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Abstract. Recently, deep neural networks have been found to nearly interpolate training data
but still generalize well in various applications. To help understand such a phenomenon, it has been
of interest to analyze the ridge estimator and its interpolation limit in high-dimensional regression
models. For this motivation, we study the ridge estimator in a rotationally sparse setting of high-
dimensional linear regression, where the signal of a response is aligned with a small number, d, of
covariates with large or spiked variances, compared with the remaining covariates with small or tail
variances, after an orthogonal transformation of the covariate vector. We establish high-probability
upper and lower bounds on the out-sample and in-sample prediction errors in two distinct regimes
depending on the ratio of the effective rank of tail variances over the sample size n. The separation
of the two regimes enables us to exploit relevant concentration inequalities and derive concrete error
bounds without making any oracle assumption or independent components assumption on covariate
vectors. Moreover, we derive sufficient and necessary conditions which indicate that the prediction
errors of ridge estimation can be of the order O(%) if and only if the gap between the spiked
and tail variances are sufficiently large. We also compare the orders of optimal out-sample and
in-sample prediction errors and find that, remarkably, the optimal out-sample prediction error may
be significantly smaller than the optimal in-sample one. Finally, we present numerical experiments

which empirically confirm our theoretical findings.
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1 Introduction

Over-parameterized models, in particular, deep neural networks, have been successful when trained
without penalty or with a mild penalty in various applications. This phenomenon appears to be at
odds with conventional statistical thinking that complex models tend to overfit the training data
and generalize poorly without proper regularization (Belkin et al. 2019; |C. Zhang et al., 2016]).
Considerable research has been devoted to studying such phenomena; see Bartlett et al.| (2020),
Bunea et al.| (2022), Hastie et al.| (2022), and Tsigler & Bartlett| (2023) among others.

We consider high-dimensional linear regression as a basic example of over-parameterized models
and study ridge estimation under a rotationally sparse setting, which will be introduced shortly.

Suppose that the training data, (y1,21),. .., (Yn, Zn), are i.i.d. from the following model:
— . Tp* -
yi=x;0"+¢€, i=1,...,n, (1)

where 6* € RP| y; € R is a response variable, x; € RP is a covariate vector satisfying F(z;) = 0
and Var(z;) = X (assumed to be non-singular), and ¢; is a noise variable, independent of x; and
satisfying E(e;) = 0 and Var(e;) = 02 for i = 1,...,n. In addition, assume that ©~/2z; is a
sub-gaussian random vector with sub-gaussian norm o, for ¢ = 1,...,n. See Supplement Section [[]
for the definition of the sub-gaussian norm.

We are interested in the ridge estimator defined as
. ) 1
4(r) = argmingess { 1Y = X012 + 0]} @

where Y = (y1,...,yn)t € R?, X = (21,...,7,)T € R"P 7 >0 is a tuning parameter, and | - ||
denotes the Ly norm. In the case of 7 = 0, the estimator 6(0) is defined as the limit of 6(7) as
7 — 0+, and called a min-norm interpolator.

As a measure of prediction performance, we investigate both the out-sample and in-sample mean

squared errors (MSE) of (), defined conditionally on X as follows.
e Out-sample error
MSEou = E[(ag (0(r) — 67))*|X] = E[|0() - 6"|[%|X],

where 2y € RP is a new covariate vector independent of X, and ||b||r = (bTMb)Y/? for any

positive semi-definite matrix M and any vector b of the suitable dimension.

e In-sample error

MSE;, = E[%I!X(é(T) —6)|*1X] = E[|6(r) — 6"

2
51X,

where 3 = XTX/n is the (uncentered) sample covariance matrix of X.



An important property of the ridge estimator is that its out-sample and in-sample predic-
tion errors are invariant to an orthonormal transformation of the covariate vectors z;. By this
property, we assume without loss of generality that the covariance matrix ¥ is diagonal, i.e.,
Y = Diag(Aq, ... ,)\p), where A\ > ... > )\, > 0 are the eigenvalues of ¥.

As motivated by the recent literature (Bartlett et al. 2020; Bunea et al. 2022; Hastie et al.|
2022), we assume that only a few covariates (or a few directions of the covariate vector before
orthogonalization) with large variances contain most of the information about the response. For-
mally, we assume that the mean response is aligned with a small number of covariates with large

variances, for instance, the first 1 < d < p covariates:

2
|’92<d+1):pHE(d+1)=P

10741

~ 0.

We denote as 07, the first d entries of §* and as 92* d+1):p the remaining p — d entries of §*, which are
called the spiked part and tail part respectively. In addition, we denote 1.4 = Diag()\,..., A\g) and

Y(d+1)p = Diag(Agt+1,---,Ap). We refer to such a setting as a rotationally sparse setting, because

*

(d41):p ATC ZEr0 or close

a small number of coefficients 07, ; are nonzero whereas the remaining ones 0
to zero, after an orthogonal transformation of the covariates. From both the recent literature and
our results later, a sufficiently large gap between Ay and Aj11 may be necessary and sufficient for
ridge estimation to achieve meaningful prediction performance.

The rotationally sparse setting fundamentally differs from the directly sparse setting of regression
models, where a small number of coefficients, for example, s, are nonzero whereas the remaining
p — s ones are zero or close to zero, with the original covariate vectors. Such a sparse structure

depends on the particular coordinate system for the covariate vectors and would be lost after

an orthogonal transformation. For the directly sparse setting, Lasso estimation is known to be

effective in achieving (in-sample) prediction errors in the order O(sloip ), that is, O(2) up to a
logarithmic factor of p under suitable conditions (including compatibility or restricted eigenvalue
conditions) (e.g., Bickel et al.| (2009)); Bithlmann & van de Geer|(2011)). Hence one of the interesting
questions which motivate our work is to investigate plausible conditions for ridge estimation to

achieve prediction errors in the order O(%) in the rotationally sparse linear regression.

