
Screening of BindingDB database ligands against
EGFR, HER2, Estrogen, Progesterone and

NF-κB receptors based on machine learning and
molecular docking

Parham Rezaee,†,‡ Shahab Rezaee,† Malik Maaza,‡ and Seyed Shahriar Arab∗,¶

†Department of Biophysics, School of Biological Sciences, Tarbiat Modares University,
Tehran, Iran

‡UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology (U2ACN2),
College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
¶Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA

E-mail: ssarab@health.ucsd.edu

Abstract

Breast cancer, the second most prevalent cancer among women worldwide, necessitates
the exploration of novel therapeutic approaches. To target the four subgroups of breast can-
cer “hormone receptor-positive and HER2-negative, hormone receptor-positive and HER2-
positive, hormone receptor-negative and HER2-positive, and hormone receptor-negative and
HER2-negative” it is crucial to inhibit specific targets such as EGFR, HER2, ER, NF-κB, and
PR.

In this study, we evaluated various methods for binary and multiclass classification. Among
them, the GA-SVM-SVM:GA-SVM-SVM model was selected with an accuracy of 0.74, an F1-
score of 0.73, and an AUC of 0.94 for virtual screening of ligands from the BindingDB database.
This model successfully identified 4454, 803, 438, and 378 ligands with over 90% precision in
both active/inactive and target prediction for the classes of EGFR+HER2, ER, NF-κB, and
PR, respectively, from the BindingDB database. Based on to the selected ligands, we created
a dendrogram that categorizes different ligands based on their targets. This dendrogram aims
to facilitate the exploration of chemical space for various therapeutic targets.

Ligands that surpassed a 90% threshold in the product of activity probability and correct
target selection probability were chosen for further investigation using molecular docking.
The binding energy range for these ligands against their respective targets was calculated to
be between -15 and -5 kcal/mol. Finally, based on general and common rules in medicinal
chemistry, we selected 2, 3, 3, and 8 new ligands with high priority for further studies in the
EGFR+HER2, ER, NF-κB, and PR classes, respectively.

Introduction

Breast cancer, characterized by the highest
mortality rate among various cancer types, is
a widespread condition. The development and
progression of breast cancer are facilitated by
the interaction of estrogen and progesterone

receptors with breast cells.1 These hormones,
estrogen and progesterone, bind to their re-
spective receptors in the cytoplasm, leading to
dimerization and subsequent entry into the nu-
cleus. Additionally, they bind to estrogen and
progesterone response elements located near
the promoters of target genes. In a study by
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Shirazi, it was demonstrated that estradiol, an
estrogen hormone, alone promoted the growth
of MCF-7 cells compared to the control group.
Conversely, tamoxifen, a well-known estrogen
blocker, arrested the proliferation of MCF-7
cells for a minimum of five days. When both
the stimulator (estradiol) and blocker (tamox-
ifen) were applied together, the level of stimula-
tion in MCF-7 cell growth was reduced. Conse-
quently, both estrogen and progesterone con-
tribute to the initiation and acceleration of
breast cancer. An excessive presence of these
receptors indicates hormone (ER+/PR+) me-
diated breast cancer. Targeting estrogen and
progesterone hormones can aid in the identifi-
cation of potent inhibitors for breast cancer.2,3

EGFR is a transmembrane glycoprotein with
a crucial role in cell signaling. It consists
of a ligand-binding domain and a tyrosine ki-
nase domain. Binding with endogenous epi-
dermal growth factor (EGF) leads to dimer-
ization, autophosphorylation, and activation of
downstream pathways, resulting in cell prolif-
eration and differentiation.4 EGFR is a major
target in breast cancer, and anti-EGFR agents
have shown efficacy, especially in patients with
specific EGFR mutations. Tyrosine kinase in-
hibitors (TKIs) like gefitinib, erlotinib, and la-
patinib have been used to inhibit EGFR over-
expression.5,6

