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Abstract. Recently, deep neural networks have been found to nearly interpolate training data

but still generalize well in various applications. To help understand such a phenomenon, it has been

of interest to analyze the ridge estimator and its interpolation limit in high-dimensional regression

models. For this motivation, we study the ridge estimator in a rotationally sparse setting of high-

dimensional linear regression, where the signal of a response is aligned with a small number, d, of

covariates with large or spiked variances, compared with the remaining covariates with small or tail

variances, after an orthogonal transformation of the covariate vector. We establish high-probability

upper and lower bounds on the out-sample and in-sample prediction errors in two distinct regimes

depending on the ratio of the effective rank of tail variances over the sample size n. The separation

of the two regimes enables us to exploit relevant concentration inequalities and derive concrete error

bounds without making any oracle assumption or independent components assumption on covariate

vectors. Moreover, we derive sufficient and necessary conditions which indicate that the prediction

errors of ridge estimation can be of the order O( dn) if and only if the gap between the spiked

and tail variances are sufficiently large. We also compare the orders of optimal out-sample and

in-sample prediction errors and find that, remarkably, the optimal out-sample prediction error may

be significantly smaller than the optimal in-sample one. Finally, we present numerical experiments

which empirically confirm our theoretical findings.
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1 Introduction

Over-parameterized models, in particular, deep neural networks, have been successful when trained

without penalty or with a mild penalty in various applications. This phenomenon appears to be at

odds with conventional statistical thinking that complex models tend to overfit the training data

and generalize poorly without proper regularization (Belkin et al., 2019; C. Zhang et al., 2016).

Considerable research has been devoted to studying such phenomena; see Bartlett et al. (2020),

Bunea et al. (2022), Hastie et al. (2022), and Tsigler & Bartlett (2023) among others.

We consider high-dimensional linear regression as a basic example of over-parameterized models

and study ridge estimation under a rotationally sparse setting, which will be introduced shortly.

Suppose that the training data, (y1, x1), . . . , (yn, xn), are i.i.d. from the following model:

yi = xTi θ
∗ + ϵi, i = 1, . . . , n, (1)

where θ∗ ∈ Rp, yi ∈ R is a response variable, xi ∈ Rp is a covariate vector satisfying E(xi) = 0

and Var(xi) = Σ (assumed to be non-singular), and ϵi is a noise variable, independent of xi and

satisfying E(ϵi) = 0 and Var(ϵi) = σ2 for i = 1, . . . , n. In addition, assume that Σ−1/2xi is a

sub-gaussian random vector with sub-gaussian norm σx for i = 1, . . . , n. See Supplement Section I

for the definition of the sub-gaussian norm.

We are interested in the ridge estimator defined as

θ̂(τ) = argminθ∈Rp

{
1

n
∥Y −Xθ∥2 + τ∥θ∥2

}
, (2)

where Y = (y1, . . . , yn)
T ∈ Rp, X = (x1, . . . , xn)

T ∈ Rn×p, τ ≥ 0 is a tuning parameter, and ∥ · ∥

denotes the L2 norm. In the case of τ = 0, the estimator θ̂(0) is defined as the limit of θ̂(τ) as

τ → 0+, and called a min-norm interpolator.

As a measure of prediction performance, we investigate both the out-sample and in-sample mean

squared errors (MSE) of θ̂(τ), defined conditionally on X as follows.

• Out-sample error

MSEout = E[(xT0 (θ̂(τ)− θ∗))2|X] = E[∥θ̂(τ)− θ∗∥2Σ|X],

where x0 ∈ Rp is a new covariate vector independent of X, and ∥b∥M = (bTMb)1/2 for any

positive semi-definite matrix M and any vector b of the suitable dimension.

• In-sample error

MSEin = E[
1

n
∥X(θ̂(τ)− θ∗)∥2|X] = E[∥θ̂(τ)− θ∗∥2

Σ̂
|X],

where Σ̂ = XTX/n is the (uncentered) sample covariance matrix of X.
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An important property of the ridge estimator is that its out-sample and in-sample predic-

tion errors are invariant to an orthonormal transformation of the covariate vectors xi. By this

property, we assume without loss of generality that the covariance matrix Σ is diagonal, i.e.,

Σ = Diag(λ1, . . . , λp), where λ1 ≥ . . . ≥ λp > 0 are the eigenvalues of Σ.

As motivated by the recent literature (Bartlett et al., 2020; Bunea et al., 2022; Hastie et al.,

2022), we assume that only a few covariates (or a few directions of the covariate vector before

orthogonalization) with large variances contain most of the information about the response. For-

mally, we assume that the mean response is aligned with a small number of covariates with large

variances, for instance, the first 1 ≤ d < p covariates:

∥θ∗(d+1):p∥
2
Σ(d+1):p

∥θ∗1:d∥2Σ−1
1:d

≈ 0.

We denote as θ∗1:d the first d entries of θ∗ and as θ∗(d+1):p the remaining p−d entries of θ∗, which are

called the spiked part and tail part respectively. In addition, we denote Σ1:d = Diag(λ1, . . . , λd) and

Σ(d+1):p = Diag(λd+1, . . . , λp). We refer to such a setting as a rotationally sparse setting, because

a small number of coefficients θ∗1:d are nonzero whereas the remaining ones θ∗(d+1):p are zero or close

to zero, after an orthogonal transformation of the covariates. From both the recent literature and

our results later, a sufficiently large gap between λd and λd+1 may be necessary and sufficient for

ridge estimation to achieve meaningful prediction performance.

The rotationally sparse setting fundamentally differs from the directly sparse setting of regression

models, where a small number of coefficients, for example, s, are nonzero whereas the remaining

p − s ones are zero or close to zero, with the original covariate vectors. Such a sparse structure

depends on the particular coordinate system for the covariate vectors and would be lost after

an orthogonal transformation. For the directly sparse setting, Lasso estimation is known to be

effective in achieving (in-sample) prediction errors in the order O(s log pn ), that is, O( sn) up to a

logarithmic factor of p under suitable conditions (including compatibility or restricted eigenvalue

conditions) (e.g., Bickel et al. (2009); Bühlmann & van de Geer (2011)). Hence one of the interesting

questions which motivate our work is to investigate plausible conditions for ridge estimation to

achieve prediction errors in the order O( dn) in the rotationally sparse linear regression.

Our work. We study the out-sample and in-sample prediction errors of the ridge estimator

in high-dimensional rotationally sparse linear regression. Classical analysis of ridge estimation

deals with the in-sample MSE in a fixed design (with fixed X), whereas recent work on the ridge

estimator and the min-norm interpolator, as reviewed later, has been focused on the out-sample

MSE in a random design (with random X). Nevertheless, it is also of interest to study the in-
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Table 1: Summary of our main results in the rotationally sparse setting

Regime I (small or moderate TER): rd(Σ) ≲ n

Range of τ Out-sample error [Theorem 1] In-sampe error [Theorem 2]

τ < λd+1 MSEout ≳ σ2( d
n

+
rd(Σ2)

n
) MSEin ≳ σ2( d

n
+

r2d(Σ)

n2 )

λd+1 ≤ τ ≤ λd

Assume τ ≫ λd+1:

MSEout ≍ ∥θ∗1:d∥
2

Σ
−1
1:d

τ2 ∥θ∗1:d∥
2

Σ
−1
1:d

τ2 + σ2( d
n

+
λ2
d+1

τ2
rd(Σ)

n
)

+ σ2( d
n

+
λ2
d+1

τ2
rd(Σ2)

n
≳ MSEin ≳

∥θ∗1:d∥
2

Σ
−1
1:d

τ2 + σ2( d
n

+
λ2
d+1

τ2

r2d(Σ)

n2 )

τ > λd
MSEout ≳ ∥θ∗1:d∥

2

Σ
−1
1:d

λ2
d

Assume τ ≫ λd+1:

MSEin ≳ ∥θ∗1:d∥
2

Σ
−1
1:d

λ2
d

Regime II (large TER): rd(Σ) ≥ cxn

Range of τ Out-sample error [Theorem 3] In-sample error [Theorem 4]

τ + λd+1
rd(Σ)

n
≲ λd

MSEout ≍ ∥θ∗1:d∥
2

Σ
−1
1:d

(τ + λd+1
rd(Σ)

n
)2 Assume τ ≫ λd+1

rd(Σ)

n
:

+ σ2( d
n

+
λ2
d+1

(τ+λd+1
rd(Σ)

n
)2

rd(Σ2)

n
) MSEin ≍ ∥θ∗1:d∥

2

Σ
−1
1:d

(τ + λd+1
rd(Σ)

n
)2

+ σ2( d
n

+
λ2
d+1

(τ+λd+1
rd(Σ)

n
)2

r2d(Σ)

n2 )

τ + λd+1
rd(Σ)

n
≳ λd

MSEout ≳ ∥θ∗1:d∥
2

Σ
−1
1:d

λ2
d

Assume τ ≫ λd+1
rd(Σ)

n
:

MSEin ≳ ∥θ∗1:d∥
2

Σ
−1
1:d

λ2
d

Note: cx is a constant depending only on the sub-gaussian norm σx of covariate vectors.

sample MSE in a random design. In fact, the standard analysis of Lasso estimation concerns the

in-sample MSE either in a fixed design or in a random design (e.g., Bickel et al. (2009); Bühlmann

& van de Geer (2011)). The in-sample MSE in a random design also plays an important role in

analyzing de-biased Lasso estimation (C.-H. Zhang & Zhang, 2014; van de Geer et al., 2014) and

high-dimensional estimation of average treatment effects (Chernozhukov et al., 2018; Tan, 2020).

The main findings of our work can be summarized as follows. First, we establish high-probability

bounds on the out-sample and in-sample MSEs of the ridge estimator (see Table 1) in two distinct,

albeit possibly overlapping, regimes, called small or moderate TER and large TER. The two regimes

are defined by whether the ratio rd(Σ)
n is small or large, where rd(Σ) is the tail effective rank (TER)

rd(Σ) =

∑
j>d λj

λd+1
.

Such a quantity is also central in the related analyses of ridge estimation and min-norm interpolation

(Bartlett et al., 2020; Tsigler & Bartlett, 2023). A main difference between the two regimes is that

in the large TER regime, the prediction errors of the ridge estimator can sometimes be controlled

for a small ridge parameter τ , including τ = 0 corresponding to the min-norm interpolator. From a

technical perspective, the separation of the two regimes enables us to exploit rerlevant concentration
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Table 2: Summary of conditions on
λd+1

λd
to achieve O( dn) prediction errors in the rotationally sparse

setting

MSEout = O( d
n
) MSEin = O( d

n
)

rd(Σ) ≲ n

Sufficient Condition
λd+1
λd

≲
√

d
n

min{1,
√

d
rd(Σ2)

} λd+1
λd

≲
√

d
n

min{1,
√

d
rd(Σ)

}

Necessary Condition
Assume n ≫ d and rd(Σ

2) ≫ d: Assume n ≫ d and
rd(Σ)

n

√
n
d

≫ 1:

λd+1
λd

≲
√

d
n

√
d

rd(Σ2)

λd+1
λd

≲ d
rd(Σ)

rd(Σ) ≥ cxn

Sufficient Condition
λd+1
λd

≲
√

d
n

min{
√

d
rd(Σ2)

, n
rd(Σ)

} λd+1
λd

≲ d
rd(Σ)

Necessary Condition
Assume n ≫ d: Assume n ≫ d:
λd+1
λd

≲
√

d
n

min{
√

d
rd(Σ2)

, n
rd(Σ)

}
λd+1
λd

≲ d
rd(Σ)

Note: cx is a constant depending only on the sub-gaussian norm σx of covariate vectors.

Table 3: Summary of optimal MSE in the rotationally sparse setting

Out-sample error In-sample error

rd(Σ) ≲ n
Assume λd ≳ λd+1

√
n

rd(Σ2)
: Assume rd(Σ) ≍ n and λd ≫ λd+1:

MSE∗
out ≍ max{

λd+1
λd

√
rd(Σ2)

n
, d
n
} MSE∗

in ≍ max{
λd+1
λd

, d
n
}

rd(Σ) ≥ cxn
Assume λd ≫ λd+1

rd(Σ)

n
:

MSE∗
out ≍ max{

λd+1
λd

√
rd(Σ2)

n
,
λ2
d+1

λ2
d

rd(Σ)2

n2 , d
n
} MSE∗

in ≍ max{
λd+1
λd

rd(Σ)

n
, d
n
}

Note: cx is a constant depending only on the sub-gaussian norm σx of covariate vectors. MSE∗
out denotes

the MSEout with optimal τ and MSE∗
in denotes the MSEin with optimal τ .

inequalities and derive concrete error bounds without making any oracle assumption or independent

components assumption on covariate vectors as used in Tsigler & Bartlett (2023).

Second, from our error bounds, we derive sufficient and necessary conditions on the ratio
λd+1

λd

together with the choice of ridge parameter τ such that the out-sample and in-sample MSEs is of

the order O( dn) respectively (see Table 2). All of these conditions are determined in the simple

form that the ratio
λd+1

λd
is sufficiently small, i.e., the gap between the spiked and tail variances is

sufficiently large. In other words, our results indicate that ridge estimation can achieve prediction

errors in the order O( dn) for a suitable choice of τ if and only if the gap between the spiked and

tail variances is sufficiently large in the rotationally sparse linear regression. These results can be

seen to serve as a counterpart to existing theory for Lasso estimation to achieve prediction errors

in the order O(s log pn ) under suitable conditions including compatibility conditions on Σ.

Third, from our error bounds depending on the ridge parameter τ , we also derive the optimal

orders of out-sample and in-sample MSEs obtained respectively with the optimal choices of τ (see

Table 3). The optimal orders of prediction errors may be greater than O( dn). Remarkably, we

find that if
λd+1

λd
is sufficiently small, then the optimal out-sample MSE is, up to a constant factor,

smaller than the optimal in-sample MSE in both the regime of small or moderate TER (under
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some technical conditions) and the regime of large TER. We also identify specific conditions under

which the optimal out-sample MSE is significantly smaller than the optimal in-sample MSE (see

Remarks 1 and 4 for details, and Figure 2 for numerical results). This phenomenon seems to be

surprising: out-sample MSEs may be usually considered to be no smaller than in-sample MSEs.

Related works. There is a large and growing literature on prediction properties of ridge

estimators and min-norm interpolators. See Tsigler & Bartlett (2023), Section 9, for a recent

review. We discuss directly related works to ours, in addition to the earlier discussion.

Hsu et al. (2014) allowed sub-gaussian covariate vectors and studied the out-sample MSE of

the ridge estimator when the ridge parameter τ is large enough such that the effective dimension,∑p
j=1

λj
λj+τ

, is small compared with the sample size. For this reason, their error bounds are not

applicable to a small ridge parameter or a min-norm interpolator.

Hastie et al. (2022) derived out-sample error approximation formulas for the ridge estimator

and the min-norm interpolator using random matrix theory. They also showed that the deviation

between the out-sample error and the approximation formula is upper bounded by the order of n−
1
2

for the ridge estimator (with a ridge tuning parameter bounded away from 0) and is upper bounded

by the order of n−
1
7 for the min-norm interpolator. Compared to our results, the independent

components assumption and boundedness of p
n are assumed in Hastie et al. (2022). Moreover, the

orders of their deviation bounds may be much larger than d
n , so that combining the approximation

formulas and the deviation bounds may lead to less sharp out-sample error bounds than ours in

the rotationally sparse setting. Despite these differences, it can be shown that the orders of the

approximation formulas in Hastie et al. (2022) match the orders of our error bounds, which are

obtained without the independent components assumption or boundedness of p
n in the rotationally

sparse setting. See Section 4.1 for details.

Bartlett et al. (2020) studied the min-norm interpolator and gave upper bounds of the out-

sample error variance and bias and a lower bound of the out-sample error variance (but not bias).

However, their results rely on the independent components assumption. Moreover, although the

tail effective rank is involved, their out-sample error bounds are obtained in terms of the overall

∥θ∗∥2, regardless of how the mean response is aligned differently with the spiked and tail parts of

covariate vectors, which are essential to the rotationally sparse setting.

Tsigler & Bartlett (2023) provided upper and lower bounds of both the out-sample error variance

and bias, while exploiting the decomposition of the spiked and tail parts of covariate vectors.

However, although the variance and bias upper bounds in Tsigler & Bartlett (2023) are obtained

with sub-Gaussian covariate vectors instead of the independent components assumption, an oracle
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assumption is required on some random matrix from covariate vectors. Moreover, their variance

lower bound is obtained under the independent components assumption, and their bias lower bound

is provided in terms of the expectation with respect to a prior distribution on θ∗ under an extra

oracle assumption on covariate vectors. By comparison, our error upper bounds match those in

Tsigler & Bartlett (2023) for the ridge tuning parameter in suitable ranges, and all our upper

and lower bounds are obtained with sub-Gaussian covariate vectors without making any oracle

assumption or independent components assumption. See Section 4.2 for details.

Bunea et al. (2022) studied the min-norm interpolator in a latent factor model as follows:

yi = βTzi + ξi, xi = Azi + ei, i = 1, . . . , n, (3)

where β ∈ Rd, A ∈ Rp×d, zi ∈ Rd is a latent feature vector, ξi ∈ R and ei ∈ Rp are mean-zero noises,

and (zi, ξi, ei) are mutually independent for each i. The matrix Σ = Var(xi) can be expressed as

Σ = AΣZA
T +ΣE , where ΣZ = Var(zi) and ΣE = Var(ei). The latent factor model can be seen to

share a similar structure as our rotationally sparse linear regression model. From our comparison in

Section 4.3, the upper bound of the out-sample MSE in Bunea et al. (2022) is obtained for the min-

norm interpolator in the large TER regime, and is less sharp than our result which gives the order

of out-sample MSE (i.e., matching upper and lower bounds up to a constant factor) except in the

trivial situation where the out-sample MSE is bounded away from zero. In addition, the analysis

of Bunea et al. (2022) assumes that the whiten noises, Σ
−1/2
E ei, has independent components. Such

an assumption of independent components is avoided in our analysis.

2 Assumptions and notation

We formulate the following assumptions to facilitate our theoretical analysis. Let d be the dimension

of the spike part satisfying 0 < d < p.

Assumption 1 (Low dimension of spiked part). Suppose that d ≤ n and d
n is small enough such

that

η1 = C0σ
2
x

√
d

n
<

1

2
,

where C0 is an absolute constant from Lemma S14–S18.

As shown in Bartlett et al. (2020), the tail effective rank (TER) is important for analyzing

benign linear regression. For the covariance matrix Σ, define

rd(Σ) =

∑
j>d λj

λd+1
,

6



where λ1 ≥ . . . ≥ λp > 0 are the eigenvalues of Σ. We refer to rd(Σ) as TER, because it pertains

to the tail eigenvalues of Σ. We also use the following related quantity:

rd(Σ
2) =

∑
j>d λ

2
j

λ2d+1

.

It can be easily verified that rd(Σ
2) ≤ rd(Σ).

The following two assumptions describe two regimes of TER, in terms of the ratio rd(Σ)
n . The

magnitude of rd(Σ)
n affects the behavior of the out-sample error and in-sample error.

Assumption 2 (Small or moderate TER). rd(Σ)
n ≤ C1, where C1 > 0 is a constant.

Assumption 3 (Large TER). rd(Σ)
n is large enough such that

η2 = C0σ
2
x

√
4n2

rd(Σ)2
+

2n

rd(Σ)
≤ 1

2
.

Alternatively, it is sufficient to assume that rd(Σ)
n ≥ cx for some cx depending only on σx. For

instance, cx can be max{4
√
2C0σ

2
x, 16C

2
0σ

4
x}.

Separating the two regimes above is desirable for theoretical analysis, because it enables us

to establish concrete results and avoid making any oracle assumption or independent components

assumption on covariate vectors as used in Tsigler & Bartlett (2023). See Section 4.2 for further

information. The two regimes above are not contained by each other. For instance, rd(Σ)
n satisfies

Assumption 2 but not Assumption 3 if rd(Σ)
n ≪ 1, whereas rd(Σ)

n satisfies Assumption 3 but not

Assumption 2 if rd(Σ)
n ≫ 1. Overlapping of the two regimes is possible, for instance, rd(Σ)

n ≍ 1 and

rd(Σ)
n satisfies both Assumptions 2 and 3.

The following assumption describes the rotationally sparse setting in terms of the relative mag-

nitudes of ∥θ∗(d+1):p∥
2
Σ(d+1):p

and ∥θ∗1:d∥2Σ−1
1:d

.

Assumption 4 (Rotational Sparsity).

(i) [Applied with small or moderate TER]. For some 0 < δ1 < 1,

∥θ∗(d+1):p∥
2
Σ(d+1):p

∥θ∗1:d∥2Σ−1
1:d

≤ δ1
4(1 + σ2x)

λ2d+1.

(ii) [Applied with large TER]. For some 0 < δ2 < 1,

∥θ∗(d+1):p∥
2
Σ(d+1):p

∥θ∗1:d∥2Σ−1
1:d

≤ δ2
4(1 + σ2x)

(
1

λd
+

4n∑
j>d λj

)−2,

which can be equivalently stated as

∥θ∗(d+1):p∥
2
Σ(d+1):p

∥θ∗1:d∥2Σ−1
1:d

≤ δ2
4(1 + σ2x)

(
λd+1

λd
+

4n

rd(Σ)
)−2λ2d+1.

7



Assumption 4(i) is specified for the small or moderate regime, whereas Assumption 4(ii) is

specified for the regime large TER regime. Assumption 4(ii) provides a much weaker condition

than Assumption 4(i) on
∥θ∗

(d+1):p
∥2Σ(d+1):p

∥θ∗1:d∥
2

Σ−1
1:d

if λd ≫ λd+1 and rd(Σ) ≫ n.

Notation. Given two positive sequence {ak} and {bk}, ak ≲ bk (ak ≳ bk) indicates that there

exist constants c > 0 and K ≥ 1 such that ak ≤ cbk (ak ≥ cbk) for all k ≥ K. We also denote

ak = O(bk) if ak ≲ bk. Moreover, ak ≍ bk indicates that both ak ≲ bk and ak ≳ bk; and ak ≪ bk (or

ak ≫ bk) indicates limk→∞
ak
bk

= 0 (or limk→∞
ak
bk

= ∞). Finally, Polydeg(x) denotes a polynomial

of x with positive bounded coefficients and the highest order equal to deg.

3 Main results

The standard formula of the ridge estimator for n > p is

θ̂(τ) = (XTX + nτ)−1XTY.

However, this formula does not hold for τ = 0 when XTX is not invertible with n < p. In the

high-dimensional setting, the ridge estimator θ̂(τ) can be expressed as

θ̂(τ) = XT (XXT + nτ)−1Y. (4)

See, for example, Appendix B in Tsigler & Bartlett (2023).

With the expression (4) and the assumption that X and ϵ are independent, the out-sample and

in-sample errors can be decomposed into bias and variance as follows:

• Out-sample error

MSEout = ∥(Ip −XT(XXT + nτIn)
−1X)θ∗∥2Σ︸ ︷︷ ︸

Bout

+ σ2Tr((XXT + nτIn)
−1XΣXT(XXT + nτIn)

−1)︸ ︷︷ ︸
Vout

, (5)

• In-sample error

MSEin = ∥(Ip −XT(XXT + nτIn)
−1X)θ∗∥2

Σ̂︸ ︷︷ ︸
Bin

+ σ2Tr((XXT + nτIn)
−1XΣ̂XT(XXT + nτIn)

−1)︸ ︷︷ ︸
Vin

. (6)

We present our main results about the out-sample and in-sample errors in the small or moderate

TER regime in Section 3.1 and the large TER regime in Section 3.2.
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3.1 Regime I: Small or moderate TER

Consider the regime of small or moderate TER such that rd(Σ) ≤ C1n, as stated in Assumption 2.

The following is our main result about MSEout, the out-sample MSE. Let A0 be a constant satisfying

A0 ≥ 1 and (1 + A0)
2 < 4δ−1

1 , with 0 < δ1 < 1 from Assumption 4(i). For A−1
0 λd+1 ≤ τ ≤ A0λd,

we determine the order of MSEout (including upper and lower bounds). For τ ≤ A−1
0 λd+1 and

τ ≥ A0λd, we give lower bounds of MSEout through, respectively, the variance and bias terms.

Theorem 1 (Out-sample error with small or moderate TER). Under Assumption 1, 2 and 4(i),

for any ν satisfying 0 < ν < 1
2 min{1, σ2x} and any A0 satisfying A0 ≥ 1 and (1 + A0)

2 <

4δ−1
1 , the following inequalities hold uniformly in the range of τ stated with probability at least

1− 2exp{− ν2n
C2

0σ
4
x
} − 2exp{− ν2n

C0σ4
x
} − 18exp{− n

C0
}:

(i) MSEout ≥M1 σ
2(
d

n
+
rd(Σ

2)

n
)︸ ︷︷ ︸

Vout

for τ ≤ A−1
0 λd+1,

(ii) M2(∥θ∗1:d∥2Σ−1
1:d

τ2︸ ︷︷ ︸
Bout

+σ2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
)︸ ︷︷ ︸

Vout

) ≥ MSEout ≥

M1(∥θ∗1:d∥2Σ−1
1:d

τ2︸ ︷︷ ︸
Bout

+σ2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
)︸ ︷︷ ︸

Vout

) for A−1
0 λd+1 ≤ τ ≤ A0λd,

(iii) MSEout ≥M1 ∥θ∗1:d∥2Σ−1
1:d

λ2d︸ ︷︷ ︸
Bout

for τ ≥ A0λd,

where M1,M2 > 0 are constants, depending only on (σx, η1, C1, δ1, ν,A0), and Bout and V out rep-

resent lower bounds of out-sample bias and variance and Bout and V out represent upper bounds of

out-sample bias and variance, up to the constant M1 or M2.

The following corollary provides simple conditions for achieving MSEout = O( dn) in the regime

of small or moderate TER.

Corollary 1 (Conditions for MSEout = O( dn) with small or moderate TER). In the setting of

Theorem 1, assume further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEout = O( dn) with a probability approaching 1 as n → ∞ is

that
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ2)
} and the ridge parameter τ is chosen in the range A−1

0 λd+1 ≤ τ ≤

A0λd+1 if rd(Σ
2) ≤ d or A−1

0 λd+1max{1
c

√
rd(Σ2)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} if rd(Σ

2) > d, where

c is a constant satisfying c ≥ 1 and
λd+1

λd
≤ c

√
d
n min{1,

√
d

rd(Σ2)
}.

(ii) Suppose that n ≫ d and rd(Σ
2) ≫ d. Then a necessary condition for MSEout = O( dn) with

9



a probability bounded away from 0 is that
λd+1

λd
≲

√
d
n

√
d

rd(Σ2)
and the ridge parameter τ is chosen

in the range

√
rd(Σ2)
d λd+1 ≲ τ ≲

√
d
nλd.

The sufficient and necessary conditions become matched,
λd+1

λd
≲

√
d
n

√
d

rd(Σ2)
, in the case where

n≫ d and rd(Σ
2) ≫ d in addition to the assumptions stated.

Next, we give our main result about MSEin, the in-sample MSE, in the regime of small or

moderate TER stated in Assumption 2. As before, let A0 be a constant satisfying A0 ≥ 1 and

(1 + A0)
2 < 4δ−1

1 , with 0 < δ1 < 1 from Assumption 4(i). For A−1
0 λd+1 ≤ τ ≤ A0λd, we derive

upper and lower bound of MSEin. For τ ≤ A−1
0 λd+1, we give a lower bound through variance. For

τ ≥ A0λd, we give a lower bound of MSEin through the sum of bias and variance terms.

Theorem 2 (In-sample error with small or moderate TER). Under Assumption 1, 2 and 4(i),

for any ν satisfying 0 < ν < 1
4 min{1, σ2x} and any A0 satisfying A0 ≥ 1 and (1 + A0)

2 <

4δ−1
1 , the following inequalities hold uniformly in the range of τ stated with probability at least

1− 2exp{− ν2n
C2

0σ
4
x
} − 2exp{− ν2n

C0σ4
x
} − 8exp{− n

C0
}:

(i) MSEin ≥M1 σ
2(
d

n
+
r2d(Σ)

n2
)︸ ︷︷ ︸

V in

for τ ≤ A−1
0 λd+1,

(ii) M2(∥θ∗1:d∥2Σ−1
1:d

τ2︸ ︷︷ ︸
Bin

+σ2(
d

n
+
λ2d+1

τ2
rd(Σ)

n
)︸ ︷︷ ︸

Vin

) ≥ MSEin ≥

M1(κ1(τ)∥θ∗1:d∥2Σ−1
1:d

τ2︸ ︷︷ ︸
Bin

+σ2(
d

n
+
λ2d+1

τ2
r2d(Σ)

n2
)︸ ︷︷ ︸

Vin

) for A−1
0 λd+1 ≤ τ ≤ A0λd,

(iii) MSEin ≥M1(κ1(τ)∥θ∗1:d∥2Σ−1
1:d

λ2d︸ ︷︷ ︸
Bin

+σ2
λ2d+1

τ2
r2d(Σ)

n2︸ ︷︷ ︸
Vin

) for τ ≥ A0λd,

where κ1(τ) = max{1 − (
2C0σ2

x(2+C1)λd+1

τ (1 + 16(2C0σ
2
x + 1)(1 + C1)

√
δ1

1−
√
δ1
) + 64

√
δ1

1−
√
δ1
), 0}, and

M1,M2 > 0 are constants depending only on (σx, η1, C1, δ1, ν,A0). The terms Bin and V in represent

lower bounds of in-sample bias and variance and Bin and V in represent upper bounds of in-sample

bias and variance, up to the constant M1 or M2.

By the definition of κ1(τ), the bias term Bin is activated in the lower bound of MSEin only when

λd+1

τ and
√
δ1

1−
√
δ1

are small enough. This can be explained from our proof strategy as follows (see

Section 6.2 for details). The in-sample bias ∥θ̂(τ)− θ∗∥2
Σ̂
can be expressed as the sum of ∥θ̂(τ)1:d−

θ∗1:d∥2Σ̂1:d
, 2(θ̂(τ)1:d − θ∗1:d)Σ̂(1:d),(d+1):p(θ̂(τ)(d+1):p − θ∗(d+1):p) and ∥θ̂(τ)(d+1):p − θ∗(d+1):p∥

2
Σ̂(d+1):p

and

only the interaction term 2(θ̂(τ)1:d−θ∗1:d)Σ̂(1:d),(d+1):p ·(θ̂(τ)(d+1):p−θ∗(d+1):p) can be negative. When

10



λd+1

τ and
√
δ1

1−
√
δ1

are small enough, the bias from the spiked part, ∥θ̂(τ)1:d − θ∗1:d∥2Σ̂1:d
, can be shown

to dominate the interaction term. Then a lower bound on the bias from the spiked part, which can

be deduced in a convenient manner, also provides a lower bound on the overall bias.

From Theorem 2, we deduce the following simple conditions for achieving MSEin = O( dn) in the

regime of small or moderate TER.

Corollary 2 (Conditions for MSEin = O( dn) with small or moderate TER). In the setting of

Theorem 2, assume further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEin = O( dn) with a probability approaching 1 as n → ∞ is

that
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ)} and the ridge parameter τ is chosen in the range A−1
0 λd+1 ≤ τ ≤

A0λd+1 if rd(Σ) ≤ d or A−1
0 λd+1max{1

c

√
rd(Σ)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} if rd(Σ) > d, where c

is a constant satisfying c ≥ 1 and
λd+1

λd
≤ c

√
d
n min{1,

√
d

rd(Σ)}.

(ii) Suppose that n ≫ d, rd(Σ)
n

√
n
d ≫ 1 and 64

√
δ1

1−
√
δ1

< 1. Then a necessary condition for

MSEin = O( dn) with a probability bounded away from 0 is that
λd+1

λd
≲ d

rd(Σ) and the ridge parameter

τ is chosen in the range λd+1
rd(Σ)
n

√
n
d ≲ τ ≲ λd

√
d
n .

The sufficient and necessary conditions become matched,
λd+1

λd
≲ d

rd(Σ) , in the case where n ≫ d

and rd(Σ) ≍ n in addition to the assumptions stated.

From Theorems 1 and 2, we derive the order of MSEout with an optimal choice τ , denoted

as MSE∗
out, and the order of MSEin with an optimal choice τ , denoted as MSE∗

in. The following

corollary gives the orders of MSE∗
out and MSE∗

in in the small or moderate TER regime.

Corollary 3 (Optimal error orders with small or moderate TER). Suppose that Assumption 1,

2 and 4(i) are satisfied and further σ2 ≍ 1, ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, rd(Σ) ≍ n, λd ≳ λd+1

√
n

rd(Σ2)
,

λd ≫ λd+1, and 64
√
δ1

1−
√
δ1
< 1. Then

(i) MSE∗
out ≍ max{λd+1

λd

√
rd(Σ2)
n , dn} with a probability approaching to 1 and the optimal τ is

chosen as τ =

√
λdλd+1

√
rd(Σ2)
n min{

√
cA−2

0 , A0λd√
λdλd+1

√
rd(Σ

2)

n

} where c is a constant satisfying

λd+1

√
n

rd(Σ2)
≤ cλd.

(ii) MSE∗
in ≍ max{λd+1

λd
, dn} with a probability approaching to 1 and the optimal τ is chosen as

τ ≍
√
λd+1λd.

Therefore MSE∗
out ≲ MSE∗

in with a probability approaching to 1, by noting rd(Σ
2) ≤ rd(Σ) ≍ n.

The additional conditions rd(Σ) ≍ n, λd ≳ λd+1

√
n

rd(Σ2)
and λd ≫ λd+1 can be explained as

follows. First, rd(Σ) ≍ n and λd ≫ λd+1 are important for determining the order of MSE∗
in. In

fact, the order of Vin for A−1
0 λd+1 ≤ τ ≤ A0λd can be determined from Theorem 2(ii) only under

11



rd(Σ) ≍ n, due to the difference between Vin and Vin. Note that the sum of the in-sample bias and

the tail part of in-sample variance, ∥θ∗1:d∥2Σ−1
1:d

τ2+σ2
λ2d+1

τ2
, reaches the minimum order of

λd+1

λd
by the

choice τ ≍
√
λdλd+1. The condition λd ≫ λd+1 ensures that this choice of τ is large enough so that

κ1(τ) is activated. Second, λd ≳ λd+1

√
n

rd(Σ2)
is important for determining the order of MSE∗

out

because under λd ≳ λd+1

√
n

rd(Σ2)
, the order of Vout for τ ≤ A−1

0 λd+1 can be shown to be larger

than max{λd+1

λd

√
rd(Σ2)
n , dn} and then the range τ ≤ A−1

0 λd+1 can be ruled out when optimizing

MSEout. See the proof of Corollary 3 in Supplement Section III.2 for details.

Remark 1. In the setting of Corollary 3, we observe that the gap between MSE∗
in and MSE∗

out

can be significantly large, for example, if further
λd+1

λd
≳ d

n

√
n

rd(Σ2)
and n

rd(Σ2)
≫ 1. In this case,

both MSEout and MSEin do not achieve O( dn), and MSE∗
out ≍

λd+1

λd

√
rd(Σ2)
n and MSE∗

in ≍ λd+1

λd
by

Corollary 3. With n
rd(Σ2)

≫ 1, there can be a substantial gap between MSE∗
in and MSE∗

out.

In the setting of Corollary 3, we point out that the advantage of MSE∗
out over MSE∗

in can be

attributed to Vout ≲ Vin for A−1
0 λd+1 ≤ τ ≤ A0λd under rd(Σ) ≍ n. See the proof of Corollary 3

in Supplement Section III.2 for details. In fact, in the setting of Corollary 3, the optimal choices

of τ for both MSEout and MSEin are chosen from the range A−1
0 λd+1 ≤ τ ≤ A0λd, because both

MSEout and MSEin are lower bounded by large variance for τ ≤ A−1
0 λd+1 and by large bias for

τ ≥ A0λd. Moreover, as seen from the proof, the optimal order of MSEin, max{λd+1

λd
, dn}, in the

setting of Corollary 3 can be achieved only when Bin is activated. With Bin activated, the orders

of Bout and Bin are the same for A−1
0 λd+1 ≤ τ ≤ A0λd. By comparison, Vout can be shown to be

smaller than Vin up to a constant factor for A−1
0 λd+1 ≤ τ ≤ A0λd under rd(Σ) ≍ n:

σ2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
)︸ ︷︷ ︸

order of Vout in Theorem 1(ii)

≲ σ2(
d

n
+
λ2d+1

τ2
)︸ ︷︷ ︸

order of Vin in Theorem 2(ii)

.