Our work. We study the out-sample and in-sample prediction errors of the ridge estimator
in high-dimensional rotationally sparse linear regression. Classical analysis of ridge estimation
deals with the in-sample MSE in a fixed design (with fixed X ), whereas recent work on the ridge
estimator and the min-norm interpolator, as reviewed later, has been focused on the out-sample

MSE in a random design (with random X). Nevertheless, it is also of interest to study the in-



Table 1: Summary of our main results in the rotationally sparse setting

Regime I (small or moderate TER): r4(X) <n

Range of 7 Out-sample error [Theorem In-sampe error [Theorem

2 P r2(s
T < Ad41 MSEout 2 02(% + %) MSE;, > 02(% + ,d(z ))

~ "

Assume T > Ag41:

22
d+1 =
MSEous = 110,412 _1 72 103,12y 72 + o2 (4 4+ ~HL 2l
Nap1 <7< Mg 1d ) 1:d
P
d+1 rg (%)
+o2(& + ~241 7aC > MSEi, 2 .
A 2(s
2 2 2.d d+1 7g(2)
HGI;dHE;éT + o (; + g 727)
A A :
7> g MSEour 2 110741171 A3 swme T > A
«
1:d MSEi, 2 |\91:d\|271 Ag
1:d
Regime II (large TER): r4(X) > ¢,n
Range of 7 Out-sample error [Theorem]El In-sample error [TheoremH
(= D)
MSEout < HBI:de):_l (T + Xa+1 %)2 Assume T > A\g4q rdi ) :
1:d
rq () 22 =2 =
TH X175 S e +0%(4 + a1 Ty | MSE;, = H@T;d\|271(7'+/\d+1w)2
n [FICICIE = n
T+ Ag1 —45—) 1:d , ,
b r2(s
2/d d+1 ra(2)
+o7(5 + ra(2) 2 n2 )
(T+Ag41 —4—)
Assume T > Agy1 Tdff:):
2 2
A ra(2) > 5 MSEout 2 107,412 _1 25
T AT R A >la MSEin 2 117,412 _1 A3
1:d

Note: ¢, is a constant depending only on the sub-gaussian norm o, of covariate vectors.

sample MSE in a random design. In fact, the standard analysis of Lasso estimation concerns the
in-sample MSE either in a fixed design or in a random design (e.g., Bickel et al.| (2009)); Buhlmann
& van de Geer| (2011)). The in-sample MSE in a random design also plays an important role in
analyzing de-biased Lasso estimation (C.-H. Zhang & Zhang) 2014; van de Geer et al., [2014) and
high-dimensional estimation of average treatment effects (Chernozhukov et al., 2018 Tan, [2020)).
The main findings of our work can be summarized as follows. First, we establish high-probability
bounds on the out-sample and in-sample MSEs of the ridge estimator (see Table|[l)) in two distinct,

albeit possibly overlapping, regimes, called small or moderate TER and large TER. The two regimes

are defined by whether the ratio an) is small or large, where r4(X) is the tail effective rank (TER)
.Y
Td(Z) _ Z}]\>d J .
d+1

Such a quantity is also central in the related analyses of ridge estimation and min-norm interpolation
(Bartlett et al.l |2020; | Tsigler & Bartlett} |2023)). A main difference between the two regimes is that
in the large TER regime, the prediction errors of the ridge estimator can sometimes be controlled
for a small ridge parameter 7, including 7 = 0 corresponding to the min-norm interpolator. From a

technical perspective, the separation of the two regimes enables us to exploit rerlevant concentration



Table 2: Summary of conditions on

setting

Adt1

5o to achieve O(%) prediction errors in the rotationally sparse

MSEout = O(£)

MSE;, = O(£)

ra(3) Sn

Sufficient Condition

Ad+1 [d d
=< < ;mm{l, W}

Adt1 [ i d
N < v/ & min{l, Td():)}

Necessary Condition

Assume n > d and rg(22) > d:

Adt1 d d
;. S Vmy e (57

Assume n > d and %,/% > 1:

rq(X) > can

Sufficient Condition

Ad+1

d s d
T </ mind [

TdT(IE) }

Ad41 d
g N rg(D)
Ad41 d
Xo S

Necessary Condition

Assume n > d:

Adt1 d d n
g SVanminly ) oEy vty )

Assume n > d:

Ad+1 d
<
Ag ~ rg(E)

Note: ¢, is a constant depending only on the sub-gaussian norm o, of covariate vectors.

Table 3: Summary of optimal MSE in the rotationally sparse setting
Out-sample error In-sample error
ra(S) < Assume A\g 2 Agy1 /mﬁnzj : Assume 74(X) <X n and A\g > Agy1:
lV[SEg“t = max{7Ai1’1 rgt=7) ("22) s %} l\/ISEi*n = max{ikizl %}

T4 (32) .

n

Assume Ag > A
ra(2) > con N

- Xdg1 [ rg(22)
MSE:;Ut = max{7>\2 Ldi=") - s

Note: ¢, is a constant depending only on the sub-gaussian norm o, of covariate vectors. MSE

2
Adt1 rg(2)? dy
-z

o A+l rg(E) d
Rt MSE], =< max{TT o3

*

out denotes

the MSE,, with optimal 7 and MSE}, denotes the MSE;, with optimal 7.

inequalities and derive concrete error bounds without making any oracle assumption or independent

components assumption on covariate vectors as used in Tsigler & Bartlett| (2023).

Adt1

Second, from our error bounds, we derive sufficient and necessary conditions on the ratio "

together with the choice of ridge parameter 7 such that the out-sample and in-sample MSEs is of

the order O(%) respectively (see Table . All of these conditions are determined in the simple

form that the ratio )‘f\zl is sufficiently small, i.e., the gap between the spiked and tail variances is
sufficiently large. In other words, our results indicate that ridge estimation can achieve prediction
errors in the order O(%) for a suitable choice of 7 if and only if the gap between the spiked and
tail variances is sufficiently large in the rotationally sparse linear regression. These results can be
seen to serve as a counterpart to existing theory for Lasso estimation to achieve prediction errors
in the order O(sk’%) under suitable conditions including compatibility conditions on .

