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Abstract. In this work, we develop a computational framework that aims at simultaneously optimizing the shape and the
slip velocity of an axisymmetric microswimmer suspended in a viscous fluid. We consider shapes of a given reduced volume that
maximize the swimming efficiency, i.e., the (size-independent) ratio of the power loss arising from towing the rigid body of the
same shape and size at the same translation velocity to the actual power loss incurred by swimming via the slip velocity. The
optimal slip and efficiency (with shape fixed) are here given in terms of two Stokes flow solutions, and we then establish shape
sensitivity formulas of adjoint-solution that provide objective function derivatives with respect to any set of shape parameters on
the sole basis of the above two flow solutions. Our computational treatment relies on a fast and accurate boundary integral solver
for solving all Stokes flow problems. We validate our analytic shape derivative formulas via comparisons against finite-difference
gradient evaluations, and present several shape optimization examples.
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1. Introduction. Studying the efficiency of biological microswimmers is pivotal to understanding nat-
ural systems and designing artificial ones for accomplishing various physical tasks [10]. Both the body shape
and the locomotory gait contribute to the swimming efficiency of the microswimmers. However, since the
inertial effects are negligible at the microscale, optimal swimming strategies markedly diverge from those
observed at larger scales (e.g., swimming of fish) [17]. Additionally, many microswimmers are covered by
densely packed cilia, which are active microtubule-based structures much shorter than the microswimmer’s
body size [8]. The periodic beatings of cilia turn the cell surface into an ‘active slip surface’ without much
change to the body shape (see, e.g., [3] and [25]). As a result, naively finding the swimmer shape to minimize
the fluid drag could be a sub-optimal strategy. On the other hand, artificial microswimmers such as pho-
retic particles locomote by the effective slip velocities on the particle surfaces resulted from the asymmetry
of chemical reactions on their surfaces [2, 11, 23]. Artificial microswimmers have attracted much atten-
tion owing to their importance in applications such as targeted drug delivery, microsurgery, and automated
transport of cargo/payloads in microfluidic chips [19]. Consequently, shape optimization for the slip-driven
microswimmers can shed light on the shapes and swimming mechanisms of biological microswimmers, and
provide guidance for the design and engineering of artificial ones.

In an earlier work, [18] studied the optimal slip velocity of spheroids, using analytical solutions of the
Stokes equations in spheroidal coordinates. In contrast to the drag minimization problem where optimal
shapes provide marginal efficiency gains over spheroids [26, 6, 22], they found that the swimming efficiency
grows unbounded with the aspect ratio. Shortly after, [28] optimized the shape and slip velocity for swimming
efficiency at the same time, subject to a minimum curvature constraint. Motivated by the cilia carpet that
formed the slip surface, the author considered the energy dissipation inside the cilia carpet, and assumed a
local linear relationship between slip velocity and force density, which simplified the question significantly
to a quadratic problem. The optimal shapes with different minimum curvatures evolve from a sphere to a
prolate shape with ripples on the surface, and eventually to American football shape with long protrusions
from both ends as the allowed minimum curvature decreases from one to almost zero. The activation (slip
velocity) of the protruded shape appears to be heavily localized near the ends of the protrusions.

In a recent study [13], we introduced a numerical algorithm for determining, for a given arbitrary
axisymmetric shape, the slip velocity that minimizes the power loss outside the slip surface while maintaining
a given swim speed. By exploiting the quadratic dependence in the slip velocity of the power loss functional,
the numerical solution of the resulting optimization problem could be be performed efficiently with the help
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of a fast boundary integral solver for the forward problem, typically taking only a few seconds on a standard
laptop for a given shape [13]. We explored a wide range of shapes with different reduced volume (volume
normalized by surface area), and found prolate spheroids to be the most efficient among the tested shapes.

In this work, we develop a computational framework that aims at simultaneously optimizing the shape
and the slip velocity while keeping the volume and the surface area constant. While our main focus is on
the shape optimization component, we also provide an improved version of our earlier slip optimization
method [13] whereby the optimal slip velocity and swim efficiency are obtained for a given fixed shape in
terms of two flow solutions. The main contributions of this work are two-fold. First, we establish shape
sensitivity formulas tailored to the specific characteristics of the problem at hand. Their derivation exploits
the fact that the swimming efficiency is given for any given shape by a Rayleigh quotient of quadratic forms
and uses the weak formulation of the flow problems together with reciprocity identities. The resulting shape
sensitivities are expressed as integrals on the swimmer boundary involving the two solutions that determine
the optimal slip, and in a form consistent with the general structure of shape derivative formulas [15].
They conform to the widely-used adjoint solution approach [16], as they allow to evaluate shape functional
derivatives with respect to any chosen set of shape parameters on the basis of only the two aforementioned
flow solutions. Second, as in [4, 5], we employ boundary integral equation (BIE) techniques to solve the flow
problems for any given shape in a straightforward manner. For shape optimization problems, BIEs have the
significant advantage of avoiding any volume re-meshing between optimization iterations, on top of other
usual advantages over classical domain discretization methods. Moreover, the improved version of the slip
optimization component given in this work constitutes an additional contribution, whose role is important
for the combined optimization problem at hand since the same two flow solutions provide the optimal slip
as well as all shape sensitivities on any given shape. While the combination of adjoint-based methods and
BIE methods have been successfully applied to shape optimization problems for Stokes flow previously (e.g.,
[30, 1, 29, 4, 5]), we are not aware of any work that applied these methods to slip-driven microswimmers.

The paper is organized as follows. We introduce the underlying forward problem in Section 2, then
formulate the optimization problem and derive the sensitivity formulas in Section 3. The proof of the main
shape sensitivity results is then given in Section 3.5. We next propose the numerical scheme in Section 4
and provide some numerical examples in Section 5. Section 6 closes the paper with concluding remarks.

2. Forward problem formulation.

2.1. Geometry and notation. Let the axisymmetric body of the microswimmer occupy the bounded
domain ΩS with (closed smooth) boundary ∂ΩS = Γ, and let Ω = R3\ΩS denote the unbounded fluid region
surrounding it. The surface Γ is generated by rotating about ez an open arc γ given in the (ex, ez)-plane by

γ ∋ xγ(t) = R(t)ex + Z(t)ez, 0 ≤ t ≤ π,

where the parametric interval t ∈ [0, π] is used for consistency with the implementation (see Fig. 2.1) and
R,Z are smooth (C2) functions satisfying

(2.1) (a) R(0) = R(π) = 0, (b) R(t) ≥ 0, (c) Z ′(0) = Z ′(π) = 0.

(the prime symbol ()′ indicating derivatives of univariate functions). The last condition above ensures that
Γ is smooth at the poles. The surface Γ then has the parametric representation

(2.2) Γ ∋ x(t, ϕ) = R(t)er(ϕ) + Z(t)ez, 0 ≤ t ≤ π, 0 ≤ ϕ < 2π,

where ϕ denotes the angular polar coordinate in the (ex, ey)-plane and er(ϕ) = ex cosϕ+ ey sinϕ. The unit
tangent vector τ (t, ϕ) in the meridian (er, ez)-plane and the unit normal vector n(t, ϕ) pointing inwards of
the body are given by

(2.3) α(t)τ (t, ϕ) = R′(t)er(ϕ) + Z ′(t)ez, α(t)n(t, ϕ) = Z ′(t)er(ϕ)−R′(t)ez,

where α(t) :=
√

R′2(t) + Z ′2(t) is the arc-length Jacobian. Any axisymmetric vector field v on Γ has the
form

v(t, ϕ) = vτ (t)τ (t, ϕ) + vn(t)n(t, ϕ) with vτ := v · τ , vn := v · n, 0 ≤ t ≤ π, 0 ≤ ϕ < 2π
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Fig. 2.1: Axisymmetric body of the microswimmer: geometry and notation.

which will often be used in the sequel. Then, by the Frenet formulas on γϕ,

(2.4) ∂tx(t, ϕ) = α(t)τ (t, ϕ), ∂tτ (t, ϕ) = α(t)κ(t)n(t, ϕ), ∂tn(t, ϕ) = −α(t)κ(t)τ (t, ϕ),

where κ = κ(t) is the curvature, given by

α3κ = α2n · ∂tτ = −α2τ · ∂tn = Z ′R′′ −R′Z ′′.

The differential area element on Γ is dS = R(t)α(t) dtdϕ. For any axisymmetric function f defined on Γ,∫
Γ

fdS =

∫ 2π

0

∫ π

0

f(t)R(t)α(t) dtdϕ = 2π

∫ π

0

f(t)R(t)α(t) dt.