HER2 is a protein with tyrosine kinase activ-
ity encoded by the neu/erbB2/c-erbB2 onco-
gene. It belongs to the EGFR family and plays
a crucial role in the development of normal
and malignant breast tissue. Approximately
30% of human breast carcinomas exhibit HER2
amplification.7 HER2 interacts with insulin-like
growth factor receptor-1 and estrogen receptor,
initiating cell signaling. Targeting HER2 has
been a focus in anti-cancer drug development,
with the discovery of inhibitors like neratinib
and afatinib. However, further trials are needed
to confirm their efficacy against breast cancer.
HER2 overexpression can increase the activity
of MMP-2 and MMP-9 proteases, promoting in-
vasiveness of breast cancer cells.8 It also ampli-
fies VEGF expression and MMP-9 activity, po-
tentially triggering angiogenic responses. Clini-
cal studies have shown that breast cancer cases

with Erbb2 gene amplification have reduced re-
sponsiveness to certain treatments compared to
cases with normal ErbB2 expression.9,10

Nuclear factor-kappa B (NF-κB) is a tran-
scription factor that regulates the expression
of genes involved in cell proliferation, immuno-
logical responses, and inflammation. It con-
tributes to the development of breast tumors,
lymphoma, and colorectal cancer.11 In breast
cancer, NF-κB activation occurs downstream of
EGFR signaling, specifically in the ER-negative
subtype. HER-2 overexpression leads to the ac-
tivation of the PI3K/Akt pathway and induc-
tion of NF-κB. NF-κB plays a role in angiogene-
sis by stimulating the expression of VEGF and
IL-8. It can activate two signaling pathways:
the classical (canonical) pathway and the alter-
native (noncanonical) pathway.12 Drugs like la-
patinib and certain microtubule disruptors ac-
tivate NF-κB. In vitro studies have shown that
ginseng inhibits COX-2 and NF-κB activation
in breast cancer cell lines.13

Despite remarkable advancements in the field
of basic life sciences and biotechnology, the pro-
cess of drug discovery and development (DDD)
continues to be slow and costly. On aver-
age, it takes around 15 years and approxi-
mately US$2 billion to develop a small-molecule
drug.14 While clinical studies are widely ac-
knowledged as the most expensive phase in drug
development, the greatest potential for time
and cost savings lies in the earlier stages of dis-
covery and preclinical research. Preclinical ef-
forts alone account for over 43% of pharmaceu-
tical expenses, in addition to significant public
funding.14,15 This is primarily due to the high
attrition rate observed at every step, ranging
from target selection and hit identification to
lead optimization and the selection of clinical
candidates. Furthermore, the substantial fail-
ure rate in clinical trials, currently at 90%,16

can largely be attributed to issues originating in
the early stages of discovery, such as inadequate
target validation or suboptimal properties of
ligands. Discovering faster and more accessible
methods to identify a broader range of high-
quality chemical probes, hits, and leads with
optimal absorption, distribution, metabolism,
excretion, and toxicology (ADMET) as well as
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Figure 1: The flowchart of these procedures.

pharmacokinetics (PK) profiles during the early
phases of DDD would significantly enhance out-
comes in preclinical and clinical studies. Con-
sequently, this would enable the development of
more effective, accessible, and safer drugs.17,18

In this study, first, we developed two models
with the purpose of identifying active/inactive
molecules and determining the target of each
ligand. Subsequently, we constructed a pipeline
using these models. This pipeline was uti-
lized to screen the bindingDB ligands, employ-
ing various thresholds of model precision. The
selected ligands were subjected to molecular
docking to assess their binding energy with
their respective targets. Additionally, we ap-
plied several established principles in medici-
nal chemistry to prioritize further investigation
of these selected molecules, such as molecular
dynamics, in vitro and in vivo studies. Fur-
thermore, we examined the significance of the
features employed in creating the target pre-
dictor model, aiming to identify a simple rule
for acceptable accurate target recognition as a
common rule. The procedure’s flowchart of this
study is illustrated in Figure 1.

