger LLMs, and whether
such LLMs can still be deployed cost-effectively.
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