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Abstract

For any unitary conformal field theory in two dimensions with the central charge c, we
prove that, if there is a nontrivial primary operator whose conformal dimension ∆ vanishes
in some limit on the conformal manifold, the Zamolodchikov distance t to the limit is infinite,
the approach to this limit is exponential ∆ = exp(−αt + O(1)), and the decay rate obeys
the universal bounds c−1/2 ≤ α ≤ 1. In the limit, we also find that an infinite tower of
primary operators emerges without a gap above the vacuum and that the conformal field
theory becomes locally a tensor product of a sigma-model in the large radius limit and
a compact theory. As a corollary, we establish a part of the Distance Conjecture about
gravitational theories in three-dimensional anti-de Sitter space. In particular, our bounds
on α indicate that the emergence of exponentially light particles is inevitable as the moduli
field corresponding to t rolls beyond the Planck scale along the steepest path and that this
phenomenon can begin already at the curvature scale of the bulk geometry.
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1 Introduction and Summary

Over the past couple of decades, it has become increasingly clear that there are constraints on

the low-energy effective theories of quantum gravity that cannot be captured by the standard

Wilsonian paradigm. These constraints delineate the boundary between the Landscape

and the Swampland [1]. For gravitational theories in asymptotically anti-de Sitter (AdS)

spacetimes, we can formulate such constraints and aim to prove or falsify them using the

AdS/CFT correspondence. For example, it was proven in [2,3] that any global symmetry in

a quantum gravity theory in AdS would lead to an inconsistency in its dual conformal field

theory (CFT).

The Distance Conjecture [4] has been one of the most well-tested among Swampland

conditions. The conjecture claims the following set of properties about continuous moduli

of quantum gravity theories, starting with:

Conjecture 0 The moduli space M is parametrized by expectation values of massless scalar

fields.

If this conjecture holds, the moduli space is endowed with a natural metric given by the

kinetic term of the moduli fields, which defines a notion of distance d(p, p′) between any two

points p, p′ ∈ M. Among other conjectures formulated in [4] are:
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Conjecture 1 Choose any point p0 ∈ M. For any positive t, there is another point p ∈ M
such that the distance d(p, p0) between p and p0 is greater than t.

Conjecture 2 Compared to the theory at p0 ∈ M, for sufficiently large t, the theory at p

with d(p, p0) > t has an infinite tower of light particles starting with mass of the order of

exp(−αt) for some α > 0. In the t → ∞ limit, the number of extra light particles of mass

less than a fixed mass scale becomes infinite.

For gravitational theories in AdS, Conjecture 0 can be shown as follows. If there is a

continuous parameter in AdS, there is a corresponding parameter in the dual CFT. Such a

parameter is believed to be associated with an exactly marginal operator in the CFT, which

then corresponds to either a massless scalar field in the bulk or (when the marginal operator

is double-trace) a continuous deformation of the boundary condition at the infinity of AdS.

In particular, continuous parameters in the bulk Lagrangian must be expectation values of

massless scalar fields.

However, this conjecture alone does not lead to a sharp constraint on a low-energy effec-

tive Lagrangian, since the parameters of the Lagrangian may have been fixed at high energy,

e.g., by potentials for the corresponding scalar fields. This is analogous to the absence of

global symmetry [2, 3], which also does not produce a sharp constraint on a low-energy ef-

fective Lagrangian since the low-energy theory may have an accidental symmetry, which is

broken or gauged at high energy. The analogy can be made more precise by interpreting

Conjecture 0 as the absence of (−1)-form global symmetry. On the other hand, if α can be

bounded, Conjecture 2 will give a sharp constraint on low-energy effective theories.

The AdS versions of Conjecture 1 and 2 have been proposed in [5] for bulk spacetime

dimensions ≥ 4. The main claim is that all theories at infinite distance in the bulk moduli

space have an emergent higher spin symmetry, generated by an infinite tower of conserved

currents. Since the bulk moduli space is identified as a conformal submanifold of the dual

CFT, which we will also denote as M, these conjectures can be stated precisely in CFT

terms and therefore are called the CFT Distance Conjectures. They include:

Conjecture I All points with emergent higher spin symmetries are at infinite distance on

M.

Conjecture II All CFTs at infinite distance on M are higher spin points.

For supersymmetric theories, Conjecture I was proven in [5] by using the fact that higher

spin symmetries imply the existence of free decoupled sectors in their dual superconformal
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theories. More recently, it was proven for any unitary CFT with an energy-momentum tensor

in [6]. Conjecture II remains open.

For CFT in two dimensions, these conjectures need to be modified since there are always

higher spin currents constructed from composites of the holomorphic stress tensor [5, 7–9].

In this paper, we prove the following four theorems about two-dimensional CFTs.

Theorem 1 If there is a geodesic on the conformal manifold M along which the conformal

dimension ∆ of a primary operator vanishes in some limit, then the geodesic distance t to

the limit measured by the Zamolodchikov metric is infinite.

Theorem 2 In the limit, ∆ vanishes exponentially as ∆ = exp(−αt + O(1)) with the uni-

versal upper bound α ≤ 1.

Theorem 3 The compact CFT of central charge c in the limit of vanishing ∆ contains a

subalgebra of local operators which are described by the sigma-model on RN for some positive

integer N ≤ c.

Theorem 3 shows that the limit can always be understood as the decompactification limit of

an emergent target space of CFT and confirms the conjecture of Kontsevich and Soibelman

in [7].

In general, the parameter α defined in Theorem 2 depends on the geodesic to reach the

limit as well as on the primary operator we follow along the geodesic. For the optimal

choice of geodesic (which we assume to be in the direction of a parity-even exactly marginal

operator) and primary operator, we can derive the following lower bound on α,

Theorem 4 There exists a geodesic and a primary operator with a vanishing conformal

dimension along the geodesic such that the exponential decay rate obeys N−1/2 ≤ α.

Since N ≤ c, this theorem also implies the lower bound c−1/2 ≤ α. For superconformal

CFTs, the bound is strengthened to (2c/3)−1/2 ≤ α. Combining these results, we obtain the

upper and lower bounds on α,
1√
c
≤ α ≤ 1 . (1.1)

These bounds are sharp, and we will find necessary and sufficient conditions to saturate each

bound at α = c−1/2 and α = 1.

To prove these four theorems, we do not need to assume that the CFTs have holographic

duals in AdS or that the central charge c is large. We only assume that the CFTs are unitary

and each have a normalizable conformally invariant vacuum (away from the limit), there is
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an exactly marginal operator for each tangent vector on their conformal manifolds, and the

genus-zero four-point functions of the light primary operators are well-defined in the limit of

vanishing gap ∆gap → 0. To prove Theorems 1 and 2, we do not even assume the existence

of a local stress tensor. Therefore, these theorems also apply to the conformal manifolds

of surface defects in d ≥ 3 CFTs (such as the Gukov-Witten surface defects in the N = 4

super-Yang-Mills theory [10]).

Furthermore, Theorem 3 does not assume that the family of CFTs is related by defor-

mation with an exactly marginal operator. Therefore, it also holds for a discrete sequence

of CFTs under the assumptions stated in the above. For example, the large k limit of the

level k Wess-Zumino-Witten model for a compact Lie group G is locally equivalent to the

theory of free non-compact bosons with c = dimG, and the large k limit of the Ak-type

Virasoro minimal model CFTs is locally described in terms of a non-compact boson at c = 1

with a pair of walls in the target space infinitely distant from each other [11, 12]. If we can

also generalize Theorems 1, 2, and 4 to include discrete families of CFTs, it would open the

possibility to study the flat space limits of AdS gravities and test the conjecture in [13].

It is useful to translate the bounds (1.1) on α in the units appropriate for a gravitational

theory in AdS3. If we normalize the kinetic term of the massless scalar field ϕ in AdS3 dual

to the geodesic coordinate t on the conformal manifold of CFT2 as

L =
1

2
(∂ϕ)2 + · · · , (1.2)

without the inverse of the Newton constant in front, by the AdS/CFT dictionary we can

identify the asymptotic value of ϕ with the geodesic distance t on the conformal manifold

as ϕ = t · ( 1
8π
MAdS)

1/2, where MAdS is the inverse of the curvature radius of AdS [14].

Correspondingly, αAdS = α · ( 1
8π
MAdS)

−1/2 controls the exponential decay e−αAdSϕ of the

mass gap in the bulk. Using the relation

c =
MPlanck

MAdS

, (1.3)

where MPlanck = 3
2GN

is the Planck mass (and GN is the Newton constant), the inequality

(1.1) can then be expressed in terms of the bulk variables as,

(
8π

MPlanck

)1/2

≤ αAdS ≤
(

8π

MAdS

)1/2

. (1.4)

The lower bound means that the emergence of exponentially light particles is inevitable when
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ϕ rolls beyond the Planck scale at ϕ = ( 1
8π
MPlanck)

1/2 along the path of the steepest descent,

while the upper bound implies that this phenomenon can begin already at the AdS curvature

scale ϕ = ( 1
8π
MAdS)

1/2.