Materials and methods

In this study, our dataset consisted of inhibitors
targeting various breast cancer targets: 7341
for EGFR, 2182 for HER2, 1859 for ER, 1273

for NF-κB, and 1439 for PR. To obtain these
compounds, we downloaded five specific sdf files
from the Binding database19 website, each file
corresponding to a particular class of inhibitors.
These sdf files were then converted to gjf files
using the OpenBabel20 software. The 3D struc-
tures of all the molecules were optimized using
the Austin model 1 Hamiltonian implemented
in Gaussian software.21 After optimization, the
molecules were used to calculate molecular de-
scriptors with the help of Alvadesc22 software.
A total of 5668 descriptors, including 0-, 1-, 2-,
and 3D descriptors, were generated. To stream-
line the dataset, descriptors with constant val-
ues in 90% of the compounds were removed.
Additionally, among descriptors with a correla-
tion above 0.9, the one exhibiting higher pair
correlation with all other descriptors was kept
and the others were automatically excluded.
Following these processes, 1461 descriptors re-
mained for further analysis.
Each sdf file contains activity information

pertaining to a specific molecule, indicating the
affinity of that molecule towards different ther-
apeutic targets. We extracted the activity in-
formation from the downloaded sdf files for each
class of molecules, and saved it in separate vec-
tors. The enumeration of the collected data can
be found in Table 1. Molecules with IC50, Ki,
and EC50 values below 2000 nM were catego-
rized as active inhibitors, while those with val-
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ues exceeding 2000 nM were considered inac-
tive. Also we removed molecules with activ-
ity more than 10000 nM as outlier data from
the inactive dataset. Both active and inactive
molecules were utilized to develop and evalu-
ate the active/inactive classifiers. These mod-
els serve the purpose of screening extensive
databases and identifying new potent molecules
for the treatment of breast cancer.
A dataset of 1039519 molecules was gath-

ered from the BindingDB database. The same
preparation process used for the breast can-
cer inhibitors described earlier was applied to
these downloaded molecules. Additionally, the
descriptors selected for the breast cancer in-
hibitors were also chosen for these molecules.
This resulted in a data matrix of size 1039519×
1461, which was used for further analysis.
We employed various methods, including k-

best, K-Nearest Neighbors (KNN), Gaussian
Naive Bayes (GNB), Quadratic Discriminant
Analysis (QDA), Random Forest (RF), and
Support Vector Machine (SVM), to indepen-
dently select descriptors for the active/inactive
and target classifiers. To optimize the selec-
tion of descriptors across all data, we utilized
a Genetic Algorithm (GA) in an optimal man-
ner. The GA started with a population size of
200 and evolved through a maximum of 1000
generations, employing a crossover rate of 0.5
and a mutation rate of 0.2. The estimator was
configured with the aforementioned methods,
utilizing 5-fold cross-validation and an accu-
racy scoring function. The only difference be-
tween the feature selection processes of the ac-
tive/inactive and target classifiers was the max-
imum number of features. The active/inactive

Table 1: Number of active and inactive
molecules for each class

Target active inactive total
EGFR 4922 2419 7341
ER 1223 636 1859
HER2 1393 789 2182
NF-κB 447 826 1273
PR 1055 384 1439
total 9040 5054 14094

classifier allowed a maximum of 64 features,
while the target classifier allowed a maximum
of 128 features.
We utilized the chosen features to create an

optimized binary classifier for predicting ac-
tive/inactive molecules. Various methods, in-
cluding K-nearest neighbors (KNN), support
vector machine (SVM), decision tree (DT), ran-
dom forest (RF), naive Bayes (NB), linear dis-
criminant analysis (LDA), and quadratic dis-
criminant analysis (QDA), were employed for
this purpose. To maximize the performance of
each method, we conducted a grid search to
identify the best parameters for constructing
the model. Since the data reality is not im-
balanced and due to a lack of studies on active
molecules, we selected 461 active and 461 in-
active molecules from the dataset to create a
balanced training dataset for binary classifica-
tion.
For the target classifier, we employed meth-

ods such as KNN, SVM, DT, logistic regression
(LR), RF, NB, Gaussian naive Bayes (GNB),
LDA, and QDA. Similar to the binary classifier,
we utilized grid search to identify the optimal
parameters for constructing the model. To en-
sure balance in the training dataset, we selected
132 active molecules for each class for the mul-
tiple classifier as well.
Based on the selected best models for the ac-

