
ar
X

iv
:2

40
5.

00
65

8v
1 

 [
m

at
h.

N
T

] 
 1

 M
ay

 2
02

4

A NOTE ON LARGE SUMS OF DIVISOR-BOUNDED MULTIPLICATIVE

FUNCTIONS

CLAIRE FRECHETTE, MATHILDE GERBELLI-GAUTHIER, ALIA HAMIEH, AND NAOMI TANABE

Abstract. Given a multiplicative function f , we let S(x, f) =
∑

n≤x f(n) be the associated partial

sum. In this note, we show that lower bounds on partial sums of divisor-bounded functions result in
lower bounds on the partial sums associated to their products. More precisely, we let fj , j = 1, 2 be such

that |fj(n)| ≤ τ (n)κ for some κ ∈ N, and assume their partial sums satisfy |S(xj , fj)| ≥ ηxj(log xj)
2κ−1

for some x1, x2 ≫ 1 and η > maxj{(log xj)
−1/100}. We then show that there exists x ≥ min{x1, x2}

ξ2

such that |S(x, f1f2)| ≥ ξx(log x)2
2κ−1, where ξ = Cη1+2κ+3

for some absolute constant C > 0.

1. Introduction

A central theme in analytic number theory is studying mean values of multiplicative functions. One
enduring quest in this area, which has garnered extensive research over the past century and continues
to attract significant interest to date, revolves around understanding the asymptotic behaviour of
character sums. Let χ be a primitive Dirichlet character modulo q and let S(x, χ) =

∑

n≤x χ(n) be
the associated character sum. Trivially, we have the bound

|S(x, χ)| ≤ min(x, q).

An important result proven independently by Pólya and Vinogradov [1, pages 135–137] asserts that

max
x

|S(x, χ)| ≪ √
q log q,

which was further improved to

max
x

|S(x, χ)| ≪ √
q log log q,

by assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet L-functions thanks to the work
of Montgomery and Vaughan [15]. It follows that

(1.1) S(x, χ) = o(x)

when x ≥ q
1
2
+ǫ. In 1957, Burgess established (1.1) in the range x > q

1
4
+o(1) for any quadratic

character χ when q is prime. This was generalized by Burgess himself to any non-principal character

provided that q is cubefree, and in the smaller range x > q
3
8
+o(1) otherwise. Burgess’s range has
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not been substantially improved over the last five decades, although it is widely believed that (1.1)
should hold in the wider range x ≫ǫ q

ǫ. In 2001, Granville and Soundararajan [4] proved that, for
a primitive character χ mod q, (1.1) holds in the range log x/ log log q → ∞ assuming the GRH for
L(s, χ). In [6], they also showed that this asymptotic holds under the weaker assumption that “100%”
of the zeros of L(s, f) up to height 1

4 lie on the critical line. This work of Granville and Soundararajan
is of particular interest to us because it makes strong connections between character sums and zeros
of the associated L-functions using general results from multiplicative number theory pertaining to
mean values of 1-bounded multiplicative functions in the pretentious framework. In [6], the authors
record various other interesting observations on large character sums applying variants of Halasz’s
theorem and Lipschitz estimate as developed in [5]. For example, they show that if χ1 and χ2 have
large character sums then so does their product χ1χ2. This result follows as a direct application of
[6, Theorem 6.2] which asserts that if the partial sums of two completely multiplicative 1-bounded
functions are large, then the partial sum of their product is large as well. In this note, we extend this
theorem to multiplicative functions valued outside of the unit disk, but whose magnitude is bounded
by a power of the divisor function.

Theorem 1.1. Let κ be a positive integer. Let f1 and f2 be multiplicative functions with |fj(n)| ≤
τ(n)κ for all n ∈ N. Suppose that, for x1, x2 ≫ 1, there exists η > maxj{(log xj)−1/100} such that

(1.2)

∣

∣

∣

∣

∣

∣

∑

n≤xj

fj(n)

∣

∣

∣

∣

∣

∣

≥ ηxj(log xj)
2κ−1.

Then, with ξ = Cη1+2κ+3

for some absolute constant C > 0, there exists x ≥ min{x1, x2}ξ
2

such that

∣

∣

∣

∣

∣

∣

∑

n≤x

f1(n)f2(n)

∣

∣

∣

∣

∣

∣

≥ ξx(log x)2
2κ−1.