Hence the advantage of MSE∗
out stems from the smaller order of Vout in the setting of Corollary 3.

3.2 Regime II: Large TER

The second regime we investigate is when rd(Σ)
n is large enough such that Assumption 3 is satisfied.

In this regime, as shown below, the smallest eigenvalue of τIn+n
−1X(d+1):pX

T
(d+1):p is lower bounded

away from 0 for any τ ≥ 0, so that MSEout can sometimes be controlled even for τ = 0. Let A0 be

any positive constant. For the ridge parameter τ ≥ 0 satisfying τ+λd+1
rd(Σ)
n ≤ A0λd, we determine

the order of MSEout (including upper and lower bounds). For τ + λd+1
rd(Σ)
n ≥ A0λd, we give a

lower bound of MSEout through the bias term.
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Theorem 3 (Out-sample error with large TER). Under Assumption 1, 3 and 4(ii), for any ν

satisfying 0 < ν < 1
4 min{1, σ2x} and rd(Σ)ν2

C2
0σ

4
x

> 1 and any A0 > 0, the following inequalities hold

uniformly in the range of τ stated with probability at least 1− 2nexp{−ν
√
rd(Σ)

C0σ2
x

} − 2exp{− ν2n
C2

0σ
4
x
} −

2exp{− ν2n
C0σ4

x
} − 16exp{− n

C0
}:

(i) M2(∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2︸ ︷︷ ︸

Bout

+σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
)︸ ︷︷ ︸

Vout

) ≥ MSEout ≥

M1(∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2︸ ︷︷ ︸

Bout

+σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
)︸ ︷︷ ︸

Vout

) for τ + λd+1
rd(Σ)

n
≤ A0λd,

(ii) MSEout ≥M1 ∥θ∗1:d∥2Σ−1
1:d

λ2d︸ ︷︷ ︸
Bout

, for τ + λd+1
rd(Σ)

n
≥ A0λd,

where M1,M2 > 0 are constants depending only on (σx, η2, δ2, ν,A0).

Remark 2. The error bounds in Theorems 1 and 3 are derived from the same set of algebraic

bounds but then by applying relevant high-probability inequalities to control random quantities for

different ranges of τ under the two regimes of TER (see Section 6.1). In fact, after ignoring the

range choice of τ , the error bounds (i)–(ii) in Theorem 3 appear similar to (ii)–(iii) in Theorem 1

except with τ + λd+1
rd(Σ)
n in place of τ . In the overlapping case of small or moderate TER regime

and large TER regime, i.e., rd(Σ)
n ≍ 1 and rd(Σ)

n satisfies Assumption 2 and 3, the result from

Theorem 1 (ii), MSEout ≍ ∥θ∗1:d∥2Σ−1
1:d

τ2 + σ2( dn +
λ2d+1

τ2
rd(Σ

2)
n ), and the result from Theorem 3 (i),

MSEout ≍ ∥θ∗1:d∥2Σ−1
1:d

(τ +λd+1
rd(Σ)
n )2+σ2( dn +

λ2d+1

(τ+λd+1
rd(Σ)

n
)2

rd(Σ
2)

n ), are equivalent to each other for

τ in the range A−1
0 λd+1 ≤ τ ≤ A0λd, where τ ≍ τ + λd+1

rd(Σ)
n with rd(Σ) ≍ n. However, the error

bound in Theorem 3 (i) remains applicable, but that in Theorem 1 (ii) does not apply, to small τ

satisfying 0 ≤ τ ≤ A−1
0 λd+1 including τ = 0.

The following corollary provides simple conditions for achieving MSEout = O( dn) in the regime

of large TER.

Corollary 4 (Conditions for MSEout = O( dn) with large TER). In the setting of Theorem 3,

assume further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEout = O( dn) with a probability approaching 1 as n→ ∞ is that

λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)} and the ridge parameter τ is chosen satisfying τ + λd+1

rd(Σ)
n ≲√

d
nλd if

n
√
rd(Σ2)√
drd(Σ)

≤ 1 or

√
rd(Σ2)
d λd+1 ≲ τ + λd+1

rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

> 1.
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(ii) Suppose that n ≫ d. Then a necessary condition for MSEout = O( dn) with a proba-

bility bounded away from 0 is that
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)} and τ is chosen satisfying

τ + λd+1
rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

≤ 1 or

√
rd(Σ2)
d λd+1 ≲ τ + λd+1

rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

> 1.

The sufficient and necessary conditions become matched,
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)}, in the

case where n≫ d in addition to the assumptions stated.

Next, we give our main result about MSEin in the regime of large TER stated in Assumption

3. Let A0 be any positive constant. We derive upper and lower bounds of MSEin in the case of

τ + λd+1
rd(Σ)
n ≤ A0λd, and a lower bound of MSEin in the case of τ + λd+1

rd(Σ)
n ≥ A0λd, through

the sum of bias and variance terms.

Theorem 4 (In-sample error with large TER). Under Assumption 1, 3 and 4(ii), for any ν

satisfying 0 < ν < 1
4 and rd(Σ)ν2

C2
0σ

4
x
> 1 and any A0 > 0, the following inequalities hold uniformly in

the range of τ stated with probability at least 1−2nexp{−ν
√
rd(Σ)

C0σ2
x

}−2exp{− ν2n
C2

0σ
4
x
}−2exp{− ν2n

C0σ4
x
}−

12exp{− n
C0

}:

(i) M2(∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2︸ ︷︷ ︸

Bin

+σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
)︸ ︷︷ ︸

Vin

) ≥ MSEin ≥

M1(κ2(τ)∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2︸ ︷︷ ︸

Bin

+σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
)︸ ︷︷ ︸

Vin

) for τ + λd+1
rd(Σ)

n
≤ A0λd,

(ii) MSEin ≥M1(κ2(τ)∥θ∗1:d∥2Σ−1
1:d

λ2d︸ ︷︷ ︸
Bin

+σ2
λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2︸ ︷︷ ︸
Vin

) for τ + λd+1
rd(Σ)

n
≥ A0λd,

where κ2(τ) = max{1− (16
λd+1

rd(Σ)

n

τ+λd+1
rd(Σ)

n

(1+112
√
δ2

1−
√
δ2
)+64

√
δ2

1−
√
δ2
), 0} and M1,M2 > 0 are constants

depending only on (σx, η2, δ2, ν,A0).

Similarly to κ1(τ) in Theorem 3, the definition of κ2(τ) indicates that the bias term Bin is

activated in the lower bound of MSEin only when
λd+1

(τ+λd+1
rd(Σ)

n
)

rd(Σ)
n and

√
δ2

1−
√
δ2

are small enough.

In this case, the bias from the spiked part, ∥θ̂(τ)1:d − θ∗1:d∥2Σ̂1:d
, can be shown to dominate the

interaction term between the spiked part and the tail part.

Remark 3. Similarly to out-sample error bounds discussed in Remark 2, the error bounds in

Theorems 2 and 4 are also derived from the same set of algebraic bounds but then by applying

relevant high-probability inequalities to control random quantities for different ranges of τ under

the two regimes of TER (see Section 6.2). After ignoring the range choice of τ , the error bounds
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(i)–(ii) in Theorem 4 appear similar to (ii)–(iii) in Theorem 2 except with τ +λd+1
rd(Σ)
n in place of

τ and with the additional difference that
r2d(Σ)

n2 are involved both Vin and Vin in Theorem 4 (i), but

not in Theorem 2 (ii). In the overlapping case of small or moderate TER regime and large TER

regime, i.e., rd(Σ)
n ≍ 1 and rd(Σ)

n satisfies Assumption 2 and 3, the result from Theorem 2 (ii) with

κ1(τ) is activated reduces to MSEout ≍ ∥θ∗1:d∥2Σ−1
1:d

τ2+σ2( dn +
λ2d+1

τ2
), and the result from Theorem 4

(i) with κ2(τ) is activated reduces to MSEout ≍ ∥θ∗1:d∥2Σ−1
1:d

(τ +λd+1
rd(Σ)
n )2 + σ2( dn +

λ2d+1

(τ+λd+1
rd(Σ)

n
)2
),

and the two results are equivalent to each other, for τ in the range A−1
0 λd+1 ≤ τ ≤ A0λd, where

τ ≍ τ + λd+1
rd(Σ)
n with rd(Σ) ≍ n. However, the error bound in Theorem 4 (i) remains applicable,

but that in Theorem 2 (ii) does not apply, to small τ satisfying 0 ≤ τ ≤ A−1
0 λd+1 including τ = 0.

From Theorem 4, we deduce the following simple conditions for achieving MSEin = O( dn) in the

regime of large TER.

Corollary 5 (Conditions for MSEin = O( dn) with large TER). In the setting of Theorem 4, assume

further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEin = O( dn) with a probability approaching to 1 as n → ∞ is

λd+1

λd
≲ d

rd(Σ) and the ridge parameter τ is chosen such that λd+1
rd(Σ)
n

√
n
d ≲ τ+λd+1

rd(Σ)
n ≲ λd

√
d
n .

(ii) Suppose that n ≫ d and 64
√
δ2

1−
√
δ2
< 1. Then a necessary condition for MSEin = O( dn) with

a probability bounded away from 0 is
λd+1

λd
≲ d

rd(Σ) and the ridge parameter τ is chosen in the range

λd+1
rd(Σ)
n

√
n
d ≲ τ + λd+1

rd(Σ)
n ≲ λd

√
d
n .

The sufficient and necessary conditions become matched,
λd+1

λd
≲ d

rd(Σ) , in the case where n≫ d in

addition to the assumptions stated.

From Theorem 3 and 4, we derive the orders of MSE∗
out and MSE∗

in, i.e., MSEout and MSEin

with optimal choices of τ respectively, in large TER regime.

Corollary 6 (Optimal error orders with large TER). Suppose that Assumption 1, 3 and 4(ii) are

satisfied and further σ2 ≍ 1, ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, λd ≫ λd+1
rd(Σ)
n and 64

√
δ2

1−
√
δ2
< 1. Then

(i) The order of MSE∗
out is max{λd+1

λd

√
rd(Σ2)
n ,

λ2d+1

λ2d

rd(Σ)2

n2 , dn} with a probability approaching to 1

and the optimal τ is chosen as τ = 0 if
n
√
rd(Σ2)√
drd(Σ)

≤ λd+1

λd

rd(Σ)
n or satisfying τ + λd+1

rd(Σ)
n ≍√

λdλd+1

√
rd(Σ2)
n if

n
√
rd(Σ2)√
drd(Σ)

>
λd+1

λd

rd(Σ)
n .

(ii) The order of MSE∗
in is max{λd+1

λd

rd(Σ)
n , dn} with a probability approaching to 1 and the optimal

τ is chosen satisfying τ + λd+1
rd(Σ)
n ≍

√
λdλd+1

rd(Σ)
n .

Therefore MSE∗
out ≲ MSE∗

in with a probability approaching to 1 because
λd+1

λd

√
rd(Σ2)
n ≲ λd+1

λd

rd(Σ)
n

by noting rd(Σ
2) ≤ rd(Σ) and rd(Σ) ≳ n (Assumption 3) and because

λ2d+1

λ2d

rd(Σ)2

n2 ≲ λd+1

λd

rd(Σ)
n by

noting λd ≫ λd+1
rd(Σ)
n .
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The additional condition λd ≫ λd+1
rd(Σ)
n is important for determining the order of MSE∗

in.

In fact, the sum of the in-sample bias and the tail part of in-sample variance, ∥θ∗1:d∥2Σ−1
1:d

(τ +

λd+1
rd(Σ)
n )2+σ2

λ2d+1

(τ+λd+1
rd(Σ)

n
)2

r2d(Σ)

n2 , reach the minimum order of
λd+1

λd

rd(Σ)
n by the choice τ satisfying

τ +λd+1
rd(Σ)
n ≍

√
λdλd+1

rd(Σ)
n . The condition λd ≫ λd+1

rd(Σ)
n ensures that this choice of τ is large

enough so that κ2(τ) is activated. See the proof of Corollary 6 in Supplement Section III.2 for

details.

Remark 4. In the setting of Corollary 6, we observe that the gap between MSE∗
in and MSE∗

out

can be significantly large, for example, in two cases,
λd+1

λd
≳ d√

nrd(Σ2)
min{1, n

√
rd(Σ2)√
drd(Σ)

} and
λd+1

λd
≳

n
√
nrd(Σ2)

rd(Σ)2
hold or

λd+1

λd
≳ d√

nrd(Σ2)
min{1, n

√
rd(Σ2)√
drd(Σ)

}, λd+1

λd
≲

n
√
nrd(Σ2)

rd(Σ)2
and rd(Σ)√

nrd(Σ2)
≫ 1 hold. In

the first case, MSE∗
in ≍ λd+1

λd

rd(Σ)
n and MSE∗

out ≍ λ2d+1

λ2d

rd(Σ)2

n2 by Corollary 6, and hence
MSE∗

in
MSE∗

out
=

λd
λd+1

n
rd(Σ) ≫ 1 with λd ≫ λd+1

rd(Σ)
n . In the second case, MSE∗

in ≍ λd+1

λd

rd(Σ)
n and MSE∗

out ≍
λd+1

λd

√
rd(Σ2)
n by Corollary 6, and hence

MSE∗
in

MSE∗
out

= rd(Σ)√
nrd(Σ2)

≫ 1.

In the setting of Corollary 6, we point out that the advantage of MSE∗
out over MSE∗

in can be

attributed to Vout ≲ Vin for τ + λd+1
rd(Σ)
n ≤ A0λd. See the proof of Corollary 6 in Supplement

Section III.2 for details. In fact, in the setting of Corollary 6, the optimal τ for both MSEout

and MSEin are chosen from the range τ + λd+1
rd(Σ)
n ≤ A0λd, because both MSEout and MSEin

are lower bounded by large bias for τ + λd+1
rd(Σ)
n ≥ A0λd. Moreover, as seen from the proof,

the optimal order of MSEin, max{λd+1

λd

rd(Σ)
n , dn}, in the setting of Corollary 6 can be achieved

only when Bin is activated. With Bin activated, the orders of Bout and Bin are the same for

τ + λd+1
rd(Σ)
n ≤ A0λd. By comparison, Vout can be shown to be smaller than Vin up to a constant

factor for τ + λd+1
rd(Σ)
n ≤ A0λd in the large TER regime:

σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
)︸ ︷︷ ︸

order of Vout in Theorem 3(i)

≲ σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
)︸ ︷︷ ︸

order of Vin in Theorem 4(i)

.

Hence the advantage of MSE∗
out stems from the smaller order of Vout in the setting of Corollary 6.

4 Connection and comparison with existing results

4.1 Comparison with error approximation formulas

We compare our results to error approximation formulas, obtained under an independence assump-

tion on whiten covariates in ridge linear regression (see Assumption 5 below). We first review
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the results of Hastie et al. (2022) about approximation formulas for out-sample error. To facil-

itate the comparison, we also derive and justify the approximation formulas for in-sample error.

Then we show that in the rotationally sparse setting, the orders of out-sample and in-sample error

approximation formulas match those from our results for the ridge tuning parameter in suitable

ranges.

For ridge linear regression, Hastie et al. (2022) gave the following approximation formulas for

the out-sample bias and variance:

Bout(τ, Ĥn, Ĝn, γ) = τ2∥θ∗∥2(1 + γmn,1(−τ))
∫

s

[τ + (1− γ + γλmn(−τ))s]2
dĜn(s), (7)

Vout(τ, Ĥn, γ) = σ2γ

∫
s2(1− γ + γλ2m′

n(−τ))
[τ + s(1− γ + γτmn(−τ))]2

dĤn(s), (8)

where γ = p
n , Ĥn(s) = p−1

∑p
j=1 1{s≥λj}, Ĝn(s) =

∑p
i=j(⟨θ∗, vj⟩2/∥θ∗∥2)1{s≥λj}, v1, ..., vp are the

eigenvectors of Σ, mn(z) is determined by solving the following equation

mn(z) =

∫
1

s[1− γ − γzmn(z)]− z
dĤn(s), (9)

and mn,1(z) is calculated by

mn,1(z) =

∫ s2[1−γ−γzmn(z)]
[s[1−γ−γzmn(z)]−z]2dĤn(s)

1− γ
∫

zs
[s[1−γ−γzmn(z)]−z]2dĤn(s)

. (10)

Consider the following assumption on the whiten covariates, defined as zi = Σ−1/2xi, the variance

matrix Σ, and the ratio p
n .

Assumption 5.

(i) Each vector zi = (zi1, · · · , zip)T has independent entries with E(zij) = 0, E(z2ij) = 1 and

E(|zij |k) ≤ Ck <∞ for all k ≥ 2.

(ii) λ1 ≤M and
∫
s−1Ĥn(s)ds < M .

(iii) |1− p
n | ≥

1
M , 1

M ≤ p
n ≤M .

Hastie et al. (2022) showed that under Assumption 5 and assuming max{τ, λp} > 1
M and

n−2/3+1/M < τ < M , for any constantD > 0 and δ > 0, with probability at least 1−C(M,D, δ)n−D,

|Bout(τ, Ĥn, Ĝn, γ)− Bout| <
C(M)∥θ∗∥2

τn(1−δ)/2
, |Vout(τ, Ĥn, Ĝn, γ)−Vout| <

C(M)

τ2n(1−δ)/2
,

where C(M,D, δ) is a constant depending only on (M,D, δ), and C(M) is a constant depending

only on M .

To facilitate the comparison between our results and error approximation formulas, we also give

approximation formulas for in-sample bias and variance as follows:

Bin(τ ; Ĥn, Ĝn, γ) = τ2||θ∗||2(γτ2m′
n(−τ) + 1− γ)

∫
s

[τ + (1− γ + γλmn(−τ))s]2
dĜn(s), (11)
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Vin(τ ; Ĥn, γ) = σ2γ(1− 2τmn(−τ) + τ2m′
n(−τ)). (12)

We establish the convergence of Bin(τ ; Ĥn, Ĝn, γ) and Vin(τ ; Ĥn, γ) in the following theorem.

Theorem 5 (Convergence of in-sample error approximation formulas). Under Assumption 5, fur-

ther assume that τ > 1
M and n−2/3+1/M < τ < M

2 . Then for any D > 0, δ > 0, with probability at

least 1− C(M,D, δ)n−D,

|Bin(τ ; Ĥn, Ĝn, γ)− Bin| ≤ C(M)max{ 1

τ2/3n(1−δ)/3
,

8M

τn(1−δ)/2
},

|Vin(τ ; Ĥn, γ)−Vin| ≤ σ2C(M)(max{ 1

τ2/3n(1−δ)/3
,

8M

τn(1−δ)/2
}+ 1

n(1−δ)/2
),

where C(M,D, δ) is a constant depending only on (M,D, δ), and C(M) is a constant depending

only on M .

Given any τ > 0, γ = p
n > 0 and λ̃ = (λ1, . . . , λp) with λj > 0 for 1 ≤ j ≤ p , we define α > 1 as

a solution to the equation

1

α
= 1− γ

1

p

p∑
j=1

1

1 + ατ
λj

. (13)

The approximation formulas above can be equivalently expressed as follows. These formulas can

also be calculated using a distributional approximation method in Han & Shen (2023) under the in-

dependent components assumption, for which the discussion is deferred to Supplement Section IV.3.

Corollary 7 (Equivalent expressions of error approximation formulas). With α defined in (13),

we have

Bout(τ ; Ĥn, Ĝn, γ) = (1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

)−1 1

n

p∑
j=1

α2τ2λjθ
∗2
j

(λj + ατ)2
, (14)

Vout(τ ; Ĥn, γ) = (1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

)−1(
1

n

p∑
j=1

λ2j
(λj + ατ)2

)σ2, (15)

Bin(τ ; Ĥn, Ĝn, γ) =
1

α2
(1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

)−1 1

n

p∑
j=1

α2τ2λjθ
∗2
j

(λj + ατ)2
, (16)

Vin(τ ; Ĥn, γ) = (1− 2

α
+

(1− 1
n

∑p
j=1

λ2j
(λj+ατ)2

)−1

α2
)σ2. (17)

Next, we study the orders of error approximation formulas (14)-(17) in the high-dimensional ro-

tationally sparse setting, and compare them with our results, which are obtained without requiring

independence of the whiten covariates. The first result is about the small or moderate TER regime.
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Corollary 8 (Matching error approximation formulas with small or moderate TER).

(i) Suppose that d
n < 1, rd(Σ) ≲ n, and ∥θ∗(d+1):p∥

2
Σ(d+1):p

≲ ∥θ∗1:d∥2Σ−1
1:d

λ2d+1. For λd+1 ≲ τ ≲ λd,

we have

Bout(τ ; Ĥn, Ĝn, γ) + Vout(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

τ2 + σ2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
). (18)

(ii) Suppose further that rd(Σ) ≍ n. For λd+1 ≲ τ ≲ λd, we have

Bin(τ ; Ĥn, Ĝn, γ) + Vin(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

τ2 + σ2(
d

n
+
λ2d+1

τ2
). (19)

For comparison, we notice that the conditions, dn < 1, rd(Σ) ≲ n and ∥θ∗(d+1):p∥
2 ≲ ∥θ∗1:d∥2Σ−1

1:d

λ2d+1

correspond to, respectively, Assumption 1, 2 and 4(i) used in Theorems 1 and 2. The order of the

approximation formula (18) matches Theorem 1(ii). The order of the approximation formula (19)

matches Theorem 2(ii) when rd(Σ) ≍ n and κ1(τ) is activated.

Then we study the large TER regime and the results are summarized as follows.

Corollary 9 (Matching error approximation formulas with large TER).

(i) Suppose that d
n < 1

5 , rd(Σ) > cn for some c > 10, ∥θ∗(d+1):p∥
2
Σ(d+1):p

≲ ∥θ∗1:d∥2Σ−1
1:d

( 1
λd

+

n∑
j>d λj

)−2. For λd ≳ τ + λd+1
rd(Σ)
n and τ > 0, we have

Bout(τ ; Ĥn, Ĝn, γ) + Vout(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2 + σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
).

(20)

(ii) Suppose further that τ > λd+1
rd(Σ)
n . For λd ≳ τ + λd+1

rd(Σ)
n and τ > 0, we have

Bin(τ ; Ĥn, Ĝn, γ) + Vin(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2 + σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
).

(21)

The conditions, d
n < 1

5 , rd(Σ) > cn for some c > 10, ∥θ∗(d+1):p∥
2 ≲ ∥θ∗1:d∥2Σ−1

1:d

( 1
λd

+ n∑
j>d λj

)−2

correspond to, respectively, Assumption 1, 3 and 4(ii) used in Theorems 3 and 4. The order of the

approximation formula (20) matches Theorem 3(i). The order of the approximation formula (21)

matches Theorem 4(i) when κ2(τ) is activated.

4.2 Comparison with Tsigler & Bartlett (2023)

In this section, we compare our results to Tsigler & Bartlett (2023), where the non-asymptotic out-

sample error bounds are studied for high-dimensional ridge regression. We make a comparison in

both upper bounds and lower bounds. In the following, denote Ad = X(d+1):pX
T
(d+1):p + nτIn. The
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conditional number of Ad is defined µ1(Ad)/µn(Ad), where µ1(Ad) and µn(Ad) are the maximum

eigenvalue and minimum eigenvalue of Ad repectively.

Upper bound of MSEout. Our upper bounds of MSEout match the results in Tsigler & Bartlett

(2023) for most ridge tuning parameters, but our result avoids making any oracle condition on

covariate vectors as used in Tsigler & Bartlett (2023). In fact, for any d small enough compared

to n, given that the conditional number of Ad is controlled by L, it is shown in Tsigler & Bartlett

(2023) that with a high probability:

Bout/c ≤ ∥θ∗1:d∥Σ−1
1:d
(τ + λd+1

rd(Σ)

n
)2 + ∥θ∗(d+1):p∥

2
Σ(d+1):p

, (22)

Vout/c ≤
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
, (23)

where c is a constant depending on the σx and L. When rd(Σ) ≲ n (i.e., in the small or moderate

TER regime), our result (25)–(26) in Proposition 1 matches (22)–(23) for λd+1 ≤ τ ≤ λ1. When

rd(Σ) > cxn for some cx depending only on σx (i.e., in the large TER regime), our result (38)–(39)

in Proposition 7 matches (22)–(23) for τ + λd+1
rd(Σ)
n ≤ λ1.

To control the the conditional number of Ad, Tsigler & Bartlett (2023) requires an oracle small-

ball assumption on covariate vectors:
∑

j>d x
2
ij > c(

∑
j>d λj + nτ) for all i = 1, . . . , n and some c

satisfying 0 < c < 1 with a high probability.

Instead of requiring an extra oracle assumption, our analysis achieves the control of the con-

ditional number of Ad using concentration inequalities specifically in the two TER regimes for

certain ranges of τ , which are summarized below. See Section 6.1.3 and Supplement Section II.4

for details. We derive an upper bound of µ1(Ad), using concentration properties of matrix operator

norms based on sub-gaussian covariate vectors, for τ ≥ λd+1 in the small or moderate TER regime

and for τ ≥ 0 in the large TER regime. To obtain a lower bound of µn(Ad), we handle the small or

moderate TER regime and the large TER regime separately. In small or moderate TER regime, we

use a trivial lower bound: µn(Ad) ≥ nτ . In the large TER regime, we use concentration properties

of quadratic forms of sub-gaussian random vectors (Zajkowski (2020), Corollary 2.8) to show that

the oracle small-ball assumption in Tsigler & Bartlett (2023) is satisfied for τ ≥ 0. Then we derive

a lower bound of µn(Ad) following similar reasoning as in Tsigler & Bartlett (2023).

Lower bound of Vout. Our lower bound of Vout also matches the result in Tsigler & Bartlett

(2023) for a certain range of ridge tuning parameters, but our result does not require the indepen-

dence of the components of the whiten covariate vector as assumed in Tsigler & Bartlett (2023).

In fact, given that the components of whiten xi are independent, for any d small enough compared
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to n, it is shown in Tsigler & Bartlett (2023) that with a high probability,

Vout/c ≥
1

n

p∑
j=1

min{1,
λ2j

λ2d+1(
∑

l>d λl+nτ

nλd+1
+ 1)2

}. (24)

where c is a constant depending on σx. When rd(Σ) ≲ n (i.e., in the small or moderate TER

regime), for λd+1 ≤ τ ≤ λd, (24) can be shown to reduce to

Vout ≳
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
,

which matches our result in (30) of Proposition 3 for small or moderate TER regime. When

rd(Σ) > cxn for some cx depending on σx (i.e., in the large TER regime), for λd+1
rd(Σ)
n + τ ≤ λd,

(24) can be shown to reduce to

Vout ≳
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
,

which matches our result in (42) of Proposition 9 for large TER regime.

Instead of requiring the assumption of independent components in whiten covariate vectors as

in Tsigler & Bartlett (2023), we derive a lower bound of Vout using concentration properties of

sub-gaussian random vectors (see Section 6.1 for further information).

Lower bound of Bout. The lower bound of Bout in Tsigler & Bartlett (2023) is provided as a

probability lower bound on the expectation of Bout with respect to a prior distribution on θ∗ under

an extra oracle assumption on certain modifications of matrix A = XXT+nτIn. Our lower bound

on Bout is a direct probability bound without assuming a prior distribution on θ∗ and any extra

oracle assumption on covariate vectors, but focuses on the rotationally sparse setting.

4.3 Comparison with Bunea et al. (2022)

For the min-norm interpolator (τ = 0), we compare Theorem 3 with Theorem 16 in Bunea et al.

(2022), which are both obtained in the large TER regime. See Supplement Section V for details.

Note that models (1) and (3) are related via Σ = AΣZA
T +ΣE and θ∗ = (ΣE +AΣZA

T )−1AΣZβ.

To facilitate the comparison, we let ΣZ = Id, ΣE = Diag(λd+1, . . . , λd+1︸ ︷︷ ︸
d entries

, λd+1, . . . , λp) ∈ Rp×p, and

A =

Diag(
√
λ1 − λd+1, . . . ,

√
λd − λd+1)

0(p−d)×d

 ∈ Rp×d,

such that Σ = Diag(λ1, . . . , λd) ∈ Rp×p and

θ∗ = (Diag(

√
λ1 − λd
λ1

, . . . ,

√
λd − λd+1

λd
)β, 0, . . . , 0︸ ︷︷ ︸

p− d entries

)T ∈ Rp.
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We further assume that λ1 ≍ λd, λd > c1λd+1 and rd(Σ) > c2d for some c1 > 1 and c2 > 1. In this

setting, Theorem 3 with τ = 0 shows that with a high probability,

MSEout ≍ ∥θ∗1:d∥2Σ1:d

λ2d+1

λ2d

r2d(Σ)

n2︸ ︷︷ ︸
Bout

+σ2(
d

n
+
nrd(Σ

2)

r2d(Σ)
)︸ ︷︷ ︸

Vout

, for λd+1
rd(Σ)

n
≤ λd,

MSEout ≳ ∥θ∗1:d∥2Σ1:d︸ ︷︷ ︸
Bout

, for λd+1
rd(Σ)

n
> λd.

After ignoring the log(n) factor, Theorem 16 in Bunea et al. (2022) gives that with a high proba-

bility,

MSEout ≲ ∥θ∗1:d∥2Σ1:d

λd+1

λd

rd(Σ)

n︸ ︷︷ ︸
Bout

+σ2(
d

n
+

n

rd(Σ)
)︸ ︷︷ ︸

Vout

.

Hence for λd ≥ λd+1
rd(Σ)
n , our result gives the order of out-sample MSE which is sharper than

the upper bound in Bunea et al. (2022). For λd < λd+1
rd(Σ)
n , our lower bound indicates that the

out-sample MSE is larger than ∥θ∗1:d∥2Σ1:d
up to a constant, and accordingly the upper bound in

Bunea et al. (2022) is larger than ∥θ∗1:d∥2Σ1:d
up to a constant.

5 Proofs of main results (Theorems 1–4)

We provide proofs of the main results (Theorems 1–4), depending on auxiliary bounds on Bout,

Bin, Vout, Vin, for which the proofs are outlined in Section 6. Without loss of generality, we only

consider the case of A0 = 1 involved in the ranges of the ridge parameter τ .

5.1 Proof of Theorem 1

We provide auxiliary bounds for the out-sample squared bias and variance Bout and Vout under the

small or moderate TER regime (Assumption 2).

Proposition 1 (Upper bound of out-sample error with small or moderate TER). Under Assump-

tion 1 and 2, for any ν satisfying 0 < ν < 1
2 , the following inequalities hold uniformly in the range

of τ stated with probability at least 1− 2exp{− ν2n
C2

0σ
4
x
} − 18exp{− n

C0
}: for τ ≥ λd+1,

Bout ≤
(1 + C1)

3(1 + ν + η1)
2Poly6(σx)

(1− ν − η1)4
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2 + ∥θ∗(d+1):p∥

2
Σ(d+1):p

), (25)

Vout ≤
(1 + C1)

2Poly6(σx)

(1− ν − η1)4
σ2(

d

n
+
λ2d+1

τ2
rd(Σ

2)

n
). (26)

Further with Assumption 4(i),

Bout ≤
(1 + C1)

3(1 + ν + η1)
2Poly6(σx)

(1− ν − η1)4
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2. (27)
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Proposition 2 (Lower bound of Bout with small or moderate TER). Under Assumption 1 and

4(i), for any ν satisfying 0 < ν < 1
2 , the following inequality holds uniformly in the range of τ

stated with probability at least 1− 2exp{− ν2n
C2

0σ
4
x
} − 2exp{− n

C0
}: for τ ≥ λd+1,

Bout ≥
(1−

√
δ1)

2

(1 + ν + η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λd
+

1

τ
)−2. (28)

Proposition 3 (Lower bound of Vout with small or moderate TER). Under Assumption 1 and 2,

for any ν satisfying 0 < ν < 1
2 min{1, σ2x}, the following inequalities hold uniformly in the range of

τ stated with probability at least 1− 2exp{− ν2n
C0σ4

x
} − 2exp{− ν2n

C2
0σ

4
x
} − 12exp{− n

C0
}: for τ ≤ λd+1,

Vout ≥
(1− ν − η1)

2(12 − ν)

(1 + C1)2(1 + ν + η1)4Poly4(σx)

1

1 + 2C0σ2
x

1
2
−η1

σ2(
d

n
+
rd(Σ

2)

n
), (29)

and for λd ≥ τ ≥ λd+1,

Vout ≥
(1− ν − η1)

2(12 − ν)

(1 + C1)2(1 + ν + η1)4Poly4(σx)

1

1 + 2C0σ2
x

1
2
−η1

σ2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
). (30)

Theorem 1 can be deduced by combining the bounds for Bout and Vout above. The probability

control is determined from the intersection of the relevant events included in the propositions.

• If τ ≤ λd+1, then the lower bound for Vout in Theorem 1(i) is obtained from (29) in Proposi-

tion 3.

• If λd+1 ≤ τ ≤ λd, then the upper bounds for Bout and Vout in Theorem 1(ii) are obtained

from (27) and (26) in Proposition 1, and the lower bounds for Bout and Vout in Theorem 1(ii)

are obtained from (28) in Proposition 2 and (30) in Proposition 3.

• If τ ≥ λd, then the lower bound for Bout in Theorem 1(iii) is obtained from (28) in Proposi-

tion 2.

5.2 Proof of Theorem 2

We provide auxiliary bounds for the in-sample squared bias and variance Bin and Vin under the

small or moderate TER regime (Assumption 2).

Proposition 4 (Upper bound of in-sample error with small or moderate TER). Under Assumption

1 and 2, for any ν satisfying 0 < ν < 1
2 , the following inequalities hold uniformly in the range of τ

stated with probability at least 1− 2exp{− ν2n
C2

0σ
4
x
} − 2exp{− ν2n

C0σ4
x
} − 8exp{− n

C0
}: for τ ≥ λd+1,

Bin ≤ (1 + C1)
4Poly8(σx)

(1− ν − η1)2
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2 + ∥θ∗(d+1):p∥

2
Σ(d+1):p

), (31)
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Vin ≤ (1 + C1)
2Poly4(σx)σ

2(
d

n
+
λ2d+1

τ2
rd(Σ)

n
). (32)

Further with Assumption 4(ii),

Bin ≤ (1 + C1)
4Poly8(σx)

(1− ν − η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2. (33)

Proposition 5 (Lower bound of Bin with small or moderate TER). Under Assumption 1, 2 and

4(i), for any ν satisfying 0 < ν < 1
4 , the following inequality holds uniformly in the range of τ

stated with probability at least 1− 2exp{− ν2n
C2

0σ
4
x
} − 8exp{− n

C0
}: for τ ≥ λd+1,

Bin ≥ κ1(τ)
(1−

√
δ1)

2

(1 + ν + η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λd
+

1

τ
)−2, (34)

where κ1(τ) = max{1− (
2C0σ2

x(2+C1)λd+1

τ (1 + 16(2C0σ
2
x + 1)(1 + C1)

√
δ1

1−
√
δ1
) + 64

√
δ1

1−
√
δ1
), 0}.

Proposition 6 (Lower bound of Vin with small or moderate TER). Under Assumption 1, 2, 4(i),

then for any ν satisfying 0 < ν < 1
2 min{1, σ2x}, the following inequalities hold uniformly in the

range of τ stated with probability at least 1− 2exp{− ν2n
C2

0σ
4
x
} − 2exp{− ν2n

C0σ4
x
} − 6exp{− n

C0
}:

(i) for τ ≤ λd+1,

Vin ≥ (1− ν)2

Poly4(σx)(1 + C1)2(1 +
1

(1−ν−η2)2 )
2
σ2(

d

n
+
r2d(Σ)

n2
), (35)

(ii) for λd+1 ≤ τ ≤ λd,

Vin ≥ (1− ν)2

Poly4(σx)(1 + C1)2(1 +
1

(1−ν−η2)2 )
2
σ2(

d

n
+
λ2d+1

τ2
r2d(Σ)

n2
), (36)

(iii) for τ ≥ λd,

Vin ≥ (1− ν)2

Poly4(σx)(1 + C1)2
σ2
λ2d+1

τ2
r2d(Σ)

n2
. (37)

Theorem 2 can be deduced by combining the bounds for Bin and Vin above. The probability

control is determined from the intersection of the relevant events included in the propositions.

• If τ ≤ λd+1, then the lower bound for Vin in Theorem 2(i) is obtained from (35) in Proposi-

tion 6.