tive/inactive and target classifiers, they were
combined into a single pipeline as a decision
model for predicting the activity and target of
each BindingDB ligand. The decision-making
process for the model’s predictions of activ-
ity and target was constrained by a certainty
threshold of 0.8, 0.85, and 0.9 for the ac-
tive/inactive classifier, and 0.9 for the target
classifier.
Autodock Vina23 was utilized for molecu-

lar docking to calculate the binding affinities
between ligands and their respective targets.
The grid box resolution was set with spe-
cific coordinates for each target: (EGFR)(PDB
ID: 1M17) had coordinates of 23.424, 1.310,
51.002 along the x, y, and z axes, respectively,
with a grid spacing of 0.2 Å; (HER2)(PDB
ID: 3PP0) had coordinates of 17.563, 16.689,
26.321; (PR)(PDB ID: 1A28) had coordinates
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Table 2: The evaluation of GA-SVM-SVM and GA-RF-RF for binary and GA-SVM-SVM and
GA-QDA-SVM models for therapeutic classification.

GA-SVM-SVM precision recall f1-score support
active 0.78 0.70 0.74 461
inactive 0.73 0.80 0.76 461
GA-RF-RF precision recall f1-score support
active 0.75 0.73 0.74 461
inactive 0.74 0.76 0.75 461
GA-SVM-SVM precision recall f1-score support
EGFR+HER2 0.95 0.92 0.93 132
ER 0.91 0.95 0.93 132
NF-κB 0.94 0.96 0.95 132
PR 0.96 0.93 0.95 132
GA-QDA-SVM precision recall f1-score support
EGFR+HER2 0.94 0.92 0.93 132
ER 0.95 0.95 0.95 132
NF-κB 0.93 0.94 0.93 132
PR 0.96 0.96 0.96 132

of 17.038, 0.145, 74.798; (ER)(PDB ID: 2IOK)
had coordinates of 19.050, 35.696, 52.244; and
(NF-κB)(PDB ID: 4KIK) had coordinates of
48.268, 31.589, -57.885. These coordinates were
used to define the binding sites for the dock-
ing process. The grid dimensions were set at
25.2× 25.2× 25.2 Å. The control ligands were
initially docked with the binding sites of the five
receptors, and the resulting interactions were
compared with standard reference ligands.
To prioritize new ligands for further stud-

ies, such as molecular dynamics and others, we
utilized various rules such as Lipinski, Pfizer,
GSK, and golden triangle rules. Additionally,
important parameters for drug production, in-
cluding QED, SAscore, and MCE-18, were cal-
culated using ADMETlab 2.0.24

Results and discussion

EGFR and HER2 receptors, shows 83.71% sim-
ilarity in their residues using sequence align-
ment with BLOSUM weight matrix and have
a large similarity in their 3D structure using
Needleman-Wunsch alignment algorithm with
BLOSUM-62 similarity matrix (Fig. S1 and
S2). Moreover, near 70% of ligands in Bind-
ingDB database with EGFR and HER2 targets,

were identical. According to these reasons, we
merged two classes of EGFR and HER2 to just
one EGFR/HER2 class.
The active/inactive and target classifiers uti-

lized 128 and 64 selected features, respectively
(see tables S1 and S2). Various models were cre-
ated using the aforementioned methods. The
top two models for the active/inactive classi-
fier were GA-SVM-SVM and GA-RF-RF, while
for the target classifier, they were GA-SVM-
SVM and GA-QDA-SVM. The GA-SVM-SVM
binary classifier was constructed using the ra-
dial basis function (RBF) kernel with a gamma
value of 0.1 and a regularization term of 1. Sim-
ilarly, GA-RF-RF was built using the Gini func-
tion with 400 trees and maximum depth until
all leaves were pure. The forest construction
involved the use of bootstrap sampling. Fur-
thermore, GA-SVM-SVM and GA-QDA-SVM
multi-classifiers were employed with the RBF
kernel, a gamma value of 0.01, and a regular-
ization term of 10. The classification was per-
formed using the one-vs-one strategy, which has
been shown to provide higher prediction accu-
racy compared to the one-vs-rest approach.25

As shown in Table 2, the active/inactive classi-
fiers GA-SVM-SVM and GA-RF-RF achieved
precision, recall, and F1-scores all above 0.7.
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Table 3: The evaluation of GA-SVM-SVM:GA-SVM-SVM, GA-RF-RF:GA-QDA-SVM, GA-SVM-
SVM:GA-QDA-SVM, and GA-RF-RF:GA-SVM-SVM models in the pipeline.