2.2. PDE of forward problem. Axisymmetric slip velocities are of the form

uS(t, ϕ) = uS(t)τ (t, ϕ)

at any point x(t, ϕ) ∈ Γ, where uS(t) is the slip velocity profile and the unit tangent τ is defined by (2.3).
The axisymmetry assumption also implies that the profile uS(t) must satisfy

(2.5) uS(0) = uS(π) = 0.

to prevent singularities in the flow problem. In the viscous dominant regime, the velocity field u and the
pressure field p in the fluid region verify the Stokes PDE system

(2.6) − µ∇2u+∇p = 0, ∇ · u = 0, ∀x ∈ Ω,

where µ is the dynamic viscosity. In addition, the velocity is prescribed on Γ as

(2.7) u = uD := Uez + uSτ on Γ,

where the axial (along the z-axis) translation velocity U of the body is determined by requiring that the
force density f = −pn+ µ(∇u+∇Tu) · n = (−pI + 2µD[u]) · n on Γ induced by the flow produces a zero
axial net force, i.e.

(2.8) 0 =
〈
f , ez

〉
Γ
=

∫
Γ

(f · ez) dS = 2π

∫ π

0

(f(t) · ez)R(t)α(t) dt

where
〈
·, ·
〉
Γ
stands for the L2(Γ) duality product. Both the geometry and the slip velocity being (by assump-

tion) axisymmetric, the flow is axisymmetric as well, which prevents rigid-body motions other than axial
translations and implies automatic satisfaction of the no-net-torque and remaining no-net-force conditions.

We record the following sign and reciprocity properties:
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Lemma 2.1. Let (u, p,f) solve problem (2.6)-(2.7). Then:〈
uD,f

〉
Γ
= a(u,u) ≥ 0,

where the positive bilinear form a(·, ·) is defined by (3.28). In addition, let (u1, p1,f1) define another solution
of problem (2.6)-(2.7), with prescribed velocity uD

1 = U1ez + uS
1τ . Then:〈

uD

1 ,f
〉
Γ
=

〈
uD,f1

〉
Γ
.

Proof. Both results stem from the weak versions (given in Section 3.5) of equations (2.6), (2.7). For the
sign property, write (3.28) for (v, q, g) = (u, p,f) and recall that ∇ · u = 0. For the reciprocity property,
write (3.28) for (v, q, g) = (u1, p1,f1) and the similar identity obtained by reversing the roles of the two
solutions, then subtract the resulting equalities and use the symmetry property a(u,u1) = a(u1,u).

We also note, for later reference, that we need to find the solution (û, p̂, f̂) satisfying the rigid body
translation problem,

(2.9) (a) − µ∇2û+∇p̂ = 0, ∇ · û = 0 in Ω, (b) û = ez on Γ,

i.e. problem (2.6)-(2.7) with (U, uS) = (1, 0) governing the flow created by towing the rigid body Ω at an
unit axial speed. We then have

f [uS] = f0[u
S] + U(uS,Γ)f̂ ,

where f0[u
S] denotes the traction associated with the solution of problem (2.6)-(2.7) with U = 0. Using the

reciprocity property of Lemma 2.1, the no-net-force condition (2.8) reads

(2.10) 0 = F0(Γ)U(uS,Γ) +
〈
f0[u

S], ez
〉
Γ
= F0(Γ)U(uS,Γ) +

〈
f̂τ , u

S
〉
Γ
,

where f̂τ := f̂ ·τ (with subscript τ used throughout to indicate the tangential projection of the given vector)
and the drag coefficient F0(Γ), given by

(2.11) F0(Γ) =
〈
f̂ , ez

〉
Γ
,

is the net force incurred by towing the rigid body at a unit axial speed.

3. Optimization problems and shape sensitivity analysis. Our aim is to find an optimal shape
Γ achieving low-Reynolds locomotion with maximum swimming efficiency. Following [20], the swimming
efficiency of the body is defined as

(3.1) JE(u
S,Γ) :=

JD(u
S,Γ)

JW(uS,Γ)

where

(3.2) JW(uS,Γ) :=
〈
f [uS],uD

〉
Γ
=

〈
fτ , u

S
〉
Γ
,

is the power dissipated in the actual motion described by (2.6)-(2.8) (with the second equality stemming
from equations (2.7) and (2.8)) and

(3.3) JD(u
S,Γ) := F0(Γ)U

2(uS,Γ).

is the power loss caused by towing a rigid body of the same shape at the axial translation velocity U =
U(uS,Γ). Applying the sign property of Lemma 2.1 to (3.2) and (2.11), we deduce JW(uS,Γ) ≥ 0 and
F0(Γ) ≥ 0 for any Γ, uS. As a result, the swimming efficiency (3.1) takes the form

(3.4) JE(u
S,Γ) =

AD(u
S, uS,Γ)

AW(uS, uS,Γ)

with the positive bilinear forms AD and AW given by

(3.5) AD(u
S, wS,Γ) =

〈
f̂τ , u

S
〉
Γ

〈
f̂τ , w

S
〉
Γ
, AW(uS, wS,Γ) = F0(Γ)

〈
fτ [u

S], wS
〉
Γ
.
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3.1. Optimization problems. Our main goal is to solve numerically the optimization problem

(3.6) max
uS,Γ

JE(u
S,Γ) subject to Cν(Γ) := ν(Γ)− ν0 = 0,

where the swimming efficiency is to be maximized with respect to both the applied slip velocity profile uS

and the body shape Γ, subject to the reduced volume

(3.7) ν(Γ) := 6
√
πV/A3/2

having a prescribed value ν0 (with V = |ΩS| and A = |Γ| the volume and surface area of the microswimmer).
We note that the reduced volume is a function of swimmer’s shape, not size. That is, scaling the swimmer
uniformly in all directions does not change the reduced volume. Additionally, we have ν(Γ) ≤ 1 for all
shapes, and ν(Γ) = 1 if and only if Γ is a sphere.

To solve problem (3.6), we take advantage of an available solution method for the partial maximization
of JE(u

S,Γ) with fixed shape, see Section 3.2. We thus define

(3.8) E(Γ) := max
uS

JE(u
S,Γ)

and note that E(Γ) is a shape functional since its value is entirely determined by Γ. We then recast the joint
optimization problem (3.6) as the constrained shape optimization problem

(3.9) max
Γ

E(Γ) subject to Cν(Γ) = 0.

The equality constraint will be handled using the augmented Lagrangian method (ALM) described in Section
4.3, the constrained problem (3.9) thus being treated as a sequence of unconstrained problems.

We will also consider, for comparison purposes, the constrained shape optimization problem

(3.10) min
Γ

Jdrag(Γ) subject to ν(Γ)− ν0 = 0.

for the normalized drag force Jdrag(Γ), which is defined by Jdrag(Γ) := F0(Γ)/6πµr for a (passive) rigid body
in Stokes flow (r = 3

√
3V/(4π) being the radius of the ball having the same volume V as ΩS). It is worth

noting that Jdrag(Γ) is dimensionless and does not depend on the size of ΩS.

3.2. Partial optimization with fixed shape. Here we present an improved version of the method
proposed in [13] for solving the slip optimization problem (3.8) with a fixed shape Γ. This step exploits the
fact that JE(u

S,Γ) is, for given Γ, expressed by (3.4) as a Rayleigh quotient, so that its maximum value is
equal to the largest (positive) eigenvalue of the symmetric generalized eigenvalue problem
(3.11)

Find zS ∈ H1/2(Γ), λ ∈ R such that AD(z
S, wS,Γ)− λAW(zS, wS,Γ) = 0 for all wS ∈ H1/2(Γ)

the corresponding eigenfunction zS defining a slip velocity profile producing the optimal efficiency. Prob-
lem (3.11) turns out to be easy to solve: since the bilinear form AD is of rank one (while AW is positive
definite), there is only one nonzero eigenvalue λ > 0, whose multiplicity is 1.

Let the fields (ũ, p̃) solve the axisymmetric Stokes flow problem

(3.12) (a) − µ∇2ũ+∇p̃ = 0, ∇ · ũ = 0, in Ω, (b) f̃ · τ = f̂ · τ , (c) ũ · n = 0 on Γ,

where f̃ is the traction vector associated with (ũ, p̃). Using the above solution, the slip velocity defined by

(3.13) zS := ũ · τ ,

then yields the maximal swimming efficiency for a fixed shape Γ:

Proposition 3.1. The slip velocity profile zS defined for a given shape Γ by (3.13) in terms of the
solution of problem (3.12) solves the partial maximization problem (3.8): we have

(3.14) zS = argmax
uS

JE(u
S,Γ), E(Γ) = − U(zS,Γ)

1 + U(zS,Γ)
≥ 0,

5



Proof. Let zS be given by (3.13). Using (2.10) and (3.26) in (3.5), we have

AD(z
S, wS,Γ) =

〈
f̂τ , z

S
〉
Γ

〈
f̂τ , w

S
〉
Γ
= −F0(Γ)U(zS,Γ)

〈
f̂τ , w

S
〉
Γ

AW(zS, wS,Γ) = F0(Γ)
〈
fτ [z

S], wS
〉
Γ
= F0(Γ)

(
1 + U(zS,Γ)

)〈
f̂τ , w

S
〉
Γ
.