Theorem 1.1 is proved following the general structure of the argument of [6, Theorem 6.1], but we
extend it to divisor-bounded multiplicative functions. The technical results employed in the proofs of
the various theorems in [6] have their roots in the work of Halász [7, 8] and the subsequent works of
Montgomery [14], Tenenbaum [16], Granville and Soundararajan [5], among other mathematicians, on
mean values of multiplicative functions that take their values in the complex unit disc. These results
have been extended to a broad class of divisor-bounded multiplicative functions by Granville, Harper
and Soundararajan in [3], Mangerel in [11, 12], and Matthiesen in [13]. Our work in the present
paper and our previous work [2] hinges upon such generalizations and is motivated by trying to study

a GL2-analogue of (1.1). In fact, for a primitive cusp form g(z) =
∑

n≥1 λg(n)n
k−1
2 e2πinz in Sk(1),

Lamzouri [9, Corollary 1.2] proved that

(1.3)
∑

n≤x

λg(n) = o(x log x)

holds in the range log x/ log log k → ∞ assuming the GRH for L(s, g). He also proved unconditionally
that this range in x is best possible [9, Corollary 1.4]. In [2], we extend the methods of [6] to show
that (1.3) holds in the range x ≥ kǫ under a weaker assumption than GRH. In connection with the
main result of this paper, we derive the following immediate consequence for large sums of Fourier
coefficients of primitive cusp forms, which can be viewed as a GL2-analogue of [6, Corollary 1.7].
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Corollary 1.2. Let g ∈ Sk(r) and h ∈ Sℓ(q) be primitive cusp forms whose Fourier coefficients are

denoted by λg(n) and λh(n), respecctively. Suppose that

∣

∣

∣

∣

∣

∣

∑

n≤x1

λg(n)

∣

∣

∣

∣

∣

∣

≥ ηx1 log x1 and

∣

∣

∣

∣

∣

∣

∑

n≤x2

λh(n)

∣

∣

∣

∣

∣

∣

≥ ηx2 log x2,

for some x1, x2 ≫ 1 and η > maxj{(log xj)−1/100}. Then there exists x ≥ (min(x1, x2))
ξ2 such that

∣

∣

∣

∣

∣

∣

∑

n≤x1

λg(n)λh(n)

∣

∣

∣

∣

∣

∣

≥ ξx(log x)3,

where ξ = Cη17 for some absolute positive constant C.

The paper is organized as follows. In Section 2, we record versions of Halász’s Theorem and
Lipschitz Formula that are suitable for our setup. We also prove some consequences of these results
that are crucial for the proof of our main theorem. In Section 3, we introduce a distance function
for divisor-bounded multiplicative functions, for which we prove a triangle inequality-type result. We
also derive a lower bound on sums of multiplicative functions in terms of the distance function. These
results form the main ingredients of the proof of Theorem 1.1, which appears in Section 4.

Conventions and Notation. In this work, we adopt the following conventions and notation. Given
two functions f(x) and g(x) we write f(x) ≪ g(x), g(x) ≫ f(x) or f(x) = O(g(x)) to mean there exists
some positive constant M such that |f(x)| ≤M |g(x)| for x large enough. The notation f(x) ≍ g(x) is
used when both estimates f(x) ≪ g(x) and f(x) ≫ g(x) hold simultaneously. We write f(x) = o(g(x))

when g(x) 6= 0 for sufficiently large x and lim
x→∞

f(x)

g(x)
= 0. The letter p will be exclusively used to

represent a prime number.

2. Halász’s Theorem and Consequences

Let f(n) be a multiplicative function satisfying

(2.1) |f(n)| ≤ τ(n)κ

for all n ∈ N, and let L(s, f) be its associated Dirichlet L-series given by

L(s, f) =
∑

n≥1

f(n)

ns
, Re(s) > 1.

We begin with presenting slightly modified versions of Halász’s Theorem and its corollary, following
the ideas of [3, Theorem 1.1, Corollary 1.2].

Theorem 2.1. Let f be a multiplicative function such than |f(n)| ≤ τ(n)κ for all n ∈ N. Let x be

sufficiently large. Then for any 1 ≪ T ≤ x
9
10 , we have

1

x

∑

n≤x

f(n) ≪ 1

log x

∫ 1

1
log x

(

max
|t|≤T

∣

∣

∣

∣

L(1 + σ + it, f)

1 + σ + it

∣

∣

∣

∣

)

dσ

σ
+O

(

(log T )2
κ

log x
+

(log x)2
κ

T

)

.
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Proof. The result follows from [3, Eqs. 2.1, 2.2, & 2.9] with y = T 2. �

To further proceed, let 1 ≤ T0 ≪ (log x)2
κ
, and let Mf (x, T0) be a real number satisfying

(2.2) max
|t|≤T0

∣

∣

∣

∣

∣

∣

L
(

1 + 1
logx + it, f

)

1 + 1
log x + it

∣

∣

∣

∣

∣

∣

= e−Mf (x,T0)(log x)2
κ
.

Then, we obtain the following corollary.

Corollary 2.2. Suppose f is a multiplicative function such that |f(n)| ≤ τ(n)κ for all n ∈ N. Let

(log x)2
κ−1 ≪ T0 ≪ (log x)2

κ
for some sufficiently large x, and let Mf (x, T0) be the quantity defined in

(2.2). Then, we have

1

x

∑

n≤x

f(n) ≪ (Mf (x, T0) + 1)e−Mf (x,T0)(log x)2
κ−1 +

(log x)2
κ−1

T0
+

(log log x)2
κ

log x
.