• If λd+1 ≤ τ ≤ λd, then the upper bounds for Bin and Vin in Theorem 2(ii) are obtained from

(33) and (32) in Proposition 4, and the lower bounds for Bin and Vin in Theorem 2(ii) are

obtained from (34) in Proposition 5 and (36) in Proposition 6.

• If τ ≥ λd, then the lower bounds for Bin and Vin in Theorem 2(iii) are obtained from (34) in

Proposition 5 and (37) in Proposition 6.
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5.3 Proof of Theorem 3

We provide auxiliary bounds for the out-sample squared bias and variance Bout and Vout under the

large TER regime (Assumption 3).

Proposition 7 (Upper bound of out-sample error with large TER). Under Assumption 1, 3, for

any ν satisfying 0 < ν < 1
2 and rd(Σ)ν2

C2
0σ

4
x
> 1, the following inequalities hold uniformly in the range

of τ stated with probability at least 1−2exp{− ν2n
C2

0σ
4
x
}−2nexp{−ν

√
rd(Σ)

C0σ2
x

}−16exp{− n
C0

}: for τ ≥ 0,

Bout ≤
(1 + ν + η1)

2(1 + ν + η2)
2Poly4(σx)

(1− ν − η1)4(1− ν − η2)2
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2 + ∥θ∗(d+1):p∥
2
Σ(d+1):p

),

(38)

Vout ≤
(1 + ν + η2)

2Poly2(σx)

(1− ν − η1)4(1− ν − η2)2
σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
). (39)

Further with Assumption 4(ii),

Bout ≤
(1 + ν + η1)

2(1 + ν + η2)
2Poly4(σx)

(1− ν − η1)4(1− ν − η2)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2. (40)

Proposition 8 (Lower bound of Bout with large TER). Under Assumption 1, 3 and 4(ii), for any

ν satisfying 0 < ν < 1
4 and rd(Σ)ν2

C2
0σ

4
x
> 1, the following inequality holds uniformly in the range of τ

stated with probability at least 1− 2exp{− νn
C2

0σ
4
x
} − 2nexp{−ν

√
rd(Σ)

C0σ2
x

} − 6exp{− n
C0

}: for τ ≥ 0,

Bout ≥
(1−

√
δ2)

2(1− ν − η2)
2

(1 + ν + η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λd
+

1

τ + λd+1
rd(Σ)
n

)−2. (41)

Proposition 9 (Lower bound of Vout with large TER). Under Assumption 1 and 3, for any ν sat-

isfying 0 < ν < 1
2 min{1, σ2x} and rd(Σ)ν2

C2
0σ

4
x
> 1, the following inequality holds uniformly in the range

of τ stated with probability 1 − 2exp{− ν2n
C0σ4

x
} − 2exp{− ν2n

C2
0σ

4
x
} − 2nexp{−ν

√
rd(Σ)

C0σ2
x

} − 10exp{− n
C0

}:

for τ +
∑

j>d λj
n ≤ λd,

Vout ≥
(1− ν − η1)

2(1− ν − η2)
2(12 − ν)

4(1 + ν + η1)4(1 + ν + η2)2
8C0σ

2
x(

1
2 − η1)

1 + 8C0σ2x(
1
2 − η1)

σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
).

(42)

Theorem 3 can be deduced by combining the bounds for Bout and Vout above. The probability

control is determined from the intersection of the relevant events included in the propositions.

• If τ + λd+1
rd(Σ)
n ≤ λd, then the upper bound for Bout and Vout in Theorem 3(i) are obtained

from (40) and (39) in Proposition 7, and the lower bounds for Bout and Vout in Theorem 3(i)

are obtained from (41) in Proposition 8 and (42) in Proposition 9.

• If τ + λd+1
rd(Σ)
n ≥ λd, then the lower bound for Bout in Theorem 3(ii) is obtained from (41)

in Proposition 8.
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5.4 Proof of Theorem 4

We provide auxiliary bounds for the in-sample squared bias and variance Bin and Vin under the

large TER regime (Assumption 3).

Proposition 10 (Upper bound of in-sample error with large TER). Given Assumption 1 and 3, for

any ν satisfying 0 < ν < 1
2 and rd(Σ)ν2

C2
0σ

4
x
> 1, the following inequalities hold uniformly in the range of

τ stated with probability at least 1−2exp{− ν2n
C0σ4

x
}−2exp{− ν2n

C2
0σ

4
x
}−2nexp{−ν

√
rd(Σ)

C0σ2
x

}−12exp{− n
C0

}:

for τ ≥ 0,

Bin ≤ (1 + ν + η2)
2Poly6(σx)

(1− ν − η1)2(1− ν − η2)2
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2 + ∥θ∗(d+1):p∥
2
Σ(d+1):p

), (43)

Vin ≤ (1 + ν + η2)
2Poly4(σx)

(1− ν − η2)2
σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
). (44)

Further with Assumption 4(ii),

Bin ≤ (1 + ν + η2)
2Poly6(σx)

(1− ν − η1)2(1− ν − η2)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2. (45)

Proposition 11 (Lower bound of Bin with large TER). Under Assumption 1, 3 and 4(ii), for any

ν satisfying 0 < ν < 1
4 and rd(Σ)ν2

C2
0σ

4
x
> 1, the following inequality holds uniformly in the range of τ

stated with probability at least 1− 2exp{− ν2n
C2

0σ
4
x
} − 2nexp{−ν

√
rd(Σ)

C0σ2
x

} − 6exp{− n
C0

}: for τ ≥ 0,

Bin ≥ (1−
√
δ2)

2(1− ν − η2)
2

(1 + ν + η1)2
κ2(τ)∥θ∗1:d∥2Σ−1

1:d

(
1

λd
+

1

τ + λd+1
rd(Σ)
n

)−2, (46)

where κ2(τ) = max{1− (16
λd+1

rd(Σ)

n

τ+λd+1
rd(Σ)

n

(1 + 112
√
δ2

1−
√
δ2
) + 64

√
δ2

1−
√
δ2
), 0}.

Proposition 12 (Lower bound of Vin with large TER). Under Assumption 1 and 3, for any

ν satisfying 0 < ν < 1
2 and rd(Σ)ν2

C2
0σ

4
x

> 1, the following inequalities hold uniformly in the range

of τ stated with probability at least 1 − 2exp{− ν2n
C2

0σ
4
x
} − 2nexp{−ν

√
rd(Σ)

C0σ2
x

} − 4exp{− n
C0

}: for τ +

λd+1
rd(Σ)
n ≤ λd,

Vin ≥ (1− ν − η2)
2

2(1 + ν + η2)2(1 +
1

(1−ν−η1)2 )
σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
), (47)

and for τ + λd+1
rd(Σ)
n ≥ λd,

Vin ≥ (1− ν − η2)
2

2(1 + ν + η2)2
σ2

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
. (48)

Theorem 4 can be deduced by combining the bounds for Bin and Vin above. The probability

control is determined from the intersection of the relevant events included in the propositions.
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• If τ + λd+1
rd(Σ)
n ≤ λd, then the upper bounds for Bin and Vin in Theorem 4(i) are obtained

from (45) and (44) of Proposition 10, and the lower bounds for Bin and Vin in Theorem 4(i)

are obtained from (46) and (47) of Proposition 12.

• If τ + λd+1
rd(Σ)
n ≥ λd, then the lower bounds for Bin and Vin are obtained from (46) in

Proposition 11 and (48) in Proposition 12.

6 Proof outlines of auxiliary results (Propositions 1–12)

We provide proof outlines of the auxiliary bounds (Proposition 1–12) used in the proofs in Section

5. In Section 6.1, we discuss the results for out-sample error including Propositions 1–3 and

Propositions 7–9. In Section 6.2, we discuss the results for in-sample error including Propositions

4–6 and Propositions 10–12. We introduce the following notation.

• A = XXT + nτIn, Ad = X(d+1):pX
T
(d+1):p + nτIn.

• X1:d denotes the the matrices comprised of the first d columns of X and X(d+1):p denotes the

the matrices comprised of the last p− d columns of X.

• Σ̂1:d =
XT

1:dX1:d

n , Σ̂(d+1):p =
XT

(d+1):p
X(d+1):p

n and Σ̂1:d,(d+1):p =
XT

1:dX(d+1):p

n .

• Hd = Σ
−1/2
1:d XT

1:d, Ĥd = Σ̂
−1/2
1:d XT

1:d.

• Md = X(d+1):pΣ(d+1):pX
T
(d+1):p, M̂d = X(d+1):pΣ̂(d+1):pX

T
(d+1):p.

• µj(M) is the j-th largest eigenvalue of symmetric semi-positive definite matrix M .

• c, c1, c2, c3 are absolute constants that may differ from line to line.

• c(σx), c1(σx), c2(σx), c3(σx), c4(σx) are constants related to σx which may differ from line to

line.

• w.h.p. indicates that an event holds with probability at least 1− n
c exp(−c

√
n) for a constant

c and sample size n.

The out-sample squared bias and variance can be decomposed as follows:

Bout = ∥θ∗1:d −XT
1:dA

−1Xθ∗∥2Σ1:d︸ ︷︷ ︸
Bout,1

+ ∥θ∗(d+1):p −XT
d+1:pA

−1Xθ∗∥2Σd+1:p︸ ︷︷ ︸
Bout,2

,

Vout = σ2Tr(A−1X1:dΣ1:dX
T
1:dA

−1)︸ ︷︷ ︸
Vout,1

+σ2Tr(A−1X(d+1):pΣ(d+1):pX
T
(d+1):pA

−1)︸ ︷︷ ︸
Vout,2

.
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Similarly, the in-sample squared bias and variance can be shown to satisfy

Bin = ∥θ∗1:d −XT
1:dA

−1Xθ∗∥2
Σ̂1:d︸ ︷︷ ︸

Bin,1

+ ∥θ∗(d+1):p −XT
d+1:pA

−1Xθ∗∥2
Σ̂d+1:p︸ ︷︷ ︸

Bin,2

+ 2(θ∗T1:d − θ∗TXTA−1X1:d)Σ̂1:d,(d+1):p(θ
∗
(d+1):p −XT

d+1:pA
−1Xθ∗)︸ ︷︷ ︸

Bin,12

,

Vin ≤ 2σ2Tr(A−1X1:dΣ̂1:dX
T
1:dA

−1)︸ ︷︷ ︸
Vin,1

+2σ2Tr(A−1X(d+1):pΣ̂(d+1):pX
T
(d+1):pA

−1)︸ ︷︷ ︸
Vin,2

.

where the Cauchy–Schwartz inequality is used to bound Vin.

6.1 Derivation of bounds for out-sample error

To derive the bounds for out-sample error, we first build algebraic bounds of the out-sample error.

Then we provide intermediate bounds of the out-sample error by controlling some random quantities

in the algebraic bounds. We deduce the final bounds mainly by further controlling the extreme

eigenvalues µ1(Ad) and µn(Ad) (from Lemma S7) in the intermediate bounds and incorporating

Assumption 4 (rotational sparsity) to control quantities related to ∥θ∗(d+1):p∥Σ(d+1):p
. The details of

our derivation are presented in Supplement Section II.1.

6.1.1 Algebraic bounds of out-sample error

The first step of deriving the bounds is to build algebraic bounds for the out-sample bias and

variance. The lemmas below are inspired by Lemma 27 and 28 in Tsigler & Bartlett (2023).

Lemma 1 (Algebraic upper bounds of out-sample error). Given invertible Σ1:d, we have

Bout ≤ 2∥θ∗1:d∥2Σ−1
1:d

(
1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)−2 +

2µ1(HdH
T
d )

µ2n(HdH
T
d )

µ21(Ad)

µ2n(Ad)
∥X(d+1):pθ

∗
(d+1):p∥

2

+ 3(∥Md∥
µ1(HdH

T
d )

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)−2 + ∥θ∗(d+1):p∥

2
Σ(d+1):p

+
∥Md∥
µn(A)2

∥X(d+1):pθ
∗
(d+1):p∥

2), (49)

Vout ≤ σ2
µ21(Ad)

µ2n(Ad)

Tr(HT
d Hd)

µd(HdH
T
d )

2
+ σ2

Tr(Md)

µn(Ad)2
.

Lemma 2 (Algebraic lower bounds of out-sample error). Given invertible Σ1:d, we have

Vout ≥ σ2
dµd(HdH

T
d )

µ1(Ad)2
(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2 +max{0, σ2Tr(Md)− dµ1(Md)

µ1(Ad)2
}.

Further if ∥θ∗1:d∥Σ−1
1:d

≥
µ1(HdHd)

1/2∥X(d+1):pθ
∗
(d+1):p

∥
µn(Ad)

, then

Bout ≥ (1−
µ1(HdH

T
d )

1/2∥X(d+1):pθ
∗
(d+1):p∥

µn(Ad)∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2.
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6.1.2 Intermediate bounds of out-sample error

Based on the sub-gaussianity of the covariate vectors, the following random quantities in Lemmas

1 and 2 can be controlled with high probability. See Supplement Lemma S6 (i), (ii), (iii) and (iv).

• Bounds of eigenvalues of HdH
T
d : w.h.p.

µ1(HdH
T
d ) ≤ c1n, µd(HdH

T
d ) ≥ c2n.

• Bounds of traces of random matrices: w.h.p.

Tr(HT
d Hd) = Tr(X1:dΣ

−1
1:dX1:d) ≤ c1(σx)nd,

Tr(Md) = Tr(X(d+1:p)Σ(d+1):pX
T
(d+1):p) ≤ c2(σx)n

∑
j>d

λ2j ,

Tr(Md) = Tr(X(d+1:p)Σ(d+1):pX
T
(d+1):p) ≥ c1n

∑
j>d

λ2j .

• Bounds of norms of random matrix and vector: w.h.p.

µ1(Md) = ∥Md∥ ≤ c1(σx)(nλ
2
d+1 +

∑
j>d

λ2j ), ∥X(d+1):pθ
∗
(d+1):p∥

2 ≤ c2(σx)n∥θ∗(d+1):p∥
2
Σ(d+1):p

.

Substituting the probability bounds above into the algebraic bounds in Lemmas 1 and 2 yields

the intermediate bounds below with high probability.

Upper bounds:

Bout ≤ c1∥θ∗1:d∥2Σ−1
1:d

(
1

λ1
+

n

µ1(Ad)
)−2 + c1(σx)

µ21(Ad)

µ2n(Ad)
∥θ∗(d+1):p∥

2
Σ(d+1):p

+ c2(σx)
(n2λ2d+1 + n

∑
j>d λ

2
j )

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+

n

µ1(Ad)
)−2

+ (3 + c3(σx)
(n2λ2d+1 + n

∑
j>d λ

2
j )

µn(Ad)2
)∥θ∗(d+1):p∥

2
Σ(d+1):p

,

Vout ≤ c1(σx)
µ21(Ad)

µ2n(Ad)
σ2
d

n
+ c2(σx)σ

2
n
∑

j>d λ
2
j

µn(Ad)2
.

Lower bounds:

Vout ≥ c1σ
2 nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 + σ2max{0, c2

n
∑

j>d λ
2
j

µ1(Ad)2
(1− c1(σx)(

d

rd(Σ2)
+
d

n
))}.

Further if ∥θ∗1:d∥Σ−1
1:d

≥
µ1(HdHd)

1/2∥X(d+1):pθ
∗
(d+1):p

∥
µn(Ad)

, then

Bout ≥ c(1−
c1(σx)n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

n

µn(Ad)
)−2.
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6.1.3 Final bounds for out-sample error

The eigenvalues µ1(Ad) and µn(Ad) in the intermediate bounds above can be controlled with high

probability respectively in the small or moderate TER regime and the large TER regime. See

Supplement Lemma S7.

• Under the small or moderate TER regime (Assumption 2), for τ ≥ λd+1,

µ1(Ad) ≤ c(σx)nτ, µn(Ad) ≥ nτ.

• Under the large TER regime (Assumption 3), for τ ≥ 0,

µ1(Ad) ≤ c1n(τ + λd+1
rd(Σ)

n
), µn(Ad) ≥ c2n(τ + λd+1

rd(Σ)

n
).

We deduce the final bounds for the out-sample error from the intermediate bounds as follows,

mainly by applying the probability bounds on µ1(Ad) and µn(Ad) and incorporating Assumption

4 (rotational sparsity).

Upper bounds of Bout, Vout (Proposition 1,7). We first substitute the bounds of µ1(Ad)

and µn(Ad) into the intermediate bounds. Then we incorporate Assumption 4 to control quantities

related to ∥θ∗(d+1):p∥Σ(d+1):p
. This leads to the final upper bounds for Bout and Vout.

Lower bound of Bout (Proposition 2,8). We first show that, w.h.p.

∥θ∗1:d∥Σ−1
1:d

≥
µ1(HdHd)

1/2∥X(d+1):pθ
∗
(d+1):p∥

µn(Ad)
,

if τ ≥ λd+1 under Assumption 2 (small or modereate TER) or if τ ≥ 0 under Assumption 3 (large

TER). Then we substitute the bounds of µn(Ad) into the intermediate lower bound of Bout and

incorporate Assumption 4 to control quantities related to ∥θ∗(d+1):p∥
2
Σ(d+1):p

. This leads to the final

lower bound for Bout.

Lower bound of Vout (Proposition 3,9). The intermediate lower bound of the out-sample

variance in Section 6.1.2 is

Vout ≥ cσ2
nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 + σ2max{0, c2

n
∑

j>d λ
2
j

µ1(Ad)2
(1− c1(σx)(

d

rd(Σ2)
+
d

n
))}. (50)

To deduce the final lower bound for Vout, our strategy is as follows. We first derive a lower

bound for the first term σ2 nd
µ1(Ad)2

( 1
λd

+ n
µn(Ad)

)−2. Then we discuss two complementary cases.

See Supplement Section II.1.4 for details. The first case is that rd(Σ
2)

d is upper bounded by a

constant (possibly depending on σx). The second case is that rd(Σ
2)

d is large enough such that

(1 − c1(σx)(
d

rd(Σ2)
+ d

n)) > 0. Lastly, we show that in these two cases, Vout satisfies lower bounds

of the same order, which gives the final lower bound for Vout.
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For small or moderate TER, after substituting the bounds of µ1(Ad) and µn(Ad) into the first

term of the intermediate lower bound in (50), we have for τ ≥ λd+1, w.h.p.

σ2
nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 ≥ c(σx)σ

2 d

nτ2
(
1

λd
+

1

τ
)−2,

which implies that for λd+1 ≤ τ ≤ λd, w.h.p.

σ2
nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 ≥ c(σx)σ

2 d

n
. (51)

Then we discuss two cases which are complementary to each other. The first case is that rd(Σ
2)

d is

upper bounded by a constant c(σx). In this case, we have for τ ≥ λd+1,

d ≥ 1

c(σx)

∑
j>d λ

2
j

λ2d+1

≥ 1

c(σx)

∑
j>d λ

2
j

τ2
,

and hence (allowing that c(σx) below may vary from the previous line)

d

n
≥ c(σx)(

d

n
+

∑
j>d λ

2
j

nτ2
). (52)

Combining (50), (51) and (52) shows that for λd+1 ≤ τ ≤ λd, we have, w.h.p.

Vout ≥ cσ2
nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 ≥ c1(σx)σ

2 d

n
≥ c2(σx)σ

2(
d

n
+

∑
j>d λ

2
j

nτ2
).

The second case is that rd(Σ
2)

d is large enough such that 1 − c1(σx)(
d

rd(Σ2)
+ d

n) > 0. In this case,

after substituting the upper bound of µ1(Ad) into the second term of the intermediate lower bound

in (50), we have for τ ≥ λd+1, w.h.p.

σ2max{0,
n
∑

j>d λ
2
j

µ1(Ad)2
(1− c1(σx)(

d

rd(Σ2)
+
d

n
))} ≥ c(σx)

∑
j>d λ

2
j

nτ2
. (53)

Then combining (50), (51) and (53) yields that for λd+1 ≤ τ ≤ λd, w.h.p.

Vout ≥ c(σx)σ
2(
d

n
+

∑
j>d λ

2
j

nτ2
).

In conclusion of the two cases, it holds that for λd+1 ≤ τ ≤ λd, w.h.p.

Vout ≥ c(σx)σ
2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
).

For τ ≤ λd+1, the lower bound of Vout follows by the monotonicity of variance: Vout for τ ≤ λd+1

is no smaller than Vout for τ = λd+1. Hence for τ ≤ λd+1,

Vout ≥ c(σx)σ
2(
d

n
+
rd(Σ

2)

n
).

The lower bound of Vout in the large TER regime can be derived similarly to the small or

moderate TER regime. For succinctness, we omit the associated details.
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6.2 Derivation of bounds for in-sample error

Our strategy for deriving the bounds for in-sample error is similar to that for out-sample error.

The details of our derivation are presented in Supplement Section II.2.

6.2.1 Algebraic bounds of in-sample error

Similarly to the out-sample error, we first give the algebraic bounds for in-sample bias and variance.

Lemma 3 (Algebraic upper bounds of in-sample error). Given invertible Σ̂1:d, we have

Bin ≤ 2∥θ∗1:d∥2Σ̂−1
1:d

(
1

λ1
+

n2

µ21(Ad)
)−2 +

2

n

µ21(Ad)

µ2n(Ad)
∥X(d+1):pθ

∗
(d+1):p∥

2

+ 3(∥M̂d∥
n

µ2n(Ad)
∥θ∗1:d∥2Σ̂−1(

1

λ1
+

n

µ1(Ad)
)−2 + ∥θ∗(d+1):p∥

2
Σ̂(d+1):p

+
∥M̂d∥
µn(A)2

∥X(d+1):pθ
∗
(d+1):p∥

2),

Vin ≤ 2σ2
µ21(Ad)

µ2n(Ad)

d

n
+ 2σ2

1
nTr(X(d+1):pX

T
(d+1):p)µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)2
.

Lemma 4 (Algebraic lower bounds of in-sample error). Given invertible Σ̂1:d, we have

Vin ≥ σ2
1

2
(
1

n

d∑
i=1

µ2i (X1:dX
T
1:d)

(µi(X1:dX
T
1:d) + nτ)2

+
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

).

Further if ∥θ∗1:d∥Σ̂−1
1:d

≥
n1/2∥X(d+1):pθ

∗
(d+1):p

∥
µn(Ad)

, then

Bin ≥ max{0, 1− |Bin,12|
Bin

}(1−
n1/2∥X(d+1):pθ

∗
(d+1):p∥

µn(Ad)∥θ∗1:d∥Σ̂−1
1:d

)2∥θ∗1:d∥2Σ̂−1
1:d

(
1

λd
+

n

µn(Ad)
)−2.

6.2.2 Intermediate bounds of in-sample error

In addition to the probability bounds in Section 6.1.2, the following probability bounds can be

obtained about random quantities in Lemmas 3 and 4. See Supplement Lemma S6 (i), (v) and

(vii).

• Bounds of ∥θ∗1:d∥2Σ̂−1
, w.h.p.

c1∥θ∗1:d∥2Σ−1
1:d

≤ ∥θ∗1:d∥2Σ̂−1
1:d

≤ c2∥θ∗1:d∥2Σ−1
1:d

.

• Bounds of µ1(X(d+1):pX
T
(d+1):p) and ∥M̂d∥, w.h.p.

µ1(X(d+1):pX
T
(d+1):p) ≤ c1(σx)(nλd+1 +

∑
j>d

λj), ∥M̂d∥ ≤ c2(σx)
(nλd+1 +

∑
j>d λj)

2

n
.

• Bounds of Tr(X(d+1):pX
T
(d+1):p), w.h.p.

Tr(X(d+1):pX
T
(d+1):p) ≤ cn

∑
j>d

λj .
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Substituting the probability bounds in Section 6.1.2 and above into the algebraic bounds in

Lemmas 3 and 4 yields the intermediate bounds below, w.h.p.

Upper bounds:

Bin ≤ c1∥θ∗1:d∥2Σ−1
1:d

(
1

λ1
+

n

µ1(Ad)
)−2 + c1(σx)

µ21(Ad)

µ2n(Ad)
∥θ∗(d+1):p∥

2
Σ(d+1):p

+ c2(σx)
(nλd+1 +

∑
j>d λj)

2

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+

n

µ1(Ad)
)−2

+ (c3(σx) + c4(σx)
(nλd+1 +

∑
j>d λj)

2

µn(Ad)2
)∥θ∗(d+1):p∥

2
Σ(d+1):p

,

Vin ≤ c3σ
2 µ

2
1(Ad)

µ2n(Ad)

d

n
+ c3(σx)σ

2
(
∑

j>d λj)(nλd+1 +
∑

j>d λj)

µn(Ad)2
.

Lower bounds:

Further if ∥θ∗1:d∥Σ̂−1
1:d

≥
n1/2∥X(d+1):pθ

∗
(d+1):p

∥
µn(Ad)

, then

Bin ≥ c1max{0, 1− |Bin,12|
Bin

}(1−
c1(σx)n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

n

µn(Ad)
)−2.

6.2.3 Final bounds for in-sample error

We deduce the final bounds for the in-sample error from the intermediate bounds as follows, mainly

by applying the probability bounds on µ1(Ad) and µn(Ad) (from Section 6.1.3) and incorporating

Assumption 4 (rotational sparsity).

Upper bounds of Bin, Vin (Proposition 4,10). We first substitute the bounds of µ1(Ad)

and µn(Ad) into the intermediate bounds. Then we incorporate Assumption 4 to control quantities

related to ∥θ∗(d+1):p∥
2
Σ(d+1):p

. This leads to the final upper bounds for Bin and Vin.

Lower bound of Bin (Proposition 5,11). We first show that w.h.p.

∥θ∗1:d∥Σ̂−1
1:d

≥
n1/2∥X(d+1):pθ

∗
(d+1):p∥

µn(Ad)
,

if τ ≥ λd+1 under Assumption 2 (small or modereate TER) or if τ ≥ 0 under Assumption 3 (large

TER). Then we show that w.h.p.

max{0, 1− |Bin,2|
Bin,1

} ≥ κ1(τ),

if τ ≥ λd+1 under Assumption 2 (small or moderate regime TER regime) and Assumption 4(i) , or

max{0, 1− |Bin,2|
Bin,1

} ≥ κ2(τ),

if τ ≥ 0 under Assumption 3 (large TER regime) and Assumption 4(ii). See Theorems 2 and 4

for the definition of κ1(τ) and κ2(τ), and Supplement Lemma S5 for details. We substitute the
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bounds of µn(Ad) into the intermediate lower bound of Bin and incorporate Assumption 4 to control

quantities related to ∥θ∗(d+1):p∥Σ(d+1):p
. This leads to the final lower bound of Bin.

Lower bound of Vin (Proposition 6,12). The algebraic lower bound of in-sample variance

from Section 6.2.1 is

Vin ≥ σ2
1

2
(
1

n

d∑
i=1

µ2i (X1:dX
T
1:d)

(µi(X1:dX
T
1:d) + nτ)2

+
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

). (54)

By the concentration of XT
1:dX1:d (see Supplement Lemma S6 (i)), we have w.h.p.

µ1(X
T
1:dX1:d) ≥ · · · ≥ µd(X

T
1:dX1:d) ≥ cλd.

If τ ≤ λd, then the first term in the algebraic bound satisfies w.h.p.

1

n

d∑
i=1

µ2i (X1:dX
T
1:d)

(µi(X1:dX
T
1:d) + nτ)2

≥ c
d

n
.

For the second term of the algebraic lower bound, we first give the algebraic bound

σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

≥ σ2
1

n2

Tr(X(d+1):pX
T
(d+1):p)

2

µ1(Ad)2
.

By the control of µ1(Ad) in Section 6.1.3 and the fact that w.h.p. (see Supplement Lemma S6 (vii))

Tr(X(d+1):pX
T
(d+1):p) ≥ cn

∑
j>d

λj ,

the second term in the algebraic bound (54) can be lower bounded as follows.

• In small or moderate TER regime, under Assumption 2, for τ ≥ λd+1, w.h.p.

σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

≥ c(σx)σ
2λ

2
d+1

τ2
r2d(Σ)

n2
.

• In large TER regime, under Assumption 3, for τ ≥ 0, w.h.p.

σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

≥ cσ2
λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
.

Combining the preceding bounds on the two terms of (54) gives the lower bound of Vin.

7 Numerical studies

We present numerical results in support of our theoretical results, including the sufficient conditions

and necessary conditions for MSE = O( dn) and the conditions for when MSE∗
out can be much smaller

than MSE∗
in as described in Remark 1 and 4.
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7.1 Data generation and MSE calculation

We first generate the covariance matrix Σ and coefficient vector θ∗.

Generating Σ. Given 0 < d < p and ρ < 1, we generate a diagonal covariance matrix Σ as

follows. We let λi = 1 for i = 1, . . . , d and let λi = ρ for i = d + 1, . . . , p unless otherwise stated.

Here ρ represents the gap between the spiked and tail eigenvalues of Σ.

Generating θ∗. Given the covariance matrix Σ, we generate θ∗ ∈ Rp as follows. We let

θ∗1:d =
1√
d
. To generate θ∗(d+1):p, we first generate β(d+1):p ∼ Np−d(0, I) and then let

θ∗(d+1):p =


β(d+1):p

∥β(d+1):p∥Σ(d+1):p

√
0.01||θ∗1:d||2Σ−1

1:d

λ2d+1, if rd(Σ) < 10n,

β(d+1):p

∥β(d+1):p∥Σ(d+1):p

√
0.01||θ∗1:d||2Σ−1

1:d

( 1
λd

+ n∑
i>d λi

)−2, if rd(Σ) ≥ 10n.

In the numerical study, we consider rd(Σ) < 10n as the small or moderate TER regime and consider

rd(Σ) ≥ 10n as the large TER regime. From the generating process above, ∥θ∗1:d∥2Σ−1
1:d

λ2d = 1 and

||θ(d+1):p||2Σ(d+1):p
satisfies rotational sparsity Assumption 4(i) in small or moderate TER regime or

satisfies rotational sparsity Assumption 4(ii) in large TER regime.

Generating xi and yi. Given Σ and θ∗ from above, we generate data xi and yi for i = 1, . . . , n

as follows. We sample z1i ∼ unif(
√
pSp−1) and z2i ∼ Np(0, I), where S

p−1 is the spherical surface

with radius 1 in Rp. Then we let zi =
√
2
2 z1i +

√
2
2 z2i and xi = Σ1/2zi. By the generating process,

zi ∈ Rp is an isotropic random vector with dependent components. Then we sample ϵi ∼ N(0, 1)

and generate yi = xTi θ
∗ + ϵi by model (1).

With xi and yi generated from above, for different ridge parameters τ , we calculate MSEout or

MSEin according to (5) or (6), where yi’s are averaged out. We report the MSEout and MSEin

based on the average of 10 repeated runs of data generation.

7.2 Experiment settings

7.2.1 Study of conditions for MSE = O( dn)

We use the following settings to study the sufficient conditions and the necessary conditions for

MSE = O( dn) in Corollary 1, 2, 4 and 5. We focus on the scenarios where the sufficient condition

matches the necessary condition up to a constant, that is, MSE = O( dn) if and only if the ratio

λd+1

λd
is smaller than or equal to a certain threshold.

Study of Corollary 1. Given the small or moderate TER regime, n ≫ d and rd(Σ
2) ≫ d,

from Corollary 1, the sufficient condition for MSEout = O( dn) is
λd+1

λd
≲

√
d
n

√
d

rd(Σ2)
and the

necessary condition for MSEout = O( dn) is
λd+1

λd
≲

√
d
n

√
d

rd(Σ2)
. To embody this condition, we set

d = 5, n = 1500, p = 1500 and ρ = [0.1, 1, 10]×
√

d
n

√
d

rd(Σ2)
such that rd(Σ

2) = 1495.
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Study of Corollary 2. Given the small or moderate TER regime, n≫ d and rd(Σ) ≍ n, from

Corollary 2, the sufficient condition for MSEin = O( dn) is
λd+1

λd
≲ d

rd(Σ) and the necessary condition

for MSEin = O( dn) is
λd+1

λd
≲ d

rd(Σ) . To embody this condition, we set d = 5, n = 1500, p = 1500

and ρ = [0.1, 1, 10]× d
rd(Σ) such that rd(Σ) = 1495.

Study of Corollary 4. Given the large TER regime and n≫ d, from Corollary 4, the sufficient

condition for MSEout = O( dn) and the necessary condition for MSEout = O( dn) are the same. The

condition is
λd+1

λd
≲

√
nd

rd(Σ) if
n
√
rd(Σ2)√
drd(Σ)

≤ 1 and the condition is
λd+1

λd
≲ d√

nrd(Σ2)
if

n
√
rd(Σ2)√
drd(Σ)

> 1. To

embody the first condition, we set d = 5, n = 50, p = 1500 such that
n
√
rd(Σ2)√
drd(Σ)

= 0.577 ≤ 1 and

ρ = [0.1, 1, 10]×
√
nd

rd(Σ) . To embody the second condition, we set d = 5, n = 150, p = 1500 such that

n
√
rd(Σ2)√
drd(Σ)

= 1.732 > 1 and ρ = [0.1, 1, 10]× d√
nrd(Σ2)

.

Study of Corollary 5. Given the large TER regime and n≫ d, from Corollary 5, the sufficient

condition for MSEin = O( dn) and the necessary condition for MSEin = O( dn) are the same, and the

condition is
λd+1

λd
≲ d

rd(Σ) . To embody this condition, we set d = 5, n = 150, p = 1500 and

ρ = [0.1, 1, 10]× d
rd(Σ) .

7.2.2 Study of conditions for MSE∗
out much smaller than MSE∗

in

We use the following settings to study the conditions for when MSE∗
out can be much smaller than

MSE∗
in, which is discussed in Remark 1 and 4.

(i) In the small or moderate TER regime, MSE∗
out can be much smaller than MSE∗

in if

rd(Σ) ≍ n,
λd+1

λd
≳
d

n

√
n

rd(Σ2)
,

n

rd(Σ2)
≫ 1.

To embody this condition, we set d = 2, n = 300, p = 15000, λ1 = · · · = λd = 1, λd+1 = · · · =

λ11d = ρ, λ11d+1 = · · · = λp = 0.02ρ and ρ = d
n

√
n

rd(Σ2)
such that rd(Σ) = 319.56,

λd+1

λd
= d

n

√
n

rd(Σ2)

and n
rd(Σ2)

= 11.54.

(ii) In the large TER regime, MSE∗
out can be much smaller than MSE∗

in if

λd+1

λd
≳

d√
nrd(Σ2)

min{1,
n
√
rd(Σ2)√
drd(Σ)

}, λd+1

λd
≳
n
√
nrd(Σ2)

rd(Σ)2
.

To embody this condition, we set d = 2, n = 150, p = 15000 and ρ = d√
nrd(Σ2)

min{1, n
√
rd(Σ2)√
drd(Σ)

}

such that
λd+1

λd
= d√

nrd(Σ2)
min{1, n

√
rd(Σ2)√
drd(Σ)

}, λd+1

λd
= 0.0011549 and

n
√
nrd(Σ2)

rd(Σ)2
= 0.0010002.

(iii) In the large TER regime, MSE∗
out can be much smaller than MSE∗

in if

λd+1

λd
≳

d√
nrd(Σ2)

min{1,
n
√
rd(Σ2)√
drd(Σ)

}, λd+1

λd
≲
n
√
nrd(Σ2)

rd(Σ)2
,
rd(Σ)

2

nrd(Σ2)
≫ 1.
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To embody this condition, we set d = 2, n = 300, p = 15000 and ρ = d√
nrd(Σ2)

min{1, n
√
rd(Σ2)√
drd(Σ)

} such

that
λd+1

λd
= d√

nrd(Σ2)
min{1, n

√
rd(Σ2)√
drd(Σ)

}, λd+1

λd
= 0.0009429,

n
√
nrd(Σ2)

rd(Σ)2
= 0.0028290 and rd(Σ)2

nrd(Σ2)
= 50.

(a) Corollary 1: Small or moderate TER,

n ≫ d, rd(Σ
2) ≫ d.

(b) Corollary 2: Small or moderate TER,

n ≫ d and rd(Σ) ≍ n.

(c) Corollary 4: Large TER,

n ≫ d and
n
√

rd(Σ2)
√

drd(Σ)
≤ 1.

(d) Corollary 4: Large TER,

n ≫ d and
n
√

rd(Σ2)
√

drd(Σ)
> 1.

(e) Corollary 5: Large TER,

n ≫ d.

Figure 1: Study of conditions for MSE = O( dn).

(a) Small or moderate TER:

rd(Σ) ≍ n,
λd+1
λd

≳ d
n

√
n

rd(Σ2)
, n

rd(Σ2)
≫ 1.