The eigenvalue equation (3.11) is therefore verified by zS and λ = E(Γ) given by (3.14). Since problem (3.11)
has only one nonzero eigenvalue, the pair (zS, λ) provides the maximal swimming efficiency for given Γ.

The treatment given in [13] needs the solution of one flow problem per basis function of the finite-dimensional
approximation of uS (see Section 4.2), while the present version replaces this task with solving only (3.12)
(the solution of the adjoint problem (2.9) being needed in both versions).

3.3. Shape sensitivity analysis. In this section, we collect available shape derivative concepts that
fit the present needs. Rigorous expositions of shape sensitivity theory are available in [14, Chap. 5] and other
monographs. Let ΩA denote a fixed domain chosen so that Ω ⋐ ΩA always holds for the shape optimization
problem of interest. Shape changes are described with the help of transformation velocity fields, i.e., vector
fields θ : ΩA → R3 such that θ = 0 in a neighborhood of ∂ΩA; we then extend θ by zero in R3 \ΩA.
Shape perturbations of the body boundary can, in the present context, be mathematically described using
a pseudo-time η and a geometrical transform of the form

(3.15) R3 ∋ x(t, ϕ) 7→ xη(t, ϕ) = x(t, ϕ) + ηθ(t, ϕ), 0 ≤ t ≤ π, 0 ≤ ϕ < 2π.

They allow to define a parametrized family of domains Ωη(θ) := (I+ηθ)(Ω) for any given “initial” domain Ω.
The affine format (3.15) is sufficient for defining first-order derivatives at η = 0. In this work, perturbations
Γη(θ) of an axisymmetric surface Γ are assumed to be defined by

Γη(θ) ∋ xη(t, ϕ) = x(t, ϕ) + ηθ(t, ϕ), 0 ≤ t ≤ π, 0 ≤ ϕ < 2π

in terms of axisymmetry-preserving transformation velocity fields θ having the form

θ(t, ϕ) = θτ (t)τ (t, ϕ) + θn(t)n(t, ϕ), 0 ≤ t ≤ π, 0 ≤ ϕ < 2π

on Γ, with τ and n given by (2.3) and the components θτ , θn satisfying

(3.16) (a) θτ (0) = θτ (π) = 0, (b) θ′n(0) = θ′n(π) = 0.

The requirement (3.16a) ensures that Γη remains closed (by precluding “tearing” at the poles), and the
smoothness of Γη(θ) at the poles is maintained by (3.16b). Perturbed domains Ωη(θ) = (I + ηθ)(Ω) with
boundary Γη(θ) can then be defined using arbitrary extensions of θ to Ω.

All derivatives are implicitly taken at some given configuration Ω, i.e., at initial “time” η = 0. The

“initial” material derivative
⋆
a of some (scalar or tensor-valued) field variable a(x, η) is defined as

⋆
a(x) = lim

η→0

1

η

(
a(xη, η)− a(x, 0)

)
x ∈ Ω,

and the material derivative of gradients and divergences of tensor fields are given by

(3.17) (a) (∇a)⋆ = ∇⋆
a−∇a · ∇θ, (b) (∇ · a)⋆ = ∇ · ⋆

a−∇a :∇θ.

Likewise, the first-order “initial” derivative J ′ of a shape functional J is defined as

J ′(Ω;θ) = lim
η→0

1

η

(
J(Ωη(θ))− J(Ω)

)
,

and its practical evaluation relies on the fact that the derivatives of generic integrals

(a) IV(η) =

∫
Ωη(θ)

F (·, η)dV, (b) IS(η) =

∫
Γη(θ)

F (·, η)dS,

6



on variable domains or surfaces are given by the material differentiation identities

(3.18) (a)
dIV

dη

∣∣∣
η=0

=

∫
Ω

[ ⋆
F + F (·, 0)∇ · θ

]
dV, (b)

dIS

dη

∣∣∣
η=0

=

∫
Γ

[ ⋆
F + F (·, 0) divSθ

]
dS.

with the surface divergence divSθ in (3.18b) given by (C.2) in Appendix C.
The structure theorem for shape derivatives (see e.g. [14, Sec. 5.9]) states that the shape derivative of

any shape functional can be expressed as a linear functional in the normal transformation velocity θn. This
result conforms to intuitive geometrical facts: (i) the shape of Ωη(θ) is determined by that of Γη(θ), and (ii)
tangential components of θ leave Ω unchanged at leading order O(η). Here we provide, as an example and
for later reference, the derivative of the reduced volume (3.7), which is a shape functional:

Proposition 3.2. The shape derivative of the reduced volume ν(Γ) defined by (3.7) is given by

ν′(Γ;θ)

ν(Γ)
=

V ′(Γ;θ)

V
− 3A′(Γ;θ)

2A
.

with the shape derivatives of the volume V = |ΩS| and area A = |Γ| given (as linear functionals on θn) by

V ′(Γ;θ) = −
∫
Γ

θn dS = −2π

∫ π

0

θnRα dt, A′(Γ;θ) =

∫
Γ

divSθ dS = 2π

∫ π

0

(
Z ′ − κRα

)
θn dt.

For A′, we have used (C.2) and the fact that
∫ π

0
(Rθτ )

′ dt = 0 due to (3.16a).

3.4. Shape sensitivities of swimming efficiency and normalized drag force. We begin by
expressing the shape derivative of the swimming efficiency in terms of shape sensitivities of the power loss
functionals:

Lemma 3.3. The shape derivative of E(Γ) is given by

E′(Γ;θ) =
J ′

D(z
S,Γ;θ)− E(Γ)J ′

W(z
S,Γ;θ)

JW(zS,Γ)

where E(Γ) and the shape derivatives J ′
W and J ′

D =
[
F0U

2
]′

are taken with the slip velocity zS given in (3.13)
(kept fixed to its optimum value at current Γ).

Proof. The maximal efficiency E(Γ) and associated optimal slip velocity zS at any given Γ are related
through equation (3.11), i.e.:

(3.19) AD(z
S, wS,Γ)− E(Γ)AW(zS, wS,Γ) = 0.

for any shape perturbation about the current shape Γ. The shape derivative at Γ of (3.19) thus yields

AD(
⋆
zS, wS,Γ)− E(Γ)AW(

⋆
zS, wS,Γ) +A′

D(z
S, wS,Γ;θ)− E(Γ)A′

W(zS, wS,Γ;θ)− E′(Γ;θ)AW(zS, wS,Γ) = 0

where A′
D and A′

W are shape derivatives taken with zS fixed (i.e.
⋆
zS = 0), while as usual

⋆
wS = 0 may be

assumed for the test functions in this derivation. Now, setting wS = zS in the above equation and observing
that the first two terms cancel due to (3.19) and the bilinear forms AD, AW being symmetric, we obtain

E′(Γ;θ) =
A′

D(z
S, zS,Γ;θ)− E(Γ)A′

W(zS, zS,Γ;θ)

AW(zS, zS,Γ)
.

The claimed formula finally results from recalling the definitions (3.5) of AD, AW, which imply AD(z
S, wS,Γ) =

F0(Γ)JD(z
S,Γ) and AW(zS, wS,Γ) = F0(Γ)JW(zS,Γ).