Proof. We apply Theorem 2.1 with T = T0 log x to get

1

x

∑

n≤x

f(n) ≪ 1

log x

∫ 1

1
log x

(

max
|t|≤T

∣

∣

∣

∣

L(1 + σ + it, f)

1 + σ + it

∣

∣

∣

∣

)

dσ

σ
+O

(

(log x)2
κ−1

T0
+

(log log x)2
κ

log x

)

.

Noting that |f(n)| ≤ τ(n)κ = τ2(n)
κ ≤ τ2κ(n), where τℓ is the ℓ-fold divisor function (i.e., τℓ(n) is the

coefficient of n−s in the Dirichlet series representation of ζ(s)ℓ), and that σ ≤ 1, we have

L(1 + σ + it, f) ≪ ζ(1 + σ)2
κ ≪

(

1

σ

)2κ

,

and therefore,

max
|t|≤T

∣

∣

∣

∣

L(1 + σ + it, f)

1 + σ + it

∣

∣

∣

∣

= max
|t|≤T0

∣

∣

∣

∣

L(1 + σ + it, f)

1 + σ + it

∣

∣

∣

∣

+O

(

1

σ2
κ
T0

)

.

It follows that

1

log x

∫ 1

1
log x

(

max
|t|≤T

∣

∣

∣

∣

L(1 + σ + it, f)

1 + σ + it

∣

∣

∣

∣

)

dσ

σ
=

1

log x

∫ 1

1
log x

(

max
|t|≤T0

∣

∣

∣

∣

L(1 + σ + it, f)

1 + σ + it

∣

∣

∣

∣

)

dσ

σ
+O

(

(log x)2
κ−1

T0

)

,

and so

1

x

∑

n≤x

f(n) ≪ 1

log x

∫ 1

1
log x

(

max
|t|≤T0

∣

∣

∣

∣

L(1 + σ + it, f)

1 + σ + it

∣

∣

∣

∣

)

dσ

σ
+O

(

(log x)2
κ−1

T0
+

(log log x)2
κ

log x

)

.

Using the maximum modulus principle on the region {u+ iv : 1 + 1
log x ≤ u ≤ 2, |v| ≤ T0}, the rest of

the proof follows by applying the same argument employed in the proof of [3, Corollary 1.2] with very

minor changes. We remark here that the lower bound T0 ≫ (log x)2
κ−1

is imposed so that we could
use [3, Lemma 2.7] directly. In practice, we will apply this result with T0 ≍ (log x)2

κ
. �
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Let φf (x, T0) be a real number in the range |t| ≤ T0 for which the function

t 7→
∣

∣

∣

∣

L

(

1 +
1

log x
+ it, f

)∣

∣

∣

∣

attains its maximum, and let Nf (x, T0) be a real number satisfying

(2.3)

∣

∣

∣

∣

L

(

1 +
1

log x
+ iφf (x, T0), f

)∣

∣

∣

∣

= e−Nf (x,T0)(log x)2
κ
.

As mentioned in the proof of Corollary 2.2, we will mostly be interested in the case T0 ≍ (log x)2
κ
.

We also note that

e−Mf (x,T0)(log x)2
κ
= max

|t|≤T0

∣

∣

∣

∣

∣

L(1 + 1
log x + it, f)

1 + 1
log x + it

∣

∣

∣

∣

∣

≤ max
|t|≤T0

∣

∣

∣

∣

L(1 +
1

log x
+ it, f)

∣

∣

∣

∣

= e−Nf (x,T0)(log x)2
κ
.

It then follows thatMf (x, T0) ≥ Nf (x, T0), and so (Mf (x, T0)+1)e−Mf (x,T0) ≤ (Nf (x, T0)+1)e−Nf (x,T0).
Thus, we arrive at the following result.

Corollary 2.3. Suppose f is a multiplicative function such that |f(n)| ≤ τ(n)κ for all n ∈ N. Let

(log x)2
κ−1 ≪ T0 ≪ (log x)2

κ
for some sufficiently large x, and let Nf (x, T0) be the quantity defined in

(2.3). Then, we have

1

x

∑

n≤x

f(n) ≪ (Nf (x, T0) + 1)e−Nf (x,T0)(log x)2
κ−1 +

(log x)2
κ−1

T0
+

(log log x)2
κ

log x
.

We now generalize [5, Theorem 2a], which will become useful in the proof of Proposition 2.7 at
the end of this section.

Proposition 2.4. Suppose f is a multiplicative function such that |f(n)| ≤ τ(n)κ for all n ∈ N. Let

φ = φf (x, (log x)
2κ) as in (2.3) and assume that |φ| ≫ (log x)2

κ−1

. Then

1

x

∑

n≤x

f(n) ≪ (log x)2
κ−1

|φ| − 2
+

(log log x)2
κ+1(1− 2

π
)+1

(log x)1−
2κ+1

π

+
(log log x)2

κ

log x
.