(b) Large TER:

λd+1
λd

≳ d√
nrd(Σ2)

min{1,
n
√

rd(Σ2)
√

drd(Σ)
},

λd+1
λd

≳
n
√

nrd(Σ2)

rd(Σ)2
.

(c) Large TER:

λd+1
λd

≳ d√
nrd(Σ2)

min{1,
n
√

rd(Σ2)
√

drd(Σ)
},

λd+1
λd

≲
n
√

nrd(Σ2)

rd(Σ)2
and

rd(Σ)2

nrd(Σ2)
≫ 1.

Figure 2: Study of conditions for MSE∗
out much smaller than MSE∗

in.
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7.3 Results

The numerical results are summarized in Figure 1 and 2. From Figure 1, we see that when the

ratio
λd+1

λd
is related to the thresholds described in Section 7.2.1 by a pre-factor equal to 0.1 or 1,

but not 10, the MSEs with near optimal choices of τ are close to d
n , which gives numerical support

to our conditions for MSE = O( dn) discussed in Corollary 1, 2, 4 and 5. From Figure 2, we see that

MSE∗
out is much smaller than MSE∗

in, each associated with the optimal choices of τ , in the settings

described in Section 7.2.2 which embody the conditions from our theory for when MSE∗
out can be

much smaller than MSE∗
in in Section 3.1 and 3.2.
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Supplementary Material for

“On Ridge Estimation in High-dimensional Rotationally Sparse Linear

Regression”

I Definition of sub-gaussianity

A random variable z ∈ R is sub-gaussian if it has a finite sub-gaussian norm

∥z∥ψ2 = inf{t > 0 : Eexp(z2/t2) ≤ 2}.

The sub-gaussian norm of a random vector Z ∈ Rp is

∥Z∥ψ2 = sup
s ̸=0

∥⟨s, Z⟩
∥s∥

∥ψ2 .

II Proofs of main results

We provide proofs of Propositions 1–12 in Section 5. For convenience, we re-state the following

notation from Section 6.

• A = XXT + nτIn, Ad = X(d+1):pX
T
(d+1):p + nτIn.

• X1:d denotes the the matrices comprised of the first d columns of X and X(d+1):p denotes the

the matrices comprised of the last p− d columns of X.

• Σ̂1:d =
XT

1:dX1:d

n , Σ̂(d+1):p =
XT

(d+1):p
X(d+1):p

n and Σ̂1:d,(d+1):p =
XT

1:dX(d+1):p

n .

• Hd = Σ
−1/2
1:d XT

1:d, Ĥd = Σ̂
−1/2
1:d XT

1:d.

• Md = X(d+1):pΣ(d+1):pX
T
(d+1):p, M̂d = X(d+1):pΣ̂(d+1):pX

T
(d+1):p.

• µj(M) is the j-th largest eigenvalue of symmetric semi-positive definite matrix M .

II.1 Proof of the bounds for out-sample error

II.1.1 Algebraic bounds of the out-sample error

The bias and variance of the out-sample error can be decomposed as follows:

Bout = ∥θ∗1:d −XT
1:dA

−1Xθ∗∥2Σ1:d︸ ︷︷ ︸
Bout,1

+ ∥θ∗(d+1):p −XT
d+1:pA

−1Xθ∗∥2Σd+1:p︸ ︷︷ ︸
Bout,2

,

Vout = σ2Tr(A−1X1:dΣ1:dX
T
1:dA

−1)︸ ︷︷ ︸
Vout,1

+σ2Tr(A−1X(d+1):pΣ(d+1):pX
T
(d+1):pA

−1)︸ ︷︷ ︸
Vout,2

.

1



The following algebraic bounds are the foundation of the upper bounds and lower bounds for

the out-sample error. The algebraic upper bounds below are mainly inspired by Lemma 27 and 28

in Tsigler & Bartlett (2023). Moreover, we provide new algebraic lower bounds for the out-sample

error.

Lemma S1 (Algebraic upper bounds of out-sample error). Given invertible Σ1:d, we have

Bout ≤ 2∥θ∗1:d∥2Σ−1
1:d

(
1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)−2 +

2µ1(HdH
T
d )

µ2n(HdH
T
d )

µ21(Ad)

µ2n(Ad)
∥X(d+1):pθ

∗
(d+1):p∥

2

+ 3(∥Md∥
µ1(HdH

T
d )

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)−2 + ∥θ∗(d+1):p∥

2
Σ(d+1):p

+
∥Md∥
µn(A)2

∥X(d+1):pθ
∗
(d+1):p∥

2),

Vout ≤ σ2
µ21(Ad)

µ2n(Ad)

Tr(HT
d Hd)

µd(HdH
T
d )

2
+ σ2

Tr(Md)

µn(Ad)2
.

Proof.

Algebraic upper bound for the out-sample bias. From Section H.2 in Supplement of Tsigler

& Bartlett (2023), we have

Bout,2 ≤ 3(∥XT
(d+1):pA

−1X1:dθ
∗
1:d∥2Σ(d+1):p

+ ∥X(d+1):pA
−1X(d+1):pθ

∗
(d+1):p∥

2
Σ(d+1):p

+ ∥θ∗(d+1):p∥
2
Σ(d+1):p

)

≤ 3(∥XT
(d+1):pA

−1X1:dθ
∗
1:d∥2Σ(d+1):p

+
∥Md∥
µn(A)2

∥X(d+1):pθ
∗
(d+1):p∥

2 + ∥θ∗(d+1):p∥
2
Σ(d+1):p

).

From Lemma S10 (ii), we have

∥XT
(d+1):pA

−1X1:dθ
∗
1:d∥2Σ(d+1):p

= ∥XT
(d+1):pA

−1
d X1:d(Id +XT

1:dA
−1
d X1:d)

−1θ∗1:d∥2Σ(d+1):p

= ∥XT
(d+1):pA

−1
d X1:dΣ

−1/2
1:d (Σ−1

1:d +Σ
−1/2
1:d XT

1:dA
−1
d X1:dΣ

−1/2
1:d )−1Σ

−1/2
1:d θ∗1:d∥2Σ(d+1):p

≤ ∥Md∥
µ1(HdH

T
d )

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)−2.

Hence we have

Bout,2 ≤ 3(∥Md∥
µ1(HdH

T
d )

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)−2

+
∥Md∥
µn(A)2

∥X(d+1):pθ
∗
(d+1):p∥

2 + ∥θ∗(d+1):p∥
2
(d+1):p). (S1)

It remains to give an upper bound of Bout,1. From Lemma S10 (i), we have

θ̂(τ,Xθ∗)1:d +XT
1:dA

−1
d X1:dθ̂(τ,Xθ

∗)1:d = XT
1:dA

−1
d Xθ∗.

Denote ζ1:d = θ̂(τ,Xθ∗)1:d − θ∗1:d. Then

HdA
−1
d X(d+1):pθ

∗
(d+1):p − Σ

−1/2
1:d θ∗1:d = Σ

−1/2
1:d ζ1:d +Σ

−1/2
1:d XT

1:dA
−1
d X1:dζ1:d

2



= (Σ−1
1:d +HdA

−1
d HT

d )Σ
1/2
1:d ζ1:d. (S2)

By standard manipulations,

∥(Σ−1
1:d +HdA

−1
d HT

d )Σ
1/2
1:d ζ1:d∥

2 ≥ µn(Σ
−1
1:d +HdA

−1
d HT

d )
2∥Σ1/2

1:d ζ1:d∥
2

≥ Bout,1(
1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)2, (S3)

∥HdA
−1
d X(d+1):pθ

∗
(d+1):p − Σ

−1/2
1:d θ∗1:d∥2 ≤ (∥θ∗1:d∥Σ−1

1:d
+ ∥HdA

−1
d X(d+1):pθ

∗
(d+1):p∥)

2. (S4)

From (S2), (S3) and (S4), we have

Bout,1(
1

λ1
+
µn(HdH

T
d )

µ1(Ad)
)2 ≤ (∥θ∗1:d∥Σ−1

1:d
+ ∥HdA

−1
d X(d+1):pθ

∗
(d+1):p∥)

2.

That is, we have

Bout,1 ≤ (∥θ∗1:d∥Σ−1
1:d

+ ∥HdA
−1
d X(d+1):pθ

∗
(d+1):p∥)

2(
1

λ1
+
µ2n(HdH

T
d )

µ21(Ad)
)−2

≤ 2∥θ∗1:d∥2Σ−1
1:d

(
1

λ1
+
µ2n(HdH

T
d )

µ21(Ad)
)−2 + 2∥HdA

−1
d X(d+1):pθ

∗
(d+1):p∥

2 µ21(Ad)

µ2n(HdH
T
d )

≤ 2∥θ∗1:d∥2Σ−1
1:d

(
1

λ1
+
µ2n(HdH

T
d )

µ21(Ad)
)−2 +

2µ1(HdH
T
d )

µ2n(HdH
T
d )

µ21(Ad)

µ2n(Ad)
∥X(d+1):pθ

∗
(d+1):p∥

2. (S5)

Combining (S1) and (S5) gives the upper bound of out-sample bias.

Algebraic upper bound for the out-sample variance. From Lemma 27 in Tsigler &

Bartlett (2023), we have

Vout,1 ≤ σ2
µ21(Ad)

µ2n(Ad)

Tr(HT
d Hd)

µd(HdH
T
d )

2
.

To upper bound Vout,2, we have

Vout,2 = σ2Tr(A−1X(d+1):pΣ(d+1):pX
T
(d+1):pA

−1)

≤ σ2
Tr(Md)

µn(A)2

≤ σ2
Tr(Md)

µn(Ad)2
.

Combining the preceding two displays gives the upper bound of out-sample variance. □

Lemma S2 (Algebraic lower bounds of out-sample error). Given invertible Σ1:d, we have

Vout ≥ σ2
dµd(HdH

T
d )

µ1(Ad)2
(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2 +max{0, σ2Tr(Md)− dµ1(Md)

µ1(Ad)2
}.

Further if ∥θ∗1:d∥Σ−1
1:d

≥
µ1(HdHd)

1/2∥X(d+1):pθ
∗
(d+1):p

∥
µn(Ad)

, then

Bout ≥ (1−
µ1(HdH

T
d )

1/2∥X(d+1):pθ
∗
(d+1):p∥

µn(Ad)∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2. (S6)
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Proof.

Algebraic lower bound for the out-sample variance: From Lemma S10 (i), we have

XT
1:dA

−1
d ϵ = θ̂1:d(τ, ϵ) +XT

1:dA
−1
d X1:dθ̂1:d(τ, ϵ).

Multiplying the two sides with Σ−1/2, we have

HdA
−1
d ϵ = (Σ−1

1:d +HdA
−1
d Σ

−1/2
1:d )Σ

1/2
1:d θ̂(τ, ϵ),

and hence

∥HdA
−1
d ϵ∥2 = ∥(Σ−1

1:d +HdA
−1
d Σ

−1/2
1:d )Σ

1/2
1:d θ̂(τ, ϵ)∥

2

≤ µ1(Σ
−1
1:d +HdA

−1
d Σ

−1/2
1:d )2∥Σ1/2

1:d θ̂(τ, ϵ)∥
2.

Taking the expectations of the two sides with respect to ϵ yields

µ1(Σ
−1
1:d +HdA

−1
d Σ

−1/2
1:d )2Vout,1 ≥ Eϵ[∥HdA

−1
d ϵ∥2]

= σ2Tr(A−1
d HdH

T
d A

−1
d ).

By simple manipulations, we have

(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)2Vout,1 ≥ σ2Tr(HdA

−2
d HT

d )

≥ σ2
Tr(HdH

T
d )

µ1(Ad)2

≥ σ2
dµd(HdH

T
d )

µ1(Ad)2
,

and hence

Vout,1 ≥ σ2
dµd(HdH

T
d )

µ1(Ad)2
(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2. (S7)

To lower bound Vout,2, we have

Vout,2 = σ2Tr(A−1MdA
−1)

≥
n−d∑
i=1

µi(A
−2)µn−i+1(Md)

≥
∑n−d

i=1 µn−i+1(Md)

µ1(Ad)2

≥ Tr(Md)− dµ1(Md)

µ1(Ad)2
.

The first inequality above is from Lemma S13. For the second inequality, because the rank of

A−Ad is at most d,

µi(A−Ad) = 0 ∀i ≥ d+ 1.

4



From Weyl’s inequality (Lemma S12), we have

µi(A)− µ1(Ad) ≤ µi(A−Ad) = 0 ∀i ≥ d+ 1

=⇒µi(A) ≤ µ1(Ad) ∀i ≥ d+ 1

=⇒ 1

µ1(Ad)
≤ 1

µi(A)
∀i ≥ d+ 1

=⇒ 1

µ1(Ad)
≤ µi(A

−1) ∀i ≤ n− d.

By requiring Vout,2 ≥ 0, we have

Vout,2 ≥ max{0, Tr(Md)− dµ1(Md)

µ1(Ad)2
}. (S8)

Combining (S7) and (S8) gives the lower bound of out-sample variance.

Algebraic lower bound for the out-sample bias. The norms of the two sides of (S2) can be

bounded as follows:

∥(Σ−1
1:d +HdA

−1
d HT

d )Σ
1/2
1:d ζ1:d∥

2 ≤ µ1(Σ
−1
1:d +HdA

−1
d HT

d )
2∥Σ1/2

1:d ζ1:d∥
2

≤ Bout,1(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)2, (S9)

∥HdA
−1
d X(d+1):pθ

∗
(d+1):p − Σ

−1/2
1:d θ∗1:d∥2 ≥ (∥θ∗1:d∥Σ−1

1:d
− ∥HdA

−1
d X(d+1):pθ

∗
(d+1):p∥)

2. (S10)

From (S2), (S9) and (S10), we have

Bout,1(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)2 ≥ (∥θ∗1:d∥Σ−1

1:d
− ∥HdA

−1
d X(d+1):pθ

∗
(d+1):p∥)

2,

and hence

Bout ≥ Bout,1

≥ (∥θ∗1:d∥Σ−1
1:d

− ∥HdA
−1
d X(d+1):pθ

∗
(d+1):p∥)

2(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2.

With ∥θ∗1:d∥Σ−1
1:d

≥
µ1(HdHd)

1/2∥X(d+1):pθ
∗
(d+1):p

∥
µn(Ad)

, we have

∥θ∗1:d∥Σ−1
1:d

≥
µ1(HdHd)

1/2∥X(d+1):pθ
∗
(d+1):p∥

µn(Ad)
≥ ∥HdA

−1
d X(d+1):pθ

∗
(d+1):p∥,

and hence

Bout ≥ (∥θ∗1:d∥Σ−1
1:d

− ∥HdA
−1
d X(d+1):pθ

∗
(d+1):p∥)

2(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2

≥ (1−
µ1(HdH

T
d )

1/2∥X(d+1):pθ
∗
(d+1):p∥

µn(Ad)∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+
µ1(HdH

T
d )

µn(Ad)
)−2.

□

5



II.1.2 Intermediate bounds of the out-sample error

We give the intermediate bounds of out-sample error under the event that some random quantities

in the algebraic bounds above are controlled. In the event Ω1(ν) ∩ Ω2 ∩ Ω4 for 0 < ν < 1
2 defined

in Lemma S6, substituting the bounds of µ1(HdH
T
d ), µd(HdH

T
d ), ∥X(d+1):pθ

∗
(d+1):p∥ and ∥Md∥ into

the algebraic upper bound of Bout yields

Bout ≤
2

(1− ν − η1)4
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

n

µ1(Ad)
)−2 +

Poly2(σx)(1 + ν + η1)
2

(1− ν − η1)4
µ21(Ad)

µ2n(Ad)
∥θ∗(d+1):p∥

2
Σ(d+1):p

+
Poly2(σx)(1 + ν + η1)

2

(1− ν − η1)4
(n2λ2d+1 + n

∑
j>d λ

2
j )

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+

n

µ1(Ad)
)−2

+ (3 + Poly4(σx)
(n2λ2d+1 + n

∑
j>d λ

2
j )

µn(Ad)2
)∥θ∗(d+1):p∥

2
Σ(d+1):p

. (S11)

In the event Ω1(ν) ∩ Ω4 for 0 < ν < 1
2 defined in Lemma S6 and with

∥θ∗1:d∥Σ−1
1:d

≥
(1 + ν + η1)(1 + σ2x)

1/2n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)
,

substituting the bounds of µ1(HdH
T
d ) and ∥X(d+1):pθ

∗
(d+1):p∥ into the algebraic lower bound of Bout

yields

Bout ≥
1

(1 + ν + η1)2
(1−

(1 + ν + η1)(1 + σ2x)
1/2n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

n

µn(Ad)
)−2.

(S12)

In the event Ω1(ν)∩Ω31∩Ω32 for ν <
1
2 defined in Lemma S6, substituting the bounds of µd(HdH

T
d ),

Tr(HT
d Hd) and Tr(Md) into the algebraic upper bound of Vout yields

Vout ≤
Poly2(σx)

(1− ν − η1)4
µ21(Ad)

µ2n(Ad)
σ2
d

n
+ Poly2(σx)σ

2
n
∑

j>d λ
2
j

µn(Ad)2
. (S13)

In the event Ω1(ν)∩Ω2∩Ω33(ν) for ν <
1
2 min{1, σ2x} defined in Lemma S6, substituting the bounds

of µ1(HdH
T
d )), µd(HdH

T
d ), Tr(Md) and µ1(Md) into the algebraic lower bound of Vout yields

Vout ≥
(1− ν − η1)

2

(1 + ν + η1)4
σ2

nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 +max{0,

n
∑

j>d λ
2
j

µ1(Ad)2
(1− ν − C0σ

2
x(

2d

rd(Σ2)
+
d

n
)}.

(S14)

II.1.3 Final upper bounds of out-sample bias and variance

We give the final upper bounds of out-sample bias and variance as stated in Proposition 1 and 7.

From the intermediate bounds in Section II.1.2, we derive the final bounds by further controlling

µ1(Ad) and µn(Ad) (from Lemma S7) in the intermediate bounds and incorporating Assumption

6



4 to control the terms related to ∥θ∗(d+1):p∥
2
Σ(d+1):p

. We first discuss the small or moderate TER

regime and then the large TER regime.

(i) Small or moderate TER

From Lemma S7(i), (S11) and (S13), in the event Ω1(ν)∩Ω2∩Ω31∩Ω32∩Ω4∩Ω5 for ν <
1
2 defined

in Lemma S6 and Assumption 2, substituting the bounds of µ1(Ad) and µn(Ad) in (S47)–(S48) into

(S11) and (S13), we have for τ ≥ λd+1,

Bout ≤
Poly4(σx)(1 + C1)

2

(1− ν − η1)4
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2 +

Poly6(σx)(1 + ν + η1)
2

(1− ν − η1)4
(1 + C1)

2∥θ∗(d+1):p∥
2
Σ(d+1):p

+
Poly6(σx)(1 + C1)

3(1 + ν + η1)
2

(1− ν − η1)4
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2 + Poly4(σx)(1 + C1)∥θ∗(d+1):p∥

2
Σ(d+1):p

,

Vout ≤
Poly6(σx)(1 + C1)

2

(1− ν − η1)4
(σ2

d

n
+ σ2

∑
j>d λ

2
j

nτ2
).

Hence, we obtain the upper bounds

Bout ≤
(1 + C1)

3(1 + ν + η1)
2Poly6(σx)

(1− ν − η1)4
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2 + ∥θ∗(d+1):p∥

2
Σ(d+1):p

),

Vout ≤
Poly6(σx)(1 + C1)

2

(1− ν − η1)4
(σ2

d

n
+ σ2

λ2d+1

τ2
rd(Σ

2)

n
).

With Assumption 4(i), we have for τ ≥ λd+1,

∥θ∗(d+1):p∥
2
Σ(d+1):p

≤ δ1
4
∥θ∗1:d∥Σ−1

1:d
λ2d+1 ≤ δ1∥θ∗1:d∥Σ−1

1:d
(
1

λ1
+

1

τ
)−2. (S15)

Further with (S15), we have for τ ≥ λd+1,

Bout ≤
(1 + C1)

3(1 + ν + η1)
2Poly6(σx)

(1− ν − η1)4
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2.

This gives Proposition 1.

(ii) Large TER

From Lemma S7(ii), (S11) and (S13), in the event Ω1(ν) ∩ Ω2 ∩ Ω31 ∩ Ω32 ∩ Ω4 ∩ Ω6(ν) for

0 < ν < 1
2 defined in Lemma S6 and Assumption 3, substituting the bounds of µ1(Ad) and µn(Ad)

in (S49)–(S50) into (S11) and (S13), for τ ≥ 0,

Bout ≤
(1 + ν + η2)

2

(1− ν − η1)4
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2

+
Poly2(σx)(1 + ν + η1)

2

(1− ν − η1)4
(1 + ν + η2)

2

(1− ν − η2)2
∥θ∗(d+1):p∥

2
Σ(d+1):p

+
Poly2(σx)(1 + ν + η1)

2(1 + ν + η2)
2

(1− ν − η1)4(1− ν − η2)2
∥θ∗1:d∥2Σ−1(

1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2

+
Poly4(σx)

(1− ν − η2)2
∥θ∗(d+1):p∥

2
Σ(d+1):p

,

7



Vout ≤
Poly2(σx)(1 + ν + η2)

2

(1− ν − η1)4(1− ν − η2)2
σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
).

Hence, we obtain the upper bounds

Bout ≤
(1 + ν + η1)

2(1 + ν + η2)
2Poly4(σx)

(1− ν − η1)4(1− ν − η2)2
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ +
∑

j>d λj
n

)−2 + ∥θ∗(d+1):p∥
2
Σ(d+1):p

),

Vout ≤
(1 + ν + η2)

2Poly2(σx)

(1− ν − η1)4(1− ν − η2)2
σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
).

With Assumption 4(ii), we have for τ ≥ 0,

∥θ∗(d+1):p∥
2
Σ(d+1):p

≤ δ2
4
∥θ∗1:d∥Σ−1

1:d
(
1

λd
+

1

λd+1
rd(Σ)
n

)−2 ≤ δ2
4
∥θ∗1:d∥Σ−1

1:d
(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2. (S16)

Further with (S16), we have for τ ≥ 0,

Bout ≤
(1 + ν + η1)

2(1 + ν + η2)
2Poly4(σx)

(1− ν − η1)4(1− ν − η2)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2.

This gives Proposition 7.

II.1.4 Final lower bounds of out-sample bias and variance

We give the final lower bounds of out-sample bias and variance. We first discuss the small or

moderate TER regime and then the large TER regime.

(i) Small or moderate TER

Lower bound of out-sample bias. For τ ≥ λd+1, we have µn(Ad) ≥ nτ ≥ nλd+1. Then from

Assumption 4(i), we have for 0 < ν < 1
2 and τ ≥ λd+1,

∥θ∗1:d∥Σ−1
1:d

≥
2(1 + σ2x)

1/2n∥θ∗(d+1):p∥Σ(d+1):p

nλd+1

≥
(1 + ν + η1)(1 + σ2x)

1/2n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)
. (S17)

From (S12), in the event Ω1(ν) ∩ Ω4 for ν < 1
2 defined in Lemma S6 and Assumption 4(i), substi-

tuting the lower bound of µn(Ad) in (S48) into (S12), we have for τ ≥ λd+1,

Bout ≥
1

(1 + ν + η1)2
(1−

(1 + ν + η1)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

τ∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

1

τ
)−2.

With Assumption 4(i), we also have for τ ≥ λd+1,

(1 + ν + η1)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

τ∥θ∗1:d∥Σ−1
1:d

≤
2(1 + σ2x)

1/2∥θ∗(d+1):p∥Σ(d+1):p

λd+1∥θ∗1:d∥Σ−1
1:d

≤
√
δ1. (S18)
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By applying (S18), in the event Ω1(ν) ∩ Ω4 for ν < 1
2 defined in Lemma S6 and Assumption 4(i),

we have for τ ≥ λd+1,

Bout ≥
(1−

√
δ1)

2

(1 + ν + η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λd
+

1

τ
)−2.

This gives the results of Proposition 2.

Lower bound of out-sample variance. To deduce the final lower bound of Vout, our strategy is

as follows. We first derive a lower bound for the first term in the intermediate lower bound (S14).

Then we discuss two complementary cases. The first case is that rd(Σ
2)

d is upper bounded. The

second case is that rd(Σ
2)

d is large enough such that 1− ν −C0σ
2
x(

2d
rd(Σ2)

+ d
n) > 0. Lastly, we show

that in these two cases, Vout satisfies lower bounds of the same order, which gives the final lower

bound for Vout.

As preparation, we derive an equivalence relationship, which is useful in the following analysis.

Given Assumption 1, we have

2C0σ
2
xd

rd(Σ2)
+
C0σ

2
xd

n
≥ 1

2
⇐⇒ 2C0σ

2
xd

rd(Σ2)
≥ 1

2
− C0σ

2
xd

n

⇐⇒ 2C0σ
2
xd

rd(Σ2)
≥ 1

2
− η1 (from Assumption 1)

⇐⇒ 2C0σ
2
xd

1
2 − η1

≥
∑

j>d λ
2
j

λ2d+1

. (S19)

Now, we are ready to give the lower bound of Vout. We first consider the first term of the

right-hand side in (S14). From Lemma S7(i) and (S14), in the event Ω1(ν) ∩ Ω2 ∩ Ω33(ν) ∩ Ω5

for 0 < ν < 1
2 min{1, σ2x} defined in Lemma S6, substituting the bounds of µ1(Ad) and µn(Ad) in

(S47)–(S48) into the first term in (S14), we have for τ ≥ λd+1,

(1− ν − η1)
2

(1 + ν + η1)4
σ2

nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 ≥ (1− ν − η1)

2

(1 + C1)2(1 + ν + η1)4Poly4(σx)
σ2

d

nτ2
(
1

λd
+

1

τ
)−2.

Then in the event Ω1(ν) ∩ Ω2 ∩ Ω33(ν) ∩ Ω5 for 0 < ν < 1
2 min{1, σ2x} defined in Lemma S6 and

Assumption 2, we have for λd+1 ≤ τ ≤ λd,

(1− ν − η1)
2

(1 + ν + η1)4
σ2

nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 ≥ (1− ν − η1)

2

(1 + C1)2(1 + ν + η1)4Poly4(σx)
σ2
d

n
. (S20)

Then we discuss two complementary cases. The first cases is that 2C0σ2
xd

rd(Σ2)
+ C0σ2

xd
n ≥ 1

2 . From the

equivalence in (S19) and with Assumption 1, for τ ≥ λd+1,

2C0σ
2
xd

1
2 − η1

≥
∑

j>d λ
2
j

λ2d+1

≥
∑

j>d λ
2
j

τ2
,

which implies that

d

n
≥

1
2 − η1

2C0σ2x

∑
j>d λ

2
j

nτ2

9



⇐⇒d

n
≥

1
2
−η1

2C0σ2
x

1 +
1
2
−η1

2C0σ2
x

(
d

n
+

∑
j>d λ

2
j

nτ2
).

Then from (S14) and (S20), in the event Ω1(ν) ∩ Ω2 ∩ Ω33(ν) ∩ Ω5 for ν < 1
2 min{1, σ2x} defined in

Lemma S6, we have for λd+1 ≤ τ ≤ λd,

Vout ≥
(1− ν − η1)

2

(1 + C1)2(1 + ν + η1)4Poly4(σx)
σ2
d

n

≥ (1− ν − η1)
2

(1 + C1)2(1 + ν + η1)4Poly4(σx)

1
2
−η1

2C0σ2
x

1 +
1
2
−η1

2C0σ2
x

σ2(
d

n
+

∑
j>d λ

2
j

nτ2
).

The second case is that 2C0σ2
xd

rd(Σ2)
+ C0σ2

xd
n < 1

2 . From Lemma S7(i) and (S14), in the event Ω1(ν) ∩

Ω2 ∩ Ω33(ν) ∩ Ω5 for 0 < ν < 1
2 min{1, σ2x} defined in Lemma S6 and Assumption 2, for τ ≥ λd+1,

the second term in (S14) satisfies

max{0,
n
∑

j>d λ
2
j

µ1(Ad)2
(1− ν − C0σ

2
x(

2d

rd(Σ2)
+
d

n
)} ≥ 1

(1 + C1)2Poly4(σx)

∑
j>d λ

2
j

nτ2
(
1

2
− ν). (S21)

Then from (S14), (S20) and (S21), in the event Ω1(ν) ∩Ω2 ∩Ω33(ν) ∩Ω5 for 0 < ν < 1
2 min{1, σ2x}

defined in Lemma S6 and Assumption 2, we have for τ ≥ λd+1,

Vout ≥
(1− ν − η1)

2(12 − ν)

(1 + C1)2(1 + ν + η1)4Poly4(σx)
σ2(

d

n
+

∑
j>d λ

2
j

nτ2
).

In conclusion, in the event Ω1(ν)∩Ω2 ∩Ω33(ν)∩Ω5 for 0 < ν < 1
2 min{1, σ2x} defined in Lemma S6

and Assumption 2, we have for λd+1 ≤ τ ≤ λd,

Vout ≥
(1− ν − η1)

2(12 − ν)

(1 + C1)2(1 + ν + η1)4Poly4(σx)

1
2
−η1

2C0σ2
x

1 +
1
2
−η1

2C0σ2
x

σ2(
d

n
+

∑
j>d λ

2
j

nτ2
).

or equivalently

Vout ≥
(1− ν − η1)

2(12 − ν)

(1 + C1)2(1 + ν + η1)4Poly4(σx)

1
2
−η1

2C0σ2
x

1 +
1
2
−η1

2C0σ2
x

σ2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
).

The result for τ ≤ λd+1 follows from the monotonicity of variance in Lemma S11. This gives

Proposition 3.

(ii) Large TER

Lower bound of out-sample bias. In the event Ω6(ν) for 0 < ν < 1
4 defined in Lemma S6 and

Assumption 3 and 4(ii), incorporating the bound of µn(Ad), we have for τ ≥ 0,

∥θ∗1:d∥Σ−1
1:d

≥
2(1 + σ2x)

1/2∥θ∗(d+1):p∥Σ(d+1):p

1
4(λd+1

rd(Σ)
n + τ)

10



≥
(1 + ν + η1)(1 + σ2x)

1/2n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)
. (S22)

Then from (S12) and Lemma S7(ii), in the event Ω1(ν)∩Ω4∩Ω6(ν) for 0 < ν < 1
4 defined in Lemma

S6 and Assumption 3 and 4(ii), substituting the lower bounds of µn(Ad) in (S50) into (S12), we

have for τ ≥ 0,

Bout ≥
(1− ν − η2)

2

(1 + ν + η1)2
(1−

(1 + ν + η1)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

(1− ν − η2)(λd+1
rd(Σ)
n + τ)∥θ∗1:d∥Σ−1

1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

1

(λd+1
rd(Σ)
n + τ)

)−2.

With Assumption 4(ii), we have for τ ≥ 0,

(1 + ν + η1)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

(1− ν − η2)(λd+1
rd(Σ)
n + τ)∥θ∗1:d∥Σ−1

1:d

≤
2(1 + σ2x)

1/2∥θ∗(d+1):p∥Σ(d+1):p

1
4λd+1

rd(Σ)
n ∥θ∗1:d∥Σ−1

1:d

≤
√
δ2. (S23)

Moreover, by applying (S23), in the event Ω1(ν) ∩ Ω4 ∩ Ω6(ν) for 0 < ν < 1
4 defined in Lemma S6

and Assumption 4(ii), we have for τ ≥ 0,

Bout ≥
(1− ν − η2)

2

(1 + ν + η1)2
(1−

√
δ2)

2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

1

(τ + λd+1
rd(Σ)
n )

)−2.

This gives Proposition 8.

Lower bound of out-sample variance. Our strategy for deriving the lower bound of out-sample

variance in large TER regime is similar to that in small or moderate TER regime. With Assumption

3, we have

1

2
> C0σ

2
x

√
4n2

rd(Σ)2
+

n

rd(Σ)
> C0σ

2
x

2n

rd(Σ)
,

and hence

1

4C0σ2x

∑
j>d λj

n
> λd+1. (S24)

Moreover, with the(S19) under Assumption 1 and (S24) under Assumption 3, we have for τ ≥ 0,

2C0σ
2
xd

rd(Σ2)
+
C0σ

2
xd

n
≥ 1

2

=⇒2C0σ
2
xd

1
2 − η1

≥
∑

j>d λ
2
j

λ2d+1

=⇒ d

8C0σ2x(
1
2 − η1)

≥
∑

j>d λ
2
j

(λd+1
rd(Σ)
n + τ)2

. (S25)

We first consider the first term of the right-hand side in (S14). From Lemma S7(ii) and (S14), in

the event Ω1(ν)∩Ω2 ∩Ω33(ν)∩Ω6(ν) for 0 < ν < 1
2 min{1, σ2x} defined in Lemma S6, substituting

the bounds of µ1(Ad) and µn(Ad) in (S49)–(S50) into the first term in (S14), we have for τ ≥ 0,

(1− ν − η1)
2

(1 + ν + η1)4
σ2

nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2

11



≥ (1− ν − η2)
2(1− ν − η1)

2

(1 + ν + η2)2(1 + ν + η1)4
σ2

d

n(λd+1
rd(Σ)
n + τ)2

(
1

λd
+

1

(λd+1
rd(Σ)
n + τ)

)−2.

Then in the event Ω1(ν) ∩ Ω2 ∩ Ω33(ν) ∩ Ω6(ν) for 0 < ν < 1
2 min{1, σ2x} defined in Lemma S6, we

have for τ + λd+1
rd(Σ)
n ≤ λd,

(1− ν − η1)
2

(1 + ν + η1)4
σ2

nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2 ≥ (1− ν − η2)

2(1− ν − η1)
2

4(1 + ν + η2)2(1 + ν + η1)4
σ2
d

n
. (S26)

Then we discuss two complementary cases. The first cases is that 2C0σ2
xd

rd(Σ2)
+ C0σ2

xd
n ≥ 1

2 . From (S25),

with Assumption 1 and 3, we have for τ ≥ 0,

d

8C0σ2x(
1
2 − η1)

≥
∑

j>d λ
2
j

(λd+1
rd(Σ)
n + τ)2

=⇒d

n
≥

8C0σ
2
x(

1
2 − η1)

1 + 8C0σ2x(
1
2 − η1)

(
d

n
+

∑
j>d λ

2
j

n(λd+1
rd(Σ)
n + τ)2

).

Combining with (S26), we have for λd+1
rd(Σ)
n + τ ≤ λd,

Vout ≥
(1− ν − η1)

2

(1 + ν + η1)4
σ2

nd

µ1(Ad)2
(
1

λd
+

n

µn(Ad)
)−2

≥ (1− ν − η1)
2(1− ν − η1)

2

4(1 + ν + η1)4(1 + ν + η2)2
σ2
d

n

≥ (1− ν − η1)
2(1− ν − η1)

2

4(1 + ν + η1)4(1 + ν + η2)2
8C0σ

2
x(

1
2 − η1)

1 + 8C0σ2x(
1
2 − η1)

σ2(
d

n
+

∑
j>d λ

2
j

n(τ + λd+1
rd(Σ)
n )2

).

The second case is that 2C0σ2
xd

rd(Σ2)
+ C0σ2

xd
n < 1

2 . From (S14) and Lemma S7(ii), in the event Ω1(ν) ∩

Ω2 ∩ Ω33(ν) ∩ Ω6(ν) for 0 < ν < 1
2 min{1, σ2x} defined in Lemma S6, we have for τ ≥ 0,

max{0,
n
∑

j>d λ
2
j

µ1(Ad)2
(1− ν − C0σ

2
x(

2d

rd(Σ2)
+
d

n
)} ≥

∑
j>d λ

2
j

n(λd+1
rd(Σ)
n + τ)2

(
1

2
− ν). (S27)

From (S14), (S26) and (S27), in the event Ω1(ν)∩Ω2 ∩Ω33(ν)∩Ω6(ν) for ν <
1
2 min{1, σ2x} defined

in Lemma S6, we have for τ ≥ 0,

Vout ≥
(1− ν − η1)

2(1− ν − η1)
2(12 − ν)

4(1 + ν + η1)4(1 + ν + η2)2
σ2(

d

n
+

∑
j>d λ

2
j

n(τ + λd+1
rd(Σ)
n )2

).