1.1 General Structure of Conformal Manifolds

Let us review general properties of conformal manifolds for d-dimensional CFTs relevant for

this paper. We take λi to be the coordinates on the conformal manifold M. Locally on M,

the CFT action reads

S(λ+ δλ) = S(λ) +
1

Vd−1

∫
ddx δλiMi(x) , (1.5)

where Mi are exactly marginal operators labeling the tangent directions on M and Vd−1 is

the volume of the unit sphere Sd−1.

It is understood that the conformal manifold M is endowed with a natural Riemannian

metric, namely the Zamolodchikov metric [15], defined by the two-point functions of Oi,

gij(λ) = |x|2d⟨Mi(x)Mj(0)⟩λ , (1.6)

which is manifestly positive definite as a consequence of unitarity. Note that (1.5) fixes a

canonical normalization for the distance on M measured by (1.6).

The conformal manifold M may have singularities due to orbifold quotients by duality

groups [16, 17], divergent Riemann curvature [18] and emergent exactly marginal operators

at special loci [19–21]. Furthermore, the conformal manifold M is naturally geodesically

complete with respect to (1.6), yet in general non-compact. The non-compact directions

where the geodesic distance diverges give rise to infinite distance limits of M.

In addition to these intrinsic geometric features, the conformal manifold M hosts a great

deal of extra structure by consideration of how CFT data varies with respect to λi, which

abstractly define certain fiber bundles over M. It is natural to ask if and how such structure

are constrained by the intrinsic geometry on M (see for example [22–29]). Here we will focus

on the interplay with infinite distance limits on M.

Of particular interest are universal quantities such as the conformal dimension gap in the

CFT Tλ at a point λ on the conformal manifold M,

∆gap(λ) ≡ inf{∆ | (∆, ja) ∈ Tλ} , (1.7)
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where ∆ labels the scaling dimension and ja labels the representation of SO(d) in terms of

spins on the ⌊d/2⌋ orthogonal two-planes for the local operators at Tλ. Similarly for operators

with sufficiently high spin, we define the twist gap tgap,

tgap(λ; ja) = inf{∆−
⌊d/2⌋∑
a=1

|ja| | (∆, ja) ∈ Tλ}} . (1.8)

These quantities offer a glimpse of how the spectrum of local operators vary over M. Note

that both quantities are non-negative and bounded from below by the corresponding unitarity

bounds. It has been conjectured in [5,7,9] that the behavior of these quantities approaching

their unitarity bounds are correlated with infinite distance limits on M.1 For CFTs in

dimension d ≥ 3, it was recently proven in [6] that the vanishing of tgap(λ; ja)− (d− 2) for

operators in the symmetric traceless representations of SO(d) of high ranks (also known as

higher-spin operators) directly implies infinite distance on M. While the converse statement

has not been proven, criterion on infinite versus finite distance on M was provided in terms

of the CFT data in [6].

In this work, we study conformal manifolds of CFTs in dimension d = 2 and investigate

infinite distance limits on the conformal manifold M and corresponding behavior of the

CFT data. As was already noted in [5, 7–9], because of the enhancement of the conformal

symmetry to Virasoro symmetry in d = 2, instead of the twist gap (1.8), the dimension gap

(1.7) is potentially the universal indicator for infinite distance on M. Indeed for bosonic

CFTs defined by a sigma model on the flat torus T n = Rn/Λ for integral lattice Λ, this

correspondence between vanishing ∆gap and infinite distance on the Narain moduli space is

immediate: in a fixed T-dual frame, infinite tower of momentum operators develop vanishing

dimensions along directions of T n that decompactify. More generally, for CFTs defined

by N = (2, 2) supersymmetric sigma models on compact Calabi-Yau manifolds, infinite

operators come down to vanishing dimensions in a large volume limit of the target manifold

(equivalently in a large complex structure limit of the mirror target manifold). Furthermore

it is conjectured in [7] that such degeneration limits of CFT (where ∆gap vanishes) are

always associated with emergent geometries that describe a closed sector of the full CFT.

1More precisely, in [7, 9], the metric on the conformal manifold is not specified, rather an analogy was
made to the Gromov-Hausdorff metric for a family of Riemannian manifolds based on the connection with
d = 2 CFTs defined via sigma models. In a similar way, the degenerating d = 2 CFTs were compared to
the degeneration limits of the manifolds. In particular, it is conjectured in [7, 9] that the subspace of M
where the dimension gap is bounded from below ∆gap(λ) ≥ ε for ε > 0 is compact in a suitably defined
Gromov-Hausdorff (metric) topology. Furthermore, by including the degenerating limits, one can define a
compactification M of M in the Gromov-Hausdorff topology. See [30,31] for explicit examples.
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A main goal of the paper is to argue that these are indeed universal phenomena in d = 2

CFTs, regardless of whether a sigma model description exists in the interior of the conformal

manifold. The main results are summarized in Theorem 1, 2, 3, and 4.

We emphasize that the CFT in the limit ∆gap → 0 does not obey the usual axioms of

a compact unitary CFT (e.g., the genus-one partition function diverges) but we assume the

sphere correlation functions of light operators are well-defined in this limit. Degeneration

limits of this type have been discussed in [7] and later defined in precise CFT language in [8]

but it is not established if such a limit exists in general. Our findings further clarify features

of the limiting theory and provide a consistency check on the assumption of well-defined

sphere correlators in this limit.

1.2 Organization of This Paper

This paper is organized as follows. In Section 2, we discuss examples of singularities of

conformal manifolds. There are singularities at finite distances, where ∆gap remains non-

zero, and there are singularities at infinite distance (also known as cusp points), where ∆gap

vanishes. We also present examples with the decay rate saturating the upper bound α = 1,

where all marginal operators are exact in the limit, and with α < 1, where there could

be marginal operators that are not exact in the limit. In Section 3, we prove Theorems 1

and 2 using conformal bootstrap for the four-point function of the operator with vanishing

conformal dimension. In Section 4, we prove Theorems 3 and 4. We end with discussion on

future directions in Section 5.

2 Examples of Conformal Manifold in d = 2

To illustrate the theorems we prove in concrete terms, let us discuss in more detail three

examples of conformal manifolds in d = 2 CFTs.

2.1 Narain Moduli Space of c = 2 Toroidal CFT

The first example we consider is the c = 2 toroidal CFT defined by a sigma model on

the two-torus T 2 = R2/Λ for integral lattice Λ ≡ Ze1 ⊕ Ze2 and target coordinates X ≡
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X1e1 +X2e2 ∈ R2. The CFT action reads2

S =
1

4π

∫
d2z (Gij +Bij)∂X

i∂̄Xj , (2.1)

where Gij ≡ ei · ej is the metric on the T 2 and Bij = −Bji is the B-field.

The full c = 2 conformal moduli space has a complicated branch structure [33]. Here

we focus on the conformal submanifold that parameterizes geometric deformations of (2.1),

namely those generated by the four exactly marginal operators ∂X i∂̄Xj which changeGij, Bij

in (2.1). This conformal submanifold is known as the Narain moduli space,

MNarain = O(2, 2;Z)\O(2, 2;R)/O(2)×O(2) , (2.2)

which is an orbifold of a symmetric space of real dimension 4 and the left quotient by

O(2, 2;Z) implements the identifications due to duality transformations. The local primary

operators with respect to the u(1)2 current algebra

Om,w = eipL(m,w)·XL+ipR(m,w)·XR , h =
pL · pL

2
, h̄ =

pR · pR
2

, (2.3)

are parametrized by momentum and winding vectors m ∈ Λ and w ∈ Λ∗ respectively where

Λ∗ denotes the dual lattice and their left and right conformal weights are also listed above.

Here XL, XR denote the left and right components of the scalar field X and pL, pR are the

left and right momenta measured by the corresponding u(1) symmetries. The pair (pL, pR)

defines an embedding of the charge lattice Λ⊕Λ∗ as an even self-dual lattice in R2,2 (i.e pL and

pR live in the positive and negative R2 subspaces respectively), as required by locality and

modular invariance of the CFT. The Narain moduli space (2.2) then naturally parametrizes

such embeddings up to automorphisms of the charge lattice.

There is another representation of the Narain moduli space (2.2) which is more convenient

for the c = 2 case here [33],

MNarain =

(
Hσ

PSL(2,Z)
× Hρ

PSL(2,Z)

)
/Z2 × Z2 , (2.4)

where σ = σ1 + iσ2 is the complex structure moduli and ρ = ρ1 + iρ2 is the complexified

Kähler moduli for the target T 2, both taking values in the upper half plane H. The duality

groups PSL(2,Z) act on σ and ρ respectively. The residual Z2 × Z2 corresponds to a swap

2We follow the convention of [32] with α′ = 2.
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(mirror) (σ, ρ) → (ρ, σ) and a reflection (σ, ρ) → (−σ̄,−ρ̄). In this parametrization, the left

and right conformal weights in (2.3) are

hL =
1

4ρ2σ2
|m2 −m1σ − ρ(w1 + w2σ)|2 , hR =

1

4ρ2σ2
|m2 −m1σ̄ − ρ(w1 + w2σ̄)|2 , (2.5)

where m1,m2, w1, w2 ∈ Z denote the momentum and winding charges.