The next step then consists in deriving formulas for the shape sensitivities of the functionals involved
in Lemma 3.3. The latter depend on Γ implicitly through the forward or adjoint solution. In particular,
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applying the material differentiation formula (3.18b) to (3.2) and (2.11), we have

J ′
W(Γ;θ) =

〈 ⋆
f , uSτ

〉
Γ
+
〈 ⋆
f , ez

〉
Γ
U +

〈
f , uS ⋆

τ
〉
Γ
+
〈
f , (uSτ + Uez) divSθ

〉
Γ

(3.20)

F ′
0(Γ;θ) =

〈 ⋆

f̂ , ez
〉
Γ
+
〈
f̂ , ezdivSθ

〉
Γ
.(3.21)

in terms of the material derivatives
⋆
f ,

⋆
U and

⋆

f̂ of solution components and
⋆
τ of the unit tangent, and

having used the no-net-force identity
〈
f , ez

〉
Γ

⋆
U = 0 for (3.20). However, as in many other similar situations,

expressions of J ′
W(Γ;θ), F ′

0(Γ;θ) and U ′(Γ;θ) free of solution derivatives can be obtained from combinations
of the weak forms of the forward and derivative problems written with suitably chosen test functions. In
addition, the resulting expressions are recast, using curvilinear coordinates, as boundary integrals. This
somewhat lengthy process, expounded in Section 3.5, yields the following material derivative formulas, which
are free of any solution material derivative and have a form suitable for a direct implementation using the
output of a BIE solver:

Proposition 3.4. Consider a shape perturbation with transformation velocity θ, and assume the slip

velocity uS to be convected (i.e.
⋆
uS = 0). The derivatives of JW(u

S,Γ), U(uS,Γ) and F0(Γ) are then given by

J ′
W(u

S,Γ;θ) = 2π

∫ π

0

{[
4µ

(R′uS

Rα

)2

− 1

µ
f2
τ +

1

µ
(fn + p)p+ 2κuSfτ

]
αθn − 2fτ (u

S)′θτ + 2uSfnθ
′
n

}
Rdt(3.22)

U ′(uS,Γ;θ) = −2π

F0

∫ π

0

{[
κuSf̂τ − 1

µ
fτ f̂τ +

1

2µ
(fn + p)p̂

]
αθn − f̂τ (u

S)′θτ − uSp̂θ′n

}
Rdt(3.23)

F ′
0(Γ;θ) = −2π

µ

∫ π

0

f̂2
τ θnRα dt.(3.24)

with fτ := f · τ and fn := f · n. The shape derivative of the normalized drag force is then given by

(3.25) J ′
drag(Γ;θ) = Jdrag(Γ)

(
F ′
0

F0
− V ′

3V

)
,

with V ′ given by Proposition 3.2.

Formulas (3.22) and (3.23) are valid for any slip velocity profile uS that is convected by θ. Moreover,
(3.22-d) are all insensitive to a perturbation of the (forward or adjoint) pressure field by a constant pressure
difference ∆p. For example, replacing fn and p by fn −∆p and p+∆p brings to (3.22) the additional term

− 4π∆p

∫ π

0

[
RuSθ′n + (RuS)′θn

]
dt = −4π∆p

∫ π

0

(RuSθn)
′ dt = 0 using (2.5).

Applying (3.22), (3.23) with uS = zS to Lemma 3.3 defines a computationally tractable evaluation method
for the shape derivative of the swimming efficiency. We note however that the resulting formula for E′(Γ;θ)
appears to involve the tangential transformation velocity θτ , in apparent violation of the structure theorem
for shape derivatives. To resolve this contradiction, we now exploit additional properties satisfied only by
the optimal slip velocity zS. Indeed, the definition (3.13) of zS and the boundary conditions of problems (2.6)

and (2.9) together imply that (ũ, p̃) solve problem (2.6) with (uS, U) = (zS, 0), so that f [zS] = f̃+U(zS,Γ)f̂ .
Hence, using again the boundary condition (3.12b), the traction components of the forward solution are found
to verify

(3.26) fτ [z
S] = f̃τ +U(zS,Γ)f̂τ =

(
1 +U(zS,Γ)

)
f̂τ , fn[z

S] = f̃n −U(zS,Γ)p̂, p[zS] = p̃+U(zS,Γ)p̂.

This results in the following final expression of the shape derivative of E(Γ), whose form is now consistent
with the structure theorem:
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Proposition 3.5. Let zS be the optimal slip velocity (3.13) for given Γ, and consider a shape perturbation
of Γ with transformation velocity field θ. The shape derivative of the optimal efficiency E(Γ) is given by

E′(Γ;θ) = − 2π

F0(1+U)2

∫ π

0

{
2zS

(
f̃n + p̂

)
θ′n(3.27)

+
[
4µ

(R′zS

Rα

)2

+
1

µ

(
f̃n + p̃

) (
p̃− p̂

)
+

1+U

µ
f̂2
τ

]
αθn

}
Rdt

where (û, f̂ , p̂) and (ũ, f̃ , p̃) respectively solve problems (2.9) and (3.12), zS = ũ · τ and U = U(zS,Γ) is
given by (2.10). In particular, E′(Γ;θ) is a linear functional on θn.

Proof. We evaluate formulas (3.22-c) for the optimal slip velocity zS, which allows to express fτ , fn and

p in terms of f̃n, p̃ and f̂ , p̂ using 3.26. We then use the result to compute E′(Γ;θ) given by Lemma (3.3)
and recall that JW(zS,Γ) = E(Γ)JD(z

S,Γ) = −F0U(1+U) (see (3.3) and (3.14). This yields the claimed
expression of E′(Γ;θ).

3.5. Proof of Proposition 3.4. This proof is divided into five main steps.

1. Forward and adjoint problems in weak form. The results of Proposition 3.4 rely on identities found by
recasting the forward problem (2.6)-(2.7) in mixed weak form (e.g. [9], Chap. 6): find (u, p,f) ∈ V ×P ×F
such that

(3.28) a(u,v)− b(v, p)− b(u, q)−
〈
f ,v

〉
Γ
+

〈
g, uSτ + Uez

〉
Γ
−

〈
g,u

〉
Γ
= 0 ∀(v, q, g) ∈ V × P × F

where the bilinear forms a and b are defined by

a(u,v) =

∫
Ω

2µ(D[u] :D[v]) dV, b(v, q) =

∫
Ω

q (∇ · v) dV,

The weak problem (3.28) is well-posed if F = H−1/2(Γ;R3), P = L2(Ω) and V is a weighted version of
H1(Ω;R3). Supplementing problem (3.28) with the no-net-force condition (2.8) determines U given uS. The
unknown f , acting as the Lagrange multiplier associated with the Dirichlet BC, is in fact the force density
on Γ given by f = σ[u, p] · n, where σ[u, p] = −pI + 2µD[u] is the stress tensor. Similarly, the adjoint

problem (2.9) in weak form is: find (û, p̂, f̂) ∈ V × P ×F such that

(3.29) a(û,v)− b(v, p̂)− b(û, q)−
〈
f̂ ,v

〉
Γ
+
〈
g, ez

〉
Γ
−

〈
g,u

〉
Γ
= 0 ∀(v, q, g) ∈ V × P × F

2. Weak formulation for material derivatives of the forward solution. The governing weak formulation

for the shape derivative (
⋆
u,

⋆
f ,

⋆
p,

⋆
U) of the solution (u,f , p, U) of the forward problem (3.28)-(2.8) is

a(
⋆
u,v)− b(v,

⋆
p)− b(

⋆
u, q)−

〈 ⋆
f ,v

〉
Γ
+

〈
uS ⋆
τ , g

〉
Γ
+

〈
ez, g

〉
Γ

⋆
U −

〈 ⋆
u, g

〉
Γ

= −
〈
E
(
(u, p), (v, q)

)
,∇Tθ

〉
Ω
+

〈
f ,v divSθ

〉
Γ

∀(v, q, g) ∈ V × P × F ,(3.30)

with the symmetric in
(
(u, p), (v, q)

)
tensor-valued function E defined by

(3.31) E
(
(u, p), (v, q)

)
=

(
2µD[u] :D[v]− p(∇ · v)− q(∇ · u)

)
I − σ[u, p] · ∇v − σ[v, q] · ∇u.

The value of
⋆
U is determined by the material derivative of the no-net-force condition (2.8), which reads

〈 ⋆
f , ez

〉
Γ
+

〈 ⋆
f divSθ, ez

〉
Γ
= 0

The weak formulation (3.30) is obtained by applying the material differentiation identities (3.18), with
the aid of formulas (3.17), to the variational equation (3.28), assuming the test functions in (3.28) to verify
⋆
v = 0,

⋆
g = 0 and

⋆
q = 0, i.e., to be convected under the shape perturbation (which the absence of boundary

constraints in V allows). Finally, the Dirichlet BC (2.7) is used to set the right-hand side of (3.30b) to zero.

9



3. Material derivatives of energy functionals and drag force. We subtract equation (3.30) with (v, q, g) =

(u, p,f) from equation (3.28) with (v, q, g) = (
⋆
u,

⋆
p,

⋆
f) and use the no-net-force condition (2.8), to obtain

(3.32)
〈
uS ⋆
τ ,f

〉
Γ
−
〈 ⋆
f , uSτ

〉
Γ
−
〈 ⋆
f , ez

〉
Γ
U = −

〈
E
(
(u, p), (u, p)

)
,∇Tθ

〉
Ω
+
〈
f , (uSτ + Uez) divSθ

〉
Γ
.