Third, from our error bounds depending on the ridge parameter 7, we also derive the optimal
orders of out-sample and in-sample MSEs obtained respectively with the optimal choices of 7 (see
Table . The optimal orders of prediction errors may be greater than O(%). Remarkably, we

find that if 2

1

£ is sufficiently small, then the optimal out-sample MSE is, up to a constant factor,
d

smaller than the optimal in-sample MSE in both the regime of small or moderate TER (under



some technical conditions) and the regime of large TER. We also identify specific conditions under
which the optimal out-sample MSE is significantly smaller than the optimal in-sample MSE (see
Remarks [1| and {4] for details, and Figure [2| for numerical results). This phenomenon seems to be

surprising: out-sample MSEs may be usually considered to be no smaller than in-sample MSEs.

Related works. There is a large and growing literature on prediction properties of ridge
estimators and min-norm interpolators. See [Tsigler & Bartlett (2023)), Section 9, for a recent
review. We discuss directly related works to ours, in addition to the earlier discussion.

Hsu et al. (2014) allowed sub-gaussian covariate vectors and studied the out-sample MSE of
the ridge estimator when the ridge parameter 7 is large enough such that the effective dimension,

P Aj
]:1 >\j+’T7

is small compared with the sample size. For this reason, their error bounds are not
applicable to a small ridge parameter or a min-norm interpolator.

Hastie et al. (2022) derived out-sample error approximation formulas for the ridge estimator
and the min-norm interpolator using random matrix theory. They also showed that the deviation
between the out-sample error and the approximation formula is upper bounded by the order of n=:
for the ridge estimator (with a ridge tuning parameter bounded away from 0) and is upper bounded
by the order of n~7 for the min-norm interpolator. Compared to our results, the independent
components assumption and boundedness of £ are assumed in Hastie et al.| (2022). Moreover, the
orders of their deviation bounds may be much larger than %, so that combining the approximation
formulas and the deviation bounds may lead to less sharp out-sample error bounds than ours in
the rotationally sparse setting. Despite these differences, it can be shown that the orders of the
approximation formulas in Hastie et al. (2022) match the orders of our error bounds, which are
obtained without the independent components assumption or boundedness of % in the rotationally
sparse setting. See Section for details.

Bartlett et al| (2020) studied the min-norm interpolator and gave upper bounds of the out-
sample error variance and bias and a lower bound of the out-sample error variance (but not bias).
However, their results rely on the independent components assumption. Moreover, although the
tail effective rank is involved, their out-sample error bounds are obtained in terms of the overall
162, regardless of how the mean response is aligned differently with the spiked and tail parts of
covariate vectors, which are essential to the rotationally sparse setting.

Tsigler & Bartlett (2023) provided upper and lower bounds of both the out-sample error variance
and bias, while exploiting the decomposition of the spiked and tail parts of covariate vectors.
However, although the variance and bias upper bounds in Tsigler & Bartlett| (2023)) are obtained

with sub-Gaussian covariate vectors instead of the independent components assumption, an oracle



assumption is required on some random matrix from covariate vectors. Moreover, their variance
lower bound is obtained under the independent components assumption, and their bias lower bound
is provided in terms of the expectation with respect to a prior distribution on #* under an extra
oracle assumption on covariate vectors. By comparison, our error upper bounds match those in
Tsigler & Bartlett (2023)) for the ridge tuning parameter in suitable ranges, and all our upper
and lower bounds are obtained with sub-Gaussian covariate vectors without making any oracle
assumption or independent components assumption. See Section for details.

Bunea et al.| (2022) studied the min-norm interpolator in a latent factor model as follows:
yi:ﬁTZi—i_gia J;i:AZi‘i‘Ci, izl?"‘ana (3)

where 8 € R%, A € RP¥?, z; € R? is a latent feature vector, & € R and e; € R? are mean-zero noises,
and (z;,&;,e;) are mutually independent for each i. The matrix ¥ = Var(x;) can be expressed as
Y =AYz AT + ¥, where ¥z = Var(z;) and X = Var(e;). The latent factor model can be seen to
share a similar structure as our rotationally sparse linear regression model. From our comparison in
Section the upper bound of the out-sample MSE in |Bunea et al.| (2022)) is obtained for the min-
norm interpolator in the large TER regime, and is less sharp than our result which gives the order
of out-sample MSE (i.e., matching upper and lower bounds up to a constant factor) except in the
trivial situation where the out-sample MSE is bounded away from zero. In addition, the analysis
of |Bunea et al.| (2022) assumes that the whiten noises, 2;31/ Zei, has independent components. Such

an assumption of independent components is avoided in our analysis.

2 Assumptions and notation

We formulate the following assumptions to facilitate our theoretical analysis. Let d be the dimension

of the spike part satisfying 0 < d < p.

Assumption 1 (Low dimension of spiked part). Suppose that d < n and % 1s small enough such

d 1
m = 000'5\/; <3

where Cj is an absolute constant from Lemma
As shown in Bartlett et al. (2020), the tail effective rank (TER) is important for analyzing

that

benign linear regression. For the covariance matrix X, define

Zj>d )‘j

ra(®) = Ad+1

)



where A\; > ... > A, > 0 are the eigenvalues of ¥. We refer to r4(X) as TER, because it pertains

to the tail eigenvalues of 3. We also use the following related quantity:

Z] >d )‘?

2
)\d—i-l

ra($?%) =

It can be easily verified that r4(X?) < rg(%).

The following two assumptions describe two regimes of TER, in terms of the ratio Tdr(lz). The

( )

magnitude of "=/ affects the behavior of the out-sample error and in-sample error.

Assumption 2 (Small or moderate TER). @ < (4, where C; > 0 is a constant.