Proof. We apply Corollary 2.3 with T0 = |φ| − 2 to get

1

x

∑

n≤x

f(n) ≪ (Nf (x, |φ| − 2) + 1)e−Nf (x,|φ|−2)(log x)2
κ−1 +

(log x)2
κ−1

|φ| − 2
+

(log log x)2
κ

log x

≪ 1

log x
max

|t|≤|φ|−2

∣

∣

∣

∣

L(1 +
1

log x
+ it, f)

∣

∣

∣

∣

log





(log x)2
κ

max|t|≤|φ|−2

∣

∣

∣L(1 + 1
log x + it, f)

∣

∣

∣





+
(log x)2

κ−1

|φ| − 2
+

(log log x)2
κ

log x
.
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By [3, Lemma 4.1], we have

L

(

1 +
1

log x
+ it, f

)

≪ (log x)
2κ+1

π

(

log x

1 + |t− φ| log x + (log log x)2
)2κ(1− 2

π
)

≪ (log x)
2κ+1

π (log log x)2
κ+1(1− 2

π
) ,

for all |t| ≤ |φ| − 2. It follows that

1

x

∑

n≤x

f(n) ≪ 1

log x
(log x)

2κ+1

π (log log x)2
κ+1(1− 2

π
) log





(log x)2
κ

max|t|≤|φ|−2

∣

∣

∣L(1 + 1
log x + it, f)

∣

∣

∣





+
(log x)2

κ−1

|φ| − 2
+

(log log x)2
κ

log x

≪ (log log x)2
κ+1(1− 2

π
)+1

(log x)1−
2κ+1

π

+
(log x)2

κ−1

|φ| − 2
+

(log log x)2
κ

log x
,

as required. �

Next, we require the following version of Lipschitz Theorem.

Theorem 2.5 (Lipschitz Theorem). Suppose f is a multiplicative function such that |f(n)| ≤ τ(n)κ.

Let φ = φf (x, (log x)
2κ), as given in (2.3). Then for all 1 ≤ w ≤ x1/3 we have

∣

∣

∣

∣

∣

∣

1

x

∑

n≤x

f(n)n−iφ − 1

x/w

∑

n≤x/w

f(n)n−iφ

∣

∣

∣

∣

∣

∣

≪ log

(

log x

log ew

)(

logw + (log log x)2

log x

)min{2κ(1− 2
π
),1}

(log x)2
κ−1.

Proof. The proof is very similar to that of [3, Theorem 1.5], and the reader is referred to their detailed
exposition. �

Corollary 2.6. Let f and φ be as in Theorem 2.5. Then

1

x

∑

n≤x

f(n) =
xiφ

1 + iφ
· 1
x

∑

n≤x

f(n)n−iφ +O(Eκ(x)),

where

(2.4) Eκ(x) =

{

(log x)−1+4/π(log log x)5−8/π if κ = 1

(log x)2
κ−2(log log x)3 if κ > 1.

Proof. We will show the equivalent statement that

1

x

∑

n≤x

f(n)n−iφ =
1 + iφ

x1+iφ

∑

n≤x

f(n) +O(|φ|Eκ(x)).
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By partial summation, we have

1

x

∑

n≤x

f(n)n−iφ =
1

x

∫ x

1
u−iφd







∑

n≤x

f(n)







=
1

x1+iφ

∑

n≤x

f(n) +
iφ

x

∫ x

1

1

u1+iφ

∑

n≤u

f(n)du.

We split the integral into two pieces as follows:

∫ x

1

1

u1+iφ

∑

n≤u

f(n)du =

∫ x/(log x)2

1

1

u1+iφ

∑

n≤u

f(n)du+

∫ x

x/(log x)2

1

u1+iφ

∑

n≤u

f(n)du.

For the first integral, we apply the trivial bound

(2.5)
∑

n≤x

|f(n)| ≤
∑

n≤x

τ2κ(n) ≪ x(log x)2
κ−1

(see [10] for example) to get

iφ

x

∫ x/(log x)2

1

1

u1+iφ

∑

n≤u

f(n)du≪ |φ|
x

∫ x/(log x)2

1

1

u

∑

n≤u

|f(n)|du

≤ |φ|
x

∫ x/(log x)2

1
(log u)2

κ−1 du≪ |φ|Eκ(x).

Since w = x/u is in the range of Theorem 2.5, the second integral is equal to

iφ

x

∫ x

x/(log x)2





1

x1+iφ

∑

n≤x

f(n) +O

(

log

(

log x

log ew

)(

logw + (log log x)2

log x

)min{2κ(1− 2
π
),1}

(log x)2
κ−1

)



 du

=
iφ

x





1

x1+iφ

∑

n≤x

f(n)





∫ x

x/(log x)2
du+

iφ

x
·O
(

log log x

(

(log log x)2

log x

)min{2κ(1− 2
π
),1}

(log x)2
κ−1

)

∫ x

x/(log x)2
du

=
iφ

x1+iφ

∑

n≤x

f(n) +O(|φ|Eκ(x)).

Combining the two integrals gives the desired result. �

We now utilize Proposition 2.4 (when |φ| is large) and Corollary 2.6 (when |φ| is small) to get the
proposition that will be used in our argument.