We then use (3.32) in (3.20), which allows to eliminate the contribution of
⋆
f and yields

(3.33) J ′
W(Γ;θ) = 2

〈
f , uS ⋆

τ
〉
Γ
+

〈
E
(
(u, p), (u, p)

)
,∇Tθ

〉
Ω
.

Equality (3.32) is also valid for the case where uD = ez, i.e., U = 1, uS = 0 corresponding to the adjoint
problem, since it does not rely on the no-net-force condition. Using this version in (3.21) readily yields

(3.34) F ′
0(Γ;θ) =

〈
E
(
(û, p̂), (û, p̂)

)
,∇Tθ

〉
Ω
.

Lastly (and similarly), setting (v, q, g) = (
⋆
u,

⋆
p,

⋆
f) in the adjoint problem (3.29) and (v, q, g) = (û, p̂, f̂) in

(3.30a,b) of the derivative problem, then evaluating the combination (3.30a)+(3.30b)-(3.29), provides

(3.35) F0U
′(Γ;θ) +

〈
f̂ , uS ⋆

τ
〉
Γ
= −

〈
E
(
(u, p), (û, p̂)

)
,∇Tθ

〉
Ω
.

The functional derivatives given by (3.33)-(3.35) are thus free of any solution material derivatives.

4. Material derivatives of functionals: boundary-only form. The domain integrals involving E are, in
all three cases (3.33) to (3.35), recast as follows in terms of only boundary integrals:

(3.36)

(a) J ′
W(Γ;θ) =

∫
Γ

[
2µD[u] :D[u]θn + 2f · ( ⋆uS −∇u · θ)

]
dS,

(b) F ′
0(Γ;θ) =

∫
Γ

[
2µD[û] :D[û]θn − 2f̂ · ∇û · θ

]
dS,

(c) F0U
′(Γ;θ) = −

∫
Γ

[
2µD[u] :D[û]θn − f · ∇û · θ + f̂ · ( ⋆uS −∇u · θ)

]
dS.

The proof of formulas (3.36a-c) rests on the following identity, established in Appendix B:

Lemma 3.6. Let (u, p) and (v, q) both satisfy (2.6). Then, for any vector field θ ∈ C1,∞
0 (Ω), we have:〈

E
(
(u, p), (û, p̂)

)
,∇Tθ

〉
Ω
=

∫
Γ

n ·E
(
(u, p), (û, p̂)

)
· θ dS.

Formulas (3.36a-c) are then found by applying Lemma 3.6 to the right-hand sides of (3.33), (3.34) and (3.35)
and using the definition (3.31) of E, with (v, q) = (u, p) for (3.36a), (u, p) = (v, q) = (û, p̂) for (3.36b) and
(v, q) = (û, p̂) for (3.36c).

5. Express velocity normal derivatives using traction vectors. The shape sensitivity formulas (3.36)
remain somewhat inconvenient as they involve complete velocity gradients on Γ. This can be remedied by
using the decomposition ∇u = ∇Su + ∂nu ⊗ n of the velocity gradient (where ∇Su and ∂nu respectively
denote the tangential gradient and the normal derivative of u) and expressing ∂nu in terms of f . In view
of the specific form uD = Uez + uSτ of the Dirichlet data on Γ, this step is carried out explicitly using
curvilinear coordinates, and the following expressions are found by means of straightforward algebra (see the
proof given in Appendix C) for the gradient and the strain rate tensor of the forward and adjoint solutions:

Lemma 3.7. Let (u, p,f) be the solution to the forward problem. On Γ,

(3.37)

∇u =
1

2µ
(fn + p)

(
n⊗ n− τ ⊗ τ

)
+

R′uS

Rα

(
ν ⊗ ν − τ ⊗ τ

)
+ κuS(n⊗ τ − τ ⊗ n) +

1

µ
fττ ⊗ n,

2D[u] =
1

µ
(fn + p)

(
n⊗ n− τ ⊗ τ

)
+

2R′uS

Rα

(
ν ⊗ ν − τ ⊗ τ

)
+

1

µ
fτ
(
n⊗ τ + τ ⊗ n

)
10



Similarly, for the solution (û, p̂, f̂) of the adjoint problem, we have

∇û =
1

µ
f̂ττ ⊗ n, 2µD[û] = f̂τ (n⊗ τ + τ ⊗ n).

In addition, as shown in Appendix B, the material derivative
⋆
τ of the unit tangent to generating arcs is

given by

(3.38)
⋆
τ =

( 1

α
θ′n + κθτ

)
n.

The shape sensitivity formulas (3.22-c) are finally obtained by deriving explicit expressions of the right-
hand sides of (3.36). First, to establish (3.22) for J ′

W(Γ;θ), we derive the expressions

f · ⋆
uS = uSfn

(
κθτ +

1

α
θ′n

)
,

f · ∇u · θ =
( 1

µ
f2
τ +

1

2µ
(fn + p)fn − κuSfτ

)
θn +

( 1

α
(uS)′fτ + κuSfn

)
θτ

2µD[u] :D[u]θn =
[ 1
µ
f2
τ + 4µ

(R′uS

Rα

)2

+
1

µ
(fn + p)2

]
θn

with the help of (3.38) and (3.37). After rearrangement, we obtain

(3.39) 2µD[u] :D[u]θn + 2f · ( ⋆uS −∇u · θ)

=
[
− 1

µ
f2
τ + 4µ

(R′uS

Rα

)2

+
1

µ
(fn + p)p+ 2κuSfτ

]
θn − 2

α
fτθτ (u

S)′ +
2

α
uSfnθ

′
n.

We then similarly derive the formulas

2µD[u] :D[û]θn + f̂ · ( ⋆uS −∇u · θ)− f · ∇û · θ

=
[
κuSf̂τ − 1

µ
fτ f̂τ +

1

2µ
(fn + p)p̂

]
θn − 1

α
f̂τθτ (u

S)′ − 1

α
uSp̂θ′n(3.40)

2µD[û] :D[û]θn − 2f̂ · ∇û · θ = − 1

µ
f̂2
τ θn,(3.41)

having in particular used that f̂n = −p̂. The sought material derivative formulas (3.22-c) finally follow by
using identities (3.5), (3.40) and (3.41) in formulas (3.36a-c)

6. End of proof. Steps 1 to 5 above complete the proof of identities (3.22-c), and formula (3.25) follows
directly from the definition of Jdrag given after (3.10).

4. Numerical method. In this section, we describe the main numerical methods employed for solving
the shape optimization problem, utilizing the shape sensitivity formulas derived in the preceding sections.

4.1. Stokes PDE solver. The shape optimization problem requires solution of three different bound-
ary value problems: (i) the forward problem with given slip velocity (2.6–2.8), (ii) the adjoint problem with
given Dirichlet conditions (2.9), and (iii) the auxiliary problem with mixed boundary conditions (3.12) for
determining the optimal slip for a given shape. Similar to our previous work [13, 12] which studied the opti-
mization of slip velocity profiles and ciliary locomotion for a given shape Γ, we employ an indirect boundary
integral equation (BIE) formulation for solving these three problems.

Specifically, we start from the single-layer potential ansatz, which expresses the velocity u as a convo-
lution of an unknown axially-symmetric density function ζ defined on Γ with the Green’s function for the
Stokes equations:

(4.1) u(x) = S[ζ](x), where S[ζ](x) = 1

8πµ

∫
Γ

(
1

|r|I+
r ⊗ r

|r|3
)

ζ (y) dS and r = x− y.
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The ansatz (4.1) satisfies the Stokes PDE by construction and taking the limit as x approaches Γ from the
exterior and applying boundary conditions for each of the three problems results in a set of BIEs for the
unknown density ζ. The traction vector f and pressure density p on the surface Γ can be evaluated as a
convolution of ζ with the traction and the pressure kernels respectively:

f(x) = −1

2
ζ (x) +K[ζ](x), where K[ζ](x) =

3

4π

∫
Γ

(
r ⊗ r

|r|5
)
(r · n (x))ζ (y) dS,(4.2)

p(x) = −1

2
ζ (x) · n (x) +

1

4π

∫
Γ

r · ζ (y)
|r|3 dS.(4.3)

In the case of the adjoint problem, denoting the unknown density by ζ̂, substituting the ansatz in the
Dirichlet boundary condition in (2.9) and then evaluating the traction by (4.2), we get

(4.4) S[ζ̂](x) = ez, f̂ = −1

2
ζ̂ +K[ζ̂] (BIE for adjoint problem (2.9)).

Then, the mixed boundary conditions featured in the auxiliary problem (3.12) yield

(4.5)

(
− 1

2
+K

)
[ζ̃] · τ = f̂ · τ

S[ζ̃] · n = 0
(BIEs for auxiliary problem (3.12)).