GA-SVM-SVM:
GA-SVM-SVM

precision recall f1-score support

N/A 0.75 0.74 0.74 461
EGFR+HER2 0.68 0.74 0.71 99
ER 0.83 0.83 0.83 115
NF-κB 0.61 0.61 0.61 123
PR 0.78 0.79 0.78 124
accuracy 0.74 922
macro avg 0.73 0.74 0.73 922
weighted avg 0.74 0.74 0.74 922
GA-RF-RF:
GA-QDA-SVM

precision recall f1-score support

N/A 0.73 0.76 0.74 461
EGFR+HER2 0.68 0.70 0.69 99
ER 0.82 0.83 0.83 115
NF-κB 0.56 0.50 0.53 123
PR 0.80 0.76 0.78 124
accuracy 0.73 922
macro avg 0.72 0.71 0.71 922
weighted avg 0.72 0.73 0.73 922
GA-SVM-SVM:
GA-QDA-SVM

precision recall f1-score support

N/A 0.75 0.74 0.74 461
EGFR+HER2 0.68 0.73 0.70 99
ER 0.82 0.84 0.83 115
NF-κB 0.60 0.59 0.60 123
PR 0.78 0.78 0.78 124
accuracy 0.74 922
macro avg 0.73 0.74 0.73 922
weighted avg 0.74 0.74 0.74 922
GA-RF-RF:
GA-SVM-SVM

precision recall f1-score support

N/A 0.73 0.76 0.74 461
EGFR+HER2 0.69 0.71 0.70 99
ER 0.82 0.82 0.82 115
NF-κB 0.57 0.51 0.54 123
PR 0.80 0.77 0.78 124
accuracy 0.73 922
macro avg 0.72 0.71 0.72 922
weighted avg 0.73 0.73 0.73 922

Likewise, the target classifiers GA-SVM-SVM
and GA-RF-RF achieved precision, recall, and
F1-scores all above 0.9.
Subsequently, we generated a pipeline by

combining different permutations of the se-
lected model. The precision, recall, f1-score,
and support of these models are presented
in Table 3. Among the options, the GA-
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Figure 2: The ROC plots for different classes
with one-vs-rest strategy.

SVM-SVM:GA-SVM-SVM model emerged as
the most suitable pipeline, displaying superior
performance compared to others. This ap-
proach achieved an accuracy of 0.74 and an
AUC of 0.94. Figure 2 showcases the ROC
plots for each class using the one-vs-rest strat-
egy, further validating the effectiveness of the
GA-SVM-SVM:GA-SVM-SVM model for vir-
tual screening. Table 4 provides insights into
the number of selected molecules from the Bind-
ingDB database for each target, based on dif-
ferent predetermined thresholds. Notably, this
table reveals the presence of 4454, 803, 438, and
378 new inhibitor molecules for EGFR+HER2,
ER, NF-κB, and PR, respectively. These novel
inhibitors were selected with 90% precision in
both the active/inactive and therapeutic classi-
fication decision-making processes.
In order to easily identify the target for

each molecule, our objective was to extract
a straightforward rule from the model. To