Proposition 2.7. Let f be a multiplicative function such that |f(n)| ≤ τ(n)κ, and let N = Nf (x, (log x)
2κ)

and φ = φf (x, (log x)
2κ) for sufficiently large x. Then,

1

x

∑

n≤x

f(n) ≪ (log x)2
κ−1

(

(N + 1)e−N

1 + |φ| +
Eκ(x)

(log x)2κ−1

)

,

where Eκ(x) is given in (2.4).
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Proof. Suppose that |φ| ≥ 1
2 (log x)

2κ . By Proposition 2.4, we have

1

x

∑

n≤x

f(n) ≪ (log x)2
κ−1

(log x)2
κ +

(log log x)2
κ+1(1− 2

π
)+1

(log x)1−
2κ+1

π

+
(log log x)2

κ

log x
≪ (log log x)2

κ+1(1− 2
π
)+1

(log x)1−
2κ+1

π

+
(log log x)2

κ

log x
.

It follows that

1

x

∑

n≤x

f(n)− (log x)2
κ−1 (N + 1)e−N

1 + |φ| ≪ (log log x)2
κ+1(1− 2

π
)+1

(log x)1−
2κ+1

π

+
(log log x)2

κ

log x
≪ Eκ(x).

Hence, we may assume that |φ| ≤ 1
2(log x)

2κ . Applying Corollary 2.3 to the function g(n) = f(n)n−iφ

with T0 =
1
2(log x)

2κ gives

1

x

∑

n≤x

f(n)n−iφ =
1

x

∑

n≤x

g(n) ≪
(

Ng

(

x,
(log x)2

κ

2

)

+ 1

)

e−Ng(x,
1
2
(log x)2

κ
)(log x)2

κ−1 +
(log log x)2

κ

log x

= (N + 1)e−N (log x)2
κ−1 +

(log log x)2
κ

log x
.(2.6)

The last line follows from the fact that Ng(x,
1
2(log x)

2κ) = Nf (x, (log x)
2κ) = N . Indeed, this can be

observed as following: Since L(s, g) = L(s+ iφ, f), we have

max
|t|< 1

2
(log x)2κ

∣

∣

∣

∣

L

(

1 +
1

log x
+ it, g

)∣

∣

∣

∣

= max
|t|< 1

2
(log x)2κ

∣

∣

∣

∣

L

(

1 +
1

log x
+ i(t+ φ), f

)∣

∣

∣

∣

= max
|t|<(log x)2κ

∣

∣

∣

∣

L

(

1 +
1

log x
+ it, f

)∣

∣

∣

∣

.

Applying Corollary 2.6 and (2.6), we get

1

x

∑

n≤x

f(n) ≪
∣

∣

∣

∣

xiφ

1 + iφ

∣

∣

∣

∣

(

(N + 1)e−N (log x)2
κ−1 +

(log log x)2
κ

log x

)

+O(Eκ(x))

≪ (N + 1)e−N

1 + |φ| (log x)2
κ−1 +O

(

(log log x)2
κ

log x

)

+O (Eκ(x)) .

The first error term is subsumed into the second one since it is smaller. �

Before concluding this section, we establish the following lemma, which will play a pivotal role in
Section 4.

Lemma 2.8. Let f be a multiplicative function such that |f(n)| ≤ τ(n)κ for all n ∈ N. Let N =
Nf (x, (log x)

2κ) and φ = φf (x, (log x)
2κ) as in (2.3). Suppose that there exists x ≫ 1 and η >

(log x)−1/100 such that

(2.7)

∣

∣

∣

∣

∣

∣

∑

n≤x

f(n)

∣

∣

∣

∣

∣

∣

≥ ηx(log x)2
κ−1.

Then,

|φ| ≪ 1

η
and N ≤ 2 log

(

1

η

)

+O(1).
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Proof. By Proposition 2.7, we know that
∣

∣

∣

∣

∣

∣

∑

n≤x

f(n)

∣

∣

∣

∣

∣

∣

≪ x(log x)2
κ−1

(

(N + 1)e−N

1 + |φ| +
Eκ(x)

(log x)2κ−1

)

.

Therefore, together with our assumption (2.7), we have

(2.8) η ≤ C(N + 1)e−N

1 + |φ| +
CEκ(x)

(log x)2κ−1
,

for some absolute constant C > 0. Writing the second term on the right-hand side as Aκ(x), the
inequality (2.8) can be written as

(1 + |φ|)(η −Aκ(x)) ≤ C(N + 1)e−N .

Since η ≥ 2Aκ(x) for sufficiently large x, we see that

(2.9) 1 + |φ| ≤ C(N + 1)e−N

η −Aκ(x)
≤ 2C(N + 1)e−N

η
.