The Zamolodchikov metric on the Narain moduli space respects the symmetric space

structure (2.2) and in terms of (2.4) it follows from the Poincare metric on the upper half

plane,

ds2 =
2dσdσ̄

σ2
2

+
2dρdρ̄

ρ22
. (2.6)

We restrict σ, ρ to their standard fundamental domains F ⊂ H, which are subject to further

discrete identifications by Z2 ×Z2 in (2.4). The overall normalization of the metric above is

fixed by (1.5). More explicitly, for rectangular torus, ρ1 = σ1 = 0, ρ2 = R1R2

2
and σ2 = R1

R2
,

the metric reduces to

ds2 =
2∑

i=1

4

R2
i

(dRi)
2 , (2.7)

where each summand is the Zamolodchikov metric for the S1 sigma model [34] in our nor-

malization.3

The infinite distance points on MNarain are located at the cusp ρ = i∞ (for any σ) up to

a choice of the duality frame, where the shortest geodesic distance to any point (σ∗, ρ∗) in

the interior of F is

t =
√
2

(
log2

ρ2
ρ∗2

+ log2
σ2
σ∗
2

) 1
2

(2.8)

which diverges as

t =
√
2 log ρ2 + finite , (2.9)

as ρ2 → ∞ when σ2 is fixed, or

t = log ρ2σ2 + finite , (2.10)

if ρ2 =
γ2

2
σ2 → ∞ for γ > 0.

It’s immediate from (2.5) that an infinite tower of operators with zero winding charge

w1 = w2 = 0 obtain vanishing conformal weights at infinite distance as stated in Theorem 1.

3Note that it follows from (1.5) that our normalization of the Zamolodchikov metric for 2d CFT differs
from that of [34] by ds2here = (2π)2ds2there.
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The bottom of the tower has m1 = 1,m2 = 0 and gives the dimension gap,

lim
ρ→i∞

∆gap(σ, ρ) =
1

2ρ2σ2
(2.11)

Comparison with (2.8) confirms the exponential approach to vanishing gap with rate α = 1

for the limit (2.10) and α = 1√
2
for the limit (2.9), in accordance with Theorem 2 and

Theorem 4, saturating the bounds thereof. Note that Theorem 3 is confirmed tautologically

in this case: in the limit (2.10), the CFT is described by the T 2 sigma model with large

radius and in the limit (2.9), the CFT is described by a S1 sigma model with large radius

and another S1 sigma model of finite radius R = γ.

The other singularities on the conformal manifold MNarain are of the orbifold type and

locate at finite distance, corresponding to either the Z2 fixed point at ρ = i or the Z3

fixed point ρ = e
2πi
3 on Hρ and similarly for Hσ. In particular, the maximal dimension gap

∆gap = 2
3
is achieved at the simultaneous Z3 fixed point ρ = σ = e

2πi
3 , as can be seen by

inspecting (2.5). This point on MNarain is described by the SU(3)1 Wess-Zumino-Witten

CFT and the gap is saturated by the nontrivial Kac-Moody primary operators.

2.2 Kähler Moduli Space of c = 6 Quintic CFT

The second example we consider is the N = (2, 2) SCFT defined by a supersymmetric

sigma model with target space defined by the quintic Calabi-Yau manifold realized as a

hypersurface W of degree 5 in P4. The CFT action again takes the form as in (2.1) with

additional fermion fields that furnish the supersymmetric completion. The quintic SCFT

has a large conformal manifold parametrized by 101 complex structure moduli and 1 com-

plexified Kähler structure moduli τ ∈ H, which encode exactly marginal deformations of the

target space metric and B-field. Here we focus on the complex 1-dimensional submanifold

MKähler(W ) parametrized by the Kähler moduli τ , which couples to the exactly marginal

operator ωij̄∂X
i∂̄X j̄ corresponding to the harmonic (1, 1)-form on W where X i, X j̄ with

i, j̄ = 1, 2, 3 are complex coordinates for W .

By mirror symmetry, MKähler(W ) is equivalent to the complex structure moduli of the

mirror quintic Ŵ , defined as the hypersurface orbifold,

{[Za] ∈ P4 |
5∑

a=1

Z5
a − 5ψ

5∏
a=1

Za = 0}/Z3
5 , (2.12)

where the Z3
5 are generated by rotations Za → e

2πina
5 Za on the homogeneous coordinates of
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P4 preserving the polynomial equation that defines the hypersurface. The orbifold restricts

possible complex structure deformations of the hypersurface, and the complex parameter ψ

is the unique moduli that survives. Moreover, redefinition of the homogeneous coordinates

Za (e.g. Z1 → e
2πi
5 Z1) induces an identification on ψ such that the true moduli space is

Mcs(Ŵ ) = MKähler(W ) = {ψ ∈ C |ψ ∼ e
2πi
5 ψ} , (2.13)

where the relation between the Kähler moduli τ and the complex structure moduli ψ are re-

lated by the mirror map [18]. Equivalently, we work with a fundamental domain parametrized

by 0 ≤ argψ < 2π
5
.

The Zamolodchikov metric on the moduli space (2.13), up to an overall normalization,

is equal to the standard Weil-Petersson metric which is determined by the special geometry

relations in terms of the period integrals on the mirror quintic Ŵ [18, 35]. Let us now

summarize the singularity structures on Mcs(Ŵ ) (equivalently MKähler(W )).

There are three singularities on Mcs(Ŵ ), which has the topology of a three-punctured

sphere. The three singularities are of different natures.

Orbifold Singularity

Firstly, there is an orbifold singularity at ψ = 0 which is fixed by the Z5 identification in

(2.13). This is known as the Gepner point on Mcs(Ŵ ), where the CFT is completely regular

and described by a Z3
5 orbifold of the N = 2 Landau-Ginzburg model with superpotential∑5

a=1 Z
5
a , equivalently a tensor product of five copies of the Kazama-SuzukiN = 2 supercoset

model SU(2)3/U(1). The dimension gap at the Gepner point is,

∆Gepner
gap =

2

5
, (2.14)

which is saturated by a non-BPS primary operator of zero U(1)R charge that arises from a

product of BPS and anti-BPS primaries of dimension ∆ = 1
5
in two copies of the supercoset

model.

Conifold Singularity

Secondly, there is a curvature singularity on the moduli space located at ψ = 1, known

as the conifold point on Mcs(Ŵ ). In terms of the Kähler moduli of the quintic CY, this

corresponds to a point of purely imaginary τ . The CFT at the conifold point is singular and
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develops a continuous spectrum above a nonzero gap

∆Conifold
gap =

1

2
. (2.15)

The continuum is described by the N = 2 Liouville CFT of central charge c = 9 [36, 37],

which is equivalent to the N = 2 cigar CFT defined by the Kazama-Suzuki supercoset

SL(2)1/U(1) [38], and the dimension gap (2.15) is saturated by the supercoset primary

Φj,m,m̄ with j = −1
2
and m = m̄ = 0.4 Let us parametrize the region near the conifold point

in polar coordinates by ψ = 1 + reiθ. The Zamolodchikov metric and its Ricci curvature

scalar R are locally given by the following [18]

ds2 = −a2 log r(dr2 + r2dθ2) , R =
1

2ar2(− log r)2
, r ≪ 1 , (2.16)

where a > 0 is a constant. Note that despite the curvature singularity, the conifold point is

at finite distance on Mcs(Ŵ ), which is consistent with our Theorem 1 and the non-vanishing

gap (2.15).5

Large Complex Structure Limit

Finally, the remaining singularity on Mcs(Ŵ ) comes from the large complex structure limit

ψ = ∞ of the mirror quintic Ŵ , which is equivalent to the large volume limit τ = i∞ of the

quintic. The mirror map that relates the two take the following form in this limit [18],

τ =
5i

2π
logψ + finite . (2.17)

4The N = 2 Liouville (cigar) operators are normalized in a different way than those of the canonical
normalization in the compact CFT, due to the divergent volume factor in the non-compact Liouville direction.
Consequently, finite correlation functions in the N = 2 Liouville CFT translate into divergent correlation
functions of normalized operators in the quintic SCFT at the conifold point: the simplest example being
the chiral ring coefficient which measures the three-point function of (anti)chiral ring operators. See related
discussions in [39,40] for the four-point functions of (anti)chiral ring operators.