achieve this, we employed permutation impor-
tance to determine the significance of each fea-
ture in the model. Additionally, we utilized
the Pearson method to create a hierarchical
clustering dendrogram, which helped us iden-
tify the correlation distance (Euclidean dis-
tance) between features. Figure 3 displays
the feature importance and hierarchical clus-
tering dendrogram. Based on these findings,
we constructed a simple questionnaire den-
drogram for determining the target of each
molecule which are selected with 90% precision
in both the active/inactive and target classi-
fication decision-making, as illustrated in Fig-
ure 4. The data presented in Figure 4 pro-
vide concise and effective structure-activity re-
lationship (SAR) information regarding the in-
hibitors. For instance, NF-κB inhibitors ex-
hibit significantly lower values for molecular
walk count of order 10 (MWC10) and signal
10/weighted by polarizability (Mor10p) com-
pared to other inhibitors. Additionally, EGFR
and HER2 inhibitors demonstrate higher val-
ues of frequency of C–N at topological dis-
tance 3 (F03[C-N]) and SHED Donor-Donor
(SHED DD) in comparison to ER and PR in-
hibitors. The ratio of eigenvalue n.1 from
augmented edge adjacency mat. weighted by
dipole moment (Eig01 AEA(dm)), radial dis-
tribution function–105/weighted by polarizabil-
ity (RDF105p), and radial distribution func-
tion–105/weighted by I-state (RDF105s) differ-
entiates PR and ER inhibitors. These SAR in-
formation types effectively filter a significant
portion of large databases, thus accelerating
early-stage drug discovery projects that begin
with extensive databases like GDB-13.26 The

Table 4: Number of selected BindingDB molecules for each targets according to the threshold of 0,
80, 85, and 90% decision certainity for active/inactive prediction and the threshold of 0 and 90%
decision certainity for target prediction.

Threshold
classes 0:0 0:90 80:90 85:90 90:90
EGFR+HER2 172498 95123 19796 11068 4454
ER 54101 22876 3613 2029 803
NF-κB 45452 16400 2499 1257 438
PR 67323 14109 2300 1116 378
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Figure 3: The left plot shows the importance of features using permutation importance method
using GA-SVM-SVM model for target prediction and the right one demonstrates hierarchical clus-
tering dendrogram using pearson method to find the correlation distance of each features.

Figure 4: A simple questionnaire dendrogram to separate ligands with a number of features and
determine the targets of them.

classification of molecules based on their thera-
peutic targets has garnered considerable atten-
tion in the field of chemoinformatics.27 These
types of classifiers expand on the concept of
“Chemography”,28,29 which refers to the art of
navigating through chemical space. As evident
from these figures, the inhibitors cluster within
specific regions of the selected chemical space,
aligning with the core objective of chemogra-
phy.
In order to assess the binding energy

of the molecules selected using the GA-

SVM-SVM:GA-SVM-SVM model, we em-
ployed molecular docking for both the chosen
molecules (with a multiplication of precision
product exceeding 0.9 for both active/inactive
and target classification) and the molecule
sets within each class. The distribution of
binding energy for these molecules, based on
their molecular weights, is depicted in Fig-
ure 5. In these plots, the pale dots represent
the active inhibitors labeled by the bindingDB
database, while the filled dots represent the
active molecules utilized in constructing the
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Figure 5: Docking results of new ligands obtained from virtual screening. The pale dots in the
following plots represent the active molecules in the BindingDB database for each class, the filled
dots represent the molecules that participated in the construction of the model, and the red dots
are the new molecules proposed by the model obtained from the screening.

GA-SVM-SVM:GA-SVM-SVM model. The
red dots correspond to new inhibitors, which
exhibit binding energy within the range of -15
to -5 kcal/mol. This range of binding energy

proves to be sufficiently suitable for forming
protein-ligand complexes.
In order to prioritize further study on the

new molecules, we applied several medicinal
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Figure 6: List of the molecules which are met all criteria.