In particular, |φ| ≪ 1
η and η ≪ e−

N
2 . It follows that N ≤ 2 log

(

1
η

)

+O(1) as desired. �

3. Technical Results

While the notion of a distance between multiplicative functions makes most sense in the context
of functions taking values in the complex unit disc, we adapt the standard definition (see for example
[6, Section 2]) and set the following notation for a distance function associated with multiplicative
functions f satisfying (2.1):

D
2(f, nit;x) =

∑

p≤x

2κ − Re(f(p)p−it)

p
.(3.1)

The distance function D
2(f, nit;x) is related to the Dirichlet series L(s, f) via
∣

∣

∣

∣

L

(

1 +
1

log x
+ it, f

)∣

∣

∣

∣

≍ (log x)2
κ
exp(−D

2(f, nit;x)),

which can be observed in the following way. We have

∣

∣

∣

∣

L

(

1 +
1

log x
+ it, f

)∣

∣

∣

∣

= exp





∑

p≤x

Re(f(p)p−it)

p
+O(1)



(3.2)

= exp





∑

p≤x

2κ

p
−
∑

p≤x

2κ − Re(f(p)p−it)

p
+O(1)





≍ (log x)2
κ
exp



−
∑

p≤x

2κ − Re(f(p)p−it)

p





= (log x)2
κ
exp(−D

2(f, nit;x)),
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where the first equality follows from [11, Lemma 2.2.15].
We note that this distance function is related to N = Nf (x, (log x)

2κ), defined in (2.3), in the
following way:

(3.3) e−N =
1

(log x)2κ

∣

∣

∣

∣

L(1 +
1

log x
+ iφ, f)

∣

∣

∣

∣

≍ exp(−D
2(f, niφ;x)).

It is known that the standard distance function between 1-bounded multiplicative functions satisfies
a triangle inequality. While such a result does not hold in our setting, we next establish a triangle-type
inequality satisfied by the function D(f, nit;x) we introduced in (3.1).

Lemma 3.1. For j = 1, 2, let fj be a multiplicative function such that |fj(n)| ≤ τ(n)κ, and let tj be

a real number. We have

D(f1, n
it1 ;x1) + D(f2, n

it2 ;x2) ≥
1√
2κ

D(f1f2, n
i(t1+t2);min{x1, x2}),

where the distance function on the right-hand side is defined with respect to the condition |f1(n)f2(n)| ≤
τ(n)2κ.

Proof. For simplicity, let us denote Dj = D(fj, n
itj ;xj) for j = 1, 2, x = min{x1, x2}, and D =

D(f1f2, n
i(t1+t2);x). Then, we have

(D1 + D2)
2 =

∑

p≤x1

2κ − Re(f1(p)p
−it1)

p
+
∑

p≤x2

2κ −Re(f2(p)p
−it2)

p

+ 2





∑

p≤x1

2κ − Re(f1(p)p
−it1)

p





1/2



∑

p≤x2

2κ − Re(f2(p)p
−it2)

p





1/2

≥
∑

p≤x

2κ+1 − Re(f1(p)p
−it1)− Re(f2(p)p

−it2)

p

+ 2





∑

p≤x

2κ − Re(f1(p)p
−it1)

p





1/2



∑

p≤x

2κ − Re(f2(p)p
−it2)

p





1/2

≥
∑

p≤x

2κ

p

[

2− Re

(

f1(p)

2κ
p−it1

)

− Re

(

f2(p)

2κ
p−it2

)]

+
∑

p≤x

2κ

p

√

2

(

1− Re

(

f1(p)

2κ
p−it1

))

√

2

(

1− Re

(

f2(p)

2κ
p−it2

))

≥
∑

p≤x

2κ

p

[

2− Re

(

f1(p)

2κ
p−it1

)

− Re

(

f2(p)

2κ
p−it2

)

+

∣

∣

∣

∣

Im

(

f1(p)

2κ
p−it1

)

Im

(

f2(p)

2κ
p−it2

)∣

∣

∣

∣

]

,
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where the last inequality follows from
∣

∣

∣

fj(p)
2κ p−itj

∣

∣

∣
≤ 1 for j = 1, 2. This fact also gives us

2− Re

(

f1(p)

2κ
p−it1

)

− Re

(

f2(p)

2κ
p−it2

)

+

∣

∣

∣

∣

Im

(

f1(p)

2κ
p−it1

)

Im

(

f2(p)

2κ
p−iφ2

)∣

∣

∣

∣

≥ 1− Re

(

f1(p)

2κ
p−it1

)

Re

(

f2(p)

2κ
p−it2

)

+ Im

(

f1(p)

2κ
p−it1

)

Im

(

f2(p)

2κ
p−it2

)

= 1− Re

(

f1(p)f2(p))

22κ
p−i(t1+t2)

)

.

It then follows that

(D1 + D2)
2 ≥

∑

p≤x

2κ

p

(

1− Re

(

f1(p)f2(p))

22κ
p−i(φ1+φ2)

))

=
1

2κ

∑

p≤x

22κ −Re(f1(p)f2(p)p
−i(φ1+φ2))

p
=

1

2κ
D
2,

as desired. �

To conclude this section, we exhibit lower bounds of sums of multiplicative functions in terms of
the distance function. More precisely, we show that if the distance D(f, niψ;x) is small then the partial
sums of f get large in suitable ranges.