Assumption 3 (Large TER). Tdﬁbz) is large enough such that

S Y e T
* T’d(Z)Q Td(z) -2

rq(¥)

—_

Alternatively, it is sufficient to assume that > ¢p for some ¢, depending only on o.. For

istance, ¢, can be max{4\fCoa 160 }

Separating the two regimes above is desirable for theoretical analysis, because it enables us
to establish concrete results and avoid making any oracle assumption or independent components
assumption on covariate vectors as used in (Tsigler & Bartlett| (2023]). See Section for further

an) satisfies

information. The two regimes above are not contained by each other. For instance,
Assumption [2 I but not Assumption (3 I if Td ra(®) o 1, whereas @ satisfies Assumption [3| but not
Assumption I 2 if rd ) > 1. Overlapping of the two regimes is possible, for instance, ng‘) =1 and

@ satisfies both Assumptions E and E

The following assumption describes the rotationally sparse setting in terms of the relative mag-

nitudes of ||07 and |6} dH2_
1:d

d+1 HE(d+1)

Assumption 4 (Rotational Sparsity).
(1) [Applied with small or moderate TER]. For some 0 < 01 < 1,

||0 d“rl)pHE(d+1):p 51

PLINE
167 dll T Al +02)

(ii) [Applied with large TER]. For some 0 < 52 <1,

HH (d+1): H2<d+1)p 62 1 4dn
< 5 (—+=——
107 dH 4(1+03) Aa Zj>d Aj

which can be equivalently stated as

Hg(d—&—l Hz(dﬂ)p < d2 Ad+1 4dn

“2)2 ..
1072 100 g Trm) an




Assumption [fi) is specified for the small or moderate regime, whereas Assumption [4f(ii) is
specified for the regime large TER regime. Assumption (ii) provides a much weaker condition

10¢211):p 13
than Assumption (1) on — DT DD jf ) s Ad+1 and 74(X) > n.

H9I1dH;l_:;

Notation. Given two positive sequence {ax} and {b;}, ap < by (ar 2 bx) indicates that there
exist constants ¢ > 0 and K > 1 such that ay < cby (ar > cbg) for all £ > K. We also denote
ar, = O(by) if ar < bg. Moreover, a;, < by, indicates that both ap < by, and ay, 2 by; and a < by, (or
ay > by) indicates limyg_, Z—: =0 (or limg_00 Z—: = 00). Finally, Poly.,(z) denotes a polynomial

of x with positive bounded coefficients and the highest order equal to deg.

3 Main results
The standard formula of the ridge estimator for n > p is
0(t) = (XTX +nr) ' XTY.

However, this formula does not hold for 7 = 0 when X7 X is not invertible with n < p. In the

high-dimensional setting, the ridge estimator 6(7) can be expressed as
0(r) = XT(XX" +nr)"tY. (4)

See, for example, Appendix B in Tsigler & Bartlett| (2023).
With the expression and the assumption that X and € are independent, the out-sample and

in-sample errors can be decomposed into bias and variance as follows:

e Out-sample error

MSEqu = ||(I, — X T(XXT 4+ nrl,) 1 X)0%||3
Bout
+?Tr(XXT +nrL,) P XEXT(XXT +nrl,) 7, (5)

Vout

e In-sample error

MSEin = [|(I, = X"(XX T +n7l,,) "' X)0% ||

Biu
+?Tr(XXT 4+ n7L) ' XSXT(XXT +nrl,)7h) . (6)

Vin

We present our main results about the out-sample and in-sample errors in the small or moderate

TER regime in Section [3.I] and the large TER regime in Section



3.1 Regime I: Small or moderate TER

Consider the regime of small or moderate TER such that r4(3) < Cin, as stated in Assumption
The following is our main result about MSE,,t, the out-sample MSE. Let Ag be a constant satisfying
Ag > 1 and (14 Ag)? < 4(51_1, with 0 < §; < 1 from Assumption (1) For Agl)\dH <7 < Ag)yg,
we determine the order of MSEqy; (including upper and lower bounds). For 7 < Aj 1/\d+1 and

T > AgAg, we give lower bounds of MSEq,; through, respectively, the variance and bias terms.

Theorem 1 (Out-sample error with small or moderate TER). Under Assumption [1], [3 and [{|(i),
for any v satisfying 0 < v < %min{l,ai} and any A satisfying Ag > 1 and (1 + Ag)? <
451_1, the following inequalities hold uniformly in the range of T stated with probability at least
2 2
1-— 2exp{—%} — 2exp{—g0—;%} — 18exp{—¢; }+
d ¥2
(Z) MSEous > My 0'2(* + T'd( )
n

~~

vV,

—out

d A re(2?)
i\ M. £ 2 -2 2, ¢ d+1"d
(i1) Ma(l6.al3-17" + 07 + -

- ) forngglAdH,

)) Z MSEout 2

72

Bout Vout

* d A2 ra (32
My (|67 gll5 07 + 0 (- + =57 a(2%)

)) fOT A61>\d+1 <7< A())\d,

T2 n
VT '
Eout XOU-t

(4i1) MSEqus > My HGI;dII;;;AZ for T > Aghg,
N————

B

out
where My, Ma > 0 are constants, depending only on (o4, n1,C1,061,v,A0), and By and V. rep-
resent lower bounds of out-sample bias and variance and Bou and Vs represent upper bounds of

out-sample bias and variance, up to the constant My or Ms.

The following corollary provides simple conditions for achieving MSEqy,; = O( %) in the regime

of small or moderate TER.

Corollary 1 (Conditions for MSEq,; = O(%) with small or moderate TER). In the setting of
Theorem 1, assume further that o < 1 and Heid\lé’,;;)@ = 1.

(i) A sufficient condition for MSEqy = O(%) with a probability approaching 1 as n — oo is
that )‘i—;l < \/gmin{l, Wdﬁ)} and the ridge parameter T is chosen in the range Aal)\dH <7<
Aghgp1 ifra(X2) < d or Aal)\dH max{%\/ %52), 1} <7 < Aphg min{c\/g, 1} if rg(¥?) > d, where
¢ is a constant satisfying ¢ > 1 and /\‘;\# < c\/%min{l, Wiv)}'

(i) Suppose that n > d and rq(X2) > d. Then a necessary condition for MSEoy = O(4) with



a probability bounded away from 0 is that /\j‘\—zl < \/%1 / dez) and the ridge parameter T is chosen

in the range \/ @Adﬂ <7< \/g)\d.

The sufficient and necessary conditions become matched, )‘f\zl < \/%’/WEQ)’ in the case where
n > d and r4(X?) > d in addition to the assumptions stated.

Next, we give our main result about MSE;,, the in-sample MSE, in the regime of small or
moderate TER stated in Assumption As before, let Ay be a constant satisfying Ag > 1 and
(1+ Ag)? < 451_1, with 0 < 61 < 1 from Assumption (1) For Aal)\d+1 < 7 < Ag)g, we derive
upper and lower bound of MSE;,. For 7 < Ay 1)\d+1, we give a lower bound through variance. For

T > Ag)Ag, we give a lower bound of MSE;, through the sum of bias and variance terms.