5The fact that conifold points reside at finite distance on the moduli space of Calabi-Yau manifolds holds
in general [41,42] and they are portals to connecting Calabi-Yau manifolds of different topology via geometric
transition [42–44]. Indeed, it was conjectured by Reid [45] (also known as Reid’s fantasy) that all Calabi-Yau
three-folds are connected this way and there is a complete universal moduli space for all (see also [46]). The
topology change comes from shrinking a two-cycle of the resolved conifold and expanding a three-cycle in the
deformed conifold (and vice versa) and this transition is smooth in the full string theory by including branes
wrapping the vanishing cycles [44]. It would be interesting to understand the corresponding connection in
the space of 2d N = (2, 2) supersymmetric QFTs and prove the Reid conjecture using QFT methods.
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The Zamolodchikov metric and associated scalar curvature in this limit are6

ds2 =
6

|ψ|2 log2 |ψ|
dψdψ̄ =

6

τ 22
dτdτ̄ , R = −1

3
, |ψ|, τ2 ≫ 1 , (2.18)

where the change of coordinates between ψ and τ comes from (2.17). The sigma model on

the quintic CY W in the large volume limit has an infinite tower of low lying states coming

from eigenfunctions of the scalar Laplacian on W and the eigenvalues correspond to their

scaling dimensions. By dimensional analysis, we conclude that the dimension gap depends

on the diameter L of W as follows,

∆gap ∼ 1

L2
∼ 1

τ2
, (2.19)

where in the last step we have used fact that τ2 measures the integral of the Kähler class.

On the other hand, the geodesic distance to the infinite distance limit τ2 → ∞ diverges as

t =
√
6 log τ2 + finite . (2.20)

Consequently, we find that ∆gap vanishes exponentially in this limit with rate α =
√

1
6
,

in accordance with Theorems 1, 2 and the prediction for α from Theorems 3 and 4. In

particular, the compact CFT factor in this infinite distance limit has c = 3 and is described

by the six fermions necessary for the N = (2, 2) supersymmetry. The generalization of

the above discussion to more general N = (2, 2) superconformal sigma models (including

orbifolds) are straightforward.

2.3 Non-unitary Counterexample

As emphasized in the introduction, the general results in this work apply to unitary CFTs.

Here to illustrate the importance of unitarity, let us describe a simple example of a non-

unitary CFT with conformal manifold where the Theorems 1, 2, 3, and 4 are no longer

applicable. In particular, we will see that in the non-unitary theory, the limit of vanishing

gap (scaling dimensions) on the conformal manifold can happen at finite distance with respect

to the Zamolodchikov metric.

The model we consider is a simple modification of the previous example. We take the

tensor product CFT Tc= 15
4
of the quintic SCFT with c = 9 and a non-unitary minimal model

6Note that our normalization of the Zamolodchikov metric (which follows from (1.5)) differs from that
of [35] by ds2here = 4ds2there.
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M3,8 of central charge c = −21
4
. The M3,8 CFT contains, among other scalar operators, the

identity operator and a scalar primary operator of the lowest scaling dimension ∆ = −1
2
.

This product theory Tc= 15
4
thus has a normalizable identity operator, a conformal manifold

that coincides with that of the quintic SCFT, and a discrete operator spectrum at generic

points on the conformal manifold. As in Section 2.2, we focus on the conformal submanifold

MKähler(W ).

By taking products with the ∆ = −1
2
operator in the M3,8 CFT, the continuum starting

at ∆ = 1
2
(see around (2.15)) at the conifold point of the quintic SCFT is brought down to

∆ = 0, producing a continuum above the identity operator in the product theory Tc= 15
4
. Since

the conifold point is at finite distance on MKähler(W ), this clearly creates a counterexample

for our theorems in the case of non-unitary CFTs. Said differently, near the Gepner point of

MKähler(W ) with dimension gap (2.14) in the quintic SCFT, the product CFT Tc= 15
4
has an

almost non-negative operator spectrum except for a few low-lying states. The non-unitarity

becomes much more severe as one wanders around on the conformal manifold, in particular

after passing the conifold point where ∆gap = 0 and towards the large volume limit where

infinitely many non-unitary operators appear. This is possible because ∆gap = 0 happens

at finite distance in this non-unitary theory. It may be interesting to formulate a modified

degeneration limit for non-unitary CFTs (e.g. accumulation in the spectrum to the lowest

state) and correspondingly a version of our theorems that would apply to the non-unitary

context but that is beyond the scope of this work.

3 From Vanishing Gap to Infinite Distance

In this section, we study the limits on the conformal manifold M where the conformal

dimension gap ∆gap vanishes, and prove that they are at infinite distance from any interior

points of M measured with respect to the Zamolodchikov metric. More precisely, for any

geodesic λ(t) on M parametrized by proper distance t and any finite T > 0, there exists

ε > 0 such that ∆gap(t) ≡ ∆gap(λ(t)) ≥ ε for t ∈ [−T, T ]. We assume that the four-point

functions of light primary fields are well-defined in the limit. In particular we assume up to

rescaling there is a unique operator of conformal weights h = h̄ = 0 which coincides with

the identity operator.

We will make use of the following formula from conformal perturbation theory [47],

d∆(t)

dt
= −COOM(t) , (3.1)
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which determines how the scaling dimension ∆(t) of a hermitian operator O changes along

the geodesic parametrized by t, in terms of the OPE coefficient with the exactly marginal

operatorM that couples to t. Note that bothO andM are normalized to have unit two-point

functions.

We proceed by contradiction. We assume that there exists finite t∗ > 0 along a geodesic

λ(t) such that ∆(t = t∗) = 0. We will show that this is incompatible with (3.1) using

conformal symmetry and crossing invariance of the CFT. In particular, we note that if the

following limit exists,

lim
t→t∗

COOM(t)

∆(t)
= α , (3.2)

then by integrating (3.1) for t− t∗ ≪ t∗, we have

log∆(t)− log∆(t∗) ∼ −α(t− t∗) . (3.3)

However this is clearly impossible if ∆(t∗) is vanishing since the left-hand side will diverge.

Therefore it suffices to derive (3.2) for a scalar operator O whose scaling dimension ∆(t∗)

can be made arbitrarily small and such O exists by assumption.7 In the following, to ease

the notations, all the CFT quantities are assumed to be evaluated closed to t = t∗ and we

will simply denote ∆(t∗) by ∆.

It follows from the d = 2 global conformal algebra sl(2,R) × sl(2,R) that the left and

right conformal descendants of O satisfy,

∂O = i
√
∆J , ∂̄O = i

√
∆J̄ , ∂J̄ = ∂̄J = i

√
∆K , (3.4)

for a triplet hermitian operators J, J̄ ,K of conformal weights (1
2
∆ + 1, 1

2
∆), (1

2
∆, 1

2
∆ + 1)

and (1
2
∆+ 1, 1

2
∆+ 1) respectively, with unit-normalized two-point functions. This can also

be verified by taking derivatives of the two-point function

⟨O(z)O(w)⟩ = 1

|z − w|2∆
, (3.5)

which upon acting with ∂z∂w and ∂̄z̄∂̄w̄ gives

⟨J(z)J(w)⟩ = 1

(z − w)2
+O(∆) , ⟨J̄(z)J̄(w)⟩ = 1

(z̄ − w̄)2
+O(∆) , (3.6)

7By the von Neumann–Wigner non-crossing theorem (see [48] for a CFT-related discussion), level-crossing
on the conformal manifold should only appear in higher codimensions. Hence close to the limit of vanishing
gap we can choose a geodesic transverse to the level-crossing loci.
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and from ∂z∂̄w̄

⟨J(z)J̄(w)⟩ = ∆

|z − w|2
+O(∆2) , (3.7)

and similarly for the correlation functions involving the scalar operator K.

From the above, though J, J̄ and K are descendants of O, they behave in the limit ∆ → 0

as primary operators of conformal weights (1, 0), (0, 1) and (1, 1) respectively. Naturally,

they arise from the decomposition of the generic global conformal multiplet approaching the

unitarity bound.

Let us now consider the three-point function,

⟨O(z)O(w)M(u)⟩ = COOM

(z − w)∆−1(z − u)(w − u)(z̄ − w̄)∆−1(z̄ − ū)(w̄ − ū)
. (3.8)

By acting ∂z∂̄w̄ on both sides of (3.8) and using (3.4), we obtain the following relation

between the OPE coefficients involving O and its normalized descendants J, J̄ ,

COOM = ∆CJJ̄M (1 +O(∆)) . (3.9)

Therefore, α = CJJ̄M in (3.2) and it suffices to show that |CJJ̄M | <∞. In fact, we are going

to derive a stronger statement that

CJJ̄M ≤ 1 +O(∆) , (3.10)

from the crossing invariance of the four-point function of the scalar operator O whose di-

mension ∆ can be made arbitrarily close to zero. We will also identify the necessary and

sufficient conditions to saturate the upper bound on CJJ̄M .

In this paper, we do not assume that the CFT satisfies the CFT axioms in the ∆ → 0

limit. For example, the genus-one partition function may diverge in the limit. What we

assume is that the CFTs satisfies the axioms before we take the limit and the four-point

functions of the light operators are well-defined in the limit. If we allow ourselves to examine

the four-point functions of J and J̄ directly at the limit, we would have a simple derivation

of (3.10). Therefore, we will first present this simple but not rigorous derivation of (3.10) in

order to provide an intuitive understanding of it. We will then give a more rigorous proof

without making this additional assumption.