Proposition 3.2. Let f be a multiplicative function satisfying |f(n)| ≤ τ(n)κ for all n ∈ N. Let

ψ = ψf (x, (log x)
2κ) be a number in the range |t| ≤ (log x)2

κ
where the maximum in (2.2) is attained.

Let x≫ 1 and set λ = D
2(f, niψ;x)+ log(1+ |ψ|)+ c where c is a suitably large constant. Then, there

exists y ∈ [xγ , x], with γ = 1/(λeλ), such that

∣

∣

∣

∣

∣

∣

∑

n≤y

f(n)

∣

∣

∣

∣

∣

∣

≫ exp(−D
2(f, niψ;x))

1 + |ψ| y(log y)2
κ−1.(3.4)

Proof. The strategy of the proof is to produce contradictory upper and lower bounds on the quantity

∣

∣

∣

∣

L

(

1 +
2λ

log x
+ iψ, f

)∣

∣

∣

∣

,

under the assumption that (3.4) fails.
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For the lower bound, we observe that

∣

∣

∣

∣

L

(

1 +
2λ

log x
+ iψ, f

)∣

∣

∣

∣

= exp







∑

p≤x
1
2λ

Re(f(p)p−iψ)

p
+O(1)







≥ exp







∑

p≤x
1
2λ

Re(f(p)p−iψ)

p
−

∑

x
1
2λ<p≤x

2κ − Re(f(p)p−iψ)

p
+O(1)







≥ exp







∑

p≤x

Re(f(p)p−iψ)

p
−

∑

x
1
2λ≤p≤x

2κ

p
+O(1)







= (2λ)−2κ exp





∑

p≤x

Re(f(p)p−iψ)

p
+O(1)





= (2λ)−2κ (log x)2
κ
exp(−D

2(f, niψ;x)).

(3.5)

We now move to the upper bound. Set δ := 2λ
log x . From the Mellin transform representation of

Dirichlet series, we get

(3.6) |L (1 + δ + iψ, f)| ≤ |1 + δ + iψ|





∫ ∞

1

1

y2+δ

∣

∣

∣

∣

∣

∣

∑

n≤y

f(n)

∣

∣

∣

∣

∣

∣

dy



 .

Applying (2.5), the integral on the right-hand side of (3.6) is bounded by a constant multiple of

∫ ∞

1
y−1−δ(log y)2

κ−1dy.

Observe that
∫

y−1−δ(log y)2
κ−1 dy = −P (δ log y)

δ2κyδ
,

where

P (X) := (2κ − 1)!
2κ−1
∑

k=0

Xk

k!
.

For contradiction, we now assume that the upper bound

(3.7)

∣

∣

∣

∣

∣

∣

∑

n≤y

f(n)

∣

∣

∣

∣

∣

∣

≤ e−λy(log y)2
κ

holds for all y ∈ [xγ , x], and split the integral into three parts, so that

∫ ∞

1
y−1−δ(log y)2

κ−1dy =

[

−P (δ log y)
δ2κyδ

]xγ

1

+

[

−e−λP (δ log y)
δ2κyδ

]x

xγ
+

[

−P (δ log y)
δ2κyδ

]∞

x

.
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Noting that P (0) = (2κ − 1)! and recalling that δ := 2λ
log x , we get

∫ ∞

1
y−1−δ(log y)2

κ−1dy =
(2κ − 1)!

δ2κ
− P (δγ log x)

δ2κxδγ
+ e−λ

P (δγ log x)

δ2κxδγ
− e−λ

P (δ log x)

δ2κxδ
+
P (δ log x)

δ2κxδ

=
(2κ − 1)!(log x)2

κ

(2λ)2κ
− (log x)2

κ
P (2γλ)

(2λ)2κe2λγ
+ e−λ

(log x)2
κ
P (2γλ)

(2λ)2κe2λγ

− e−λ
(log x)2

κ
P (2λ)

(2λ)2κe2λ
+

(log x)2
κ
P (2λ)

(2λ)2κe2λ

=
e−λ(log x)2

κ

(2λ)2κ

(

(2κ − 1)!eλ − eλP (2γλ)

e2λγ
+
P (2γλ)

e2λγ
− P (2λ)

e2λ
+
eλP (2λ)

e2λ

)

.

We want to verify that the inside of the parenthesis is bounded as λ → ∞. Recall that γ = 1
λeλ

and
κ ≥ 1, so that

P (2γλ)

e2λγ
− P (2λ)

e2λ
+
eλP (2λ)

e2λ
≪ 1.

For the first two terms in the parenthesis, let Q(X) := P (X) − (2κ − 1)!. We have

(2κ − 1)!eλ − eλP (2γλ)

e2λγ
= (2κ − 1)!eλ(1− e−2λγ) +

eλQ(2e−λ)

e2e
−λ = (2κ − 1)!eλ(1− e−2λγ) +O(1),

since Q(X) is a polynomial with vanishing constant term. It remains to bound (2κ− 1)!eλ(1− e−2λγ).
The Taylor expansion of eX for X = o(1) gives

(2κ − 1)!eλ(1− e−2λγ) = (2κ − 1)!eλ(2λγ +O((2λγ)2)) = (2κ − 1)!eλ(2e−λ +O(e−2λ)) = O(1).