Theorem 2 (In-sample error with small or moderate TER). Under Assumption [1], [4 and [{|(1),
for any v satisfying 0 < v < imin{l,ag} and any Aq satisfying Ag > 1 and (1 + Ag)? <
451_1, the following inequalities hold uniformly in the range of T stated with probability at least

1 — 2exp{— 02 4} 2eXp{ 8€Xp{—f}
d r3%
(i) MSEy, > M, 02(ﬁ + Tdr(ﬂ )) for < Ayt Agia,
N————
V.

—in

d Ny ra(D)

M. 9 - > MSE;, >
(i) (105,412 17 +0%(2 4 Z1 T 5 g
Ein vin
d A r3(%)
£ 2 2, 2 +17q 1
Ml(ml(T)Hel:degl—:}iT to (;‘*‘ g ) for Ag Aar1 <7 < Agg,
Bin X1n

(i . * 2’\?#1 r3(%)
i11) MSE;, > Ml(/‘fl(T)HQl;dH 1>\d+ o — ) for T > Aghg,

B \%

=in —~in

where k1(T) = max{1l — (%(1 +16(2Co02 + 1)(1 + C1) \F\F)

My, My > 0 are constants depending only on (o4, m1,C1,01,v,Ag). The terms B;, and Kin represent

) 0}, and

lower bounds of in-sample bias and variance and By, and Vi, represent upper bounds of in-sample

bias and variance, up to the constant My or M.

By the definition of k;(7), the bias term B;, is activated in the lower bound of MSE;, only when

@ and ‘\Flr are small enough. This can be explained from our proof strategy as follows (see

Section [6.2| for details). The in-sample bias ||6(7) — 6*
01allg, > 200(T)1a = 07.0) X (1a), @+ (O(T) @ 1yp — Ogp1)) a0 [10(7) (1) — 9Z‘d+1)1p||22(d+1):p and
only the interaction term 2(6(7)1.q— Hfd)i(l;d),(dﬂ):p : (HA(T)(dH):p — 0’(kd+1):p) can be negative. When

22 can be expressed as the sum of ||6(7)1.q —

10



/o
1—v/61

to dominate the interaction term. Then a lower bound on the bias from the spiked part, which can

>\d+1

and are small enough, the bias from the spiked part, ||6(7).q — 07, dH% , can be shown
: 1:d
be deduced in a convenient manner, also provides a lower bound on the overall bias.
From Theorem [2| we deduce the following simple conditions for achieving MSE;, = O(%) in the

regime of small or moderate TER.

Corollary 2 (Conditions for MSE;, = O(£) with small or moderate TER). In the setting of
Them’emﬁ, assume further that 0® < 1 and |0} d||2 1)\2 = 1.

(i) A sufficient condition for MSE;, = O(%) wzth a probability approaching 1 as n — oo is
that )‘i—:l < \/%min{l, \/%} and the ridge parameter T is chosen in the range Aal)\dﬂ <7<
Aorgr1 if ra(X) < d or A0_1>\d+1 max{% ”(2 1 <7 < Aghg mm{c\/g, 1} if rq(X) > d, where ¢
is a constant satisfying ¢ > 1 and @ < c\/jmin{l W}'

(ii) Suppose that n > d, rd f > 1 and 64 65— < 1. Then a necessary condition for
MSE;, = O(g) with a probabzlzty bounded away from 0 is that /\d“ d__ and the ridge parameter

S ra(X)
T is chosen in the range \gy1 - \/E <7< )\d\/:

The sufficient and necessary conditions become matched,

in the case where n > d

/\d+1 < d
Aa ~ re(%)’

and rq(X) < n in addition to the assumptions stated.

From Theorems [I] and [2| we derive the order of MSE,,; with an optimal choice 7, denoted

as MSE; ;, and the order of MSE;, with an optimal choice 7, denoted as MSE],. The following

out’

corollary gives the orders of MSE? . and MSE? in the small or moderate TER regime.

Corollary 3 (Optimal error orders with small or moderate TER). Suppose that Assumption

and I(Z) are satisfied and further o® =< 1, ||0; dH2 1)\ =1, rg(X) < n, \g 2 Ag+1, /ﬁ,

)\d > Agy1, and 6416» < 1. Then

(i) MSE},, =< max{@ rd(z) d} with a probability approaching to 1 and the optimal T is

chosen as T = \/)\d)\d 1\/ mln{\/ 0 ,\/LZ } where ¢ is a constant satisfying
rq(3°)
/\d+11 / ﬁ < cAg.

(ii) MSE}, =< maX{Ad“ d} with a probability approaching to 1 and the optimal T is chosen as

T X \/)\d+1)\d-

Therefore MSE?

< MSE?, with a probability approaching to 1, by noting rq(X?) < rg(X) < n.

out ~o

The additional conditions rg(X) < n, \g = Ag+1 ﬁ and A\g > Agi11 can be explained as
follows. First, rq(X) < n and Ay > Agy1 are important for determining the order of MSE! . In

fact, the order of Vi, for Aj 1)\d+1 < 7 < Ap)g can be determined from Theorem (ii) only under

11



r¢(X) < n, due to the difference between V;, and Vj,. Note that the sum of the in-sample bias and

2 )‘d+1

the tail part of in-sample variance, ||67. d|| 17’ +o , reaches the minimum order of d“ by the
choice 7 < y/AgAg+1. The condition A\g > )\d+1 ensures that this choice of 7 is large enough so that
k1(7T) is activated. Second, A\g 2 Agi1,/ {3y is important for determining the order of MSE; ¢

because under Ay 2 Agi1 \/%, the order of Vgt for 7 < Aa Ad+1 can be shown to be larger

than max{=*+ )‘d“ \/ rd(nz } and then the range 7 < Aj'A\gy; can be ruled out when optimizing
MSEqu;. See the proof of Corollary [3]in Supplement Section for details.