In conclusion, in the event Ω1(ν)∩Ω2 ∩Ω33(ν)∩Ω6(ν) for 0 < ν < 1
2 min{1, σ2x} defined in Lemma

S6 and Assumption 1,3, we have for τ ≥ 0,

Vout ≥
(1− ν − η1)

2(1− ν − η1)
2(12 − ν)

4(1 + ν + η1)4(1 + ν + η2)2
8C0σ

2
x(

1
2 − η1)

1 + 8C0σ2x(
1
2 − η1)

σ2(
d

n
+

∑
j>d λ

2
j

n(τ +
∑

j>d λj
n )2

),

or equivalently

Vout ≥
(1− ν − η1)

2(1− ν − η1)
2(12 − ν)

4(1 + ν + η1)4(1 + ν + η2)2
8C0σ

2
x(

1
2 − η1)

1 + 8C0σ2x(
1
2 − η1)

σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
).

This gives Proposition 9.
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II.2 Proof of the bounds for in-sample error

II.2.1 Algebraic bounds of the in-sample error

The bias and variance of the in-sample error can be decomposed or upper bounded as follows:

Bin = ∥θ∗1:d −XT
1:dA

−1Xθ∗∥2
Σ̂1:d︸ ︷︷ ︸

Bin,1

+ ∥θ∗(d+1):p −XT
d+1:pA

−1Xθ∗∥2
Σ̂d+1:p︸ ︷︷ ︸

Bin,2

+ 2(θ∗T1:d − θ∗TXTA−1X1:d)Σ̂1:d,(d+1):p(θ
∗
(d+1):p −XT

d+1:pA
−1Xθ∗)︸ ︷︷ ︸

Bin,12

,

Vin ≤ 2σ2Tr(A−1X1:dΣ̂1:dX
T
1:dA

−1)︸ ︷︷ ︸
Vin,1

+2σ2Tr(A−1X(d+1):pΣ̂(d+1):pX
T
(d+1):pA

−1)︸ ︷︷ ︸
Vin,2

. (S28)

The following algebraic bounds are the foundation of the upper bounds and lower bounds for

the in-sample error.

Lemma S3 (Algebraic upper bounds of in-sample error). Given Σ̂1:d is invertible, we have

Bin ≤ 2∥θ∗1:d∥2Σ̂−1
1:d

(
1

λ1
+

n2

µ21(Ad)
)−2 +

2

n

µ21(Ad)

µ2n(Ad)
∥X(d+1):pθ

∗
(d+1):p∥

2

+ 3(∥M̂d∥
n

µ2n(Ad)
∥θ∗1:d∥2Σ̂−1(

1

λ1
+

n

µ1(Ad)
)−2 + ∥θ∗(d+1):p∥

2
Σ̂(d+1):p

+
∥M̂d∥
µn(A)2

∥X(d+1):pθ
∗
(d+1):p∥

2),

(S29)

Vin ≤ 2σ2
µ21(Ad)

µ2n(Ad)

d

n
+ 2σ2

1
nTr(X(d+1):pX

T
(d+1):p)µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)2
.

Proof.

Algebraic upper bound for the in-sample bias. Given invertible Σ̂1:d, (S29) can be derived

similarly as (49) .

Algebraic upper bound for the in-sample variance. Similarly as the derivation in Lemma

27 in Tsigler & Bartlett (2023), given invertible Σ̂1:d, we have

Vin,1 = 2σ2Tr(A−1X1:dΣ̂1:dX
T
1:dA

−1) ≤ 2
σ2µ1(Ad)

2Tr(X1:dΣ̂
−1
1:dX1:d)

µn(Ad)2µd(ĤdĤ
T
d )

2

= 2σ2
µ21(Ad)

µ2n(Ad)

d

n
.

Moreover, we have

Vin,2 = 2σ2Tr(A−1X(d+1):pΣ̂(d+1):pX
T
(d+1):pA

−1) ≤ 2σ2
Tr(X(d+1):pΣ̂(d+1):pX

T
(d+1):p)

µn(Ad)2

= 2σ2
1
nTr((X(d+1):pX

T
(d+1):p)

2)

µn(Ad)2

13



≤ 2σ2
1
nTr(X(d+1):pX

T
(d+1):p)µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)2
.

By (S28), combining the preceding bounds gives the algebraic upper bound of in-sample variance.

□

Lemma S4 (Algebraic lower bounds of in-sample error). Given invertible Σ̂1:d, we have

Vin ≥ σ2
1

2
(
1

n

d∑
i=1

µ2i (X1:dX
T
1:d)

(µi(X1:dX
T
1:d) + nτ)2

+
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

), (S30)

Further if ∥θ∗1:d∥Σ̂−1
1:d

≥
n1/2∥X(d+1):pθ

∗
(d+1):p

∥
µn(Ad)

, then

Bin ≥ max{0, 1− |Bin,12|
Bin

}(1−
n1/2∥X(d+1):pθ

∗
(d+1):p∥

µn(Ad)∥θ∗1:d∥Σ̂−1
1:d

)2∥θ∗1:d∥2Σ̂−1
1:d

(
1

λd
+

n

µn(Ad)
)−2.

Proof.

Algebraic lower bound for the in-sample variance. The in-sample variance is

Vin = σ2Tr(A−1XΣ̂XTA−1) = σ2
1

n

n∑
i=1

µ2i (XX
T)

(µi(XXT) + nτ)2
.

From Weyl’s inequality (Lemma S12), we have

µi(XX
T) ≥ µi(X1:dX

T
1:d), i = 1, . . . , d,

µi(XX
T) ≥ µi(X(d+1):pX

T
(d+1):p). i = 1, . . . , n

Then Vin can be lower bounded by

Vin ≥ σ2max{ 1
n

d∑
i=1

µ2i (X1:dX
T
1:d)

(µi(X1:dX
T
1:d) + nτ)2

,
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

}

≥ σ2

2
(
1

n

d∑
i=1

µ2i (X1:dX
T
1:d)

(µi(X1:dX
T
1:d) + nτ)2

+
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

).

Algebraic lower bound for the in-sample bias. Note that

Bin ≥ max{0, 1− |Bin,12|
Bin,1

}Bin,1.

The result follows from the algebraic lower bound for Bin,1:

Bin,1 ≥ (1−
n1/2∥X(d+1):pθ

∗
(d+1):p∥

µn(Ad)∥θ∗1:d∥Σ̂−1
1:d

)2∥θ∗1:d∥2Σ̂−1
1:d

(
1

λd
+

n

µn(Ad)
)−2,

which can be derived similarly as (S6). □
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II.2.2 Intermediate bounds of the in-sample error

We give the intermediate bounds of in-sample error under the event that some random quantities

in the algebraic bounds above are controlled. In the event Ω1(ν) ∩ Ω4 ∩ Ω5 for 0 < ν < 1
2 defined

in Lemma S6, substituting the bounds of ∥θ∗1:d∥Σ̂−1
1:d
, ∥X(d+1):pθ

∗
(d+1):p∥ and ∥M̂d∥ into the algebraic

upper bound of Bin yields

Bin ≤ 1

(1− ν − η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

n

µ1(Ad)
)−2 + Poly2(σx)

µ21(Ad)

µ2n(Ad)
∥θ∗(d+1):p∥

2
Σ(d+1):p

+
1

(1− ν − η1)2
Poly4(σx)

(nλd+1 +
∑

j>d λj)
2

µ2n(Ad)
∥θ∗1:d∥2Σ−1(

1

λ1
+

n

µ1(Ad)
)−2

+ (Poly2(σx) + Poly6(σx)
(nλd+1 +

∑
j>d λj)

2

µn(Ad)2
∥θ∗(d+1):p∥

2
Σ(d+1):p

. (S31)

In the event Ω1(ν) ∩ Ω4 for 0 < ν < 1
2 defined in Lemma S6 and with

∥θ∗1:d∥Σ−1
1:d

≥
(1 + ν + η1)(1 + σ2x)

1/2n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)
,

substituting the bound of ∥θ∗1:d∥Σ̂−1
1:d

and ∥X(d+1):pθ
∗
(d+1):p∥ into the algebraic lower bound of Bin

yields

Bin ≥
max{0, 1− |Bin,2|

Bin,1
}

(1 + ν + η1)2
(1−

(1 + ν + η1)(1 + σ2x)
1/2n∥θ∗(d+1):p∥Σ(d+1):p

µn(Ad)∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

n

µn(Ad)
)−2.

(S32)

In the event Ω5∩Ω7(ν) for 0 < ν < min{1, σ2x}, substituting the Tr(X(d+1):pX
T
(d+1):p) and µ1(X(d+1):p·

XT
(d+1):p) into the algebraic upper bound of Vin yields

Vin ≤ 2σ2
µ21(Ad)

µ2n(Ad)

d

n
+ Poly4(σx)σ

2
(
∑

j>d λj)(nλd+1 +
∑

j>d λj)

µn(Ad)2
. (S33)

II.2.3 Final upper bounds of in-sample bias and variance

We give the final upper bounds of in-sample bias and variance. We first discuss the small or

moderate TER regime and then the large TER regime.

(i) Small or moderate TER

From Lemma S7(i) and (S31),(S33), in the event Ω1(ν)∩Ω4∩Ω5∩Ω7(ν) for 0 < ν < 1
2 min{1, σ2x}

defined in Lemma S6 and Assumption 2, substituting the bounds of µ1(Ad) and µn(Ad) in (S47)–

(S48) into (S31) and (S33), we have for τ ≥ λd+1,

Bin ≤ (1 + C1)
2Poly4(σx)

(1− ν − η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2 + Poly6(σx)(1 + C1)

2∥θ∗(d+1):p∥
2
Σ(d+1):p

+
(1 + C1)

2Poly8(σx)

(1− ν − η1)2
∥θ∗1:d∥2Σ−1(

1

λ1
+

1

τ
)−2

15



+ (Poly2(σx) + Poly6(σx))∥θ∗(d+1):p∥
2
Σ(d+1):p

,

Vin ≤ Poly4(σx)(1 + C1)
2 d

n
+ Poly4(σx)σ

2
(
∑

j>d λj)(nλd+1 +
∑

j>d λj)

n2τ2
.

Hence, we obtain the upper bounds

Bin ≤ (1 + C1)
4Poly8(σx)

(1− ν − η1)2
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2 + ∥θ∗(d+1):p∥

2
Σ(d+1):p

),

Vin ≤ Poly4(σx)(1 + C1)
2σ2(

d

n
+
λ2d+1

τ2
rd(Σ)

n
).

Further with (S15), we have for τ ≥ λd+1,

Bin ≤ (1 + C1)
4Poly8(σx)

(1− ν − η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ
)−2.

This gives Proposition 4.

(ii) Large TER

From Lemma S7(ii) and (S11),(S13), in the event Ω1(ν) ∩ Ω4 ∩ Ω5 ∩ Ω6(ν) ∩ Ω7(ν) for 0 <

ν < 1
2 min{1, σ2x} defined in Lemma S6 and Assumption 3, substituting the bounds of µ1(Ad) and

µn(Ad) in (S49)–(S50) into (S31) and (S33), we have

Bin ≤ (1 + ν + η2)
2

(1− ν − η1)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2 + Poly2(σx)
(1 + ν + η2)

2

(1− ν − η2)2
∥θ∗(d+1):p∥

2
Σ(d+1):p

+
Poly4(σx)(1 + ν + η2)

2

(1− ν − η1)2(1− ν − η2)2
∥θ∗1:d∥2Σ−1(

1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2

+ (Poly2(σx) +
Poly6(σx)

(1− ν − η2)2
)∥θ∗(d+1):p∥

2
Σ(d+1):p

,

Vin ≤ 2(1 + ν + η2)
2

(1− ν − η2)2
σ2
d

n
+

Poly4(σx)

(1− ν − η2)2
σ2

(λd+1
rd(Σ)
n )2

(λd+1
rd(Σ)
n + τ)2

.

Hence, we obtain the upper bound

Bin ≤ (1 + ν + η2)
2Poly6(σx)

(1− ν − η1)2(1− ν − η2)2
(∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2 + ∥θ∗(d+1):p∥
2
Σ(d+1):p

),

Vin ≤ (1 + ν + η2)
2Poly4(σx)

(1− ν − η2)2
σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
).

Further with (S16), we have for τ ≥ 0,

Bin ≤ (1 + ν + η2)
2Poly6(σx)

(1− ν − η1)2(1− ν − η2)2
∥θ∗1:d∥2Σ−1

1:d

(
1

λ1
+

1

τ + λd+1
rd(Σ)
n

)−2. (S34)

This gives Proposition 10.
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II.2.4 Final lower bounds of in-sample bias and variance

We give the final lower bounds of in-sample bias and variance. As preparation, we give the following

lemma to compare Bin,1 and |Bin,12|.

Lemma S5 (Comparison between Bin,1 and |Bin,12|).

(i) Given Assumption 2 and 4(i) and in the event Ω1(ν) ∩ Ω4 ∩ Ω5 for 0 < ν < 1
2 , we have for

τ ≥ λd+1,

max{1− |Bin,12|
Bin,1

, 0} ≥ κ1(τ), (S35)

where κ1(τ) = max{1− (
2C0σ2

x(2+C1)λd+1

τ (1 + 16(2C0σ
2
x + 1)(1 + C1)

√
δ1

1−
√
δ1
) + 64

√
δ1

1−
√
δ1
), 0}.

(ii) Given Assumption 3 and 4(ii) and in the event Ω1(ν) ∩Ω4 ∩Ω6(ν) for 0 < ν < 1
4 , we have for

τ ≥ 0,

max{1− |Bin,12|
Bin,1

, 0} ≥ κ2(τ), (S36)

where κ2(τ) = max{1− (16
λd+1

rd(Σ)

n

τ+λd+1
rd(Σ)

n

(1 + 112
√
δ2

1−
√
δ2
) + 64

√
δ2

1−
√
δ2
), 0}.

The proof of Lemma S5 is left to Section II.5. In the following, we first discuss the small or

moderate TER regime and then the large TER regime.

(i) Small or moderate TER

Lower bound of in-sample bias. From (S17) and Lemma S5(i), in the event Ω1(ν) ∩ Ω4 ∩ Ω5

for 0 < ν < 1
2 defined in Lemma S6 and Assumption 4(i), substituting the lower bound of µn(Ad)

and lower bound of max{1− |Bin,12|
Bin,1

, 0} in (S35) into (S32), we have for τ ≥ λd+1,

Bin ≥ κ1(τ)

(1 + ν + η1)2
(1−

2(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

τ∥θ∗1:d∥Σ−1
1:d

)2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

1

τ
)−2.

Moreover, by applying (S18), we have for τ ≥ λd+1,

Bin ≥ κ1(τ)

(1 + ν + η1)2
(1−

√
δ1)

2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

1

τ
)−2.

This gives the Proposition 5.

Lower bound of in-sample variance. We first study the first term in (S30). In the event Ω1(ν)

for 0 < ν < 1
2 , substituting the lower bound of µd(X1:dX

T
1:d) = nµd(Σ̂1:d) in (S41), we have for

τ ≤ λd,

µd(X
T
1:dX1:d) ≥ λdn(1− ν − η1)

2,
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≥ τn(1− ν − η1)
2,

and hence

1

(1− ν − η1)2
µd(X

T
1:dX1:d) ≥ τn.

Then in the event Ω1(ν) for 0 < ν < 1
2 , we have for τ ≤ λd,

1

n

d∑
i=1

µ2i (X1:dX
T
1:d)

(µi(X1:dX
T
1:d) + nτ)2

≥ (
1

1 + 1
(1−ν−η1)2

)2
d

n
. (S37)

Then we study the second term in (S30). Given Assumption 2 and in the event Ω5 ∩ Ω7(ν) for

0 < ν < σ2x, substituting the bounds of µ1(Ad) and Tr(X(d+1):pX
T
(d+1):p) in (S46)–(S47) into the

second term in (S30), we have for τ ≥ λd+1,

σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

≥ σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

µ21(Ad)

≥ σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(2C0σ2x + 1)2(1 + C1)2n2τ2

≥ σ2
1

n

Tr(X(d+1):pX
T
(d+1):p)

2

(2C0σ2x + 1)2(1 + C1)2n3τ2

≥ (1− ν)2

(2C0σ2x + 1)2(1 + C1)2
σ2

(
∑

j>d λj
n )2

τ2
.

By combining the two terms, in the event Ω1(ν) ∩ Ω5 ∩ Ω7(ν) for 0 < ν < 1
2 min{1, σ2x}, we have

for λd+1 ≤ τ ≤ λd,

Vin ≥ (1− ν)2

2(2C0σ2x + 1)2(1 + C1)2(1 +
1

(1−ν−η2)2 )
2
σ2(

d

n
+

(
∑

j>d λj
n )2

τ2
),

or equivalently,

Vin ≥ (1− ν)2

2(2C0σ2x + 1)2(1 + C1)2(1 +
1

(1−ν−η2)2 )
2
σ2(

d

n
+
λ2d+1

τ2
r2d(Σ)

n2
).

For τ > λd, we have

Vin ≥ σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

≥ (1− ν)2

2(2C0σ2x + 1)2(1 + C1)2
σ2

(
∑

j>d λj
n )2

τ2
,

or equivalently

Vin ≥ (1− ν)2

2(2C0σ2x + 1)2(1 + C1)2
σ2
λ2d+1

τ2
r2d(Σ)

n2
.
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The result for τ ≤ λd+1 follows from the monotonicity of variance in Lemma S11. This gives

Proposition 6.

(ii) Large TER

Lower bound of in-sample bias. From (S22) and Lemma S5(ii), in the event Ω1(ν)∩Ω4∩Ω6(ν)

for 0 < ν < 1
4 defined in Lemma S6 and Assumption 4(ii), substituting the bounds of µn(Ad) in

(S50) and the bound of max{0, 1− |Bin,2|
Bin,1

} in (S53) into (S32), we have for τ ≥ 0,

Bin ≥κ2(τ)(1− ν − η2)
2

(1 + ν + η1)2
(1−

(1 + ν + η1)(1 + σ2x)
1/2n∥θ∗(d+1):p∥Σ(d+1):p

(1− ν − η2)(
∑

j>d λj
n + τ)∥θ∗1:d∥Σ−1

1:d

)2 (S38)

· ∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

n

(
∑

j>d λj
n + τ))

)−2.

Moreover, by applying (S23), we have for τ ≥ 0,

Bin ≥ κ2(τ)(1− ν − η2)
2

(1 + ν + η1)2
(1−

√
δ2)

2∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

n

(τ + λd+1
rd(Σ)
n )

)−2.

This gives Proposition 11.

Lower bound of in-sample variance. The first term in (S30) can be studied for τ ≤ λd similarly

as (S37) in the small or moderate TER regime. Then we study the second term in (S30). In the

event Ω6(ν) for 0 < ν < 1
2 , we have for τ ≥ 0,

(1− ν − η2)
∑
j>d

λj ≤ µn(X(d+1):pX
T
(d+1):p) ≤ (1 + ν + η2)

∑
j>d

λj ,

and hence

σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

≥ σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

µ21(Ad)

≥ σ2
1

n2

Tr(X(d+1):pX
T
(d+1):p)

2

µ21(Ad)

≥ (1− ν − η2)
2

(1 + ν + η2)2
σ2

(
∑

j>d λj
n )2

(τ +
∑

j>d λj
n )2

= σ2
λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
. (S39)

By combining the two terms, in the event Ω1(ν) ∩ Ω6(ν) for 0 < ν < 1
2 , we have for 0 ≤ τ +

λd+1
rd(Σ)
n ≤ λd,

Vin ≥ (1− ν − η2)
2

2(1 + ν + η2)2(1 +
1

(1−ν−η1)2 )
σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
).
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For τ + λd+1
rd(Σ)
n > λd, we have

Vin ≥ σ2
1

n

n∑
i=1

µ2i (X(d+1):pX
T
(d+1):p)

(µi(X(d+1):pX
T
(d+1):p) + nτ)2

≥ (1− ν − η2)
2

2(1 + ν + η2)2
σ2

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
.

This gives Proposition 12.

II.3 Bounds of random quantities

We give the probability bounds of some random quantities used in the proofs in Supplement Sections

II.1 and II.2. We define the related events and give the probability bounds for the events.

Lemma S6 (Bounds of random quantities).

(i) [Bounding µ1(HdH
T
d ) and µd(HdH

T
d )] For η1 defined in Assumption 1 and 0 < ν < 1

2 , denote

by Ω1(ν) the event that

(1− ν − η1)
2n ≤ µd(HdH

T
d ) ≤ µ1(HdH

T
d ) ≤ n(1 + ν + η1)

2. (S40)

In the event Ω1(ν), we have

λd(1− ν − η1)
2 ≤ µd(Σ̂1:d), (S41)

∥θ∗1:d∥2Σ−1
1:d

(1 + ν + η1)2
≤ ∥θ∗1:d∥2Σ̂−1

1:d

≤
∥θ∗1:d∥2Σ−1

1:d

(1− ν − η1)2
. (S42)

Under the sub-gaussianity of Σ− 1
2xi and Assumption 1, P(Ω1(ν)) ≥ 1− 2exp{− ν2n

C2
0σ

4
x
}.

(ii) [Bounding ∥Md∥] Denote by Ω2 the event that

∥Md∥ ≤ C0σ
2
x(2nλ

2
d+1 +

∑
j>d

λ2j ).

Under the sub-gaussianity of Σ− 1
2xi, P(Ω2) ≥ 1− 6exp{− n

C0
}.

(iii) [Bounding the trace of Tr(HT
d Hd) and Tr(Md)] Denote by Ω31 the event that

Tr(HT
d Hd) ≤ (1 + σ2x)nd.

Denote by Ω32 the event that

Tr(Md) ≤ (1 + σ2x)n
∑
j>d

λ2j .
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For 0 < ν < σ2x, denote by Ω33(ν) the event that

Tr(Md) ≥ (1− ν)n
∑
j>d

λ2j .

Under the sub-gaussianity of Σ− 1
2xi, P(Ω31) ≥ 1−2exp{− n

C0
}, P(Ω32) ≥ 1−2exp{− n

C0
} and

P(Ω33(ν)) ≥ 1− 2exp{− ν2n
C0σ4

x
}.

(iv) [Bounding the ∥X(d+1):pθ
∗
(d+1):p∥

2] Denote by Ω4 the event that

∥X(d+1):pθ
∗
(d+1):p∥

2 ≤ (1 + σ2x)n∥θ∗(d+1):p∥
2
Σ(d+1):p

. (S43)

Under the sub-gaussianity of Σ− 1
2xi, P(Ω4) ≥ 1− 2exp{− n

C0
}.

(v) [Bounding the µ1(X(d+1):pX
T
(d+1):p) with rd(Σ) ≤ C1n] Denote by Ω5 the event that

µ1(X(d+1):pX
T
(d+1):p) ≤ C0σ

2
x(2nλd+1 +

∑
j>d

λj). (S44)

In the event Ω5, we have

∥M̂d∥ ≤ 1

n
∥X(d+1):pX

T
(d+1):p∥

2

≤ 4C2
0σ

4
x

n
(nλd+1 +

∑
j>d

λj)
2.

Under the sub-gaussianity of Σ− 1
2xi, P(Ω5) ≥ 1− 6exp{− n

C0
}.

(vi) [Bounding the µ1(X(d+1):pX
T
(d+1):p) and µn(X(d+1):pX

T
(d+1):p) with Assumption 3] For η2 de-

fined in Assumption 3 and 0 < ν < 1
2 , denote by Ω6(ν) the event that

(1− ν − η2)
∑
j>d

λj ≤ µn(Xd+1:pX
T
d+1:p) ≤ µ1(Xd+1:pX

T
d+1:p) ≤ (1 + ν + η2)

∑
j>d

λj . (S45)

Under the sub-gaussianity of Σ− 1
2xi and Assumption 3, let ν2rd(Σ)

C2
0σ

4
x

> 1, P(Ω6(ν)) ≥ 1 −

2nexp{−ν
√
rd(Σ)

C0σ2
x

} − 4exp{− n
C0

}.

(vii) [Bounding of Tr(X(d+1):pX
T
(d+1):p)] For 0 < ν < min{1, σ2x}, denote by Ω7(ν) the event that

(1− ν)n
∑
j>d

λj ≤ Tr(X(d+1):pX
T
(d+1):p) ≤ (1 + ν)n

∑
j>d

λj . (S46)

Under the sub-gaussianity of Σ−1/2xi, P(Ω7(ν)) ≥ 1− 2exp{− ν2n
C0σ4

x
}.

Proof.

(i) Given the sub-gaussianity of Σ− 1
2xi, from Lemma S17, we have with probability 1−2exp{− t

C2
0σ

4
x
},

(
√
n− C0σ

2
x

√
d−

√
t)2 ≤ µd(HdH

T
d ) ≤ µ1(HdH

T
d ) ≤ (

√
n+ C0σ

2
x

√
d+

√
t)2,

21



which implies that

n(1− C0σ
2
x

√
d

n
−
√
t

n
)2 ≤ µd(HdH

T
d ) ≤ µ1(HdH

T
d ) ≤ n(1 + C0σ

2
x

√
d

n
+

√
t

n
)2.

Under Assumption 1, with 0 < ν < 1
2 , we have C0σ

2
x

√
d
n + ν ≤ ν + η1 < 1. Taking t = ν2n, we

have with probability at least 1− 2exp{− ν2n
C2

0σ
4
x
},

n(1− ν − η1)
2 ≤ µd(HdH

T
d ) ≤ µ1(HdH

T
d ) ≤ n(1 + ν + η1)

2.

In the event Ω1(ν) for 0 < ν < 1
2 , we also have

µd(X
T
1:dX1:d) = µd(Σ

1/2
1:d (Σ

−1/2
1:d XT

1:dX1:dΣ
−1/2
1:d )Σ

1/2
1:d )

≥ µd(Σ1:d)µd(Σ
−1/2
1:d XT

1:dX1:dΣ
−1/2
1:d )

≥ λdn(1− ν − η1)
2,

or equivalently

µd(Σ̂1:d) = µd(
XT

1:dX1:d

n
) ≥ λd(1− ν − η1)

2.

Moreover, in the event Ω1(ν) for ν <
1
2 ,

∥θ∗1:d∥2Σ̂−1
1:d

= θ∗T1:d(
XT

1:dX1:d

n
)−1θ∗1:d = θ∗T1:dΣ

−1/2
1:d (

HdH
T
d

n
)−1Σ

−1/2
1:d θ∗T1:d,

and hence

∥θ∗1:d∥2Σ−1
1:d

(1 + ν + η1)2
≤ ∥θ∗1:d∥2Σ−1

1:d

µ−1
1 (

HdH
T
d

n
) ≤ ∥θ∗1:d∥2Σ̂−1

1:d

≤ ∥θ∗1:d∥2Σ−1
1:d

µ−1
d (

HdH
T
d

n
) ≤

∥θ∗1:d∥2Σ−1
1:d

(1− ν − η1)2
.

(ii) Given the sub-gaussianity of Σ− 1
2xi, from Lemma S16, we have with probability at least 1 −

6exp{− n
C0

},

∥X(d+1):pΣ(d+1):pX
T
(d+1):p∥ ≤ C0σ

2
x(2nλ

2
d+1 +

∑
j>d

λ2j ).

(iii) Given the sub-gaussianity of Σ− 1
2xi, from Lemma S18, with probability at least 1−2exp{− n

C0
},

Tr(X1:dΣ
−1
1:dX

T
1:d) < (1 + σ2x)nd,

Tr(Xd+1:pΣd+1:pXd+1:p) < (1 + σ2x)n
∑
j>d

λ2j .

(iv) Given the sub-gaussianity of Σ− 1
2xi, from Lemma S18, with probability at least 1−2exp{− n

C0
},

∥X(d+1):pθ
∗
(d+1):p∥

2 ≤ (1 + σ2x)n∥θ∗(d+1):p∥
2
Σ(d+1):p

.
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(v) Given the sub-gaussianity of Σ− 1
2xi, from Lemma S16, with probability at least 1−6exp{− n

C0
},

µ1(X(d+1):pX
T
(d+1):p) ≤ C0σ

2
x(2nλd+1 +

∑
j>d

λj).

(vi) Given the sub-gaussianity of Σ− 1
2xi, from Lemma S14, with probability at least

1− 2exp{−min{rd(Σ) δ2

C2
0σ

4
x
,
√
rd(Σ)

δ
C0σ2

x
}},

(1− δ)
∑
j>d

λj ≤ µn(Diag(Xd+1:pX
T
d+1:p)) ≤ µ1(Diag(Xd+1:pX

T
d+1:p)) ≤ (1 + δ)

∑
j>d

λj .

From Lemma S15, we have with probability at least 1− 4exp{−n/C0},

∥Xd+1:pX
T
d+1:p −Diag(Xd+1:pX

T
d+1:p)∥ ≤ C0σ

2
x

√
4n2λ2d+1 + 2n

∑
j>d

λ2j .

Then with probability at least 1− 2nexp{−min{rd(Σ) t2

C2
0σ

4
x
,
√
rd(Σ)

t
C0σ2

x
}} − 4exp{− n

C0
},

(1− t)
∑
j>d

λj − C0σ
2
x

√
4n2λ2d+1 + 2n

∑
i>d

λ2i ≤ µn(Xd+1:pX
T
d+1:p)

≤ µ1(Xd+1:pX
T
d+1:p) ≤ (1 + t)

∑
j>d

λj + C0σ
2
x

√
4n2λ2d+1 + 2n

∑
j>d

λ2j ,

which can be equivalently written as∑
j>d

λj(1− t− C0σ
2
x

√
4n2

r2d(Σ)
+

2n
∑

j>d λ
2
j

(
∑

j>d λj)
2
) ≤ µn(Xd+1:pX

T
d+1:p)

≤ µ1(Xd+1:pX
T
d+1:p) ≤

∑
j>d

λj(1 + t+ C0σ
2
x

√
4n2

rd(Σ)2
+

2n
∑

j>d λ
2
j

(
∑

j>d λj)
2
).

Hence ∑
j>d

λj(1− t− C0σ
2
x

√
4n2

r2d(Σ)
+

2n

rd(Σ)
) ≤ µn(Xd+1:pX

T
d+1:p)

≤ µ1(Xd+1:pX
T
d+1:p) ≤

∑
j>d

λj(1 + t+ C0σ
2
x

√
4n2

rd(Σ)2
+

2n

rd(Σ)
).

Under Assumption 3, with 0 < ν < 1
2 and ν2rd(Σ)

C2
0σ

4
x
> 1, we have C0σ

2
x

√
4n2

rd(Σ)2
+ 2n

rd(Σ)+ν ≤ ν+η2 < 1.

Taking t = ν, we have with probability at least 1− 2exp{−ν
√
rd(Σ)

C0σ2
x

} − 4exp{− n
C0

},

(1− ν − η2)
∑
j>d

λj ≤ µn(Xd+1:pX
T
d+1:p) ≤ µ1(Xd+1:pX

T
d+1:p) ≤ (1 + ν + η2)

∑
j>d

λj .

(vii) From Lemma S18, let t = ν2n
σ4
x
for 0 < ν < min{σ2x, 1}, with probability at least 1−exp{− ν2n

C0σ4
x
},

(1− ν)n
∑
j>d

λj ≤ Tr(Xd+1:pX
T
d+1:p) ≤ (1 + ν)n

∑
j>d

λj .

□
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II.4 Bounds of µ1(Ad) and µn(Ad)

We give the following lemma to control µ1(Ad) and µn(Ad) under the small or moderate TER

regime and the large TER regime.

Lemma S7 (Bounds of µ1(Ad) and µn(Ad)).

(i)(Small or moderate TER regime) Given Assumption 2 and in the event Ω5 defined in Lemma

S6, we have for τ ≥ λd+1,

µ1(Ad) ≤ (2C0σ
2
x + 1)(1 + C1)nτ, (S47)

µn(Ad) ≥ nτ. (S48)

(ii)(Large TER regime) Given Assumption 3 and in the event Ω6(ν) for 0 < ν < 1
2 defined in

Lemma S6, we have for τ ≥ 0,

µ1(Ad) ≤ (1 + ν + η2)
∑
j>d

λj + nτ, (S49)

µn(Ad) ≥ (1− ν − η2)
∑
j>d

λj + nτ. (S50)

Proof.

(i) By the definition of Ad,

µn(Ad) ≥ nτ.

Given Assumption 2 and in the event Ω5, we have

µ1(X(d+1):pX
T
(d+1):p) ≤ C0σ

2
x(2nλd+1 +

∑
j>d

λj).

Hence

µ1(Ad) ≤ 2C0σ
2
x(nλd+1 +

∑
j>d

λj) + nτ

≤ 2C0σ
2
x(1 + C1)nλd+1 + nτ.

Further if τ ≥ λd+1, then

µ1(Ad) ≤ 2C0σ
2
x(1 + C1)nλd+1 + nτ (S51)

≤ (2C0σ
2
x + 1)(1 + C1)nτ.

(ii) Given Assumption 3 and in the event Ω6(ν), we have

(1− ν − η2)
∑
j>d

λj ≤ µ1(Xd+1:pX
T
d+1:p) ≤ µn(Xd+1:pX

T
d+1:p) ≤ (1 + ν + η2)

∑
j>d

λj .
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Then we have for τ ≥ 0,

(1− ν − η2)
∑
j>d

λj + nτ ≤ µn(Ad) ≤ µ1(Ad) ≤ (1 + ν + η2)
∑
j>d

λj + nτ.

□

In the large TER regime, an upper bound on µ1(Ad) similar to (S49) can be obtained by using

(S51) and then Assumption 3, rd(Σ)
n ≥ cx:

µ1(Ad) ≤ 2C0σ
2
x(1 + C1)nλd+1 + nτ

≤ 2C0σ
2
x(1 + C1)cx

∑
j>d

λj + nτ.

This inequality can be used to achieve a similar purpose as (S49) in our proofs.

II.5 Comparison between Bin,1 and |Bin,12|

We give a proof of Lemma S5, which is re-stated as follows.

Lemma S5 (Comparison between Bin,1 and |Bin,12|).

(i) Given Assumption 2 and 4(i) and in the event Ω1(ν)∩Ω4 for 0 < ν < 1
2 , we have for τ ≥ λd+1,

max{1− |Bin,12|
Bin,1

, 0} ≥ κ1(τ), (S52)

where κ1(τ) = max{1− (
2C0σ2

x(2+C1)λd+1

τ (1 + 16(2C0σ
2
x + 1)(1 + C1)

√
δ1

1−
√
δ1
) + 64

√
δ1

1−
√
δ1
), 0}.

(ii) Given Assumption 3 and 4(ii) and in the event Ω1(ν) ∩Ω4 ∩Ω6(ν) for 0 < ν < 1
4 , we have for

τ ≥ 0,

max{1− |Bin,12|
Bin,1

, 0} ≥ κ2(τ), (S53)

where κ2(τ) = max{1− (16
λd+1

rd(Σ)

n

τ+λd+1
rd(Σ)

n

(1 + 112
√
δ2

1−
√
δ2
) + 64

√
δ2

1−
√
δ2
), 0}.

We first give an algebraic bound of
|Bin,12|
Bin,1

.

Lemma S8 (Algebraic bound of
|Bin,12|
Bin,1

). Given
µ1(X(d+1):pX

T
(d+1):p

)

µn(Ad)
≤ 1, we have

|Bin,12|
Bin,1

≤
2µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

+ 4
∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

.
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Proof. Given
µ1(X(d+1):pX

T
(d+1):p

)

µn(Ad)
≤ 1, we have from the Cauchy–Schwartz inequality and simple

manipulations,

∥θ∗(d+1):p −XT
d+1:pA

−1X(d+1):pθ
∗
(d+1):p∥

2
Σ̂(d+1):p

≤ 2∥θ∗(d+1):p∥
2
Σ̂(d+1):p

+ 2∥XT
d+1:pA

−1X(d+1):pθ
∗
(d+1):p∥

2
Σ̂(d+1):p

= 2∥θ∗(d+1):p∥
2
Σ̂(d+1):p

+ 2∥ 1
n
X(d+1):pX

T
(d+1):pA

−1X(d+1):pθ
∗
(d+1):p∥

2

≤ 2∥θ∗(d+1):p∥
2
Σ̂(d+1):p

+ 2µ1(X(d+1):pX
T
d+1:pA

−1)∥ 1
n
X(d+1):pθ

∗
(d+1):p∥

2

≤ (2 + 2µ1(X(d+1):pX
T
d+1:pA

−1))∥θ∗(d+1):p∥
2
Σ̂(d+1):p

≤ (2 + 2
µ1(X(d+1):pX

T
d+1:p)

µn(Ad)
)∥θ∗(d+1):p∥

2
Σ̂(d+1):p

≤ 4∥θ∗(d+1):p∥
2
Σ̂(d+1):p

. (S54)

Then we apply the triangle inequality to |Bin,12|:

|Bin,12| = |2(θ∗T1:d − θ∗TXTA−1X1:d)Σ̂1:d,(d+1):p(θ
∗
(d+1):p −XT

d+1:pA
−1Xθ∗)|

≤ |2(θ∗T1:d − θ∗TXTA−1X1:d)Σ̂1:d,(d+1):pX
T
d+1:pA

−1X1:dθ
∗
1:d)|

+ 2|(θ∗T1:d − θ∗TXTA−1X1:d)Σ̂1:d,(d+1):p(θ
∗
(d+1):p −XT

d+1:pA
−1X(d+1):pθ

∗
(d+1):p)|.