criteria. The Lipinski rule suggests that lig-
ands with a molecular weight of less than or
equal to 500 (MW ≤ 500), a logarithm of the
n-octanol/water distribution coefficient of less
than or equal to 5 (logP ≤ 5), a number of

hydrogen bond acceptors of less than or equal
to 10 (Hacc ≤ 10), and a number of hydro-
gen bond donors of less than or equal to 5
(Hdon ≤ 5) exhibit good absorption or perme-
ability. Accordingly, 376, 59, 91, and 35 lig-
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ands were accepted based on the Lipinski rule
for EGFR+HER2, ER, NF-κB, and PR tar-
gets, respectively. The Pfizer rule states that
ligands with a logP ≥ 3 and a topological
polar surface area of less than or equal to 75
(TPSA ≤ 75) are likely to be toxic. Con-
sequently, 577, 30, 38, and 15 ligands passed
the Pfizer rule for EGFR+HER2, ER, NF-κB,
and PR targets, respectively. The GSK rule
suggests that ligands with a MW ≤ 400 and
logP ≤ 4 may have a more favorable ADMET
(absorption, distribution, metabolism, excre-
tion, and toxicity) profile. Thus, 6, 11, 65, and
12 ligands were accepted based on the GSK
rule for EGFR+HER2, ER, NF-κB, and PR
targets, respectively. Additionally, the golden
triangle hypothesis proposes that ligands with
a 200 ≤ MW ≤ 500 and a logD (logarithm
of the n-octanol/water distribution coefficient
at pH = 7.4) ranging from -2 to 5 (−2 ≤
logD ≤ 5) may have a more favorable AD-
MET profile. Consequently, 166, 53, 91, and 34
ligands fulfilled the golden triangle criteria for
EGFR+HER2, ER, NF-κB, and PR targets, re-
spectively. Moreover, several parameters such
as QED (desirability functions based on eight
drug-likeness related properties including MW ,
logP , NHBA, NHBD, PSA, Nrotb, NAr), SAs-
core (synthetic accessibility score based on a
combination of fragment contributions and a
complexity penalty), and MCE-18 (medicinal
chemistry evolution in 2018 score molecules
by novelty in terms of their cumulative sp3
complexity) were considered favorable in the
medical industry. Ligands with QED greater
than 0.67, SAscore less than 6, and MCE-18
larger than 45 were deemed desirable. Accord-
ingly, 6, 14, 4, and 14 ligands met these cri-
teria for EGFR+HER2, ER, NF-κB, and PR
targets, respectively. The distributions of se-
lected molecules according to these rules are
illustrated in Figures S3-S7. The molecules
depicted in Figure 6 satisfy all these criteria.
Specifically, 2, 3, 3, and 8 ligands met all the
parameters for EGFR+HER2, ER, NF-κB, and
PR targets, respectively. As observed in this
figure, each ligand within each class exhibits
unique structural properties.

Conclusion

In this research, we utilized various machine
learning methods and employed the GA-SVM-
SVM and GA-RF-RF models for the ac-
tive/inactive classification, as well as GA-SVM-
SVM and GA-QDA-SVM for therapeutic clas-
sification. Based on the revenue generated by
these methods in the pipeline, we selected GA-
SVM-SVM:GA-SVM-SVM as the most effec-
tive pipeline for virtual screening. This model
screened the BindingDB database inhibitors
with varying precision ratios. As a result, we
identified 4454, 803, 438, and 378 new inhibitor
molecules for EGFR+HER2, ER, NF-κB, and
PR, respectively. Moreover, we introduced a
simple dendrogram to determine the target
of each inhibitor with new ligands which are
predicted with over 90% precision in both ac-
tive/inactive and target prediction.
The molecules that exhibited a precision

product exceeding 0.9 for both active/inactive
and target classification were selected for fur-
ther evaluation of their binding energy. Molec-
ular docking analysis revealed that the binding
energies of these inhibitors to their therapeutic
targets ranged from -15 to -5 kcal/mol, which
is considered suitable for inhibiting the targets.
To prioritize further investigation of these

new molecules, we applied several filters, in-
cluding the Lipinski, Pfizer, GSK, golden trian-
gle rules, as well as QED, SAscore, and MCE-
18 parameters. Among these filters, 2, 3, 3,
and 8 ligands met all the specified criteria for
EGFR+HER2, ER, NF-κB, and PR targets, re-
spectively. We believe that this study can pro-
vide valuable insights for researchers working
on the discovery of new inhibitors for breast
cancer.
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ligands according to the Lipinski, Pfizer, GSK,
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porting information.

Data Availability

Scripts of this study is available on Github, al-
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