Here is the non-rigorous derivation of (3.10). Since J(z) and J̄(z̄) are primary fields of

conformal weights (1, 0) and (0, 1) in the limit, the four-point function ⟨J̄(w̄)J(z)J̄(ū)J(v)⟩
is holomorphic in z, v and anti-holomorphic in w̄, ū as ∆ → 0. By (3.6), it has the t-channel
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expansion as,

⟨J̄(w̄)J(z)J̄(ū)J(v)⟩ = 1

(z − v)2(w̄ − ū)2
+ . . . . (3.11)

On the other hand, in the s-channel, it can be expanded as,

⟨J̄(w̄)J(z)J̄(ū)J(v)⟩ =
GijCJJ̄Mi

CJJ̄Mj

(z − v)2(w̄ − ū)2
+ · · · , (3.12)

where we introduced a hermitian basis of such operators denoted by Mi for i = 1, 2, . . . and

define a metric Gij by

⟨Mi(z)Mj(w)⟩ =
Gij

|z − w|4
. (3.13)

A subset of them are exactly marginal which we choose to be Ma with a = 1, 2, . . . , dimM
and Gab for them is the Zamolodchikov metric, and Mi with i > dimM are not exactly

marginal if they exist.

It turns out that the global conformal block for the identity exchange in the t-channel

and that for the marginal operators exchange in the s-channel take the identical form of

(z − v)−2(w̄ − ū)−2 in (3.11) and (3.12) respectively.8 Contributions of other operators

indicated by (· · · ) in these equations have different functional dependence on ζ and are

suppressed in the ∆ → 0 limit. Comparing (3.11) and (3.12), it follows from the associativity

of the OPE directly in the limit that

GijCJJ̄Mi
CJJ̄Mj

= 1 . (3.14)

Since the exactly marginal operator of interest M is a linear combination of Mi and has a

unit two-point function, we deduce that

CJJ̄M ≤ 1 . (3.15)

This derivation is not rigorous since we have used unitarity and associativity of OPE for

J and J̄ directly in the limit, despite the fact the limiting CFT does not obey the usual

axioms of compact unitary CFT. In particular, the fact that the ground state becomes non-

normalizable with vanishing gap in the limit raises a concern.9 We have also assumed that

8In fact in both cases it captures the entire Virasoro block for the given set of internal and external weights.
9For example, in such a CFT, vanishing right (resp. left) conformal weight does not necessarily imply

holomorphicity (resp. antiholomorphicity) of the operator. A typical example is the SO(n) rotation symme-
try currents X [i∂µX

j] for n non-compact bosons Xi with i = 1, . . . , n, whose components are neither holo-
morphic nor anti-holomorphic. See [49] for a recent discussion on such currents and how they arise from the
vanishing gap limit of Wess-Zumino-Witten CFT as the level k → ∞.
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the identity and marginal operator exchanges in (3.11) and (3.12), respectively, are linearly

independent of other terms in the expansions indicated by (· · · ), and this requires a proof.

In the following we present a more rigorous derivation of the same inequality. The four-

point function of O’s can be expanded into a sum over s-channel global conformal blocks as

below,

⟨O(w)O(z)O(u)O(v)⟩ =
1 +

∑
ϕ ̸=1 |COOϕ|2Fhϕ

(ζ)F̄h̄ϕ
(ζ̄)

|z − w|2∆|u− v|2∆
, (3.16)

where we have separated the contribution of the identity operator from those of the nontrivial

normalized global primaries ϕ with conformal weights (hϕ, h̄ϕ). The holomorphic conformal

cross-ratio ζ is defined as

ζ =
(z − w)(u− v)

(z − u)(w − v)
, (3.17)

and similarly for the antiholomorphic cross-ratio ζ̄. The corresponding global conformal

blocks are denoted as Fhϕ
(ζ) and F̄h̄ϕ

(ζ̄), which are independent of ∆ and explicitly given

by,

Fhϕ
(ζ) = ζhϕ

2F1(hϕ, hϕ, 2hϕ; ζ) . (3.18)

Taking the derivatives ∂z∂̄w̄∂̄ū∂v on the two sides of (3.16) and using the relation (3.4), we

obtain

⟨J̄(w)J(z)J̄(u)J(v)⟩ =
∑
ϕ ̸=1

|COOϕ|2

∆2

∂2Fhϕ
(ζ)

∂z∂v

∂2F̄h̄ϕ
(ζ̄)

∂w̄∂ū
+O(∆) , (3.19)

where we have dropped the identity contribution in the s-channel OPE since it is of order

O(∆2) from (3.7).

Let us investigate the contributions from marginal operators (which include M) on the

RHS of (3.19). Using the explicit form of the global conformal block for marginal operators,

F1(ζ) = ζ 2F1(1, 1, 2; ζ) = − log(1− ζ) , (3.20)

and the relation (3.9), which holds for general marginal operators in place of M , we find

that Mi contributes to the RHS of (3.19) by the following,

GijCJJ̄Mi
CJJ̄Mj

∂2F1(ζ)

∂z∂v

∂2F̄1(ζ̄)

∂w̄∂ū
=

GijCJJ̄Mi
CJJ̄Mj

(z − v)2(w̄ − ū)2
. (3.21)
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Therefore, we can isolate the contributions from marginal operators on the RHS of (3.19) as

⟨J̄(w)J(z)J̄(u)J(v)⟩ =
GijCJJ̄Mi

CJJ̄Mj

(z − v)2(w̄ − ū)2
+
∑

ϕ ̸=1,Mi

α2
ϕ

∂2Fhϕ
(ζ)

∂z∂v

∂2F̄h̄ϕ
(ζ̄)

∂w̄∂ū
+O(∆) ,

(3.22)

where we have defined,

α2
ϕ ≡ lim

∆→0

|COOϕ|2

∆2
. (3.23)

In the following, we will show that for operator ϕ that does not asymptote to the identity

or marginal operators, αϕ must vanish at least as ∆1/2, as a consequence of the consistency

of the four-point function in the limit ∆ → 0.

In the t-channel, the same four-point function ⟨J̄(w)J(z)J̄(u)J(v)⟩ can be expanded as

⟨J̄(w)J(z)J̄(u)J(v)⟩ = 1

(z − v)2(w̄ − ū)2
+
∑
ϕ ̸=1

α2
ϕ

∂2Fhϕ
(1− ζ)

∂z∂v

∂2F̄h̄ϕ
(1− ζ̄)

∂w̄∂ū
+O(∆) ,

(3.24)

where we have isolated the identity contribution in the first term on the RHS using (3.4).

By combining the identity,

(z − v)2
∂2f(ζ)

∂z∂v
= −(1− ζ)2

d

dζ

[
ζ
df(ζ)

dζ

]
, (3.25)

which holds for any function f(ζ) of ζ, with the defining differential equation for hypergeo-

metric functions,[
ζ(1− ζ)

d2

dζ2
+ (2h− (2h+ 1)ζ)

d

dζ
− h2

]
2F1(h, h, 2h; ζ) = 0 , (3.26)

we find that the t-channel global conformal blocks Fh(1− ζ) from (3.18) are eigenfunctions

of (z − v)2∂z∂v as below,

(z − v)2
∂2Fh(1− ζ)

∂z∂v
= −(1− ζ)2

d

dζ

[
ζ
d

dζ
Fh(1− ζ)

]
= h(1− h)Fh(1− ζ) . (3.27)

Thus, we can write the t-channel expansion (3.24) as,

⟨J̄(w)J(z)J̄(u)J(v)⟩ =
1 +

∑
ϕ ̸=1 α

2
ϕ hϕh̄ϕ(1− hϕ)(1− h̄ϕ)Fhϕ

(1− ζ)F̄h̄ϕ
(1− ζ̄)

(z − v)2(w̄ − ū)2
+O(∆) .

(3.28)

As a consequence of (3.4), J and J̄ are holomorphic and anti-holomorphic respectively to
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the leading order in ∆. By applying the differential operators (z̄− v̄)2∂̄z̄∂̄v̄ and (u−w)2∂u∂̄w

to the above equation and using the analogs of the eigenvalue equation (3.27), we find∑
ϕ ̸=1

α2
ϕ h

2
ϕh̄

2
ϕ(1− hϕ)

2(1− h̄ϕ)
2Fhϕ

(1− ζ)F̄h̄ϕ
(1− ζ̄) = O(∆) . (3.29)

It then follows from the convergence of the t-channel OPE [50–52] and the positivity of the

conformal blocks Fhϕ
(1− ζ)F̄h̄ϕ

(1− ζ̄) for ζ = ζ̄ ∈ R+ [53] that αϕ must vanish in the limit

unless the conformal weights of ϕ obey hϕh̄ϕ(hϕ − 1)(h̄ϕ − 1) = 0.