Similarly, for the forward problem (2.7), the unknowns ζ and U can be obtained by substituting (4.1) in (2.7)
and (4.2) in (2.8), yielding for any x on Γ,

(4.6)
S[ζ](x)− Uez = uS(x)〈(
− 1

2
+K

)
[ζ] , ez

〉
Γ
= 0

(BIEs for the forward problem (2.7)).

We convert the weakly singular boundary integrals in eqs. (4.4)–(4.6) into convolutions on the generating
curve γ by performing an analytic integration in the orthoradial direction, and applying a high-order quad-
rature rule designed to handle the log−singularity of the resulting kernels [27]. In addition, shape sensitivity
formulas in Proposition 3.4 require evaluating the pressure fields p and p̂ on the particle surface Γ. We make
use of a generalized Gaussian quadrature rule, developed in [7], for accurate numerical integration of the
exhibited strong r−2−singularity of the kernel in (4.3).

4.2. Finite parametrizations of slip velocity and shape. We employ fifth-order B-splines to pa-
rametrize the unknowns of the optimization problems (3.6) and (3.10), namely the scalar slip velocity profile
uS and the functions R,Z that define Γ through (2.2)), by

(4.7) uS(t) = ξT

uw(t), R(t) = ξT

RB(t), Z(t) = ξT

ZB(t), t ∈ [0, π].

The vector-valued functions w(t) and B(t) are provided in Appendix A. The design vectors for uS and
γ are denoted by ξu =

(
ξ1u, . . . , ξ

Nu
u

)T
and ξγ =

(
ξR, ξZ

)
=

(
ξ1R, . . . , ξ

NR

R , ξ1Z , . . . , ξ
NZ

Z

)T
, respectively. In

order to satisfy the constraints (2.1a,c), the shape design vector ξγ has NR +NZ − 4 degrees of freedom, as

ξ1R, ξ
NR

R , ξ1Z , ξ
NZ

Z are determined upon other entries in ξγ (see Appendix A).
Then, transformation velocities θ associated with the parametrization (4.7) may be defined as

(4.8) θ = ζT

RB(t)er + ζT

ZB(t)ez

where (ζR, ζZ) =: ζγ define perturbation directions for the shape parameter vectors ξR, ξZ which must be
consistent with (2.1a,c) and are otherwise arbitrary.

4.3. Numerical optimization scheme. We use the augmented Lagrangian method (ALM) to adapt
the constrained optimization problem (3.6) to a sequence of unconstrained problems [24, Chapter 17] of the
form

(4.9) min
Γ

LA(u
S,Γ) with LA(Γ) = −E(uS,Γ)− λlCν(Γ) +

σl

2
Cν

2(Γ), l = 0, 1, 2, . . .
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START

INITIALIZE (iteration counters l = 0, k = 0)
choose initial shape Γl,k = Γ0,0 with design vector ξ0,0γ
set initial ALM parameters (λl, σl) = (λ0, σ0)
set initial iterative tolerance τl = τ0
set constraint tolerance τ̃

calculate optimal slip profile uS(Γl,k)
on current shape Γl,k to obtain E(Γl,k)

calculate LA(Γl,k) and ∇LA(Γl,k)

update design vector ξl,kγ → ξl,k+1
γ

via BFGS algorithm
(i.e., update shape Γl,k → Γl,k+1)

if local minimizer of LA
is found: Γl,·=Γl,k+1 reset k = k + 1

if |Cν(Γl,·)|<τl

if |Cν(Γl,·)|<τ̃

increase σl+1, update τl+1

retain λl+1 = λl

update λl+1, τl+1

retain σl+1 = σl

reset l = l+ 1
reset k = 0

RESULT
optimal shape Γopt = Γk with design vector ξkγ
associated optimal slip uS(Γopt)

END

NO

YES

NO

YES

NO

YES

Partial Slip Optimization
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Fig. 4.1: Framework of the optimization algorithm for the maximum swimming efficiency. The algorithm consists
of three main parts shown in different colors. The single block in blue is the slip optimization as described in Section
3.2. It is worth noting that the slip optimization process is nested in the shape optimization process (in red/pink).
The process in yellow/brown color briefly demonstrate the algorithm of the Augmented Lagrangian Method (ALM) in
Section 4.3.

The variable λl is an explicit estimate of the Lagrange multiplier, and σl is a penalty parameter. The
optimization algorithm fixes the values of λl and σl at the lth iteration and performs minimization for LA.
Fig. 4.1 depicts the framework of the optimization problem (4.9) as the slip optimization is implemented
internally. In this flowchart, the shape Γ and its design vector ξγ are often accompanied by superscripts l, k.
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The first number l indicates the iteration of ALM when updating λl, σl, and the second number indicates the
iteration in the unconstrained shape optimization problem (4.9) with specific l. The optimization process
starts with an arbitrary initial shape Γ0,0 given by the design vector ξ0,0γ . The optimal slip profile for the
current shape is calculated directly as described in Section 3.2, shown as a single blue block in Fig. 4.1. The
shape is then updated via the BFGS algorithm for the unconstrained problem (4.9), which makes use of the
shape derivative of E(Γ) given by Proposition 3.5, and the slip profile must be recalculated in every iteration
of the BFGS algorithm. When the optimal shape is found, the process moves to parameter updating of ALM
(if tolerance criteria are not satisfied), then a new unconstrained problem (4.9) is defined and implemented.
If the local minimizer of (4.9) for current l satisfies the tolerance criteria, the optimization is completed and
outputs the optimal shape.

Similarly, the constrained drag force minimization problem (3.10) is solved using the sequence of uncon-
strained problems

(4.10) min
Γ

LA(Γ) with LA(Γ) = Jdrag − λlCν +
σl

2
Cν

2, l = 0, 1, 2, . . . .

The optimization is implemented similarly as Fig. 4.1, except that the partial slip optimization step is
omitted. Solving the unconstrained problem (4.10) makes use of (3.25) for the shape derivative of the drag
force. It does not involve any slip velocity, thus, the optimization starts with calculating LA and ∇LA in
(4.10) directly. The rest of the process remains the same as before.

5. Results and discussion. In this section, we first validate the shape sensitivity formulas derived in
Section 3.4. Then, we present several numerical experiments to demonstrate the shape optimization approach
for microswimmers and analyze the optimal shapes obtained for various reduced volumes. Additionally,
we compare the results with a simple drag minimization problem to highlight the differences in different
configurations under different objectives: maximizing efficiency or minimizing drag.

5.1. Verification of shape sensitivities. Here, we validate the shape sensitivity formulas (3.25) and
(3.27) by comparing them with the numerical approximations via the finite difference method. We use the
central difference formula for comparison, given by

(5.1) J ′
FD =

J
(
Γ(ξγ + ηζγ)

)
− J

(
Γ(ξγ − ηζγ)

)
2η

where J is either E(Γ) or Jdrag(Γ) and ζγ is a shape parameter perturbation direction that defines a
transformation velocity θ through (4.8).

We choose an arbitrary initial shape and then perturb it into a variety of other arbitrary shapes. Table 4.1
lists the absolute and relative errors between the analytic formula evaluations and their finite difference
approximations, with the step size η = 10−3 in (5.1) for all cases. The error results validate the correctness
of the analytic shape sensitivity formulas given in Section 3.4.

Initial Γ Perturbed Γη

∣∣
η=1

E′ abs.err. E′ rel.err. J ′
drag abs.err. J ′

drag rel.err.

3.97× 10−7 8.45× 10−7 5.45× 10−8 5.23× 10−7

2.67× 10−8 2.14× 10−7 2.08× 10−9 8.22× 10−8

8.14× 10−7 8.12× 10−7 2.73× 10−7 1.12× 10−6

Table 4.1: Comparison of shape sensitivities obtained by analytic formulas and by the central finite difference scheme.
The absolute errors (abs.err.) is |J ′ − J ′

FD|, where J ′ is the result of the analytic sensitivity formula (either (3.25)
or (3.27)), and J ′

FD is the result of (5.1). The relative error (rel.err.) is calculated by |(J ′ − J ′
FD)/J ′

FD|. Note that
the perturbed shapes are shown at η = 1 for visualization purpose to highlight the direction of perturbation.
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Fig. 5.1: Snapshots from the shape optimization of an initially peanut-shaped microswimmer with reduced volume,
ν0 = 0.7. Here, the fluid velocity is shown in the lab (fixed) frame and the propulsion velocity U is scaled to one.