Remark 1. In the setting of Corollary [3| we observe that the gap between MSE; and MSE

out

can be significantly large, for example, if further Af\zl 2. d rd(EQ

) and 3 > 1. In this case,

n
rq (32

both MSEqy, and MSEy, do not achieve O(2), and MSE,, < 244 /75 and MSEf, < 248 by

out ™
Corollary |3l With > 1, there can be a substantial gap between MSE;, and MSE}

n
7"01(22) out*

In the setting of Corollary [3| we point out that the advantage of MSEY, over MSE{, can be
attributed to Vou, S Vin for Ay )\d+1 < 71 < ApAg under 74(X) < n. See the proof of Corollary
in Supplement Section for details. In fact, in the setting of Corollary [3] the optimal choices
of 7 for both MSE,; and MSE};, are chosen from the range AalAd+1 < 7 < AgAg, because both
MSE,yt and MSE;, are lower bounded by large variance for 7 < A_l)\d+1 and by large bias for

T > Ag)g. Moreover, as seen from the proof, the optimal order of MSE;,, max{=§ )‘d“ d}, in the

setting of Corollary [3] can be achieved only when By, is activated. With By, actlvated, the orders
of Boyt and By, are the same for A 1)\d+1 < 7 < AgAg. By comparison, Vgut can be shown to be
smaller than Vj, up to a constant factor for A, lx\dH < 7 < ApAg under r4(X) < n:

d )‘§+1 T’d(ZZ)
P

d A2
< 2,0 d+1
=) s P+

o?(

order of Voyut in Theorem ii) order of Vj, in Theorem ii)

n T

Hence the advantage of MSE7 , stems from the smaller order of Vg, in the setting of Corollary

3.2 Regime II: Large TER

rq(¥)

The second regime we investigate is when is large enough such that Assumption [3|is satisfied.

In this regime, as shown below, the smallest eigenvalue of 71,,+n~'X (d+1):pX (T is lower bounded

d+1):p
away from 0 for any 7 > 0, so that MSE, can sometimes be controlled even for 7 = 0. Let Ag be

( )

any positive constant. For the ridge parameter < Ag)g, we determine

the order of MSEy,; (including upper and lower bounds). For 7 + )\d+1% > Aghg, we give a
lower bound of MSEqy; through the bias term.

12



Theorem 3 (Out-sample error with large TER). Under Assumption [1, [§ and [{(ii), for any v

ra(S)v?

2ot > 1 and any Ag > 0, the following inequalities hold

satisfying 0 < v < %min{l,o’ }oand ©

uniformly in the range of T stated with probability at least 1 — 2nexp{— vy ra(® } — 2exp{— 02 T -

Coo2
2
2exp{—c’fo—%} — 16exp{—¢-}-

. %) d A ra(3?)
Mo (]|6%.4)|%- Mgy T2 2 d dtl > MSEqu; >
() Ml l‘dHZLtlz(T—i_ iy ) +o (n+ (T+)\d+177"d7(12))2 n )) 2 MSEou: 2
Eout J—
Vout
) d A rq(3?) ra(%)
Mi(l10% 112 A %2 2,0 d+1 A < Ao\
Ll 7+ dan ™+ ot P HE) or T AT S Ao
B
=out V

—out

. N rq(2
(ii) MSEous > M ”91:(1\@;;)\27 for T+ a1 d?(z ) > Ao,
———

B

=out

where My, My > 0 are constants depending only on (04,12, d2,v, Ag).

Remark 2. The error bounds in Theorems [1| and [3| are derived from the same set of algebraic
bounds but then by applying relevant high-probability inequalities to control random quantities for
different ranges of 7 under the two regimes of TER (see Section . In fact, after ignoring the

range choice of 7, the error bounds (i)—(ii) in Theorem 3| appear similar to (ii)—(iii) in Theorem

d()

except with 7+ A\gy1-4= in place of 7. In the overlapping case of small or moderate TER regime

and large TER regime, i.e., rE) — 1 and an) satisfies Assumption [2| and |3 the result from

n

2
Theoreml (ii), MSEqus =< |67 de,lT +o (d + @@), and the result from Theorem (i),

T2 n
Adi1 rq(3?) )

MSEou < 04l (7 + Aas1” ST = rm)g ;

, are equivalent to each other for

7 in the range A; Nap1 <7< Aghg, where 7= 7+ Ay (E) with r4(32) < n. However, the error
bound in Theorem 3| E (i) remains applicable, but that in Theorem [l ! (ii) does not apply, to small 7

satisfying 0 <7 < Ay "X\g41 including 7 = 0.

The following corollary provides simple conditions for achieving MSEqy,; = O(%) in the regime

of large TER.

Corollary 4 (Conditions for MSEq,; = O(%) with large TER). In the setting of Theorem @
assume further that o® < 1 and |0} d|| 1)\3 = 1.

(i) A sufficient condition for MSEout = O(%) with a probability approaching 1 asn — oo is that
>\d+1 \[mln{,/ AR r‘d } and the ridge parameter T is chosen satisfying T + Agy1- d( ) < <
T rq(22)
\fAd i L) <1 or (/N ST A ra® < [d if DT d(

13



(ii) Suppose that n > d. Then a necessary condition for MSEoy = O(%) with a proba-
bility bounded away from 0 is that )‘d“ \/gmin{, /m(%’ ﬁ} and T is chosen satisfying
Tt A M2 <O i W) <y op (TGN S g ) < g i LD

d(E - drq(%)
The sufficient and necessary conditions become matched, )‘f\—:l < \/gmin{1 /W‘ly), Td?—z)}, in the

case where n > d in addition to the assumptions stated.

Next, we give our main result about MSE;, in the regime of large TER stated in Assumption

Bl Let Ap be any positive constant. We derive upper and lower bounds of MSE;, in the case of

T+ Adg1- ( ) < Ap)\g, and a lower bound of MSE;, in the case of 7+ Ag41 d( ) > Ag)\g, through

the sum of bias and variance terms.