The two terms on the right-hand side of the inequality above can be bounded as follows. First,

|2(θ∗T1:d − θ∗TXTA−1X1:d)Σ̂1:d,(d+1):pX
T
d+1:pA

−1X1:dθ
∗
1:d)|

= |2(θ∗T1:d − θ∗XTA−1X1:d)
XT

1:dX(d+1):p

n
XT
d+1:pA

−1X1:dθ
∗
1:d|

= |2(θ∗T1:d − θ∗TXTA−1X1:d)
XT

1:dX(d+1):p

n
XT
d+1:pA

−1
d X1:d(Id +XT

1:dA
−1
d X1:d)

−1θ∗1:d|

(from Lemma S10(ii))

= |2(θ∗T1:d − θ∗TXTA−1X1:d)
XT

1:dX(d+1):p

n
XT
d+1:pA

−1
d X1:d(Id −XT

1:dA
−1X1:d)θ

∗
1:d|

(from Lemma S10(iii))

= |2(θ∗T1:d − θ∗TXTA−1X1:d)
XT

1:dX(d+1):p

n
XT
d+1:pA

−1
d X1:d(θ

∗
1:d −XT

1:dA
−1X1:dθ

∗
1:d)|

≤
2µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)
∥θ∗1:d −XT

1:dA
−1Xθ∗∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

,

Second,

2|(θ∗T1:d − θ∗TXTA−1X1:d)Σ̂1:d,(d+1):p(θ
∗
(d+1):p −XT

d+1:pA
−1X(d+1):pθ

∗
(d+1):p)|

≤ 2∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d
∥θ∗(d+1):p −XT

d+1:pA
−1X(d+1):pθ

∗
(d+1):p∥Σ̂(d+1):p
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(Cauchy–Schwartz inequality)

≤ 4∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d
∥θ∗(d+1):p∥Σ̂(d+1):p

. (From (S54))

Combining the preceding three displays yields

|Bin,12| ≤
2µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)
∥θ∗1:d −XT

1:dA
−1Xθ∗∥Σ̂1:d

∥Σ̂1:d
∥θ∗1:d −XT

1:dA
−1X1:dθ

∗
1:d∥Σ̂1:d

+ 4∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d
∥θ∗(d+1):p∥Σ̂(d+1):p

,

or equivalently

|Bin,12|
Bin,1

≤
2µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

+ 4
∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗
∥Σ̂1:d

.

□

Next, it is desired to control the quantities
∥θ∗1:d−X

T
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d−X
T
1:dA

−1Xθ∗∥Σ̂1:d

and
∥θ∗

(d+1):p
∥Σ̂(d+1):p

∥θ∗1:d−X
T
1:dA

−1Xθ∗
∥Σ̂1:d

,

which is stated in Lemma S9 below. We discuss the small or moderate TER regime and the large

TER regime, respectively.

Lemma S9 (Bound of
∥θ∗1:d−X

T
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d−X
T
1:dA

−1Xθ∗∥Σ̂1:d

and
∥θ∗

(d+1):p
∥Σ̂(d+1):p

∥θ∗1:d−X
T
1:dA

−1Xθ∗∥Σ̂1:d

).

(i) Given Assumption 2 and 4(i), in the event Ω1(ν)∩Ω4∩Ω5 for 0 < ν < 1
2 , we have for τ ≥ λd+1,

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1 +
(2C0σ

2
x + 1)(1 + C1)

(1− ν − η1)2

√
δ1

1−
√
δ1
,

∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1

(1− ν − η1)2

√
δ1

1−
√
δ1
.

(ii) Given Assumption 3 and 4(ii) and in the event Ω1(ν) ∩Ω4 ∩Ω6(ν) for 0 < ν < 1
4 , we have for

τ ≥ 0,

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1 +
(1 + ν + η2)

(1− ν − η2)(1− ν − η1)2

√
δ2

1−
√
δ2
,

∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1

(1− ν − η1)2

√
δ2

1−
√
δ2
.

Proof. As preparation, we derive a useful identity. We have

θ∗1:d −XT
1:dA

−1Xθ∗ = θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d −XT

1:dA
−1X(d+1):pθ

∗
(d+1):p

= (Id +XT
1:dA

−1
d X1:d)

−1θ∗1:d − (Id +XT
1:dA

−1
d X1:d)

−1XT
1:dAdX(d+1):pθ

∗
(d+1):p

(from Lemma S10(ii) and (iii))
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= −(Id +XT
1:dA

−1
d X1:d)

−1(XT
1:dAdX(d+1):pθ

∗
(d+1):p − θ∗1:d). (S55)

(i) We first discuss the bound of
∥θ∗1:d−X

T
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d−X
T
1:dA

−1Xθ∗∥Σ̂1:d

. We have,

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1 +
∥XT

1:dA
−1Xθ∗ −XT

1:dA
−1X1:dθ

∗
1:d∥Σ̂1:d

∥(Id +XT
1:dA

−1
d X1:d)−1(XT

1:dAdX(d+1):pθ
∗
(d+1):p − θ∗1:d)∥Σ̂1:d

(Using (S55))

= 1 +
∥XT

1:dA
−1X(d+1):pθ

∗
(d+1):p∥Σ̂1:d

∥Σ̂1/2
1:d (I1:d +XT

1:dA
−1
d X1:d)−1(XT

1:dA
−1
d X(d+1):pθ

∗
(d+1):p − θ∗1:d)∥

= 1 +
∥Σ̂1/2

1:d (I1:d +XT
1:dA

−1
d X1:d)

−1XT
1:dA

−1
d X(d+1):pθ

∗
(d+1):p∥

∥Σ̂1/2
1:d (I1:d +XT

1:dA
−1
d X1:d)−1(XT

1:dA
−1
d X(d+1):pθ

∗
(d+1):p − θ∗1:d)∥

(from Lemma S10(ii))

= 1 +
∥(Σ̂−1

1:d + ĤdA
−1
d ĤT

d )
−1ĤdA

−1
d X(d+1):pθ

∗
(d+1):p∥

∥(Σ̂−1
1:d + ĤdA

−1
d ĤT

d )
−1(ĤdTA

−1
d X(d+1):pθ

∗
(d+1):p − Σ̂

−1/2
1:d θ∗1:d)∥

≤ 1 +
µ1(Σ̂

−1
1:d + ĤdA

−1
d ĤT

d )n
1/2µ1(A

−1
d )∥X(d+1):pθ

∗
(d+1):p∥

µn(Σ̂
−1
1:d + ĤdA

−1
d ĤT

d )∥ĤdA
−1
d X(d+1):pθ

∗
(d+1):p − Σ̂

−1/2
1:d θ∗1:d∥

≤ 1 +
µ1(Σ̂

−1
1:d + ĤdA

−1
d ĤT

d )n
1/2µ1(A

−1
d )∥X(d+1):pθ

∗
(d+1):p∥

nµn(A
−1
d )∥ĤdA

−1
d X(d+1):pθ

∗
(d+1):p − Σ̂

−1/2
1:d θ∗1:d∥

≤ 1 +
( 1
µd(Σ̂1:d)

+ n
µn(Ad)

)n1/2µ1(A
−1
d )∥X(d+1):pθ

∗
(d+1):p∥

nµn(A
−1
d )∥ĤdA

−1
d X(d+1):pθ

∗
(d+1):p − Σ̂

−1/2
1:d θ∗1:d∥

≤ 1 +
( 1
µd(Σ̂1:d)

+ n
µn(Ad)

)n1/2µ1(A
−1
d )∥X(d+1):pθ

∗
(d+1):p∥

nµn(A
−1
d )|∥θ∗1:d∥Σ̂−1

1:d
− ∥ĤdA

−1
d X(d+1):pθ

∗
(d+1):p∥|

. (S56)

In the event Ω1(ν) ∩ Ω4 and given ∥θ∗1:d∥Σ̂−1
1:d
> ∥ĤdA

−1
d X(d+1):pθ

∗
(d+1):p∥, substituting (S40)–(S43)

into (S56), we have

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1 +
1

(1− ν − η1)2
µ1(Ad)

µnAd

( 1
λd

+ n
µn(Ad)

)(1 + ν + η1)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ−1
1:d

×
∥θ∗1:d∥Σ̂−1

1:d

|∥θ∗1:d∥Σ̂−1
1:d

− ∥ĤdA
−1
d X(d+1):pθ

∗
(d+1):p∥|

≤ 1 +
1

(1− ν − η1)2
µ1(Ad)

µnAd

( 1
λd

+ n
µn(Ad)

)(1 + ν + η1)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ−1
1:d

× 1

|1−
n(1+ν+η1)(1+σ2

x)
1/2∥θ∗

(d+1):p
∥Σ(d+1):p

µn(Ad)∥θ∗1:d∥Σ−1
1:d

|
. (S57)
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Then we discuss
∥θ∗

(d+1):p
∥Σ̂(d+1):p

∥θ∗1:d−X
T
1:dA

−1Xθ∗∥Σ̂1:d

. Substituting (S55) in the denominator, we have

∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

=
∥X(d+1):p

n θ∗(d+1):p∥
∥(Id +XT

1:dA
−1
d X1:d)−1(XT

1:dAdX(d+1):pθ
∗
(d+1):p − θ∗1:d)∥Σ̂1:d

≤
∥X(d+1):p

n θ∗(d+1):p∥

∥Σ̂1/2(I1:d +XT
1:dA

−1
d X1:d)−1(XT

1:dA
−1
d X(d+1):pθ

∗
(d+1):p − θ∗1:d)∥

=
∥X(d+1):p

n θ∗(d+1):p∥

∥(Σ̂−1
1:d + ĤdTA

−1
d X1:dΣ̂−1/2)−1(ĤdA

−1
d X(d+1):pθ

∗
(d+1):p − Σ̂

−1/2
1:d θ∗1:d)∥

≤
µ1(Σ̂

−1
1:d + ĤdA

−1
d ĤT

d )∥
X(d+1):p

n θ∗(d+1):p∥

∥ĤdA
−1
d X(d+1):pθ

∗
(d+1):p − Σ̂

−1/2
1:d θ∗1:d)∥

. (S58)

In the event Ω1(ν) ∩ Ω4 and given ∥θ∗1:d∥Σ̂−1
1:d
> ∥ĤdA

−1
d X(d+1):pθ

∗
(d+1):p∥, substituting (S40)–(S43)

into (S58), we have

∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1

(1− ν − η1)2

( 1
λd

+ n
µn(Ad)

)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ̂−1
1:d

×
∥θ∗1:d∥Σ̂−1

1:d

∥ĤT
d A

−1
d X(d+1):pθ

∗
(d+1):p − Σ̂−1/2θ∗1:d∥

≤ 1

(1− ν − η1)2

( 1
λd

+ n
µn(Ad)

)(1 + ν + η1)(1 + σ2x)∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ−1
1:d

× 1

|1−
n(1+ν+η1)(1+σ2

x)
1/2∥θ∗

(d+1):p
∥Σ(d+1):p

µn(Ad)∥θ∗1:d∥Σ−1
1:d

|
. (S59)

We control
∥θ∗1:d−X

T
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d−X
T
1:dA

−1Xθ∗∥Σ̂1:d

and
∥θ∗

(d+1):p
∥Σ̂(d+1):p

∥θ∗1:d−X
T
1:dA

−1Xθ∗∥Σ̂1:d

in small or moderate TER and

large TER respectively.

In small or moderate TER regime, given Assumption 2 and 4(i), and in the event Ω1(ν)∩Ω4∩Ω5

for 0 < ν < 1
4 , we have for τ ≥ λd+1,

∥θ∗1:d∥Σ̂−1
1:d
> ∥ĤdA

−1
d X(d+1):pθ

∗
(d+1):p∥.

Substituting bounds of µ1(Ad) and µn(Ad) in Lemma S7(i) into (S57) and (S59), we have

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1 +
(2C0σ

2
x + 1)(1 + C1)

(1− ν − η1)2

(1 + ν + η1)(
1
λd

+ 1
λd+1

)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ−1
1:d

1

1−
√
δ1
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≤ 1 +
(2C0σ

2
x + 1)(1 + C1)

(1− ν − η1)2

√
δ1

1−
√
δ1
.

For τ ≥ λd+1,

∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1

(1− ν − η1)2

( 1
λd

+ 1
λd+1

)(1 + ν + η1)(1 + σ2x)∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ−1
1:d

1

1−
√
δ1

≤ 1

(1− ν − η1)2

√
δ1

1−
√
δ1
.

In large TER regime, under Assumption 3 and 4(ii) and in the event Ω1(ν) ∩ Ω4 ∩ Ω6(ν) for

ν < 1
4 , we have for τ ≥ 0,

∥θ∗1:d∥Σ̂−1
1:d
> ∥ĤdA

−1
d X(d+1):pθ

∗
(d+1):p∥.

Substituting bounds of µ1(Ad) and µn(Ad) in Lemma S7(ii) into (S57) and (S59), we have

∥θ∗1:d −XT
1:dA

−1X1:dθ
∗
1:d∥Σ̂1:d

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1 +
(1 + ν + η2)

(1− ν − η1)2(1− ν − η2)

(1 + ν + η1)(
1
λd

+ n
(1−ν−η2)

∑
j>d λj

)(1 + σ2x)
1/2∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ−1
1:d

1

1−
√
δ2

≤ (1 + ν + η2)

(1− ν − η1)2(1− ν − η2)

√
δ2

1−
√
δ2
,

and

∥θ∗(d+1):p∥Σ̂(d+1):p

∥θ∗1:d −XT
1:dA

−1Xθ∗∥Σ̂1:d

≤ 1

(1− ν − η1)2

(1 + ν + η1)(
1
λd

+ n
(1−ν−η2)

∑
j>d λj

)(1 + σ2x)∥θ∗(d+1):p∥Σ(d+1):p

∥θ∗1:d∥Σ−1
1:d

× 1

1−
√
δ2

≤ 1

(1− ν − η1)2

√
δ2

1−
√
δ2
.

□

Proof of Lemma S5. We obtain Lemma S5 by combining Lemma S8 and S9. We discuss the

small or moderate TER regime and the large TER regime, respectively.

Small or moderate TER. We substitute the bounds from Lemma S9(i) into Lemma S8. Given

Assumption 2, 4(i) and in the event Ω1(ν) ∩ Ω4 ∩ Ω5 for 0 < ν < 1
4 , we have for τ ≥ λd+1 and

µ1(X(d+1):pX
T
(d+1):p

)

µn(Ad)
≤ 1,

|Bin,12|
Bin,1

≤
2µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)
(1 + 16(2C0σ

2
x + 1)(1 + C1)

√
δ1

1−
√
δ1
) + 64

√
δ1

1−
√
δ1
.

Under Assumption 2 and in the event Ω5, from (S44), we have

µ1(X(d+1):pX
T
(d+1):p) ≤ C0σ

2
x(2nλd+1 +

∑
j>d

λj) ≤ C0σ
2
x(2 + C1)nλd+1.
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Note that µn(Ad) ≥ nτ . We have for τ ≥ λd+1 and
C0σ2

x(2+C1)nλd+1

nτ ≤ 1,

|Bin,12|
Bin,1

≤ 2C0σ
2
x(2 + C1)λd+1

τ
(1 + 16(2C0σ

2
x + 1)(1 + C1)

√
δ1

1−
√
δ1
) + 64

√
δ1

1−
√
δ1
.

Hence we have for τ ≥ λd+1,

max{Bin,1 − |Bin,12|, 0}
Bin,1

≥ κ1(τ),

where κ1 = max{1− (
2C0σ2

x(2+C1)λd+1

τ (1 + 16(2C0σ
2
x + 1)(1 + C1)

√
δ1

1−
√
δ1
) + 64

√
δ1

1−
√
δ1
), 0}.

Large TER. We substitute the bounds from Lemma S9(ii) into Lemma S8. Given Assump-

tion 3 and 4(ii) and in the event Ω1(ν) ∩ Ω4 ∩ Ω6(ν) for 0 < ν < 1
4 , we have for τ ≥ 0 and

µ1(X(d+1):pX
T
(d+1):p

)

µn(Ad)
≤ 1,

|Bin,12|
Bin,1

≤
2µ1(X(d+1):pX

T
(d+1):p)

µn(Ad)
(1 + 112

√
δ2

1−
√
δ2

+ 64

√
δ2

1−
√
δ2
).

In the event Ω6(ν) for 0 < ν < 1
4 , from (S45) and (S50), we have

µ1(Xd+1:pX
T
d+1:p) ≤ (1 + ν + η2)

∑
j>d

λj ≤ 2
∑
j>d

λj

µn(Ad) ≥ (1− ν − η2)(
∑
j>d

λj + nτ) ≥ 1

4
(
∑
j>d

λj + nτ).

Then for τ ≥ 0 and
8(

∑
j>d λj
n

)

τ+

∑
j>d λj
n

≤ 1, we have

|Bin,12|
Bin,1

≤
16(

∑
j>d λj
n )

τ +
∑

j>d λj
n

(1 + 112

√
δ2

1−
√
δ2

+ 64

√
δ2

1−
√
δ2
).

Hence we have for τ ≥ 0,

max{Bin,1 − |Bin,12|, 0}
Bin,1

≥ κ2(τ),

where κ2(τ) = max{1− (16
λd+1

rd(Σ)

n

τ+λd+1
rd(Σ)

n

(1 + 112
√
δ2

1−
√
δ2
) + 64

√
δ2

1−
√
δ2
), 0}.

II.6 Useful identities and inequalities

Lemma S10 (Identities from Tsigler & Bartlett (2023)).

Let θ̂(τ, y) = XT(XXT + nτIn)
−1y and θ̂(τ, y)T = [θ̂(τ, y)T1:d, θ̂(λ, y)

T
d+1:p]. Then

(i)

θ̂(τ, y)1:d +XT
1:dA

−1
d X1:dθ̂(τ, y)1:d = XT

1:dA
−1
d y,
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(ii)

A−1X1:d = A−1
d X1:d(Id +XT

1:dA
−1
d X1:d)

−1,

(iii)

(Id +XT
1:dA

−1
d X1:d)

−1 = Id −XT
1:dA

−1X1:d.

Proof.

Lemma S10(i) is from Section F in Tsigler & Bartlett (2023). Lemma S10(ii) is from H.2 in Tsigler

& Bartlett (2023). To show Lemma S10(iii), from Lemma S10(ii),

A−1X1:d = A−1
d X1:d(Id +XT

1:dA
−1
d X1:d)

−1.

Then we have

XT
1:dA

−1X1:d = XT
1:dA

−1
d X1:d(Id +XT

1:dA
−1
d X1:d)

−1

= (XT
1:dA

−1
d X1:d + Id − Id)(Id +XT

1:dA
−1
d X1:d)

−1

= Id − (Id +XT
1:dA

−1
d X1:d)

−1,

which gives

(Id +XT
1:dA

−1
d X1:d)

−1 = Id −XT
1:dA

−1X1:d.

□

Lemma S11 (Monotoncity of variance). Denote by Vout(τ) the Vout in (5) with the ridge parameter

τ . If 0 ≤ τ1 ≤ τ2, then Vout(τ2) ≤ Vout(τ1).

Proof. From the definition, we have

Vout(τ1) = σ2Tr((nτ1In +XXT)−1XΣXT(nτ1In +XXT)−1)

= σ2Tr(XΣXT(nτ1In +XXT)−2)

≥ σ2Tr(XΣXT(nτ2In +XXT)−2)

= σ2Tr((nτ2In +XXT)−1XΣXT(nτ2In +XXT)−1)

= Vout(τ2).

The inequality follows because (nτ1In +XXT)−2 − (nτ2In +XXT)−2 is semi-positive definite. □
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Lemma S12 (Weyl’s inequality). For M,N,R ∈ Cn×n, suppose that M = N +R, R is Hermitian

matrices, and their respective eigenvalues are ordered as follows:

(M) µ1 ≥ µ2 ≥ ... ≥ µn,

(N) ν1 ≥ ν2 ≥ ... ≥ νn,

(R) ρ1 ≥ ρ2 ≥ ... ≥ ρn.

Then for i = 1, 2, . . . , n,

νi + ρn ≤ µi ≤ νi + ρ1.

Lemma S13 (Ruhe’s trace inequality in Marshall et al. (2011)). If U and V are n × n positive

semidefinite Hermitian matrices, then

Tr(UV ) ≥
n∑
i=1

λi(U)λn−i+1(V )

In Lemma S14–S18 below, C0 is an absolute constant which may vary from lemma to lemma. For

simplicity, we treat C0 as a common absolute constant, by taking the maximum of such constants

from the individual lemmas.

Lemma S14 (Corollary 2.8 in Zajkowski (2020)). Suppose that z ∈ Rp, with Cov(z, z) = Ip, is a

sub-gaussian vector with norm σx. Let x = zDiag(
√
λ1, ....,

√
λp). Then

P (|
p∑
j=1

x2j −
p∑
j=1

λj | ≥
p∑
j=1

λjδ) ≤ 2exp{−min{r0(Σ)
δ2

C2
0σ

4
x

,
√
r0(Σ)

δ

C0σ2x
}}.

That is, with probability at least 1− 2exp{−min{r0(Σ) δ2

C2
0σ

4
x
,
√
r0(Σ)

δ
C0σ2

x
}},

(1− δ)

p∑
j=1

λj ≤
p∑
j=1

x2j ≤ (1 + δ)

p∑
j=1

λj .

Lemma S15 (Lemma 23 in Tsigler & Bartlett (2023)). Suppose that z1, . . . , zn are independent sub-

gaussian vectors in Rp, each with sub-gaussian norm σx. Let Σ = Diag(λ1, ..., λp) for some positive

non-increasing sequence {λi}pj=1. Denote Z to be the matrix with rows {ziΣ1/2}ni=1 and A = ZZT.

Denote also Å to be the matrix A with zeroed out diagonal elements: Åi,j = (1 − δi,j)Ai,j, where

δi,j = 0 if i ̸= j or δi,j = 1 if i = j. Then for any t > 0 with probability at least 1− 4exp{−t/C0},

∥Å∥ ≤ C0σ
2
x

√√√√(t+ n)(λ21(t+ n) +

p∑
j=1

λ2j ).
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Lemma S16 (Lemma 24 in Tsigler & Bartlett (2023)). In the same setting as Lemma S15, we

have with probability at least 1− 6exp{−t/C0},

∥A∥ ≤ C0σ
2
x(λ1(t+ n) +

p∑
j=1

λj).

Lemma S17 (Theorem 5.39 in Vershynin (2012)). Let d ≤ n and Z ∈ Rn×d whose rows zi are

independent sub-gaussian isotropic vectors in Rd with sub-gaussian norm σx. Then for t ≥ 0, with

probability at least 1− 2exp{− t2

C2
0σ

4
x
},

√
n− C0σ

2
x

√
d− t ≤ smin(Z) ≤ smax(Z) ≤

√
n+ C0σ

2
x

√
d+ t.

Lemma S18 (Lemma 21 in Tsigler & Bartlett (2023)). Let Z ∈ Rn×p whose rows zi are independent

isotropic sub-gaussian vectors in Rp with sub-gaussian norm σx. Let Σ = Diag(λ1, ...., λp) for

some positive non-increasing sequence {λi}pi=1. Then for any t ∈ (0, n) with probability at least

1− 2exp{−t/C0},

(n−
√
ntσ2x)

∑
j>k

λj ≤
n∑
i=1

∥Σ1/2
d:∞Zi,d:∞∥2 ≤ (n+

√
ntσ2x)

∑
j>d

λj .

III Proofs of additional results in Section 3

We provide proofs of Corollaries 1, 2, 4 and 5 which are re-stated below for convenience.

III.1 Sufficient and necessary conditions for MSEout = O( d
n
) and MSEin = O( d

n
)

Corollary 1 (Conditions for MSEout = O( dn) with small or moderate TER). In the setting of

Theorem 1, assume further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEout = O( dn) with a probability approaching 1 as n → ∞ is

that
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ2)
} and the ridge parameter τ is chosen in the range A−1

0 λd+1 ≤ τ ≤

A0λd+1 if rd(Σ
2) ≤ d or A−1

0 λd+1max{1
c

√
rd(Σ2)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} if rd(Σ

2) > d, where

c is a constant satisfying c ≥ 1 and
λd+1

λd
≤ c

√
d
n min{1,

√
d

rd(Σ2)
}.

(ii) Suppose that n ≫ d and rd(Σ
2) ≫ d. Then a necessary condition for MSEout = O( dn) with

a probability bounded away from 0 is that
λd+1

λd
≲

√
d
n

√
d

rd(Σ2)
and the ridge parameter τ is chosen

in the range

√
rd(Σ2)
d λd+1 ≲ τ ≲

√
d
nλd.

The sufficient and necessary conditions become matched,
λd+1

λd
≲

√
d
n

√
d

rd(Σ2)
, if in the case where

n≫ d and rd(Σ
2) ≫ d in addition to the assumptions stated.

Proof. From Theorem 1, for any 0 < ϵ < 1, the bounds in Theorem 1(i)(ii)(iii) hold with probability

at least 1− ϵ for n ≥ N if N is large enough. From the bounds in Theorem 1(i)(ii)(iii), σ2 ≍ 1 and
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∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, we have

MSEout ≳
d

n
+
rd(Σ

2)

n
, for τ ≤ A−1

0 λd+1, (S60)

τ2

λ2d
+
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
≳ MSEout ≳

τ2

λ2d
+
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
, for A−1

0 λd+1 ≤ τ ≤ A0λd, (S61)

MSEout ≳ 1, for τ ≥ A0λd. (S62)

1○ Proof of Corollary 1(i):

Suppose
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ2)
}. Then there exists a constant c ≥ 1, such that

λd+1

λd
≤ c

√
d

n
min{1,

√
d

rd(Σ2)
}. (S63)

Then we prove the sufficiency of the condition,
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ2)
}, in two cases d ≥ rd(Σ

2)

and d < rd(Σ
2).

• If d ≥ rd(Σ
2), from (S63), then

λd+1

λd
≤ c

√
d

n
. (S64)

If we let A−1
0 λd+1 ≤ τ ≤ A0λd+1, from (S64) and d ≥ rd(Σ

2), then

τ2

λ2d
≤ A2

0

λ2d+1

λ2d
≤ c2A2

0

d

n
,

λ2d+1

τ2
rd(Σ

2)

n
≤ A2

0

d

n
.

From the upper bound in (S61), we have MSEout = O( dn).

• If d < rd(Σ
2), from (S63), then

λd+1

λd
≤ c

d√
n rd(Σ2)

.

Let τ be in the range A−1
0 λd+1 ≤ A−1

0 λd+1max{1
c

√
rd(Σ2)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} ≤

A0λd, then

τ2

λ2d
≤ c2A2

0

d

n
,

rd(Σ
2)

n

λ2d+1

τ2
≤ c2A2

0

d

n
.

From the upper bound in (S61), we have MSEout = O( dn).
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In conclusion,
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ2)
} is a sufficient condition for MSEout = O( dn) with a

probability approaching 1 as n → ∞. The ridge parameter τ is chosen in the range A−1
0 λd+1 ≤

τ ≤ A0λd+1 if rd(Σ
2) ≤ d or A−1

0 λd+1max{1
c

√
rd(Σ2)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} if rd(Σ

2) > d,

where c is a constant satisfying c ≥ 1 and
λd+1

λd
≤ c

√
d
n min{1,

√
d

rd(Σ2)
}.

2○ Proof of Corollary 1(ii):

We first show that MSEout = O( dn) with a probability bounded away from 0 only when A−1
0 λd+1 ≤

τ ≤ A0λd by method of exclusion.

• If τ ≥ A0λd, then from lower bound in (S62), we have MSEout ≳ 1, which is contradictory to

MSEout = O( dn) and n≫ d.

• If τ ≤ A−1
0 λd+1, then from lower bound in (S60), we have MSEout ≳ rd(Σ

2)
n ≫ d

n (because

r(Σ2) ≫ d), which is contradictory to MSEout = O( dn).

By excluding the above two possibilities, MSEout = O( dn) with a probability bounded away from

0 only when A−1
0 λd+1 ≤ τ ≤ A0λd. From the lower bound in (S61), we have

τ2

λ2d
= O(

d

n
),

rd(Σ
2)

n

λ2d+1

τ2
= O(

d

n
).

That is, √
rd(Σ2)

d
λd+1 ≲ τ ≲

√
d

n
λd,

λd+1

λd
≲

√
d

n

√
d

rd(Σ2)
.

Hence a necessary condition for MSEout = O( dn) with a probability bounded away from 0 is that

λd+1

λd
≲

√
d
n

√
d

rd(Σ2)
and

√
rd(Σ2)
d λd+1 ≲ τ ≲

√
d
nλd.

□

Corollary 2 (Conditions for MSEin = O( dn) with small or moderate TER). In the setting of

Theorem 2, assume further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEin = O( dn) with a probability approaching 1 as n → ∞ is

that
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ)} and the ridge parameter τ is chosen in the range A−1
0 λd+1 ≤ τ ≤

A0λd+1 if rd(Σ) ≤ d or A−1
0 λd+1max{1

c

√
rd(Σ)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} if rd(Σ) > d, where c

is a constant satisfying c ≥ 1 and
λd+1

λd
≤ c

√
d
n min{1,

√
d

rd(Σ)}.
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(ii) Suppose that n ≫ d, rd(Σ)
n

√
n
d ≫ 1 and 64

√
δ1

1−
√
δ1

< 1. Then a necessary condition for

MSEin = O( dn) with a probability bounded away from 0 is that
λd+1

λd
≲ d

rd(Σ) and the ridge parameter

τ is chosen in the range λd+1
rd(Σ)
n

√
n
d ≲ τ ≲ λd

√
d
n .

The sufficient and necessary conditions become matched,
λd+1

λd
≲ d

rd(Σ) , if in the case where n ≫ d

and rd(Σ) ≍ n in addition to the assumptions stated.

Proof.

From Theorem 2, for 0 < ϵ < 1, Theorem 2(i)(ii)(iii) hold with probability at least 1 − ϵ for

n ≥ N if N is large enough. From the bounds in Theorem 2(i)(ii)(iii), σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1,

we have

MSEin ≳
d

n
+
r2d(Σ)

n2
, for τ ≤ A−1

0 λd+1, (S65)

τ2

λ2d
+
d

n
+
λ2d+1

τ2
rd(Σ)

n
≳ MSEin ≳ κ1(τ)

τ2

λ2d
+
d

n
+
λ2d+1

τ2
r2d(Σ)

n2
, for A−1

0 λd+1 ≤ τ ≤ A0λd, (S66)

MSEin ≳ κ1(τ) +
λ2d+1

τ2
r2d(Σ)

n2
, for τ ≥ A0λd. (S67)

1○ Proof of Corollary 2(i):

Suppose
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ)}, then there exists a constant c such that c ≥ 1 and

λd+1

λd
≤ c

√
d

n
min{1,

√
d

rd(Σ)
}. (S68)

We prove the sufficiency of the condition,
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ)}, in two cases, d ≥ rd(Σ) and

d < rd(Σ).

• If d ≥ rd(Σ), from (S68), we have

λd+1

λd
≤ c

√
d

n
. (S69)

If we let A−1
0 λd+1 ≤ τ ≤ A0λd+1, from (S69) and d ≥ rd(Σ), we have

τ2

λ2d
≤ A2

0

λ2d+1

λ2d
≤ c2A2

0

d

n
,

λ2d+1

τ2
rd(Σ)

n
≤ A2

0

rd(Σ)

n
≤ A2

0

d

n
.

Then from the upper bound in (S66), we have MSEin = O( dn).

• If d < rd(Σ), from (S68), we have

λd+1

λd
≤ c

d√
n rd(Σ)

.
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Let τ be in the range A−1
0 λd+1 ≤ A−1

0 λd+1max{1
c

√
rd(Σ)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} ≤

A0λd, then we have

τ2

λ2d
≤ c2A2

0

d

n
,

λ2d+1

τ2
rd(Σ)

n
≤ c2A2

0

d

n
.

From the upper bound in (S66), we have MSEin = O( dn).

In conclusion,
λd+1

λd
≲

√
d
n min{1,

√
d

rd(Σ)} is a sufficient condition for MSEin = O( dn) with a

probability approaching 1 as n→ ∞. The ridge parameter τ is chosen in the range A−1
0 λd+1 ≤ τ ≤

A0λd+1 if rd(Σ) ≤ d or A−1
0 λd+1max{1

c

√
rd(Σ)
d , 1} ≤ τ ≤ A0λdmin{c

√
d
n , 1} if rd(Σ) > d, where c

is a constant satisfying c ≥ 1 and
λd+1

λd
≤ c

√
d
n min{1,

√
d

rd(Σ)}.

2○ Proof of Corollary 2(ii):

First, we point out that with 64
√
δ1

1−
√
δ1
< 1, we have κ1(τ) ≳ 1 if

λd+1

τ ≪ 1. Then we show

that MSEin = O( dn) with a probability bounded away from 0 only when A−1
0 λd+1 ≤ τ ≤ A0λd by

method of exclusion.

• If τ ≤ A−1
0 λd+1, from lower bound in (S65) and rd(Σ)

n ≫
√

d
n , we have MSEin ≫ d

n , which is

contradictory to MSEin = O( dn).

• If τ ≥ A0λd and MSEin = O( dn), from lower bound of (S67), we have

λ2d+1

τ2
r2d(Σ)

n2
= O(

d

n
),

hence there exists a constant c ≥ 1 such that

λ2d+1

τ2
r2d(Σ)

n2
≤ c

d

n
.

With rd(Σ)
n

√
n
d ≫ 1, we have

λd+1

τ
≤

√
c

√
d

n

n

rd(Σ)
≪ 1.

Hence we have

κ1(τ) ≳ 1

=⇒MSEin ≳ 1, (from (S67))

which is contradictory to MSEin = O( dn) if n≫ d.
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By excluding the above two possibilities, we know that MSEin = O( dn) with a probability

bounded away from 0 only when A−1
0 λd+1 ≤ τ ≤ A0λd. From lower bound in (S66) and MSEin =

O( dn), we have

λ2d+1

τ2
r2d(Σ)

n2
= O(

d

n
).

Similarly to the derivation in the case of τ ≥ A0λd, we have κ1(τ) ≳ 1. Hence MSEin = O( dn) only

when A−1
0 λd+1 ≤ τ ≤ A0λd and κ1(τ) ≳ 1. From the lower bound in (S66), we have MSEin = O( dn)

only when A−1
0 λd+1 ≤ τ ≤ A0λd and

λ2d+1

τ2
r2d(Σ)

n2
= O(

d

n
),

τ2

λ2d
= O(

d

n
).

That is,

A−1
0 λd+1 ≪ λd+1

rd(Σ)

n

√
n

d
≲ τ ≲ λd

√
d

n
≪ A0λd,

λd+1

λd
≲

d

rd(Σ)
.

Hence a necessary condition for MSEin = O( dn) with a probability bounded away from 0 is
λd+1

λd
≲

d
rd(Σ) and λd+1

rd(Σ)
n

√
n
d ≲ τ ≲ λd

√
d
n . □

Corollary 4 (Conditions for MSEout = O( dn) with large TER). In the setting of Theorem 3,

assume further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEout = O( dn) with a probability approaching 1 as n→ ∞ is that

λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)} and the ridge parameter τ is chosen satisfying τ + λd+1

rd(Σ)
n ≲√

d
nλd if

n
√
rd(Σ2)√
drd(Σ)

≤ 1 or

√
rd(Σ2)
d λd+1 ≲ τ + λd+1

rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

> 1.

(ii) Suppose that n ≫ d. Then a necessary condition for MSEout = O( dn) with a proba-

bility bounded away from 0 is that
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)} and τ is chosen satisfying

τ + λd+1
rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

≤ 1 or

√
rd(Σ2)
d λd+1 ≲ τ + λd+1

rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

> 1.

The sufficient and necessary conditions become matched,
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)}, if in the

case where n≫ d in addition to the assumptions stated.

Proof.