Since the spin of ϕ is quantized, αϕ can be non-zero only if

(hϕ, h̄ϕ) ∈ {(n,m) ∈ Z≥0 ⊗ Z≥0 |nm(n− 1)(m− 1) = 0} . (3.30)

With this restriction and the fact that F0(ζ) = 1, only conformal families with primary

conformal weights (n, 1) and (1, n) with n ≥ 2 contribute in the s-channel expansion (3.22)

and consequently,

⟨J̄(w)J(z)J̄(u)J(v)⟩

=
GijCJJ̄Mi

CJJ̄Mj

(z − v)2(w̄ − ū)2
+

∑∞
n=2 βn∂z∂vFn(ζ)

(w̄ − ū)2
+

∑∞
n=2 β̄n∂w̄∂ūF̄n(ζ̄)

(z − v)2
+O(∆) ,

(3.31)

where

βn =
∑

ϕ:(hϕ,h̄ϕ)=(n,1)

α2
ϕ , and β̄n =

∑
ϕ:(hϕ,h̄ϕ)=(1,n)

ᾱ2
ϕ . (3.32)

On the other hand, the t-channel expansion gives simply ⟨J̄(w)J(z)J̄(u)J(v)⟩ = (z−v)−2(w̄−
ū)−2+O(∆) as we have seen in the above.10 The crossing invariance of the four-point function

therefore demands,

GijCJJ̄Mi
CJJ̄Mj−1 − 1

= (z − v)2
∞∑

hϕ=2

α2
ϕ∂z∂vFhϕ

(ζ) + (w̄ − ū)2
∞∑

h̄ϕ=2

α2
ϕ∂w̄∂ūF̄h̄ϕ

(ζ̄) +O(∆)

= (1− ζ)2
d

dζ

[
ζ
d

dζ

∞∑
n=2

βnFn(ζ)

]
+ (1− ζ̄)2

d

dζ̄

[
ζ̄
d

dζ̄

∞∑
n=2

β̄nF̄n(ζ̄)

]
+O(∆) .

(3.33)

10The fact that the correction is of order O(∆) as opposed to O(∆1/2) follows from (3.4) and the assumption
that the correlators among J, J̄ ,K are well-defined in the limit ∆ → 0. In particular the would-be O(∆1/2)
contribution to the four-point function ⟨J̄JJ̄J⟩ is proportional to ⟨KJJ̄J⟩ or ⟨J̄KJ̄J⟩ (up to permutations)
which vanish in this limit. See also (3.29).
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To solve the above bootstrap equation at leading order in ∆, we define the following

linear functional by a contour integral around ζ = 0,

ωn(f(ζ)) =

∮
ζ=0

dζ

2πi

1

n(n− 1)ζ(1− ζ)

(
F1−n(ζ) +

d
dζ
F1−n(ζ)

n(n− 1)

)
f(ζ) . (3.34)

It implements the projection to the contribution from the conformal families with primary

conformal weight (n, 2) in the s-channel in (3.33) thanks to the following property

ωn

(
(1− ζ)2

d

dζ

[
ζ
d

dζ
Fm(ζ)

])
= δm,n . (3.35)

This follows from basic hypergeometric identities such as (3.27) (see [54] for a similar pro-

jection functional). A similar linear functional can be defined by the corresponding contour

integral in ζ̄.

As explained in [50–52], the s-channel conformal block expansions in unitary theories,

such as that in (3.33), are uniformly convergent for ζ, ζ̄ treated as separate complex variables

valued in the cut-plane C\[1,∞). Furthermore, since Fn and F̄n are holomorphic in the cut-

plane, the sum in (3.33) converges to holomorphic functions of ζ and ζ̄ respectively. We can

therefore apply the linear functional defined in (3.34) to both sides of (3.33).11 Consequently

we conclude βn = β̄n = 0 with n ≥ 2 to this order, which implies

α2
ϕ = O(∆) , (3.36)

for any operator ϕ that does not approach either identity or marginal operators in the limit,

and

GijCJJ̄Mi
CJJ̄Mj

= 1 +O(∆) . (3.37)

Since Gij is positive definite, (3.37) implies that |CJJ̄Mi
| are bounded above for all i in

the limit. In particular, since M is a normalized hermitian linear combination of the exactly

marginal operators Ma, we conclude that

CJJ̄M ≤ 1 +O(∆) , (3.38)

which is what we wanted to show.12 As a by-product, we also deduce from (3.23) and (3.36)

11Using the fact that the expansions in (3.33) come with non-negative coefficients i.e. βn, β̄n ≥ 0, we can
exchange the integral and the sum by the dominated convergence theorem.

12Note that we do not assume the existence of a local stress tensor in the proof. Therefore, the results in
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that, the OPE coefficient between the operator ϕ and the light operator O satisfies

|COOϕ| = O(∆3/2) , (3.39)

except for ϕ that asymptotes to the identity or marginal operators in the limit of vanishing

gap.

The inequality (3.38) not only establishes that vanishing gap requires infinite distance on

the conformal manifold, but also constrains the rate at which the conformal dimension gap

∆ approaches zero as follows. Using Riemann normal coordinates ta dual to Ma near the

limit of vanishing gap and introducing αa as the limit of CJJ̄Ma
, equations (3.1) and (3.9)

can be generalized to

∂

∂ta
log∆ = −CJJ̄Ma

(1 +O(∆)) = −αa(1 +O(∆)) . (3.40)

We can then integrate this to obtain

∆ = exp(−αat
a +O(1)) . (3.41)

By equation (3.37), the length ||α|| ≡
√
Gabαaαb of the vector αa is bounded above, ||α|| ≤ 1,

and the bound is saturated if and only if CJJ̄Mi
= 0 for all non-exactly-marginal directions

(i.e. i > dimM).

It is convenient to parametrize the Riemann normal coordinates ta as ta = eat, where t

is the geodesic distance and ea is a unit vector defined by

ea = cos θ Gabαb + sin θ ea⊥ , (3.42)

where ea⊥ is a unit vector satisfying αae
a
⊥ = 0. We choose 0 ≤ θ ≤ π/2 so that the geodesic

length grows toward the direction of Gabαb. With this parametrization, equation (3.41)

becomes

∆ = exp(−αt+O(1)) , (3.43)

with α = cos θ||α|| ≤ 1. The upper bound is saturated if and only if θ = 0 and ||α|| = 1,

when the geodesic points in the direction of Gabαb and all non-exactly-marginal directions

have CJJ̄Mi
= 0.13

this section also apply to the conformal manifolds of surface defects in d ≥ 3 CFTs.
13In other words, the direction Gabαb is the fastest way to achieve vanishing gap.
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4 Properties of Limiting CFT

Here we describe features of the CFT in the limit of vanishing gap ∆gap → 0 as one moves

on its conformal manifold M. In particular we will derive the emergence of a large target

space in this limit, establishing Theorem 3 and 4.

In the previous section, we have focused our attention to one of the primary operators

with vanishing conformal dimensions. In general there exists a set of linearly independent

primary operators {On} whose conformal dimensions vanish simultaneously. The CFT may

also contain other primary operators whose conformal dimensions remain finite or diverge

in this limit. It is convenient to set a scale ∆finite such that the conformal dimensions of all

such states are greater than ∆finite in the limit.14

For each such primary operator On, we define its normalized descendant Jn by

∂On = i
√

∆nJn , (4.1)

where On and Jn have conformal weights (1
2
∆n,

1
2
∆n) and (1

2
∆n + 1, 1

2
∆n) respectively, and

similarly for J̄n and Kn as in (3.4). As we explain below, the operators Jn, J̄n are emergent

currents in the limit of vanishing gap while Kn are emergent marginal operators, but they

are not necessarily all linearly independent in the limit. We will focus on the operators Jn

and the linear relations among them that emerge in the limit ∆n → 0.

For example, the S1 sigma model described by a periodic scalar field X ∼ X + 2πR

contains the infinite tower of momentum eigenstates whose conformal dimensions vanish in

the large radius limit R → ∞. In this example, it is convenient to use a complex basis for

these light operators,

On = exp
(
i
n

R
X
)
, n ∈ Z , (4.2)

with scaling dimension ∆n = (n/R)2 and correspondingly a complex basis for the descen-

dants,

∂On =
√
∆nJn , ∂O−n = −

√
∆−nJ−n , n ∈ Z+ , (4.3)

with

Jn = i∂X exp
(
i
n

R
X
)
, n ∈ Z . (4.4)

Though the operators Jn are linearly independent at finite R, they all become i∂X in the

limit of R → ∞.

14In particular, ∆finite ≤ 1 since the descendant of an operator O with vanishing dimension may become
a primary operator in the limit as we saw in Section 3.
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To understand in general the emergent linear relations among Jn’s in the limit ∆n → 0,

it is useful to consider the operator product algebra of On’s,

On(z)Om(w) =
∑
k

Ck
nm|z − w|∆k−∆n−∆mOk(w) +O(|z − w|∆finite). (4.5)

Here we are assuming that the operators On are hermitian. The OPE is dominated by light

operators that have vanishing scaling dimensions in the limit (the first term on the RHS of

(4.5)). To derive linear relations among Jn’s, we act by (∂z + ∂w) on both sides of (4.5),

taking the limit ∆n → 0, and then set z → w. Since we assume the light operators to have

well-defined sphere correlation functions in the limit, Ck
nm cannot diverge and we obtain the

following linear relations,

√
∆nJn(z) +

√
∆mJm(z) =

∑
k

Ck
nm

√
∆kJk(z) . (4.6)

For example, in the S1 sigma model example discussed above, these relations for Jn

defined as in (4.3) become

nJn +mJm = (n+m)Jn+m , (4.7)

and the unique solution is Jn = J1. For the S1 sigma model, (4.6) clearly give a complete

set of linear relations among Jn’s in the ∆n → 0 limit. Since the operator product algebra

(4.5) contains all the information about operatorial relations among On’s, we expect that

this is the case in general, i.e., all the linear relations among Jn’s defined by (4.1) are given

by (4.6).