Theorem 4 (In-sample error with large TER). Under Assumption [1], [3 and [{(ii), for any v

satisfying 0 < v < 4 and CEQ )4 > 1 and any Ay > 0, the following inequalities hold uniformly in

]

Coo2

the range of T stated with probability at least 1 —2nexp{—

12exp{— ¢}

CQ 4} 26Xp{ 004}_

7a(2) o 9,d )‘§+1 7"?1(2)
(4) Ma(]|0F H2 1 (T + A — =) 07 (- + )) > MSE;, >
b o n (T+)\d+17rd7(?))2 n?
Ein v
¥) d A2 r2(%) rq(2)
M o5 12 gy ) yz 24 d+1 d A < Agh
1(k2(7)] 1.d||21:;(‘7;+ d+1— ) +o (n+ (T+)\d+1Td1(,LE))2 n? ) for T+ Aan1 < AoAd,
Bin \;r
A2 r2(%) rq(X)
i) MSE;, > M 0% |12 1 22 a d A1 —220 > ApA
(i) > M (k2(7)|| iszgl:; d+0 (7 + Aars (2)) n2 ) for T+ Adt o = oA
Bin Y%

—1n

where ko(T) = max{l — (

4=
Aay1 -4 /33 Ve
16m(1+1121 \/—)+641 \/25),0} and M]_,MQ > 0 are Const(lnts

depending only on (oy,1m2,02,v,Ag).

Similarly to k1(7) in Theorem |3 the definition of ky(7) indicates that the bias term B;, is

Ad1 ra(%) L) 2
and
(T4+Ad+1 L:LE) ) n I=v

In this case, the bias from the spiked part, ||6(7)1.q — Hf.dH% , can be shown to dominate the
: 1:d

are small enough.

activated in the lower bound of MSE;, only when

interaction term between the spiked part and the tail part.

Remark 3. Similarly to out-sample error bounds discussed in Remark [2], the error bounds in
Theorems [2| and [4] are also derived from the same set of algebraic bounds but then by applying
relevant high-probability inequalities to control random quantities for different ranges of 7 under

the two regimes of TER (see Section . After ignoring the range choice of 7, the error bounds

14



(i)—(ii) in Theorem [4| appear similar to (ii)—(iii) in Theorem E except with 7+ >\d+1@ in place of

7 and with the additional difference that d( ) are involved both Vin and V,, in Theorem (i), but
not in Theorem [2) I ii). In the overlapping case of small or moderate TER regime and large TER

regime, i.e., @ =1 and @ satisfies Assumption E and I, the result from Theoreml ii) with

A2
k1(7) is activated reduces to MSEqy; =< |67 dH2 17' +o2(4+ 441), and the result from Theoreml
)\2
d+1 )
(- Aars 4Z)2

n

and the two results are equivalent to each other, for 7 in the range AO Ad+1 < 7 < ApAg, where

(i) with ko(7) is activated reduces to MSEqy < |6} dH2 (T + )\d+1”(2)) + 02(% +

TXT+ )\d+1rd£—2) with r4(X) =< n. However, the error bound in Theorem (i) remains applicable,

but that in Theorem [2f (ii) does not apply, to small 7 satisfying 0 <7 < Ay lAdH including 7 = 0.

From Theorem |4} we deduce the following simple conditions for achieving MSE;, = O(%) in the
regime of large TER.

Corollary 5 (Conditions for MSE;, = O(d) with large TER). In the setting of Theorem assume
further that o* < 1 and ||6% d||2 1)\2 = 1.

(i) A sufficient condition for MSEin = O(%) with a probability approaching to 1 as n — oo is

’\f\—:l < rd&) and the ridge parameter T is chosen such that \gy1 @ TS THA S d( <\ \/7

(i1) Suppose that n > d and 6419 < 1. Then a necessary condition for MSEy, = O( ) with

a probability bounded away from 0 is )‘f\zl < szlz) and the ridge parameter T is chosen in the range

B B A 2 S A8

The sufficient and necessary conditions become matched,

Ad+1 d : ;
b < sy the case where n > d in

addition to the assumptions stated.

From Theorem 3| and [4] we derive the orders of MSE . and MSE}, i.e., MSEq,; and MSE;,

with optimal choices of 7 respectively, in large TER regime.

Corollary 6 (Optimal error orders with large TER). Suppose that Assumption[1], [ and[{(ii) are
satisfied and further 0% < 1, ||01‘:d||§,1)\3 =1, \g> )\deg) and 642 V% _ 1. Then
1:d

o
)\2

(i) The order of MSE} ; is max{ )“j\zl Td(nzz), ‘j\él ng)Q, %} with a probability approaching to 1

. . o n4/7rq A rq(X) S ra(X) _

and the optimal T is chosen as T = 0 if Vs 2) < ii\:l 42 o satisfying T + Mgy =<

ra(22) pny/ra(E2)  Aarr ra(E)

\/)‘d)‘d“\/ wo o Vi)~ AN m

(ii) The order of MSES, is max{~§ )‘d“ rd(z) d} with a probability approaching to 1 and the optimal
T s chosen satisfying T+ )\dH% = /\d)\dH%.

Therefore MSE} Adtr [ra(X?) < Aapr Ta(3)

< MSES, with a probability approaching to 1 because pw e T valrn

out ~o

A2 2
d+17a(E)” <« Adt1 ra(¥)
X a2 N M on by

by noting rq(X?) < rq(X) and rq(X) = n (Assumptz’onH) and because

noting Ag > Agy1-2—= d(E)

15



The additional condition \g > )\d+1LnE) is important for determining the order of MSES .

In fact, the sum of the in-sample bias and the tail part of in-sample variance, Hﬂde2_1(T +

2, 2 A7
Ai157 ) +o

(T+Ad+1

di1 ra(%) )\d+1 Td( )

Iy L=, reach the minimum order of

by the choice T satisfying

T+ )\dHLnE) = )\d}\dJ’,l#. The condition Ag > AdH@ ensures that this choice of 7 is large
enough so that ko(7) is activated. See the proof of Corollary @ in Supplement Section [lIL.2] for
details.