5.2. Optimization results. First, we showcase the iterative shape optimization process towards a
maximal efficiency shape in Fig. 5.1, starting from an arbitrary peanut-shape. The flow field snapshots
around the microswimmer driven by the optimal slip profile that maximizes the swimming efficiency are
demonstrated during the optimization process. In particular, a peanut-shape microswimmer with ν = 0.7
is used as the initial shape. The high-velocity region can be observed around the entire swimmer in early
iterations. This high-velocity region, in turn, leads to a low swimming efficiency at JE = 53%. During the
optimization process, the swimmer first transitions from its original concave shape to a convex shape that
resembles a prolate spheroidal shape with blunt poles (iteration 12), and then “sharpens” the poles in the
next few iterations (iteration 17), leading to a swimming efficiency as high as JE = 332%. We note that
the high-velocity region is gradually reduced during the optimization, and the reduction progresses from the
equatorial region toward the poles.

Next, we consider several initial shapes whose reduced volumes are in the range 0.6 ≤ ν ≤ 1.0 and
optimize their shape and associated slip profiles. The swimming efficiency corresponding to the optimal
shape and slip is referred to as the maximal swimming efficiency, and is shown in Fig 5.2(a) in orange stars
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as a function of reduced volume. Since the only possible shape for ν = 1 is sphere, the optimization problem
reduces to finding the optimal slip profile of a sphere to maximize the swimming efficiency. In this case, we
recover the standard result that the optimal profile is a sine function uS = sin(t) that yields the swimming
efficiency JE = 50% [21]. As ν decreases, the shapes of the microswimmers deviate from sphere. The
maximal swimming efficiency monotonically increases with the decrease of ν. For all reduced volumes we
test, the optimal shapes that maximize the swimming efficiency are pointy elongated front-back symmetric
shapes as shown in the insets of Fig. 5.2(a). As references, we optimize the slip profiles on two other shape
families and compare the swimming efficiencies against the maximal swimming efficiencies. Specifically, we
consider prolate spheroids and shapes that minimize the fluid drag for given reduce volumes ν. The swimming
efficiencies and the corresponding shapes are presented in Fig. 5.2(a). To obtain the swimming efficiencies
corresponding to these shape families, we apply the partial optimization method with fixed shape described
in Section 3.2. Notably, for any given reduced volume, the prolate spheroid always underperforms its two
counterparts (the shape that maximizes the swimming efficiency and the shape that minimizes the drag
force). The swimming efficiencies of the shapes that minimize fluid drag are no more than 10% worse than
those of the optimal shapes when 0.8 ≤ ν ≤ 1.0, but become less competitive when ν is further decreased.
For example, when ν = 0.60, the swimming efficiencies of the prolate spheroid and the shape that minimizes
fluid drag are 386% and 480% respectively, significantly lower than 580% obtained by the optimal shape.

Unlike the maximal swimming efficiency, the drag force required to tow a rigid body along the axis of
symmetry at unit speed does not vary monotonically with the reduced volume. Fig. 5.2(b) shows the drag
force normalized by the force required to tow a rigid sphere of the same volume. The drag force is minimized
when ν ≈ 0.90, in which case the normalized drag force is approximately 0.95, consistent with the classical
results [26, 6]. Further decreasing the reduced volume increases the fluid drag. In fact, our results show that
shapes with ν < 0.70 experience higher fluid drag compare to the spheres of the same volume. That being
said, unlike the drastic effect of reduced volume on the swimming efficiency, the change in the fluid drag
resulted from the change in shape is rather moderate, ranging from the low of 0.95 to the high of 1.06. The
values of swimming efficiencies and fluid drag for these three shape families at different reduced volumes are
shown in Table 5.1.

Fig. 5.2: (a) Swimming efficiency versus reduced volume of different shape families. The shapes and the slip profiles
that maximize the swimming efficiencies are obtained using algorithms detailed in Fig. 4.1. The swimming efficiencies
for the prolate spheroid and the shape that minimizes the fluid drag are obtained by the slip optimization algorithm
detailed in Section 3.2 while the body shapes are fixed. (b) Normalized drag force versus reduced volume of different
shape families. No significant difference is found in the fluid drag force between the three shape families for any given
reduced volume, as long as the shape is similar to elongated front-back symmetric prolate spheroids.

The three microswimmers of the same reduced volume ν = 0.7 are shown in Fig. 5.3. The flow fields are
obtained by the optimal slip profiles corresponding to these shapes. All microswimmers are swimming at the
unit translational velocity. In addition to the front-back symmetric shapes, the optimal slip profiles for each
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Reduced Volume Microswimmer Shape Type

Constraint Prolate Spheroid Max Efficiency* Min Drag Force

ν0 = 0.60
ν 0.600 0.599 0.600
JE 3.860 5.801 4.779

Jdrag 1.063 1.068 1.060

ν0 = 0.65
ν 0.650 0.650 0.650
JE 3.099 4.402 3.845

Jdrag 1.029 1.031 1.026

ν0 = 0.70
ν 0.700 0.700 0.700
JE 2.517 3.347 3.081

Jdrag 1.003 1.002 0.999

ν0 = 0.75
ν 0.750 0.750 0.751
JE 2.059 2.582 2.444

Jdrag 0.983 0.981 0.979

ν0 = 0.80
ν 0.800 0.800 0.801
JE 1.688 1.989 1.917

Jdrag 0.968 0.966 0.965

ν0 = 0.85
ν 0.850 0.849 0.850
JE 1.379 1.528 1.500

Jdrag 0.959 0.957 0.957

ν0 = 0.90
ν 0.900 0.899 0.900
JE 1.111 1.169 1.158

Jdrag 0.956 0.955 0.954

ν0 = 0.95
ν 0.950 0.949 0.950
JE 0.862 0.877 0.872

Jdrag 0.960 0.960 0.960

ν0 = 1.00
ν 1.000 1.000 1.000
JE 0.500 0.500 0.500

Jdrag 1.000 1.000 1.000

Table 5.1: Comparison of a variety of constraints and shapes. The corresponding shape are exhibited in Fig. 5.2.
The Max Efficiency* shapes are obtained from using the Min Drag Force shape as the initial shape.

of these shapes are also front-back symmetric, expected from the linearity of Stokes equations. The fluid
velocities around the microswimmers are faster closer to the swimmer body because of the slip-boundary
conditions, and quickly decay to 0 away from the swimmer. Compared to the two pointy shapes, the prolate
spheroid has a bigger region with high velocities close to the poles. These high-velocity regions are sources
of extra power loss (fluid dissipation) that negatively impact swimming efficiencies.

6. Conclusions. In this work, we proposed a computational framework that optimizes the shape and
the slip velocity of a slip-driven axisymmetric microswimmer. The objective function is chosen to be the
swimming efficiency in the fluid medium enclosing the microswimmer, and the microswimmers are subject
to constant reduced volumes. The forward problems are solved using a boundary integral equation (BIE)
method of high accuracy.

The optimization is performed iteratively during which the optimal slip profile for a given shape and
the optimal shape for a given slip profile are updated. We use an Augmented Lagrangian Method (ALM) to
enforce the constraint of constant reduced volume. The slip-optimization is formulated as a symmetric gen-
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Fig. 5.3: Velocity flow fields (in lab frame) for different body shapes when the reduced volume is ν = 0.7. The
swimming translation velocity U is scaled to one.

eralized eigenvalue problem that requires only solving one forward problem with mixed boundary condition
(3.12) in addition to the adjoint problem (2.9) - an improvement of our previous work [13] which requires
solving one forward problem for each basis function of the slip profile. The shape sensitivities suitable for this
problem are derived using standard treatments. The results are validated against Finite Difference method
and show excellent accuracy.

Our optimization results show that the optimal shape for the axisymmetric slip-driven microswimmer
with a given reduced volume is a front-back symmetric elongated shape with sharp tips. Optimal slip
profiles associated with these shapes result in small high-velocity regions close to the microswimmer. The
hydrodynamic efficiency can be significantly higher than that of a prolate spheroid with the same reduced
volume ν, especially at small ν’s. It is also worthy to note that the shape that minimizes the fluid drag also
out-performs the spheroids at given ν.