From Theorem 3, for 0 < ϵ < 1, Theorem 3(i)(ii) hold with probability at least 1− ϵ for n ≥ N

if N is large enough. Because A0 can be any unbounded positive value in Theorem 3, from the

39



bounds in Theorem 3(i)(ii), σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, we have

(τ + λd+1
rd(Σ)
n )2

λ2d
+
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
≳ MSEout ≳

(τ + λd+1
rd(Σ)
n )2

λ2d
+
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
, for τ + λd+1

rd(Σ)

n
≲ λd, (S70)

MSEout ≳ 1, for τ + λd+1
rd(Σ)

n
≳ λd. (S71)

1○ Proof of Corollary 4(i):

We prove the sufficiency of the condition,
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)}, in two cases

n
√
rd(Σ2)√
drd(Σ)

≤

1 and
n
√
rd(Σ2)√
drd(Σ)

> 1.

• If
n
√
rd(Σ2)√
drd(Σ)

≤ 1, from
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)}, we have

λd+1

λd
≲

√
nd

rd(Σ)
.

Because
λd+1

λd
≲

√
nd

rd(Σ) , we have λd+1
rd(Σ)
n ≲

√
d
nλd. Then we can choose non-negative τ such

that τ + λd+1
rd(Σ)
n ≲

√
d
nλd and

(τ + λd+1
rd(Σ)
n )2

λ2d
≲
d

n
. (S72)

Moreover, with
n
√
rd(Σ2)√
drd(Σ)

≤ 1, we have nrd(Σ
2)

r2d(Σ)
≤ d

n . Hence we have for τ ≥ 0,

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
≤ n2

r2d(Σ)

rd(Σ
2)

n

≤ d

n
. (S73)

Then from (S72)–(S73) and the upper bound in (S70), we have MSEout = O( dn).

• If
n
√
rd(Σ2)√
drd(Σ)

> 1, from
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)}, we have

λd+1

λd
≲

d√
n rd(Σ2)

. (S74)

With
n
√
rd(Σ2)√
drd(Σ)

> 1, we have

√
rd(Σ2) >

√
drd(Σ)

n
. (S75)

Now we prove
√

d
nλd ≳ λd+1

rd(Σ)
n . From (S74), we have√

d

n
λd ≳ λd+1

√
rd(Σ2)

d
.
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Further with (S75), we have √
d

n
λd ≳ λd+1

√
rd(Σ2)

d
,

> λd+1
rd(Σ)

n
. (S76)

From (S76), we let τ ≥ 0 such that√
rd(Σ2)

d
λd+1 ≲ τ + λd+1

rd(Σ)

n
≲

√
d

n
λd ≤ λd. (S77)

Then we have

rd(Σ
2)

n

λ2d+1

(τ +
∑

j>d λj
n )2

≲
d

n
,

(τ +
∑

j>d λj
n )2

λ2d
≲
d

n
.

From upper bound in (S70), we have MSEout = O( dn).

In conclusion, we have MSEout = O( dn) with a high probability approaching 1 if n → ∞ given

λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)}. The ridge parameter τ is chosen such that τ +λd+1

rd(Σ)
n ≲

√
d
nλd

if
n
√
rd(Σ2)√
drd(Σ)

≤ 1 or

√
rd(Σ2)
d λd+1 ≲ τ + λd+1

rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

> 1.

2○ Proof of Corollary 4(ii):

We first show that MSEout = O( dn) with a probability bounded away from 0 only when τ +

λd+1
rd(Σ)
n ≲ λd by method of exclusion.

If τ ≳ λd, from lower bound (S71), we have MSEout ≳ 1 , which is contradictory to MSEout =

O( dn) and n≫ d.

By excluding the above possibility, MSEout = O( dn) with a probability bounded away from 0 only

when τ + λd+1
rd(Σ)
n ≲ λd. Then we prove the necessity of the condition in two cases,

n
√
rd(Σ2)√
drd(Σ)

≤ 1

and
n
√
rd(Σ2)√
drd(Σ)

> 1.

• If
n
√
rd(Σ2)√
drd(Σ)

≤ 1, from τ + λd+1
rd(Σ)
n ≲ λd and lower bound in (S70), we have

(τ + λd+1
rd(Σ)
n )2

λ2d
= O(

d

n
).

Then we have

τ + λd+1
rd(Σ)

n
≲

√
d

n
λd,
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and

λd+1

λd
≲

√
d

n

λd+1

τ + λd+1
rd(Σ)
n

. (S78)

Obviously, we have √
d

n

λd+1

τ + λd+1
rd(Σ)
n

≤
√
nd

rd(Σ)
. (S79)

Combining (S78) and (S79), we have

λd+1

λd
≲

√
nd

rd(Σ)
.

• If
n
√
rd(Σ2)√
drd(Σ)

> 1, from τ + λd+1
rd(Σ)
n ≲ λd and the lower bound in (S70), we have

rd(Σ
2)

n

λ2d+1

(τ +
∑

j>d λj
n )2

= O(
d

n
),

(τ +
∑

j>d λj
n )2

λ2d
= O(

d

n
).

Hence √
rd(Σ2)

d
λd+1 ≲ τ +

∑
j>d λj

n
≲

√
d

n
λd,

λd+1

λd
≲

d√
n rd(Σ2)

.

In conclusion, a necessary condition for MSEout = O( dn) with a probability bounded away from

0 is
λd+1

λd
≲

√
d
n min{

√
d

rd(Σ2)
, n
rd(Σ)} and the ridge parameter τ is chosen such that τ +λd+1

rd(Σ)
n ≲√

d
nλd if

n
√
rd(Σ2)√
drd(Σ)

≤ 1 or

√
rd(Σ2)
d λd+1 ≲ τ + λd+1

rd(Σ)
n ≲

√
d
nλd if

n
√
rd(Σ2)√
drd(Σ)

> 1. □

Corollary 5 (Conditions for MSEin = O( dn) with large TER). In the setting of Theorem 4, assume

further that σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1.

(i) A sufficient condition for MSEin = O( dn) with a probability approaching to 1 as n → ∞ is

λd+1

λd
≲ d

rd(Σ) and the ridge parameter τ is chosen such that λd+1
rd(Σ)
n

√
n
d ≲ τ+λd+1

rd(Σ)
n ≲ λd

√
d
n .

(ii) Suppose that n ≫ d and 64
√
δ2

1−
√
δ2
< 1. Then a necessary condition for MSEin = O( dn) with

a probability bounded away from 0 is
λd+1

λd
≲ d

rd(Σ) and the ridge parameter τ is chosen in the range

λd+1
rd(Σ)
n

√
n
d ≲ τ + λd+1

rd(Σ)
n ≲ λd

√
d
n .

The sufficient and necessary conditions become matched,
λd+1

λd
≲ d

rd(Σ) , in the case where n≫ d in

addition to the assumptions stated.
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Proof.

From Theorem 4, for 0 < ϵ < 1, Theorem 4(i)(ii) hold with probability at least 1− ϵ for n ≥ N

if N is large enough. Because A0 can be any unbounded positive value in Theorem 4, from the

bounds in Theorem 4(i)(ii), σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, we have

(τ + λd+1
rd(Σ)
n )2

λ2d
+
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
≳ MSEin ≳

κ2(τ)
(τ + λd+1

rd(Σ)
n )2

λ2d
+
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
, for τ + λd+1

rd(Σ)

n
≲ λd, (S80)

MSEin ≳ κ2(τ) +
λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n
, for τ + λd+1

rd(Σ)

n
≳ λd. (S81)

1○ Proof of Corollary 5(i):

If
λd+1

λd
≲ d

rd(Σ) , we have λd

√
d
n ≳ λd+1

rd(Σ)
n

√
n
d . Hence we can choose τ ≥ 0 such that

λd+1
rd(Σ)

n

√
n

d
≲ τ + λd+1

rd(Σ)

n
≲ λd

√
d

n
. (S82)

Then

(τ + λd+1
rd(Σ)
n )2

λ2d
= O(

d

n
),

(λd+1
rd(Σ)
n )2

(τ + λd+1
rd(Σ)
n )2

= O(
d

n
).

From the upper bound in (S80), we have MSEin = O( dn).

2○ Proof of Corollary 5(ii):

We point out that with 64
√
δ2

1−
√
δ2
< 1, we have κ2(τ) ≳ 1 if

λd+1
rd(Σ)

n

τ+λd+1
rd(Σ)

n

≪ 1. If MSEin = O( dn),

from lower bound in (S80)–(S81), we have

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
= O(

d

n
).

With n≫ d, we have

τ + λd+1
rd(Σ)

n
≳ λd+1

rd(Σ)

n

√
n

d
≫ λd+1

rd(Σ)

n
.

Equivalently, we have

λd+1
rd(Σ)
n

τ + λd+1
rd(Σ)
n

≪ 1,

then

κ2(τ) ≳ 1.
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Hence MSEin = O( dn) only when κ2(τ) ≳ 1. Then we show that MSEin = O( dn) with a probability

bounded away from 0 only when τ + λd+1
rd(Σ)
n ≲ λd by method of exclusion.

If τ + λd+1
rd(Σ)
n ≳ λd, from the lower bound in (S81), we have

MSEin ≳ κ2(τ) ≳ 1,

which is contradictory to MSEin = O( dn) and n≫ d.

By excluding the above possibility, MSEin = O( dn) with a probability bounded away from 0 only

when τ + λd+1
rd(Σ)
n ≲ λd. From the lower bound in (S80), MSEin = O( dn) only when

(τ + λd+1
rd(Σ)
n )2

λ2d
= O(

d

n
),

(λd+1
rd(Σ)
n )2

(τ + λd+1
rd(Σ)
n )2

= O(
d

n
).

Then

λd+1
rd(Σ)

n

√
n

d
≲ τ + λd+1

rd(Σ)

n
≲ λd

√
d

n
,

λd+1

λd
≲

d

rd(Σ)
.

□

III.2 Out-sample and in-sample errors with optimal ridge parameters

Corollary 3 (Optimal error orders with small or moderate TER). Suppose that Assumption 1,

2 and 4(i) are satisfied and further σ2 ≍ 1, ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, rd(Σ) ≍ n, λd ≳ λd+1

√
n

rd(Σ2)
,

λd ≫ λd+1, and 64
√
δ1

1−
√
δ1
< 1. Then

(i) MSE∗
out ≍ max{λd+1

λd

√
rd(Σ2)
n , dn} with a probability approaching to 1 and the optimal τ is

chosen as τ =

√
λdλd+1

√
rd(Σ2)
n min{

√
cA−2

0 , A0λd√
λdλd+1

√
rd(Σ

2)

n

} where c is a constant satisfying

λd+1

√
n

rd(Σ2)
≤ cλd.

(ii) MSE∗
in ≍ max{λd+1

λd
, dn} with a probability approaching to 1 and the optimal τ is chosen satis-

fying τ ≍
√
λd+1λd.

Therefore MSE∗
out ≲ MSE∗

in with a probability approaching to 1, by noting rd(Σ
2) ≤ rd(Σ) ≍ n.

Proof.

Proof of MSE∗
out: For 0 < ϵ < 1, Theorem 1(i)(ii)(iii) hold with probability at least 1 − ϵ

for n ≥ N if N is large enough under Assumption 1, 2 and 4(i). From the bounds in Theorem
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1(i)(ii)(iii), σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, (S60)–(S62) hold. Denote MSEout with optimal τ chosen

from τ ≤ A−1
0 λd+1 as MSE∗

1,out, MSEout with optimal τ chosen from A−1
0 λd+1 ≤ τ ≤ A0λd as

MSE∗
2,out and MSEout with optimal τ chosen from τ ≥ A0λd as MSE∗

3,out. Then we give orders of

bounds of MSE∗
1,out, MSE∗

2,out and MSE∗
3,out and give the order of MSE∗

out by the integrating the

orders of bounds of MSE∗
1,out, MSE∗

2,out and MSE∗
3,out.

• If τ ≤ A−1
0 λd+1, from lower bound in (S60), we have MSE∗

1,out ≳ ( dn+
rd(Σ

2)
n ) ≍ max{ dn ,

rd(Σ
2)

n }.

Moreover, we have max{ dn ,
rd(Σ

2)
n } ≳ max{ dn ,

λd+1

λd

√
rd(Σ2)
n } because λd ≳ λd+1

√
n

rd(Σ2)
.

• If τ ≥ A0λd, from lower bound in (S62), we have MSE∗
3,out ≳ 1.

• If A−1
0 λd+1 ≤ τ ≤ A0λd, from (S61), we have MSEout ≍ τ2

λ2d
+ rd(Σ

2)
n

λ2d+1

τ2
+ d

n and τ2

λ2d
+

rd(Σ
2)

n

λ2d+1

τ2
≥ λd+1

λd

√
rd(Σ2)
n . Let

τ =

√
λdλd+1

√
rd(Σ2)

n
min{

√
cA−2

0 ,
A0λd√

λdλd+1

√
rd(Σ2)
n

},

where c is a constant satisfying λd+1

√
n

rd(Σ2)
≤ cλd, then A−1

0 λd+1 ≤ τ ≤ A0λd because

λd+1

√
n

rd(Σ2)
≤ cλd. With the above choice of τ , we have MSEout ≍ λd+1

λd

√
rd(Σ2)
n . Therefore,

if A−1
0 λd+1 ≤ τ ≤ A0λd, we have MSE∗

2,out ≍ d
n +

λd+1

λd

√
rd(Σ2)
n ≍ max{ dn ,

λd+1

λd

√
rd(Σ2)
n }.

By integrating the orders of bounds of MSE∗
1,out, MSE∗

2,out and MSE∗
3,out, we have MSE∗

out ≍

max{ dn ,
λd+1

λd

√
rd(Σ2)
n }.

Proof of MSE∗
in: For 0 < ϵ < 1, Theorem 2(i)(ii)(iii) hold with probability at least 1 − ϵ

for n ≥ N if N is large enough under Assumption 1, 2 and 4(i). From the bounds in Theorem

2(i)(ii)(iii), σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, (S65)–(S67) hold. Denote MSEin with optimal τ chosen

from τ ≤ A−1
0 λd+1 as MSE∗

1,in and MSEin with optimal τ chosen from A−1
0 λd+1 ≤ τ ≤ A0λd as

MSE∗
2,in and MSEin with optimal τ chosen from τ ≥ A0λd as MSE∗

3,in. Then we give orders of

bounds of MSE∗
1,in, MSE∗

2,in and MSE∗
3,in and give the order of MSE∗

in by the integrating the orders

of bounds of MSE∗
1,in, MSE∗

2,in and MSE∗
3,in.

• If τ ≤ A−1
0 λd+1, from lower bound in (S65) and rd(Σ) ≍ n, we have

MSE∗
1,in ≳

d

n
+
r2d(Σ)

n2
≍ 1.

• If τ ≥ A0λd, then τ ≫ λd+1 because λd ≫ λd+1. Further with 64
√
δ1

1−
√
δ1

< 1, we have

κ1(τ) ≳ 1. Then from the lower bound in (S67), we have for τ ≥ A0λd,

MSE∗
3,in ≳ κ1(τ) ≳ 1.
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• If A−1
0 λd+1 ≤ τ ≤ A0λd, we first show that MSE∗

2,in ≲ max{ dn ,
λd+1

λd
} and then show that

MSE∗
2,in ≳ max{ dn ,

λd+1

λd
}. These give MSE∗

2,in ≍ max{ dn ,
λd+1

λd
}.

We first show that MSE∗
2,in ≲ max{ dn ,

λd+1

λd
}. From the upper bound in (S66), we have

MSEin ≲ τ2

λ2d
+
λ2d+1

τ2
+ d
n . Let τ ≍

√
λd+1λd, then A

−1
0 λd+1 ≪ τ ≪ A0λd and

τ2

λ2d
+
λ2d+1

τ2
=

λd+1

λd
.

Hence we have MSEin ≲ λd+1

λd
+ d

n ≍ max{ dn ,
λd+1

λd
}.

Next we show that MSE∗
2,in ≳ max{ dn ,

λd+1

λd
}. From lower bound in (S66), we have MSEin ≳

κ1(τ)
τ2

λ2d
+

λ2d+1

τ2
+ d

n . Then we show that κ1(τ)
τ2

λ2d
+

λ2d+1

τ2
≳ λd+1

λd
for A−1

0 λd+1 ≤ τ ≤ A0λd. For

A−1
0 λd+1 ≤ τ ≲

√
λd+1λd, we have

κ1(τ)
τ2

λ2d
+
λ2d+1

τ2
≥
λ2d+1

τ2
≥ λd+1

λd
.

For
√
λd+1λd ≲ τ ≤ A0λd, from λd ≫ λd+1, we have τ ≫ λd+1. Further with 64

√
δ1

1−
√
δ1
< 1,

we have κ1(τ) ≳ 1, and then

κ1(τ)
τ2

λ2d
+
λ2d+1

τ2
≥ κ1(τ)

τ2

λ2d
≳
λd+1

λd
.

Hence we have κ1(τ)
τ2

λ2d
+
λ2d+1

τ2
≳ λd+1

λd
for A−1

0 λd+1 ≤ τ ≤ A0λd. That is, MSE∗
2,in ≳ d

n+
λd+1

λd
≍

max{ dn ,
λd+1

λd
}.

FromMSE∗
2,in ≲ max{ dn ,

λd+1

λd
} and MSE∗

2,in ≳ max{ dn ,
λd+1

λd
}, we have MSE∗

2,in ≍ max{ dn ,
λd+1

λd
}.

By integrating the orders of bounds of MSE∗
1,in, MSE∗

2,in and MSE∗
3,in, we have MSE∗

in ≍ max{ dn ,
λd+1

λd
}.

□

Corollary 6 (Optimal error orders with large TER). Suppose that Assumption 1, 3 and 4(ii) are

satisfied, and further σ2 ≍ 1, ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, λd ≫ λd+1
rd(Σ)
n and 64

√
δ2

1−
√
δ2
< 1. Then

(i) The order of MSE∗
out is max{λd+1

λd

√
rd(Σ2)
n ,

λ2d+1

λ2d

rd(Σ)2

n2 , dn} with a probability approaching to 1

and the optimal τ is chosen as τ = 0 if
n
√
rd(Σ2)√
drd(Σ)

≤ λd+1

λd

rd(Σ)
n or satisfying τ + λd+1

rd(Σ)
n ≍√

λdλd+1

√
rd(Σ2)
n if

n
√
rd(Σ2)√
drd(Σ)

>
λd+1

λd

rd(Σ)
n .

(ii) The order of MSE∗
in is max{λd+1

λd

rd(Σ)
n , dn} with a probability approaching to 1 and the optimal

τ is chosen satisfying τ + λd+1
rd(Σ)
n ≍

√
λdλd+1

rd(Σ)
n .

Therefore MSE∗
out ≲ MSE∗

in with a probability approaching to 1 because
λd+1

λd

√
rd(Σ2)
n ≲ λd+1

λd

rd(Σ)
n

by noting rd(Σ
2) ≤ rd(Σ) and rd(Σ) ≳ n (by Assumption 3) and

λ2d+1

λ2d

rd(Σ)2

n2 ≲ λd+1

λd

rd(Σ)
n by noting

λd ≫ λd+1
rd(Σ)
n .

Proof.

Proof of MSE∗
out: For 0 < ϵ < 1, Theorem 3(i)(ii) hold with probability at least 1− ϵ for n ≥ N
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if N is large enough under Assumption 1, 3 and 4(ii). Because A0 can be any unbounded positive

value in Theorem 3, from the bounds in Theorem 3(i)(ii), σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, we have

(S70)–(S71) hold. Denote MSEout with optimal τ chosen from τ + λd+1
rd(Σ)
n ≲ λd as MSE∗

1,out

and MSEout with optimal τ chosen from τ + λd+1
rd(Σ)
n ≳ λd as MSE∗

2,out. Then we give orders of

bounds of MSE∗
1,out and MSE∗

2,out and give the order of MSE∗
out by the integrating the orders of

bounds of MSE∗
1,out and MSE∗

2,out.

• If τ + λd+1
rd(Σ)
n ≳ λd, from lower bound in (S71), we have MSE∗

2,out ≳ 1.

• If τ+λd+1
rd(Σ)
n ≲ λd, from (S70), we have MSEout ≍

(τ+λd+1
rd(Σ)

n
)2

λ2d
+ rd(Σ

2)
n

λ2d+1

(τ+λd+1
rd(Σ)

n
)2
+ d
n .

Then we discuss the order of MSE∗
1,out in two cases,

n
√
rd(Σ2)√
drd(Σ)

≤ λd+1

λd

rd(Σ)
n and

n
√
rd(Σ2)√
drd(Σ)

>

λd+1

λd

rd(Σ)
n .

If
n
√
rd(Σ2)√
drd(Σ)

≤ λd+1

λd

rd(Σ)
n , we have

rd(Σ
2)

n

λ2d+1

(τ + λd+1
rd(Σ)
n )2

≤ nrd(Σ
2)

rd(Σ)2
≤
λ2d+1

λ2d

rd(Σ)
2

n2
≤

(τ + λd+1
rd(Σ)
n )2

λ2d
.

Hence

(τ + λd+1
rd(Σ)
n )2

λ2d
+
rd(Σ

2)

n

λ2d+1

(τ + λd+1
rd(Σ)
n )2

≍
(τ + λd+1

rd(Σ)
n )2

λ2d

≥
λ2d+1

λ2d

rd(Σ)
2

n2
.

If we let τ = 0, we have

(τ + λd+1
rd(Σ)
n )2

λ2d
+
rd(Σ

2)

n

λ2d+1

(τ + λd+1
rd(Σ)
n )2

≍
λ2d+1

λ2d

rd(Σ)
2

n2
.

If
n
√
rd(Σ2)√
drd(Σ)

≥ λd+1

λd

rd(Σ)
n , we have

(τ + λd+1
rd(Σ)
n )2

λ2d
+
rd(Σ

2)

n

λ2d+1

(τ + λd+1
rd(Σ)
n )2

≥ λd+1

λd

√
rd(Σ2)

n
.

We also have

(τ + λd+1
rd(Σ)
n )2

λ2d
+
rd(Σ

2)

n

λ2d+1

(τ + λd+1
rd(Σ)
n )2

≍ λd+1

λd

√
rd(Σ2)

n
,

when τ + λd+1
rd(Σ)
n ≍

√
λdλd+1

√
rd(Σ2)
n ≲ λd.

By combining two cases,
n
√
rd(Σ2)√
drd(Σ)

≤ λd+1

λd

rd(Σ)
n and

n
√
rd(Σ2)√
drd(Σ)

≥ λd+1

λd

rd(Σ)
n , we have MSE∗

1,out ≍

max{λd+1

λd

√
rd(Σ2)
n ,

λ2d+1

λ2d

rd(Σ)2

n2 , dn}.
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By integrating the order of bounds of MSE∗
1,out and MSE∗

2,out, we have MSE∗
out ≍ max{λd+1

λd

√
rd(Σ2)
n ,

λ2d+1

λ2d

rd(Σ)2

n2 , dn}.

Proof of MSE∗
in: For 0 < ϵ < 1, we have Theorem 4(i)(ii) hold with probability at least 1− ϵ for

n ≥ N if N is large enough under Assumption 1, 3 and 4(ii). Because A0 can be any unbounded

positive value in Theorem 4, from the bounds in Theorem 4(i)(ii), σ2 ≍ 1 and ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ 1, we

have (S80)–(S81) hold. Denote MSEin with optimal τ chosen from τ + λd+1
rd(Σ)
n ≲ λd as MSE∗

1,in

and MSEin with optimal τ chosen from τ + λd+1
rd(Σ)
n ≳ λd as MSE∗

2,in. Then we give orders of

bounds of MSE∗
1,in and MSE∗

2,in and give the order of MSE∗
in by the integrating the orders of bounds

of MSE∗
1,in and MSE∗

2,in.

• If τ +λd+1
rd(Σ)
n ≳ λd, then τ +λd+1

rd(Σ)
n ≫ λd+1

rd(Σ)
n because λd ≫ λd+1

rd(Σ)
n . Further with

64
√
δ2

1−
√
δ2
< 1, we have κ2(τ) ≳ 1. From the lower bound in (S81), we have MSE∗

2,in ≳ κ2(τ) ≳

1.

• If τ + λd+1
rd(Σ)
n ≲ λd, we first show that MSE∗

1,in ≲ max{ dn +
λd+1

λd

rd(Σ)
n } and then show that

MSE∗
1,in ≳ max{ dn +

λd+1

λd

rd(Σ)
n }, which gives the order of MSE∗

1,in.

We first show that MSE∗
1,in ≲ max{ dn +

λd+1

λd

rd(Σ)
n }. From the upper bound in (S80), we have

MSEin ≲
(τ+λd+1

rd(Σ)

n
)2

λ2d
+

(λd+1
rd(Σ)

n
)2

(τ+λd+1
rd(Σ)

n
)2

+ d
n . Note that

(τ + λd+1
rd(Σ)
n )2

λ2d
+

(λd+1
rd(Σ)
n )2

(τ +
∑

j>d λj
n )2

≥ λd+1

λd

rd(Σ)

n

and the equality can be achieved when τ + λd+1
rd(Σ)
n ≍

√
λdλd+1

rd(Σ)
n ≲ λd. Hence we have

MSE∗
1,in ≲ d

n +
λd+1

λd

rd(Σ)
n ≍ max{ dn ,

λd+1

λd

rd(Σ)
n }.

Next we show that MSE∗
1,in ≳ max{ dn +

λd+1

λd

rd(Σ)
n }. From the lower bound in (S80), we

have MSEin ≳ κ2(τ)
(τ+λd+1

rd(Σ)

n
)2

λ2d
+

(λd+1
rd(Σ)

n
)2

(τ+λd+1
rd(Σ)

n
)2

+ d
n . Then we show κ2(τ)

(τ+λd+1
rd(Σ)

n
)2

λ2d
+

(λd+1
rd(Σ)

n
)2

(τ+λd+1
rd(Σ)

n
)2

≳ λd+1

λd

rd(Σ)
n if τ + λd+1

rd(Σ)
n ≲ λd. If τ + λd+1

rd(Σ)
n ≲

√
λd+1λd

rd(Σ)
n , we have

κ2(τ)
(τ + λd+1

rd(Σ)
n )2

λ2d
+

(λd+1
rd(Σ)
n )2

(τ + λd+1
rd(Σ)
n )2

≥
(λd+1

rd(Σ)
n )2

(τ + λd+1
rd(Σ)
n )2

≳
λd+1

λd

rd(Σ)

n
.

If

√
λd+1λd

rd(Σ)
n ≲ τ + λd+1

rd(Σ)
n ≲ λd, we have τ + λd+1

rd(Σ)
n ≫ λd+1

rd(Σ)
n because λd ≫

λd+1
rd(Σ)
n . Further with 64

√
δ2

1−
√
δ2
< 1, we have κ2(τ) ≳ 1. Then

κ2(τ)
(τ + λd+1

rd(Σ)
n )2

λ2d
+

(λd+1
rd(Σ)
n )2

(τ + λd+1
rd(Σ)
n )2

≥ κ2(τ)
(τ + λd+1

rd(Σ)
n )2

λ2d
≳
λd+1

λd

rd(Σ)

n
.
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Hence we have κ2(τ)
(τ+λd+1

rd(Σ)

n
)2

λ2d
+

(λd+1
rd(Σ)

n
)2

(τ+λd+1
rd(Σ)

n
)2

≳ λd+1

λd

rd(Σ)
n if τ + λd+1

rd(Σ)
n ≲ λd and

MSE∗
1,in ≳ max{ dn ,

λd+1

λd

rd(Σ)
n }.

From MSE∗
1,in ≲ max{ dn ,

λd+1

λd

rd(Σ)
n } and MSE∗

1,in ≳ max{ dn ,
λd+1

λd

rd(Σ)
n }, we have MSE∗

1,out ≍

max{ dn ,
λd+1

λd

rd(Σ)
n }.

By integrating the orders of bounds of MSE∗
1,in and MSE∗

2,in, we have MSE∗
in ≍ max{ dn ,

λd+1

λd

rd(Σ)
n }.

□

IV Error approximation formulas

IV.1 Convergence of in-sample error approximation formulas

We provide a proof of Theorem 5 in Section 4.1, which is re-stated below for convenience.

Theorem 5 (Convergence of in-sample error approximation formulas). Under Assumption 5, fur-

ther assume that τ > 1
M and n−2/3+1/M < τ < M

2 . Then for any D > 0, δ > 0, with probability at

least 1− C(M,D, δ)n−D,

|Bin(τ ; Ĥn, Ĝn, γ)− Bin| ≤ C(M)max{ 1

τ2/3n(1−δ)/3
,

8M

τn(1−δ)/2
},

|Vin(τ ; Ĥn, γ)−Vin| ≤ σ2C(M)(max{ 1

τ2/3n(1−δ)/3
,

8M

τn(1−δ)/2
}+ 1

n(1−δ)/2
).

where C(M,D, δ) is a constant depending only on (M,D, δ) and C(M) is a constant depending

only on M .

Proof. Our proof is inspired by the proof of Theorem 5 in Hastie et al. (2022). We first give the

proof for bias and then the proof for variance. In the following proof, C(M) is a constant depending

on M and may differ from line to line.

Bias. We first define two functions, F̄ τn (η, ν) and F τn (η, ν), and control the quantity |F̄ τn (η, ν) −

F τn (η, ν)|. Moreover, we show that −∂F̄ τ
n

∂η (0, τ) = Bin and −∂F τ
n

∂η (0, τ) = Bin(τ ; Ĥn, Ĝn, γ). Then

our objective is to control the quantity |∂F̄
τ
n

∂η (0, τ) − ∂F τ
n

∂η (0, τ)| so that we can control |Bin −

Bin(τ ; Ĥn, Ĝn, γ)|.

Without loss of generality, we let ∥θ∗∥22 = 1. For τ ∈ R, 1
M < τ < M

2 and τ > n−2/3+1/M , we

define

F̄ τn (η, ν) = ν⟨θ∗, (Σ̂ + νI + τηΣ̂)−1θ∗⟩

= ν⟨θ∗, ((1 + τη)Σ̂ + νI)−1θ∗⟩.
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Define D = {(η, ν) ∈ R×C : η > − 1
2M ,Re(ν) > 0 and Im(−ν) ≥ 0}. Because 0 < τ < M , F̄ τn (η, ν)

is analytical in D and it can be easily verified that

−∂F̄
τ
n

∂η
(0, τ) = τ2⟨θ∗, (Σ̂ + τI)−2Σ̂θ∗⟩

= ⟨θ∗, (τ(Σ̂ + τI)−1)Σ̂(τ(Σ̂ + τI)−1)θ∗⟩

= ⟨θ∗, (I − Σ̂(Σ̂ + τI)−1)Σ̂(I − Σ̂(Σ̂ + τI)−1)θ∗⟩

= Bin.

Define D0 = {(η, ν) ∈ R × C : η > − 1
2M , 0 < Re(ν) < M, 0 < Im(−ν) < M}. By using the

anisotropic local law for covariance matrices in Theorem 3.16(i) of Knowles & Yin (2017), we

obtain that for any δ > 0, ϵ0 > 0, D > 0, with probability at least 1− C(ϵ0, D, δ)n
−D, we have for

(η, ν) ∈ D0 and Re(ν) > n−2/3+ϵ0 ,

|F̄ τn (η, ν)− F τn (η, ν)| ≤

√
Im(r̃n(η,−ν))

Im(−ν)
n−1+δ, (S83)

F τn (η, ν) = ⟨θ∗, (I + r̃n(η,−ν)(1 + τη)Σ)−1θ∗⟩,

where r̃n(η, z) is defined in the demoain D1 = {(η, z) ∈ R×C : η > − 1
2M ,Re(z) < 0 and Im(z) ≥ 0}

and it is defined as the unique solution satisfying Im(r̃n(η, z)) > 0 if Im(z) > 0 or r̃n(η, z) > 0 if

Im(z) = 0 of

1

r̃n
= −z + γ

1

p

p∑
j=1

(1 + τη)λj
1 + (1 + τη)λj r̃n

.

Following a similar process as in Section A.1.2 of Hastie et al. (2022), we have

|Im(r̃n(η,−ν))| ≤
|Im(ν)|
Re(ν)2

.

Then taking the limit Im(ν) → 0 in (S83) and let ϵ0 = 1
M , we obtain, with probability at least

1− C(M,D, δ)n−D, for n−2/3+1/M < ν < M and η > − 1
2M ,

|F̄ τn (η, ν)− F τn (η, ν)| ≤
1

n(1−δ)/2ν
.

Let ν = τ , we have

|F̄ τn (η, τ)− F τn (η, τ)| ≤
1

n(1−δ)/2τ
. (S84)

Then we reformulate F τn (η, τ) by substituting r̃n(η,−ν) with other quantity and show that

−∂F τ
n

∂η (0, τ) = Bin(τ ; Ĥn, Ĝn, γ). Define D2 = {z ∈ C : Re(z) < 0, Im(z) ≥ 0}. For z ∈ D2, we define

rn(z) ∈ R as the unique solution satisfying Im(rn(z)) > 0 if Im(z) > 0 or rn(z) > 0 if Im(z) = 0 of

1

rn
= −z + γ

1

p

p∑
j=1

λj
1 + λjrn

. (S85)
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In the following discussion, we consider (η, v) ∈ D∩R2, that is η > − 1
2M and ν > 0. Then we have,

r̃n(η,−ν) =
1

1 + τη
rn(−

ν

1 + τη
),

F τn (η, ν) = ⟨θ∗, (I + rn(−
ν

1 + τη
)Σ)−1θ∗⟩. (S86)

Let mn(z) =
1−γ+zrn(z)

γz , which by (S85) is the unique solution of

mn =
1

p

p∑
j=1

1

λj(1− γ − γzmn)− z
.

Then we have

F τn (η, ν) = ⟨θ∗, (I + (mn(−
ν

1 + τη
)γ +

(1− γ)(1 + τη)

ν
)Σ)−1θ∗⟩,

and

−∂F
τ
n (0, τ)

∂η
= (γτ2m′

n(−τ) + 1− γ)⟨θ∗, (I + (mn(−τ)γ +
1− γ

τ
)Σ)−2Σθ∗⟩

= τ2(γτ2m′
n(−τ) + 1− γ)||θ∗||2

∫
s

[τ + (1− γ + γλmn(−τ))s]2
dĜn(s)

= Bin(τ ; Ĥn, Ĝn, γ).

In the following discussion, we give upper bounds on |∂F̄
τ
n

∂η (0, τ)− ∂F τ
n

∂η (0, τ)|, equivalently |Bin −

Bin(τ ; Ĥn, Ĝn, γ)|. Our strategy is to control |∂
kF̄ τ

n

∂ηk
(η, τ)|, |∂

kF τ
n

∂ηk
(η, τ)|, then |Bin−Bin(τ ; Ĥn, Ĝn, γ)|,

can be controlled by |F̄ τn (η, τ) − F τn (η, τ)|, |
∂kF̄ τ

n

∂ηk
(η, τ)| and |∂

kF τ
n

∂ηk
(η, τ)| based on the Lemma A.1

in Hastie et al. (2022).

We first give upper bound on |∂
kF̄ τ

n

∂ηk
(η, τ)|. For 0 < ν < M, η > − 1

2M , we have for k ≥ 1,

∂kF̄ τn
∂ηk

(η, ν) = k!(−1)k+1τkν⟨θ∗, RkΣ̂kRθ∗⟩,

where k! = k× · · · × 1 and R = ((1 + τη)Σ̂ + νI)−1. Then we have for ν = τ , η > − 1
2M and k ≥ 1,

|∂
kF̄ τn
∂ηk

(η, τ)| ≤ k!2kτk∥θ∗∥2 ≤ k!2kMk. (S87)

Next we give the upper bound on |∂
kF τ

n

∂ηk
(η, τ)|. From (S86), it is sufficient to upper bound

| τ l+1

(1+τη)l+1 |, |r
(l)
n (− τ

1+τη )| and |⟨θ∗, (I + rn(− τ
1+τη )Σ)

−(l+1)Σlθ∗⟩| for 1 ≤ l ≤ k. We give their upper

bounds separately as follows.

• Upper bound of | τ l+1

(1+τη)l+1 |. Because 1
M < τ < M

2 , for −
1

2M < η < 1
2M and 1 ≤ l ≤ k, we

have

| τ l+1

(1 + τη)l+1
| ≤M l+1.
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• Upper bound of |⟨θ∗, (I + rn(− τ
1+τη )Σ)

−(l+1)Σlθ∗⟩|. We show rn(− τ
1+τη ) > 0. Let un(z) =

1
rn(−z) . Then for z > 0, un(z) is the unique solution of

un = z +
1

n

p∑
j=1

λjun
un + λj

.