We conclude that
∣

∣

∣

∣

L

(

1 +
2λ

log x
+ iψ, f

)∣

∣

∣

∣

≪
∣

∣

∣

∣

1 +
2λ

log x
+ iψ

∣

∣

∣

∣

e−λ(log x)2
κ

(2λ)2κ
.

From the definition of λ, we have

λ = D
2(f, niψ;x) + log(1 + |ψ|) + c = O(log log x),

so that
∣

∣

∣

∣

L

(

1 +
2λ

log x
+ iψ, f

)∣

∣

∣

∣

≪ |1 + iψ| exp(−D
2(f, niψ;x)) exp(− log |1 + iψ| − c)(log x)2

κ

(2λ)2κ

=
exp(−D

2(f, niψ;x)) exp(−c)(log x)2κ

(2λ)2κ
.

Comparing the upper bound from this last line with the conclusion of (3.5), we get

exp(−D
2(f, niψ;x))(log x)2

κ

(2λ)2κ
≪ exp(−D

2(f, niψ;x))e−c(log x)2
κ

(2λ)2κ
,

which can be made false for c large enough. It follows that the assumption (3.7) is false, and that the
result holds. �
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4. Proof of Theorem 1.1

Now, we will prove the main theorem. For j = 1, 2, we set φj = φfj (xj, (log xj)
2κ) and Nj =

Nfj (xj, (log xj)
2κ) as in (2.3). We also set f = f1f2 and φ = φf (x, (log x)

2κ) with x = min{x1, x2}.
By Lemma 3.1, we have

D
2(f1f2, n

i(φ1+φ2);x) ≤ 2κ
[

D(f1, n
iφ1 ;x1) + D(f2, n

iφ2 ;x2)
]2

≤ 2κ+2 max
j

{

D
2(fj, n

iφj ;xj)
}

.

Together with (3.3), it follows that

exp
(

−D
2(f1f2, n

i(φ1+φ2);x)
)

≥ min
j

{

e−2κ+2Nj

}

.

Applying Lemma 2.8 yields

(4.1) exp
(

−D
2(f1f2, n

i(φ1+φ2);x)
)

≥
(

η2
)2κ+2

= η2
κ+3

.

On the other hand, by Proposition 3.2, there exists y ∈ [x1/(λe
λ), x] such that

∣

∣

∣

∣

∣

∣

∑

n≤y

f1(n)f2(n)

∣

∣

∣

∣

∣

∣

≫ exp(−D
2(f, niψ;x))y(log y)2

κ−1

1 + |ψ|

≫ exp(−D
2(f, ni(φ1+φ2);x))y(log y)2

κ−1

1 + |φ1 + φ2|
,(4.2)

where we recall that λ = D
2(f, niψ;x)+ log(1+ |ψ|)+ c for some sufficiently large constant c. Observe

that the last inequality in (4.2) follows from

(log x)2
κ
exp(−D

2(f, niψf ;x))
∣

∣

∣
1 + 1

logx + iψf

∣

∣

∣

≍

∣

∣

∣
L
(

1 + 1
log x + iψf , f

)∣

∣

∣

∣

∣

∣
1 + 1

log x + iψf

∣

∣

∣

= max
|t|≤(log x)2κ

∣

∣

∣
L
(

1 + 1
log x + it, f

)∣

∣

∣

∣

∣

∣
1 + 1

log x + it
∣

∣

∣

≥

∣

∣

∣
L
(

1 + 1
log x + i(φ1 + φ2), f

)∣

∣

∣

∣

∣

∣
1 + 1

log x + i(φ1 + φ2)
∣

∣

∣

≍ (log x)2
κ
exp(−D

2(f, ni(φ1+φ2);x))
∣

∣

∣
1 + 1

log x + i(φ1 + φ2)
∣

∣

∣

.

Now, putting (4.1) and (4.2) together gives

∣

∣

∣

∣

∣

∣

∑

n≤y

f1(n)f2(n)

∣

∣

∣

∣

∣

∣

≫ η2
κ+3

y(log y)2
2κ−1

1 + |φ1 + φ2|
.
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Finally, since 1 + |φ1 + φ2| ≤ 1 + |φ1|+ |φ2| ≪ 1/η by Lemma 2.8, we conclude that

∣

∣

∣

∣

∣

∣

∑

n≤y

f1(n)f2(n)

∣

∣

∣

∣

∣

∣

≫ η1+2κ+3

y(log y)2
2κ−1,

which completes the proof by observing that

1

λeλ
≥ e−2λ

=
(

exp(−D
2(f, niψ;x)− log(1 + |ψ|) − c)

)2

≫





exp(−D
2(f, ni(φ1+φ2);x))

∣

∣

∣
1 + 1

log x + i(φ1 + φ2)
∣

∣

∣





2

≫
(

η1+2κ+3
)2
,

and setting ξ = Cη1+2κ+3

, for some absolute positive constant C. �
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