We can also derive the operator product algebra of the operators Jn by acting ∂z∂w on

both sides of equation (4.5) and taking the limit ∆n → 0 and then w̄ → z̄ to suppress the

O(|z − w|∆finite) terms. We obtain the following,

Jn(z)Jm(w) =
∑
k

Ck
nm

∆k −∆n −∆m√
∆n∆m

(
1

(z − w)2
− i

√
∆k

z − w
Jk(w)

)
+ regular . (4.8)

The unconventional coefficient of 1
(z−w)2

is due to the linear relations (4.6) among Jn’s. By

choosing an orthonormal hermitian basis,

J µ =
∑
k

UµnJn , (4.9)
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taking into account the relations (4.6), we can put their OPE in the standard form below,

J µ(z)J ν(w) =
δµν

(z − w)2
+

ifµν
ρ

z − w
J ρ(w) + regular , (4.10)

for some constant fµν
ρ , valid in the limit ∆n → 0. In the following, we take the number of

linearly independent emergent currents to be N .

Note that fµν
ρ would vanish in the limit if the ratio ∆n/∆m for any pair n,m remains

non-zero and finite, due to the additional factor of
√
∆k in the (z − w)−1 term on the RHS

of (4.8). Although there is a logical possibility that different ∆n are scaled in differently so

that a nonzero fµν
ρ survives in the limit, we will argue below that unitarity requires fµν

ρ to

vanish identically.

The OPE (4.10) defines a Kac-Moody algebra. Since the Killing form for the algebra is δµν

and positive definite, consistency demands that fµν
ρ is proportional to the structure constant

of a compact Lie group G. The conventional Kac-Moody currents obey a normalization such

that the leading OPE singularity is k
2
(z −w)−2 where k ∈ Z+ is the level of the Kac-Moody

algebra. Comparison to (4.10) indicates that fµν
ρ is given by the structure constant of G

multiplied by the factor
√

2
k
.

Let us now show that fµν
ρ = 0, which amounts to saying that the underlying group G is

abelian. Suppose to the contrary that the group G contains a simple non-Abelian subgroup,

for which fµν
ρ does not vanish. It is well-known that the Kac-Moody algebra generators can

be constructed using massless free scalar fields and parafermion fields [55]. In particular, the

current JH in a direction H of the maximum torus of the group G normalized as in (4.10)

is given by,

JH = i∂X , (4.11)

for a periodic scalar field X, which in the limit becomes free with the two-point function

∂X(z)∂X(w) ∼ −(z − w)−2. Because of (4.1) and (4.9), there must be a light primary

operator O of scaling dimension ∆O such that

∂O = qJH = iq∂X , (4.12)

for some real number q near the limit ∆O → 0. By integrating this equation, we obtain

O(z, z̄) = eiqXS(z̄) , (4.13)

for some operator S(z̄) that only depends on z̄. Since the scaling dimension of such an
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operator is bounded from below ∆O ≥ q2, we need q to vanish in the limit. This is a

contradiction since q is the charge carried by O with respect to the current JH and must

be quantized in any unitary representation of a simple compact non-Abelian Lie group.

Therefore, the group G cannot contain any non-Abelian subgroup (with finite Kac-Moody

level k), and fµν
ρ must vanish as claimed earlier.

Since fµν
ρ = 0, all the currents that descend from the light operators in the limit can be

represented as

J µ(z) = i∂Xµ , (4.14)

in terms of free bosons Xµ. For each Xµ, there must be a primary operator O such that

∂O = iq∂Xµ , (4.15)

for some real number q. Since the scaling dimension of O vanishes in the limit, we must also

have

∂̄O = iq̄∂̄X̄µ , (4.16)

for another free boson X̄µ and another real number q̄. By integrating the above two equa-

tions, we obtain the following representation of the light operator O,

O = eiqX
µ
L(z)+iq̄X̄µ

R(z̄) , (4.17)

where Xµ
L is a projection of Xµ to its holomorphic part and X̄µ

R is a projection of X̄µ to its

anti-holomorphic part. The fact that O has to be a scalar requires q̄ = ±q. Since q → 0 in

the limit, mutual locality of operator spectrum requires that only one of the two possibilities

is realized which we take to be q = q̄. Consequently we can write,

O = eiqX
µ

, (4.18)

where Xµ ≡ Xµ
L + X̄µ

R. By taking OPE of O above with itself, we can generate an infinite

tower of light operators einqX
µ
for any positive integer n, and e−inqXµ

from their hermitian

conjugates. Since we can approximate any real number p by nq with q → 0 and n → ±∞,

we find that the spectrum of the theory must contain eipX
µ
for any real number p in the

limit. One can identify p as the momentum charge for the current J µ in (4.15) in the limit.

By repeating the above procedure for all currents J µ that emerge in the limit and taking

products of the resulting primary momentum operators, we find that the CFT in the limit
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contain primary operators of the form

Opµ(z, z̄) = ei
∑

µ pµXµ(z,z̄) , (4.19)

for any real N -vector pµ. They describe a continuum of scaling dimensions ∆ =
∑

µ p
2
µ

without a gap above the vacuum. It shows that the CFT in this limit contains a subsector

of local operators described by the sigma model with a non-compact target space RN .

The limiting CFT may contain other primary operators with scaling dimensions at or

above ∆finite. Moreover, the limit may not necessarily factorize into a tensor product of the

RN sigma-model and a compact CFT. Instead they can be coupled together by an orbifold

or a more general fibration.

As an example, let us consider the orbifold CFT on S1/Z2, where the compact boson

X of radius R is subjected to an identification by the Z2 reflection X ∼ −X. The limit of

vanishing gap here is obviously R → ∞ (up to choosing a duality frame) and the limiting

theory is described by the Z2 orbifold of the R sigma model. In this case, the emergent

current from (4.1) lives in the twisted sector of a dual symmetry which we explain below.

In the untwisted sector, the conformal dimension ∆n = (n/R)2 of the Z2-invariant operator

On =
√
2 cos(nX/R) with n ∈ Z+ vanishes in the large radius limit R → ∞. The operator

Jn as defined in (4.1) is given by

Jn = i∂XÕn , (4.20)

where Õn =
√
2 sin(nX/R).15 Though Õn may seem to vanish in the R → ∞ limit, it

remains a nontrivial operator in the limit. Since it has a nontrivial monodromy relation

with operators in the Z2 twisted sector, the proper way to think about it is a topological

(i.e. dimension 0) operator at the end-point of the topological defect line that implements

the quantum Ẑ2 symmetry of the orbifold [56]. Another way to say this is that, the operator

i∂X belongs to the twisted sector of the quantum Ẑ2 symmetry and thus is attached to the

Ẑ2 topological line (which ends on Õn). More generally, the emergent currents (4.14) should

be interpreted as descending from operators in the twisted sector of a topological defect line

L and consistency requires the ground state in the L-twisted sector to have zero conformal

dimension in the limit ∆ → 0.16

In the example above, the compact sector in the limit is trivial (simply a gapped vacuum).

As another simple example but with a nontrivial compact sector, we can consider the SU(2)k

15It is properly normalized as Õn(z)Õn(w) ∼ |z − w|−2∆n − 1√
2
|z − w|2∆nO2n(w) + · · · .

16A necessary condition for this to happen is to have a trivial spin selection rule in the L-twisted sector,
which is equivalent to the anomaly free condition for invertible symmetries [57].
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CFT with the exactly marginal deformation M = J3J̄3. Using the orbifold equivalence

SU(2)k ∼=
SU(2)k/U(1)× U(1)2k

Zk

, (4.21)

between the SU(2)k CFT and a product of the Zk parafermion CFT and the compact boson

CFT at radius R =
√
2k where Zk acts diagonally on the two factors,17 we can identify this

one-dimensional conformal manifold generated by M as that for the compact boson factor.

Consequently, in the limit of vanishing gap which corresponds to large radius limit of the

compact boson, the limiting CFT is described by the Zk parafermion CFT and the R sigma

model coupled together by the Zk orbifold.18

After taking into account the above caveat, what we have shown in this section is that the

limiting CFT contains the operator algebra of N free non-compact bosons as a subalgebra

of its local operators, modulo such topological defect lines. We conclude that the full CFT

central charge c puts the upper bound N ≤ c on the number N of emergent non-compact

directions in the limit of vanishing gap. We have thus established Theorem 3 regarding the

behavior of the CFT in this limit.