From Lemma A.2(a)(b) in Hastie et al. (2022), we have for 1
2M < z < M ,

un(z) >
1

4M
(> 0), (S88)

0 < |u′n(z)| < C(M). (S89)

By (S88) and the definition un(z) =
1

rn(−z) , we have for 1
2M < z < M ,

rn(−z) > 0. (S90)

Because 1
M < τ < M

2 , then for − 1
2M < η < 1

2M , we have 1
2M < τ

1+τη < M and rn(− τ
1+τη ) > 0.

Hence for − 1
2M < η < 1

2M and 1 ≤ l ≤ k,

|⟨θ∗, (I + rn(−
τ

1 + τη
)Σ)−(l+1)Σlθ∗⟩| ≤ ∥(I + rn(−

τ

1 + τη
)Σ)−1∥l+1

op ∥Σ∥lop∥θ∗∥2

≤ ∥Σ∥lop∥θ∗∥2 (because rn(−
τ

1 + τη
) > 0)

≤ λl1∥θ∗∥2

≤M l∥θ∗∥2 (from Assumption 5)

• Upper bound of |r(l)n (− τ
1+τη )|. Let un(z) = 1

rn(−z) . Then |r(l)n (−z)| can be controlled by

the polynomial of |u(m)
n (z)| for 1 ≤ m ≤ l and | 1

un(z)
|.

From (S88), we have for 1
2M < z < M ,

|u−1
n (z)| ≤ 4M. (S91)

The upper bound of |u′n(z)| is provided in (S89). Then we give the upper bounds of |u(m)
n (z)|

for 2 ≤ m ≤ l. We consider the following function

f(un, z) = un + z − 1

n

p∑
j=1

λjun
un + λj

.

From implicit function theorem and (S89), we have for 1
2M < z < M ,

| ∂f
∂un

| = |u′n(z)|−1 ≥ 1

C(M)
. (S92)
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To give upper the bounds of |u(m)
n (z)| for 2 ≤ m ≤ l, from the implicit function theorem, it

is sufficient to further give the upper bounds of | ∂
s+tf

∂usn∂z
t | for all s+ t ≤ m and s ≥ 1, t ≥ 1 or

s = 0, t ≥ 2. Denote

f1(un) =
1

n

p∑
j=1

λjun
un + λj

.

Then it is sufficient to give upper bounds of |∂
sf1(un)
∂usn

|for 1 ≤ s ≤ m. From (S88), we have for

1
2M < z < M ,

un(z) >
1

4M
.

Then

|∂
sf1(un)

∂usn
| = |s!

n

p∑
j=1

λ2j
(λj + un)s+1

|

≤ s!
p

n

λ21
(λp + un)s+1

≤ s!
p

n

λ21
us+1
n

≤ C(M). (from γ =
p

n
< M , λ1 < M and un(z) >

1

4M
)

Hence from the implicit function theorem, for 1
2M < z < M , s + t ≤ m and s ≥ 0, t ≥ 1 or

s = 0, t ≥ 2,

| ∂
s+tf

∂usn∂z
t
| ≤ C(M).

Combining the above with (S92), from implicit function theorem, we have for 1
2M < z < M

and 2 ≤ m ≤ l,

|u(m)
n (z)| ≤ C(M). (S93)

With the upper bound of |u−1
n (z)| in (S91), upper bound of |u′n(z)| in (S89) and upper bound

of |u(m)
n (z)| for 2 ≤ m ≤ l in (S93), we have for 1

2M < z < M and for 1 ≤ l ≤ k,

|r(l)n (−z)| ≤ C(M). (S94)

Because 1
M < τ < M

2 , for − 1
2M < η < 1

2M , we have 1
2M < τ

1+ητ < M . From (S94), we have

for − 1
2M < η < 1

2M and 1 ≤ l ≤ k,

|r(l)n (− τ

1 + ητ
)| ≤ C(M).
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From the upper bounds of | τ l+1

(1+τη)l+1 |, |⟨θ∗, (I + rn(− τ
1+τη )Σ)

−(l+1)Σlθ∗⟩| and |r(l)n (− τ
1+τη )| for

1 ≤ l ≤ k above, we have for − 1
2M < η < 1

2M and k ≥ 1,

|∂
kF τn
∂ηk

(η, τ)| ≤ C(M). (S95)

In the following discussion, we combine the upper bounds of |F̄ τn (η, τ) − F τn (η, τ)|, |
∂kF̄ τ

n

∂ηk
(η, τ)|

and |∂
kF τ

n

∂ηk
(η, τ)| from above and apply Lemma A.1 in Hastie et al. (2022) to control |∂F̄

τ
n

∂η (0, τ) −
∂F τ

n
∂η (0, τ)|. Combining (S84),(S87) and (S95), from Lemma A.1 in Hastie et al. (2022), and letting

k = 3, we have for 0 < ξ < 1
4M , D > 0 and δ > 0, with probability at least 1− C(δ,M,D)n−D,

|∂F̄
τ
n

∂η
(0, τ)− ∂F τn

∂η
(0, τ)| ≤ C(M)(

1

τn(1−δ)/2
1

ξ
+ ξ2).

That is, we have

|Bin − Bin(τ ; Ĥn, Ĝn, γ)| ≤ C(M)(
1

τn(1−δ)/2
1

ξ
+ ξ2).

Letting ξ = min{ 1
8M , τ

1/3n(1−δ)/6}, we have

|Bin(τ ; Ĥn, Ĝn, γ)− Bin| ≤ C(M)max{ 1

τ2/3n(1−δ)/3
,

8M

τn(1−δ)/2
}.

Variance. We have

Vin =
σ2

n
Tr(Σ̂2(Σ̂2 + τI)−2)

= σ2(γ − 2τγ
1

p
Tr((Σ̂ + τI)−1) + τ2γ

1

p
Tr(Σ̂ + τI)−2).

From (12) and mn(−τ) = γ−1+τrn(−τ)
γτ ,

Vin(τ ; Ĥn, γ) = σ2(1− 2τrn(−τ) + τ2r′n(−τ)).

We first give the equations and inequality below for the following analysis. From (S85), we have

τrn(−τ) + γ − 1 = γ
1

p

n∑
j=1

1

1 + rn(−τ)λj

= γ
1

p
Tr((1 + rn(−τ)Σ)−1). (S96)

From (S96), we have

τ
∂γ 1

pTr((1 + rn(−τ)Σ)−1)

∂τ
= −τ2r′n(−τ) + τrn(−τ).

Hence we have

τ
∂γτ 1

pTr((Σ̂ + τI)−1)

∂τ
− τ

∂γ 1
pTr((1 + rn(−τ)Σ)−1)

∂τ
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= τγ
1

p
Tr((Σ̂ + τI)−1)− τ2γ

1

p
Tr((Σ̂ + τI)−2) + τ2r′n(−τ)− τrn(−τ)

= (τ2r′n(−τ) + γ − 1− τ2γ
1

p
Tr((Σ̂ + τI)−2) + (τγ

1

p
Tr((Σ̂ + τI)−1)− (τrn(−τ) + γ − 1)).

From above, we have

|τ2r′n(−τ) + γ − 1− τ2γ
1

p
Tr((Σ̂ + τI)−2)|

≤ |τγ 1
p
Tr((Σ̂ + τI)−1)− (τrn(−τ) + γ − 1)|+ |τγ

∂τ 1
pTr((Σ̂ + τI)−1)

∂τ
− τγ

∂ 1
pTr((I + rn(−τ)Σ)−1)

∂τ
|

= |τγ 1
p
Tr((Σ̂ + τI)−1)− γ

1

p
Tr((1 + rn(−τ)Σ)−1)|+ |τγ

∂τ 1
pTr((Σ̂ + τI)−1)

∂τ
− τγ

∂ 1
pTr((I + rn(−τ)Σ)−1)

∂τ
|.

(S97)

We give the upper bound of |Vin − Vin(τ ; Ĥn, γ)| by controlling |τ 1
pTr((Σ̂ + τ)−1) − 1

pTr((1 +

rn(−τ)Σ)−1)| and |τ
∂τ 1

p
Tr((Σ̂+τI)−1)

∂τ − τ
∂ 1

p
Tr((I+rn(−τ)Σ)−1)

∂τ |. In fact, we have

|Vin − Vin(τ ; Ĥn, γ)|

= σ2|(γ − 2τγ
1

p
Tr((Σ̂ + τI)−1) + τ2γ

1

p
Tr((Σ̂ + τI)−2))− (1− 2τrn(−τ) + τ2r′n(−τ))|

≤ σ2|2τrn(−τ) + 2γ − 2− 2τγ
1

p
Tr((Σ̂ + τI)−1) + (τ2γ

1

p
Tr((Σ̂ + τI)−2)− (τ2r′n(−τ) + γ − 1)|

≤ σ2(2|γτ 1
p
Tr((Σ̂ + τI)−1)− (τrn(−τ) + γ − 1)|+ |γτ2 1

p
Tr((Σ̂ + τI)−2)− (τ2r′n(−τ) + γ − 1)|)

≤ σ2γ(3|τ 1
p
Tr((Σ̂ + τI)−1)− 1

p
Tr((1 + rn(−τ)Σ)−1)|

+ |τ
∂τ 1

pTr((Σ̂ + τI)−1)

∂τ
− τ

∂ 1
pTr((I + rn(−τ)Σ)−1)

∂τ
|) (By (S96) and (S97)).

(S98)

We first give the upper bound on |τ 1
pTr((Σ̂ + τ)−1) − 1

pTr((1 + rn(−τ)Σ)−1)|. Using Theorem

3.16(i) in Knowles & Yin (2017), we have for D > 0, δ > 0, Im(−τ) > 0 and Re(τ) > n−2/3+1/M ,

with probablity at least 1− C(M,D, δ)n−D,

|τ 1
p
Tr((Σ̂ + τ)−1)− 1

p
Tr((1 + rn(−τ)Σ)−1)| ≤

√
Im(rn(−τ))
Im(−τ)

.

Following a similar process in Section A.1.2 of Hastie et al. (2022), we have |Im(rn(−τ))| ≤

|Im(τ)|/Re(τ)2. Letting Im(τ) → 0 shows that for D > 0, δ > 0, 1
M < τ < M and τ > n−2/3+(1/M),

with probability at least 1− C(M,D, δ)n−D,

|τ 1
p
Tr((Σ̂ + τI)−1)− 1

p
Tr((1 + rn(−τ)Σ)−1)| ≤ 1

τn(1−δ)/2
≤ M

n(1−δ)/2
. (S99)

Next, we give the upper bound on |τ
∂τ 1

p
Tr((Σ̂+τI)−1)

∂τ − τ
∂ 1

p
Tr((I+rn(−τ)Σ)−1)

∂τ |. Our strategy is to

upper bound |
∂kτ 1

p
Tr((Σ̂+τ)−1)

∂τk
| and |

∂k 1
p
Tr((1+rn(−τ)Σ)−1)

∂τk
| for k ≥ 1, so that Lemma A.1 in Hastie
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et al. (2022) can be applied again to bound |
∂τ 1

p
Tr((Σ̂+τ)−1)

∂τ −
∂ 1

p
Tr((1+rn(−τ)Σ)−1)

∂τ | by |τ 1
pTr((Σ̂ +

τ)−1) − 1
pTr((1 + rn(−τ)Σ)−1)|, |

∂kτ 1
p
Tr((Σ̂+τ)−1)

∂τk
| and |

∂k 1
p
Tr((1+rn(−τ)Σ)−1)

∂τk
| for k ≥ 1. The upper

bound of |τ 1
pTr((Σ̂ + τ)−1) − 1

pTr((1 + rn(−τ)Σ)−1)| is given in (S99). Then we give the upper

bound of |
∂kτ 1

p
Tr((Σ̂+τ)−1)

∂τk
| and |

∂k 1
p
Tr((1+rn(−τ)Σ)−1)

∂τk
| as below.

We give the upper bound on |
∂kτ 1

p
Tr((Σ̂+τI)−1)

∂τk
|. For k ≥ 1 and 1

M < τ < M ,

|
∂kτ 1

pTr((Σ̂ + τI)−1)

∂τk
| = |k!

p
Tr(Σ̂(Σ̂ + τI)−(k+1))|

≤ k!

τk
≤ C(M). (S100)

Then we give the upper bound to |
∂k 1

p
Tr((I+rn(−τ)Σ)−1)

∂τk
|. It is sufficient to upper bound |r(l)n (−τ)|

and |1pTr(Σ
l(I + rn(−τ)Σ)−(l+1))| for 1 ≤ l ≤ k. From (S90), we have for 1

2M < τ < M ,

rn(−τ) > 0,

and

|1
p
Tr(Σl(I + rn(−τ)Σ)−(l+1))| ≤ ∥(I + rn(−τ)Σ)−1∥l+1

op ∥Σ∥lop

≤ ∥Σ∥lop (because rn(−τ) > 0)

≤ λl1

≤M l (from Assumption 5)

From (S94), for 1
2M < τ < M and 1 ≤ l ≤ k,

|r(l)n (−τ)| < C(M).

Hence for 1
2M < τ < M and k ≥ 1,

|
∂k 1pTr((I + rn(−τ)Σ)−1)

∂τk
| < C(M). (S101)

We combine the upper bounds of |τ 1
pTr((Σ̂ + τ)−1) − 1

pTr((1 + rn(−τ)Σ)−1)|, |
∂kτ 1

p
Tr((Σ̂+τ)−1)

∂τk
|

and |
∂k 1

p
Tr((1+rn(−τ)Σ)−1)

∂τk
| from above and apply Lemma A.1 in Hastie et al. (2022) to control

|τ
∂τ 1

p
Tr((Σ̂+τ)−1)

∂τ −τ
∂ 1

p
Tr((1+rn(−τ)Σ)−1)

∂τ |. From (S99)–(S101) and Lemma A.1 in Hastie et al. (2022),

and letting k = 3, we have for D > 0, δ > 0, ξ < 1
M , for τ > n−2/3+(1/M) and 1

M < τ < M , with

probability at least 1− C(D, δ,M)n−D,

|τ
∂τ 1

pTr((Σ̂ + τ)−1)

∂τ
− τ

∂ 1
pTr((1 + rn(−τ)Σ)−1)

∂τ
| ≤ C(M)(

1

τn(1−δ)/2
1

ξ
+ ξ2). (S102)
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With the upper bounds of |τ 1
pTr((Σ̂ + τI)−1) − 1

pTr((1 + rn(−τ)Σ)−1)| and |τ
∂τ 1

p
Tr((Σ̂+τ)−1)

∂τ −

τ
∂ 1

p
Tr((1+rn(−τ)Σ)−1)

∂τ | from above, we give the upper bound of |Vin(τ ; Ĥn, γ) − Vin|. From (S98)–

(S99) and (S102), we have for any D > 0, δ > 0, 0 < ξ < 1
M , for τ > n−2/3+(1/M) and 1

M < τ < M ,

with probability at least 1− C(D, δ,M)n−D,

|Vin(τ ; Ĥn, γ)−Vin| ≤ σ2C(M)(
1

τn(1−ϵ)/2
1

ξ
+ ξ2 +

1

n(1−δ)/2
).

Letting ξ = min{ 1
8M , τ

1/3n(1−δ)/6}, we have

|Vin(τ ; Ĥn, γ)−Vin| ≤ σ2C(M)(max{ 1

τ2/3n(1−ϵ)/3
,

8M

τn(1−ϵ)/2
}+ 1

n(1−ϵ)/2
).

□

IV.2 Orders of error approximation formulas

We provide proofs of Corollaries 8 and 9 in Section 4.1, which are re-stated below for convenience.

Corollary 7 (Matching error approximation formulas with small or moderate TER).

(i) Suppose that d
n < 1, rd(Σ) ≲ n, and ∥θ∗(d+1):p∥

2
Σ(d+1):p

≲ ∥θ∗1:d∥2Σ−1
1:d

λ2d+1. For λd+1 ≲ τ ≲ λd,

we have

Bout(τ ; Ĥn, Ĝn, γ) + Vout(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

τ2 + σ2(
d

n
+
λ2d+1

τ2
rd(Σ

2)

n
).

(ii) Suppose further that rd(Σ) ≍ n. For λd+1 ≲ τ ≲ λd, we have

Bin(τ ; Ĥn, Ĝn, γ) + Vin(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

τ2 + σ2(
d

n
+
λ2d+1

τ2
).

Proof.

We first show that λd ≳ ατ . From (13), τ ≳ λd+1 and n > d, we have

1

α
+

1

n

∑p
j>d λj

ατ
≍ 1

=⇒ατ ≍ (τ +

∑p
j>d λj

n
)

=⇒ατ ≍ τ (from λd+1 ≲ τ and rd(Σ) ≲ n)

=⇒λd ≳ ατ (from τ ≲ λd). (S103)

Then we show α ≍ 1. From (13), τ ≳ λd+1 and n > d, we have

1

α
(1 +

∑
j>d λj

nτ
) ≍ 1

(1 +

∑
j>d λj

nτ
) ≍ α
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=⇒α ≍ 1 (from λd+1 ≲ τ and rd(Σ) ≲ n). (S104)

Then we give the orders of 1− 1
n

∑p
j=1

λ2j
(λj+ατ)2

, 1
n

∑p
j=1

α2τ2λjθ
∗2
j

(λj+ατ)2
and 1

n

∑p
j=1

λ2j
(λj+ατ)2

, which are

important in the formulas (14)–(17). We have

1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

≥ 1− 1

n

p∑
j=1

λj
λj + ατ

=
1

α
≍ 1 (from (S104)),

1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

≤ 1.

Hence

1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

≍ 1. (S105)

From (S103)–(S104) and τ ≳ λd+1, we have

1

n

p∑
j=1

λ2j
(λj + ατ)2

≍ d

n
+
∑
j>d

λ2j
nτ2

, (S106)

1

n

p∑
j=1

α2τ2λjθ
∗2
j

(λj + ατ)2
≍

d∑
j=1

τ2θ∗2j
λj

+
∑
j>d

λjθ
∗2
j . (S107)

Substituting (S105)–(S107) into (14)–(15), we have

Bout(τ, Ĥn, Ĝn, γ) ≍
d∑
j=1

τ2θ∗2j
λj

+
∑
j>d

λjθ
∗2
j

≍ τ2∥θ∗1:d∥2Σ−1
1:d

+ ∥θ∗(d+1):p∥
2
Σ(d+1):p

≍ τ2∥θ∗1:d∥2Σ−1
1:d

(from ∥θ∗(d+1):p∥
2
Σ(d+1):p

≲ ∥θ∗1:d∥2Σ−1
1:d

λ2d+1),

Vout(τ, γ, λ̃) ≍ σ2(
d

n
+
∑
j>d

λ2j
nτ2

).

Hence we have

Bout(τ, Ĥn, Ĝn, γ) + Vout(τ ; Ĥn, γ) ≍ τ2∥θ∗1:d∥2Σ−1
1:d

+ σ2(
d

n
+
∑
j>d

λ2j
nτ2

).

Note that Vin(τ ; Ĥn, γ) can be also expressed as

Vin(τ ; Ĥn, γ) = (1− 1

α
)2σ2 +

1

α2

1
n

∑p
j=1

λ2j
(λj+ατ)2

(1− 1
n

∑p
j=1

λ2j
(λj+ατ)2

)
σ2. (S108)

From (13), (S103), (S104) and τ ≳ λd+1, we have

1− 1

α
≍ d

n
+

∑
j>d λj

nτ
. (S109)
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Substituting (S104)–(S107) into (16) and (S108), we have

Bin(τ, Ĥn, Ĝn, γ) ≍
d∑
j=1

τ2θ∗2j
λj

+
∑
j>d

λjθ
∗2
j

≍ τ2∥θ∗1:d∥2Σ−1
1:d

+ ∥θ∗(d+1):p∥
2
Σ(d+1):p

≍ τ2∥θ∗1:d∥2Σ−1
1:d

(from ∥θ∗(d+1):p∥
2
Σ(d+1):p

≲ ∥θ∗1:d∥2Σ−1
1:d

λ2d+1),

Vin(τ ; Ĥn, γ) ≍ σ2(
d

n
+

(
∑

j>d λj
n )2

τ2
)

≍ σ2(
d

n
+
λ2d+1

τ2
) (from rd(Σ) ≍ n).

Hence we have

Bin(τ ; Ĥn, Ĝn, γ) + Vin(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

τ2 + σ2(
d

n
+
λ2d+1

τ2
). (S110)

□

Corollary 8 (Matching error approximation formulas with large TER).

(i) Suppose that d
n < 1

5 , rd(Σ) > cn for some c > 10, ∥θ∗(d+1):p∥
2
Σ(d+1):p

≲ ∥θ∗1:d∥2Σ−1
1:d

( 1
λd

+

n∑
j>d λj

)−2. For λd ≳ τ + λd+1
rd(Σ)
n and τ > 0, we have

Bout(τ ; Ĥn, Ĝn, γ) + Vout(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2 + σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

rd(Σ
2)

n
).

(ii) Suppose further that τ > λd+1
rd(Σ)
n . For λd ≳ τ + λd+1

rd(Σ)
n and τ > 0, we have

Bin(τ ; Ĥn, Ĝn, γ) + Vin(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2 + σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
).

Proof.

We first prove that ατ > (c− 1)λd+1. From (13),

n >
∑
j>d

λj
λj + ατ

>

∑
j>d λj

λd+1 + ατ

>

∑
j>d λj

λd+1

1

(1 + ατ
λd+1

)

> cn
1

(1 + ατ
λd+1

)
.

Hence we have

ατ > (c− 1)λd+1. (S111)
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Then we prove that c
c−1 >

1
α + 1

n

∑
j>d λj
ατ > 4

5 . We have,

1

α
+

1

n

∑
j>d λj

ατ
>

1

α
+

1

n

∑
j>d λj

λj + ατ

= 1− 1

n

∑d
i=1 λj

λj + ατ
(from (13))

≥ 1− d

n

>
4

5
(from

d

n
<

1

5
).

From (13) and (S111), we have

c− 1

c
(
1

α
+

1

n

∑
j>d λj

ατ
) =

1

( 1
c−1 + 1)α

+
1

n

∑
j>d λj

( 1
c−1 + 1)ατ

<
1

α
+

1

n

∑
j>d λj

λd+1 + ατ

≤ 1

α
+

1

n

∑
j>d λj

λj + ατ

= 1− 1

n

∑d
i=1 λj

λj + ατ

≤ 1.

That is, we have

1

α
+

1

n

∑
j>d λj

ατ
<

c

c− 1
.

Hence we have

c

c− 1
>

1

α
+

1

n

∑
j>d λj

ατ
>

4

5
, (S112)

and

1

α
+

1

n

∑
j>d λj

ατ
≍ 1. (S113)

Now we prove that λd ≳ ατ . From (S113), we have

1

α
+

1

n

∑p
j>d λj

ατ
≍ 1

=⇒ατ ≍ (τ +

∑p
j>d λj

n
)

=⇒λd ≳ ατ (from λd ≳ τ +

∑
j>d λj

n
). (S114)

We prove the order matching in two cases,
∑

j>d λj < nτ and
∑

j>d λj ≥ nτ . We discuss the

two cases separately.
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1○
∑

j>d λj < nτ .

From (S113) and
∑

j>d λj < nτ , we have

α ≍ 1. (S115)

From (S111), (S114) and (S115), by a similar process as the proof in Corollary 8, (S105), (S106),

(S107) and (S109) hold. Substituting (S105), (S106) and (S107) into (14), (15), we have

Bout(τ, Ĥn, Ĝn, γ) + Vout(τ, Ĥn, Ĝn, γ) ≍ τ2∥θ1:d∥2Σ−1
1:d

+ σ2(
d

n
+
∑
j>d

λ2j
nτ2

)

≍ (τ + λd+1
rd(Σ)

n
)2∥θ∗1:d∥2Σ−1

1:d

+ σ2(
d

n
+
∑
j>d

λ2j

n(τ + λd+1
rd(Σ)
n )2

)

(from
∑
j>d

λj < nτ).

Substituting (S105), (S106), (S107) ,(S109) and (S115) into (16) and (S108), we have

Bin(τ, Ĥn, Ĝn, γ) ≍
d∑
j=1

τ2θ∗2j
λj

+
∑
j>d

λjθ
∗2
j

≍ (τ + λd+1
rd(Σ)

n
)2∥θ∗1:d∥2Σ−1

1:d

+ ∥θ∗(d+1):p∥
2
Σ(d+1):p

(from
∑
j>d

λj < nτ)

≍ (τ + λd+1
rd(Σ)

n
)2∥θ∗1:d∥2Σ−1

1:d

(from ∥θ∗(d+1):p∥
2 ≲ ∥θ∗1:d∥2Σ−1

1:d

(
1

λd
+ λd+1

1∑
j>d λj
n

)−2),

Vin(τ ; Ĥn, γ) ≍ σ2(
d

n
+

(
∑

j>d λj
n )2

τ2
)

≍ σ2(
d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
) (from

∑
j>d

λj < nτ).

Hence

Bin(τ ; Ĥn, Ĝn, γ) + Vin(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

(τ + λd+1
rd(Σ)

n
)2 + σ2(

d

n
+

λ2d+1

(τ + λd+1
rd(Σ)
n )2

r2d(Σ)

n2
).

2○
∑

j>d λj ≥ nτ .

We first give the order of the term 1 − 1
n

∑p
j=1

λ2j
(λj+ατ)2

, which is important in the following

analysis. We have

1

n

p∑
j=1

λ2j
(λj + ατ)2

≤ d

n
+

∑
j>d λ

2
j

nα2τ2

=
d

n
+
n
∑

j>d λ
2
j

n2α2τ2

=
d

n
+

(
∑

j>d λj)
2

n2α2τ2
n
∑

j>d λ
2
j

(
∑

j>d λj)
2
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≤ d

n
+

c2

(c− 1)2
n
∑

j>d λ
2
j

(
∑

j>d λj)
2

(from (S112))

≤ d

n
+

c2

(c− 1)2
n

rd(Σ)

≤ d

n
+

c

(c− 1)2
(from rd(Σ) > cn) (S116)

< 2/5 (from
d

n
<

1

5
and c > 10). (S117)

From (S117), we have

1 > 1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

>
3

5
, (S118)

and

1− 1

n

p∑
j=1

λ2j
(λj + ατ)2

≍ 1. (S119)

Now we give the orders of 1
n

∑p
j=1

α2τ2λjθ
∗2
j

(λj+ατ)2
and 1

n

∑p
j=1

λ2j
(λj+ατ)2

, which are important in for-

mulas (14) and (15). From (S113), we have

1

α
+

1

n

∑
j>d λj

ατ
≍ 1

=⇒ 1

n

∑
j>d λj

ατ
≍ 1 (from

∑
j>d λj

n
≥ nτ)

=⇒ατ ≍
∑

j>d λj

n
. (S120)

From (S111), (S114), (S120) and
∑

j>d λj ≥ nτ , we have

1

n

p∑
j=1

λ2j
(λj + ατ)2

≍ d

n
+

∑
j>d

λ2j

n(
∑

j>d λj
n )2

, (S121)

1

n

p∑
j=1

α2τ2λjθ
∗2
j

(λj + ατ)2
≍

d∑
j=1

(
∑

j>d λj
n )2θ∗2j
λj

+
∑
j>d

λjθ
∗2
j . (S122)

Substituting (S118), (S120), (S121) and (S122) into (14)–(15), we have

Bout(τ, Ĥn, Ĝn, γ) ≍
d∑
j=1

(
∑

j>d λj
n )2θ∗2j
λj

+
∑
j>d

λjθ
∗2
j

≍ (

∑
j>d λj

n
)2∥θ∗1:d∥2Σ−1

1:d

+ ∥θ∗(d+1):p∥
2
Σ(d+1):p

≍ (

∑
j>d λj

n
)2∥θ∗1:d∥2Σ−1

1:d

(from ∥θ∗(d+1):p∥
2
Σ(d+1):p

≪ ∥θ∗1:d∥2Σ−1
1:d

(
1

λd
+

1∑
j>d λj
n

)−2),

Vout(τ ; Ĥn, γ) ≍ σ2(
d

n
+
∑
j>d

λ2j

n(
∑

j>d λj
n )2

).
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That is,

Bout(τ, Ĥn, Ĝn, γ) + Vout(τ ; Ĥn, γ) ≍ ∥θ∗1:d∥2Σ−1
1:d

(

∑
j>d λj

n
)2 + σ2(

d

n
+
∑
j>d

λ2j

n(
∑

j>d λj
n )2

)

≍ ∥θ∗1:d∥2Σ−1
1:d

(

∑
j>d λj

n
+ τ)2 + σ2(

d

n
+
∑
j>d

λ2j

n(
∑

j>d λj
n + τ)2

)

(from
∑
j>d

λj ≥ nτ).

□

IV.3 Alternative calculation of error approximation formulas

The asymptotic out-sample and in-sample errors can also be calculated using a distributional ap-

proximation method in Han & Shen (2023) under the independent components assumption. By let-

ting µ =
√
nΣ1/2θ, the ridge estimator in (2) can be equivalently formulated as θ̂(τ) = 1√

n
Σ−1/2µ̂(τ)

with

µ̂(τ) = arg max
µ∈Rp

{
∥Y − Zµ∥2 + τ∥Σ−1/2µ∥2

}
,

where Z = 1√
n
XΣ−1/2. The rows in Z are covariate vectors with covariance matrix 1

nIp. Let

µ∗ =
√
nΣ1/2θ∗. Following Han & Shen (2023), for z ∈ Rp, τ > 0, we define

ψλ̃(z, τ) = argminx∈Rp

{
1

2
∥x− z∥2 + τ

2
∥Σ−1/2x∥2

}
= (

z1
1 + τ

λ1

, ...,
zp

1 + τ
λp

)T.

For an isotropic random vector z0 ∈ Rp, suppose (α, β) is a unique solution in (0,∞)2 to the

following equations:

β2 − σ2 =
1

n
E∥ψλ̃(µ

∗ + βz0, ατ)− µ∗∥2 = 1

n

∑
j

α2τ2µ∗2j
(λj + ατ)2

+ (
1

n

∑
j

λ2j
(λj + ατ)2

)β2, (S123)

1

α
= 1− 1

n
Edivψλ̃(µ

∗ + βz0, ατ) = γ
1

p

p∑
j=1

1

1 + ατ
λj

.

where divf(x1, . . . , xp) =
∑p

j=1
∂f
∂xj

. Note that from (S123), we have

β2 = (1− 1

n

∑
j

λ2j
(λj + ατ)2

)−1(σ2 +
1

n

∑
j

α2τ2µ∗2j
(λj + ατ)2

)

= (1− 1

n

∑
j

λ2j
(λj + ατ)2

)−1(σ2 +
∑
j

α2τ2λ2jθ
∗2
j

(λj + ατ)2
). (S124)
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Then under suitable conditions (see conditions (R1)-(R3) in Han & Shen (2023)), the distributions

of µ̂− µ∗ and Z(µ̂− µ∗) can be approximated as follows:

µ̂− µ∗
d
≈ ψλ̃(µ

∗ + βz0, ατ)− µ∗,

Z(µ̂− µ∗)
d
≈ (1− 1

α
)ξ +

√
γ2 − σ2

α
h,

(S125)

where ξ ∼ N(0, σ2) and h ∼ N(0, σ2In).

Given the approximation results (S125), the asymptotic error formulas in Corollary 7 can also

be calculated as follows. The out-sample error can be approximated by

∥θ̂(τ)− θ∗∥2Σ =
1

n
∥µ̂− µ∗∥2

≈ 1

n
∥ψλ̃(µ

∗ + βz0, ατ)− µ∗∥2

≈ 1

n
E∥ψλ̃(µ

∗ + βz0, ατ)− µ∗∥2

= β2 − σ2. (S126)

Substituting (S124) into (S126) yields the sum of (14) and (15). The in-sample error can be

approximated by

∥θ̂(τ)− θ∗∥2
Σ̂
=

1

n
∥Z(µ̂− µ∗)∥2

≈ (1− 1

α
)2σ2 +

β2 − σ2

α2
. (S127)

Substituting (S124) into (S127) yields the sum of (16) and (17).

V Comparison with Bunea et al. (2022)

V.1 Approximations of terms

In this section, we give the approximations of certain terms used in the comparison in Section 4.3

between our Theorem 3 and Theorem 16 of Bunea et al. (2022). In the setting described in Section

4.3, we show that the following approximations hold: ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ ∥θ∗1:d∥2Σ1:d
, ∥β∥2ΣZ

≍ ∥θ∗1:d∥2Σ1:d
,

λd+1

λd−λd+1
≍ λd+1

λd
and r0(ΣE) ≍ rd(Σ).

1○ ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ ∥θ∗1:d∥2Σ1:d

First, we have

∥θ∗1:d∥2Σ1:d
≥ ∥θ∗1:d∥2Σ−1

1:d

λ2d ≥ ∥θ∗1:d∥2Σ1:d

λ2d
λ21
.

Then from λ1 ≍ λd, we have ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ ∥θ∗1:d∥2Σ1:d
.
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2○ ∥θ∗1:d∥2Σ1:d
≍ ∥β∥2ΣZ

and
λd+1

λd−λd+1
≍ λd+1

λd

From λ1 ≥ . . . ≥ λd ≥ c1λd+1 for some c1 > 1, we have for i = 1, . . . , d,

1 ≥ λi − λd+1

λi
≥ 1− 1

c1
,

λi
λd+1

≥ λi − λd+1

λd+1
≥ (1− 1

c1
)
λi
λd+1

.

Then for i = 1, . . . , d,

λi − λd+1

λi
≍ 1, (S128)

λi − λd+1

λi
≍ λi
λd+1

. (S129)

From (S129), we have
λd+1

λd−λd+1
≍ λd+1

λd
. From (S128), we have

∥θ∗1:d∥2Σ1:d
= βTDiag(

(λ1 − λd)

λ1
, . . . ,

λd − λd+1

λd
)β

≍ βTβ

= ∥β∥2ΣZ
(with ΣZ = Id).

3○ r0(ΣE) ≍ rd(Σ)

By definition, r0(ΣE) = d+ rd(Σ). With rd(Σ) > c2d, we have

(1 + c2)rd(Σ) ≥ r0(ΣE) ≥ rd(Σ)

That is, rd(Σ) ≍ r0(ΣE).

V.2 Error bounds incorporated with approximations

In this section, we give the error order of our Theorem 3 and the error upper bound in Theorem 16

of Bunea et al. (2022) for the min-norm interpolator and incorporate the approximations of terms

in Supplement Section V.1.

Based on Theorem 3, for τ = 0, we have

MSEout ≍ ∥θ∗1:d∥Σ−1
1:d
λ2d
λ2d+1

λ2d

r2d(Σ)

n2︸ ︷︷ ︸
Bout

+σ2(
d

n
+
nrd(Σ

2)

r2d(Σ)
)︸ ︷︷ ︸

Vout

, for λd+1
rd(Σ)

n
≤ λd,

MSEout ≳ ∥θ∗1:d∥Σ−1
1:d
λ2d︸ ︷︷ ︸

Bout

, for λd+1
rd(Σ)

n
> λd.

Incorporating ∥θ∗1:d∥2Σ−1
1:d

λ2d ≍ ∥θ∗1:d∥2Σ1:d
, we have

MSEout ≍ ∥θ∗1:d∥2Σ1:d

λ2d+1

λ2d

r2d(Σ)

n2︸ ︷︷ ︸
Bout

+σ2(
d

n
+
nrd(Σ

2)

r2d(Σ)
)︸ ︷︷ ︸

Vout

, for λd+1
rd(Σ)

n
≤ λd,
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MSEout ≳ ∥θ∗1:d∥2Σ1:d︸ ︷︷ ︸
Bout

, for λd+1
rd(Σ)

n
> λd.

Based on Theorem 16 of Bunea et al. (2022), we have

MSEout ≲ ∥β∥2ΣZ

λd+1

λd(AΣZAT )

r0(ΣE)

n︸ ︷︷ ︸
Bout

+σ2(
d

n
+

n

r0(ΣE)
)︸ ︷︷ ︸

Vout

.

Incorporating ∥β∥2ΣZ
≍ ∥θ∗1:d∥2Σ1:d

,
λd+1

λd−λd+1
≍ λd+1

λd
and r0(ΣE) ≍ rd(Σ), we have

MSEout ≲ ∥θ∗1:d∥2Σ1:d

λd+1

λd

rd(Σ)

n︸ ︷︷ ︸
Bout

+σ2(
d

n
+

n

rd(Σ)
)︸ ︷︷ ︸

Vout

.
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