We note that the optimal shapes obtained here are different than those in [28], in which the optimal
shapes demonstrate ripple-like features for large minimal-curvature constraints and long protrusions from
poles for small minimal-curvature constraints. In the latter case, the optimal slip velocity is high close to
the tips of the protrusions and roughly uniform over the “body” of the swimmer. We show that the optimal
swimmer shape is more regular, sharp poles nonetheless, if we allow arbitrarily small curvature.
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Appendix A. Parametrization using B-splines. We first denote the 5-th order B-spline on knots
{0, 1, 2, 3, 4, 5, 6} by B0(t). By horizontal shift, let Bk(t) = B0(t − k), for any integer k. For the parameter
domain [0, L] (L being either π or 2π), the following transformation of Bk is used,

(A.1) Bk(t) = Bk−6

(
tNL

L

)
, k = 1, 2, . . . , (NL + 5), t ∈ [0, L]

where NL is the number of uniform subintervals of [0, L]. The (scalar) slip velocity profile uS is used to
characterize the slip velocity uS on Γ with t ∈ [0, π]. We obtain Nu (uniform) interior grid points of uS,

(A.2) (a) u0 = uS(0) = 0, uNu+1 = uS(π) = 0, (b) uk = uS

(
kπ

Nu + 1

)
, k = 1, . . . , Nu, on γ,

where (A.2a) stems from (2.5). In practice, an extended vector vext for t ∈ [0, 2π] is used to fit B-spline
interpolation,

vext = (0, u1, u2, . . . , uNu−1, uNu
, 0,−uNu

,−uNu−1, . . . ,−u2,−u1, 0)
T
.

The purpose of vext is to maintain periodicity of derivatives at the poles. For a given vext, a function w(t) is
constructed by

(A.3) w(t) = cTB(t)
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where B(t) = (B1(t), . . . , B2Nu+7(t))
T
is defined by (A.1). The vector c = (c1, . . . , c2Nu+7)

T
is solved by

(A.4)

 w
(

π(i−1)
Nu+1

)
= vi, i = 1, . . . , 2Nu + 3,

dnw(t)

dtn

∣∣∣
t=0

=
dnw(t)

dtn

∣∣∣
t=π

, n = 1, 2, 3, 4.

where vi is the i-th component of vext.
The component function wk(t) in w(t) = (w1(t), . . . , wNu

(t))
T

in (4.7) is obtained by letting k ∈
{1, . . . , Nu}, uk = 1 and un = 0 when n ̸= k, and solving for c in (A.3) by (A.4).

The representations of R and Z involve Bk directly, thus, we denote B(t) =
(
B1(t), . . . , BNγ (t)

)T
in

(4.7). An arbitrary ξγ does not satisfy (2.1a,c), therefore, we determine the value of ξ1R using R(0) = 0
by the values of ξ2R, ξ

3
R, ξ

4
R, ξ

5
R, considering the fact that Bk(0) ̸= 0 only for k ≤ 5. Choosing Nγ > 10, we

similarly determine ξ
Nγ

R by enforcing R(π) = 0 using the values of ξ
Nγ−4
R , ξ

Nγ−3
R , ξ

Nγ−2
R , ξ

Nγ−1
R . Similarly, ξ1Z

is determined on values of ξ2Z , ξ
3
Z , ξ

4
Z , ξ

5
Z by Z ′(0) = 0 and ξ

Nγ

Z on the values of ξ
Nγ−4
Z , ξ

Nγ−3
Z , ξ

Nγ−2
Z , ξ

Nγ−1
Z

by Z ′(π) = 0. These conditions reduce the degree of freedom of ξγ from 2Nγ to (2Nγ − 4).

Appendix B. Auxiliary proofs.

Proof of Lemma 3.6. A straightforward derivation shows that ∇ · E
(
(u, p), (u, p)

)
= 0 holds for any

(u, p) satisfying (2.6) (use component notation and verify that
∑

j ∂jEij = 0, i = 1, 2, 3). We consequently
have

E
(
(u, p), (u, p)

)
: ∇Tθ = ∇ ·

[
E
(
(u, p), (u, p)

)
· θ

]
−
[
∇ ·E

(
(u, p), (u, p)

)]
· θ = ∇ ·

[
E
(
(u, p), (u, p)

)
· θ

]
Then, observing that

(
(u, p), (v, q)

)
7→ E

(
(u, p), (v, q)

)
defines a symmetric bilinear form, we invoke the

polarization identity and obtain

4E
(
(u, p), (û, p̂)

)
: ∇Tθ =

[
E
(
(u+û, p+p̂), (u+û, p+p̂)

)
−E

(
(u−û, p−p̂), (u−û, p−p̂)

)]
: ∇Tθ

= ∇ ·
[
E
(
(u+û, p+p̂), (u+û, p+p̂)

)
· θ −E

(
(u−û, p−p̂), (u−û, p−p̂)

)
· θ

]
= 4∇ ·

[
E
(
(u, p), (û, p̂)

)
· θ

]
whereupon applying the first Green identity (divergence theorem) completes the proof of the claimed identity.

Proof of formula (3.38). Let the parametric representation of Γη(θ) be of the form (3.15). We seek the
derivative of the unit tangent vector on Γη, given by

(B.1) αη(t, ϕ)τ η(t, ϕ) = ∂sxη(t, ϕ).

with respect to η and at η = 0. Since θ = ∂ηxη(t, ϕ), we have

(B.2) ∂ηαη(t, ϕ)
∣∣
η=0

=
∂txη(t, ϕ) · ∂ηsxη(t, ϕ)

αη(t, ϕ)

∣∣∣
η=0

= [τ · ∂sθ](t, ϕ).

The derivative
⋆
τ := ∂ητ |η=0 is hence evaluated from (B.1), (B.2) and (2.4) as

⋆
τ (t, ϕ) = ∂ητ η(t, ϕ)

∣∣∣
η=0

= 1
α(t)

(
∂tθ −

[
τ · ∂sθ

]
τ
)
(t, ϕ) = 1

α(t)

(
[n · ∂sθ]n

)
(t, ϕ) =

[
κθτ + 1

αθ
′
n

]
(t)n(t, ϕ)

which completes the proof of (3.38).

Appendix C. Differential operators using curvilinear coordinates and proof of Lemma 3.7.
Let points x in a tubular neighborhood V of Γ be given in terms of curvilinear coordinates (t, h), so that

x = x(t, ϕ) + hn(t, ϕ),

with x(t, ϕ) and n(t, ϕ) as given in (2.2) and (2.3), respectively, and let

(C.1) v(x) = vτ (t, h)τ (t, ϕ) + vn(t, h)n(t, ϕ)
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denote a generic axisymmetric vector field in V . Then, at any point x = x(t, ϕ) on Γ (i.e., at h = 0), we
have

∇v = ( 1
α∂tvs − κvn)τ ⊗ τ + ( 1

α∂tvn + κvτ )n⊗ τ + 1
αR (R′vτ + Z ′vn)ν ⊗ ν + ∂hvττ ⊗ n+ ∂hvnn⊗ n

∇ · v = 1
α∂tvτ − κvn + 1

αR (R′vτ + Z ′vn) + ∂hvn,

where ν = sinϕex − cosϕey = n× τ . In particular, the transformation velocity θ being of the form (C.1),
we have

(C.2) divSθ = 1
Rα

[
∂t(Rθτ ) + (Z ′ − κR)θn

]
.

Assuming incompressibility, the condition ∇ · v = 0 can be used for eliminating ∂hvn and we obtain

∇v = ( 1
α∂tvs −κvn)(τ ⊗ τ −n⊗n)+ ( 1

α∂tvn +κvτ )n⊗ τ + ∂hvττ ⊗n+
1

αR
(R′vτ +Z ′vn)(ν ⊗ν −n⊗n).

For the forward solution, we have u = Uez + uSτ =
(
uS + 1

αUZ ′)τ − 1
αUR′n on Γ. Recalling that

2D[u] = ∇u+∇Tu and using κ = 1
α3 (Z

′R′′ −R′Z ′′) and R′2 + Z ′2 = α2, we obtain

(C.3)

∇u =
(uS)′

α
τ ⊗ τ +

R′uS

Rα
ν ⊗ ν − (RuS)′

Rα
n⊗ n+ κuSn⊗ τ + ∂huττ ⊗ n

=
(RuS)′

Rα

(
τ ⊗ τ − n⊗ n

)
+

R′uS

Rα

(
ν ⊗ ν − τ ⊗ τ

)
+ κuSn⊗ τ + ∂huττ ⊗ n,

2D[u] =
(2RuS)′

Rα

(
τ ⊗ τ − n⊗ n

)
+

2R′uS

Rα

(
ν ⊗ ν − τ ⊗ τ

)
+

(
∂huτ + κuS

)(
n⊗ τ + τ ⊗ n

)
,

on Γ. The stress tensor f = −pn+ 2µD[u] · n on Γ is then found as

f = −
(
p+

2µ

Rα
(RuS)′

)
n+ µ(∂huτ + κuS)τ .

In particular, taking the tangential and normal projections of f , we obtain

2µ

Rα
(RuS)′ = −fn − p, ∂huτ =

1

µ
fτ − κuS

which, used in (C.3), establishes the first part of the lemma. Using (uS, U) = (0, 1) in this result then yields
the second part.
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