Let us move on to prove Theorem 4 about the lower bound on α. Marginal operators in

the limit consists of either

Mµν(z, z̄) = ∂Xµ∂̄Xν , (4.22)

which make a linearly independent basis of the marginal operators emergent from ∂∂̄Opµ by

(3.4) and (4.19) or operators which entirely commute with ∂Xµ. For Mµν , the three-point

function with the emergent currents (see (4.14)) J ρ and J̄ σ is

⟨J ρ(z)J̄ σ(w̄)Mµν(u, ū)⟩ = δρµδσν

(z − u)2(w̄ − ū)2
, (4.23)

up to terms that vanish in the ∆ → 0 limit. This is consistent with (3.38) as expected.

The marginal operators which commute with ∂Xµ have zero three-point functions with J ρ

and do not contribute to our estimate of α. Note that these operators Mµν do not in

general survive as exactly marginal operators away from the limit of vanishing gap. In the

example of quintic SCFT in the large volume limit discussed in Section 2.2, the number of

decompactifying directions is N = 6 but only 1 out of the 36 operators is exactly marginal,

which corresponds to the overall volume deformation in the limit.

17Here the Zk symmetry of the SU(2)k/U(1) coset CFT descends from the standard Zk symmetry of the
parafermions and that of the U(1)2k CFT is the non-anomalous Zk momentum (shift) symmetry.

18More precisely, there are k copies of the R sigma model related by the Zk symmetry that is gauged.
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The exactly marginal operator M that couples to t in Theorem 2 should become a linear

combination of Mµν in the limit,

M =
∑
µ,ν

κµνM
µν . (4.24)

Since M is canonically normalized, the coefficients κµν are normalized as∑
µ,ν

(κµν)
2 = 1 . (4.25)

For an operator described by (4.19) with momentum p in the limit, the decay coefficient

α(p) for its conformal dimension ∆ = exp(−α(p)t+O(1)) in the direction of M is given by

α(p) =

∑
µν κµνpµpν∑

µ(pµ)
2

, (4.26)

which follows from (3.1). Below we will derive a lower bound on the maximum decay coeffi-

cient α(p) that can be achieved for any p. Intuitively this amounts to picking the operator

whose conformal dimension decays the fastest along the geodesic given by M , and conse-

quently the lower bound is an intrinsic property of M that specifies the approach to the

limit.

The sector of the CFT described by the N noncompact free bosons has the standard

positive-definite kinetic terms and is parity invariant. Since we add t
2π

∫
d2xM(x) to the

CFT action and take t → ∞ to reach the limit, the integral of M should be a positive and

parity preserving operator. In general, M itself may have a parity-odd component (from the

antisymmetric part of κµν) but that is a total derivative in the limit. Here we assume that in

a neighborhood of the limit, we can choose M such that it is parity even.19 Correspondingly

κµν should be symmetric and positive semi-definite.

It then follows from standard linear algebra that α(p) in (4.26) is bounded from above

by the largest eigenvalue of κµν and the bound is saturated when p is aligned with the cor-

responding eigenvector. Since κµν is normalized by (4.25), its largest eigenvalue is bounded

from below by 1/
√
N . Therefore we conclude that

1√
N

≤ max p∈RNα(p) . (4.27)

19Note that this does not require the whole CFT to be parity invariant (see the example discussed around
(4.21)).
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Combining with the unitarity bound N ≤ c, we have shown that, given an exactly marginal

operator M that specifies the limit to vanishing gap, there is always an operator for which

the decay rate α of its conformal dimension is bounded below by

1√
c
≤ α . (4.28)

The bound is saturated if and only if c = N and κµν = δµν/
√
N so that the exactly marginal

operator M scales uniformly the N emergent decompactifying directions.20

The above analysis generalizes straightforwardly if extra conserved currents are preserved

as the CFT approaches the ∆gap → 0 limit. For example, if the limit is supersymmetric, the

emergent scalar fields Xµ must be paired with real fermions ψµ. It is conventional to write

the superconformal CFT (SCFT) central charge as c = 3ĉ/2. Then the compact sector of

the limiting CFT is also an SCFT with central charge ĉrest = ĉ − N and consequently the

lower bound (4.28) on α is strengthened to α ≥ 1/
√
ĉ.

Before we close this section, it may be worthwhile to point out that, although the proof of

Theorems 1 and 2 in section 3 assumes the existence of an exactly marginal operator for each

tangent vector on the conformal manifold M, we did not use this assumption in the proof of

Theorem 3 in this section. We have only assumed that there is an infinite sequence of CFTs

with a suitably identified common set of light operators whose conformal weights vanish in

the limit and the four-point functions of these light operators are well-defined in the limit

(see [8] for a detailed discussion of this general limiting procedure). Thus, Theorem 3 may be

applicable to a larger class of families of CFTs. For example, let us consider the k → ∞ limit

of the Ak-type Virasoro minimal model CFTs, where the central charge approaches c = 1

and ∆gap vanishes as 1− c ∝ 1/k2. In [11], it was shown that the limiting CFT is described

by a non-conventional non-compact boson. More recently, it was found in [12] that there

is a pair of walls in the target space with a tachyon-dilaton profile and that the distance

between these walls becomes infinite in the k → ∞ limit. These results appear consistent

with Theorem 3 since the limiting CFT in this case is described by the R sigma-model away

from the walls.

20The inequality can be improved when c is fractional, in which case ⌊c⌋ ≥ N and ⌊c⌋−1/2 ≤ α. When
c ∈ Q, this improved inequality can be saturated only if c−N = 6

(m+2)(m+3) for m ∈ Z+ so that the compact

sector is described by a Virasoro minimal model. When c is irrational, this inequality is always strict.
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5 Discussion

In this paper, we have shown that for d = 2 unitary compact CFTs, any point on the

conformal manifold M where the conformal dimension of a nontrivial primary operator

vanishes is at infinite distance with respect to the Zamolodchikov metric on M. We have

also discussed how this limit is approached and derived the universal bounds c−1/2 ≤ α ≤ 1

on the parameter α in the exponential decay ∆ = exp(−αt + O(1)) with respect to the

geodesic distance t as well as properties of the limiting CFT such as the emergence of a large

target space. The immediate question is whether the converse statement can be proven or

falsified: namely, what happens when we travel infinite geodesic distance on the conformal

manifold M?

Though we have derived these results assuming that there is a continuous family of

unitary CFTs at the same central charge and four-point functions of light operators are well-

defined in the limit, some of them can be proven under weaker assumptions. In particular,

Theorem 3 is applicable to discrete families of CFTs with varying central charges. This opens

the possibility to study flat space limits of AdS gravities and test the conjecture in [13]. It

would be interesting to find out whether the other theorems also hold for discrete families

with a suitable measure.

In higher dimensions, Conjecture I, which is analogous to our Theorem 1, has been proven

for supersymmetric theories in [5] and more recently for general CFTs in [6]. However except

for special classes of supersymmetric theories [5], no universal bounds on the exponential rate

(analogous to α in two dimensions) are known. Here our universal upper bound on α follows

from the bootstrap equation for the four-point function, and it is natural to ask whether this

idea is useful in higher dimensions. As a more direct application of the bootstrap philosophy

to gravity, it may also be interesting to apply the S-matrix bootstrap (see [58] for a recent

review) to find constraints on the effective theory of massless scalar fields coupled to gravity

in asymptotically flat spacetime. Furthermore, it remains an open question to prove or falsify

the converse, as for the d = 2 CFT/d = 3 gravity.

There are many other intriguing features of conformal manifolds that appear to be univer-

sal and worth further investigating. For example, in d = 2, the singularities on the conformal

manifolds seem to be one of the following four types with distinct features: orbifold point

(enhanced symmetries), conifold point (continuous spectrum with a non-zero gap above the

vacuum),21 branching point (accidental exactly marginal operators), and infinite distance

limit (vanishing gap). It would be interesting to understand if they are all the possibilities

21One may be tempted to characterize the conifold singularity in terms of curvature divergence in the
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for d = 2 conformal manifold and what are the global constraints on their existence. One

could ask the same questions for higher dimensional CFTs. In particular, the sum rules

derived in the recent paper [29] relating Zamolodchikov curvature to OPE data in the CFT

could be useful to address these questions.

Another potentially interesting direction is to study topological constraints on the con-

formal manifolds. In [4], the following conjecture was proposed in addition to Conjectures

0, 1, and 2.

Conjecture 3 There is no non-trivial 1-cycle with minimum length within a given homotopy

class in M.

This conjecture has been proven for gravitational theories in flat space with more than eight

supercharges [59]. Since it was motivated by the absence of global symmetries in quantum

gravity, which has been proven in AdS by the consistency of CFT [2, 3], it may be possible

to prove Conjecture 3 for general AdS gravities similarly.

Finally, it would be interesting to further develop and generalize the bootstrap analysis

in [39, 40] for d = 2 CFTs and in [60, 61] for d = 4 to probe more refined CFT data over

the conformal manifold,22 such as general constraints on the perturbative expansion around

the infinite distance limit (cusp point) in terms of the anomalous dimensions of protected

operators.
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