Remark 4. In the setting of Corollary @ we observe that the gap between MSE and MSE}

out
- . . ny/ra(2?)
can be Slgmﬁcantly large, for example, in two cases, )‘izl > \/% mm{l T‘i( } /\d“ >
nry

ny/nrq(3 hOld or )\d+1 > d \/’f‘d } >\d+1 n\/n'rd(22)

min{1, and M > 1 hold. In

2)2 ~ \/nrd(22) N ra(2)? nrq(X?)
the first case, MSE! = )“f\“ Tdﬁlz) and MSEOut = Ai; 1 ”1(1 2 by Corollary |6, and hence 7&485511 =

: 5 * A )
/\;\il oy > 1 with Ag > )\d+1#. In the second case, MSE} = f\—:”d&) and MSE? , =<

/\11\21 ( %) by CorollaryH and hence AIZASSIEI; = \/:ifé o) > 1.

In the setting of Corollary [6] we point out that the advantage of MSE},, over MSE}, can be
attributed to Vou < Vin for 74+ A1 - ( ) < Ag)Ag. See the proof of Corollary @ in Supplement
Section for details. In fact, in the setting of Corollary [6] the optimal 7 for both MSEq;
and MSE;, are chosen from the range 7 + )‘d-&-l@ < Ap)Ag, because both MSEq; and MSE;,
are lower bounded by large bias for 7 + Agy 1@ > Ag)g. Moreover, as seen from the proof,

’\d“ Td E) d} in the setting of Corollary @ can be achieved

the optimal order of MSE;,, max{~§
only when B;, is activated. With Bm activated, the orders of By, and B;, are the same for
T+ /\d+1%2) < Ag)Ag. By comparison, Vot can be shown to be smaller than Vi, up to a constant

factor for 7 + /\dH@ < Ag)g in the large TER regime:

UQ(Q 4 )‘d+1 Td(EQ)) < g2 d n )‘d+1 7“3(2))
n raE)y2  n ~ n ra(X)y2  n2
(T + Xap1™452) (T + Agp1747)
order of Vout in Theorem i) order of V;, in Theorem i)

Hence the advantage of MSE?  stems from the smaller order of Vg in the setting of Corollary [6]

4 Connection and comparison with existing results

4.1 Comparison with error approximation formulas

We compare our results to error approximation formulas, obtained under an independence assump-

tion on whiten covariates in ridge linear regression (see Assumption [5| below). We first review
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the results of [Hastie et al. (2022) about approximation formulas for out-sample error. To facil-
itate the comparison, we also derive and justify the approximation formulas for in-sample error.
Then we show that in the rotationally sparse setting, the orders of out-sample and in-sample error
approximation formulas match those from our results for the ridge tuning parameter in suitable
ranges.

For ridge linear regression, Hastie et al,| (2022)) gave the following approximation formulas for
the out-sample bias and variance:

S

Ry T i U

Bous (7 s Gy ) = 721167 2(1 + ymm 1 (—7)) /

g P =y +yNPm(-7)) -
Vol i) = ot [ e T i ), (®)

where ¥ = 2, Hy(s) = p~ S0, Lo,y Guls) = Y2 ((0%, 0002/ 10°1P)Lssa, s V1, vy are the

eigenvectors of X, m,(z) is determined by solving the following equation

ma(s) = [ e’ A (), )

1= —yzmu(2)] -

and my, 1(2) is calculated by

s2[1—y—yzmn(2) 2
J Gk dHa )

L=v] [8[1—v—vzzsln(z)]—z]2 dﬁn(s).

Consider the following assumption on the whiten covariates, defined as z; = $~/2z;, the variance

M, 1(2) (10)

matrix ¥, and the ratio 2.

Assumption 5.

(i) Each vector z; = (21, ,2p)" has independent entries with E(z;) = 0, E(z?]) =1 and
E(|zi5]%) < Ck < 00 for all k > 2.

(ii) \i < M and [ s~ H,(s)ds < M.

(iii) 1 - 2| > &, L <2 <M.

Hastie et al.| (2022) showed that under Assumption |5 and assuming max{r, \,} > ﬁ and

n~=2/3+M <+ < M, for any constant D > 0 and § > 0, with probability at least 1—C'(M, D, §)n=P,

A~ C(M)|6*]1? C(M)
|Bout (T Hny Gy ¥) — Bout| < o 2, (1-0)/2

‘Vout(ﬂ ﬁna ény ’Y) - Vout’ <
where C(M, D, ) is a constant depending only on (M, D,d), and C'(M) is a constant depending
only on M.

To facilitate the comparison between our results and error approximation formulas, we also give

approximation formulas for in-sample bias and variance as follows:

S

G e e

Bia (7 o, Gy ) = 7211671 2(y2ml, (—7) + 1 w/
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Vin(T; I:In,y) = %y(1 — 21 (=7) + 72m/ (=71)). (12)
We establish the convergence of Biy(7; Hy, G, ) and Vin(7; Hy, ) in the following theorem.

Theorem 5 (Convergence of in-sample error approximation formulas). Under Assumption @ fur-
ther assume that T > ﬁ and n=23HYM < 7 < % Then for any D > 0, § > 0, with probability at
least 1 — C(M,D,8)n™ P,

8M
—2/3,(1-0)/3" 1 (1-0)/2 2

- 1 SM 1
(- —V. 2
’Vm(Ta H?’w 7) V1n| <o C(M) (max{ 72/3,(1=8)/3" £, (1-0)/2 } + n(1-0)/2 )7

|Bin(T§ f{na G’m’y) - Bin| < C(M) maX{

where C(M, D, 6) is a constant depending only on (M,D,d), and C(M) is a constant depending

only on M.

Givenanyr>0,’y:%>Oand/~\:()\1,...,/\p)with/\j>Ofor1§j§p,wedeﬁnea>1as

a solution to the equation

"=

1 P

- 3 : (13)
T

« o 1+ pw

The approximation formulas above can be equivalently expressed as follows. These formulas can
also be calculated using a distributional approximation method in Han & Shen| (2023) under the in-

dependent components assumption, for which the discussion is deferred to Supplement Section[[V.3]

Corollary 7 (Equivalent expressions of error approximation formulas). With « defined in ,

we have
. 1 A2 1 N a?72),0%2
Bouwt(T: Hy,, G, =(1—— 7 iz — 14
. 1< A2 1< A2
wt (73 Hp =(1—— J (= — )o? 1
R ) 1 1 p )\2 1 p a27_2)\]0*2
Bm aHnaGny =—0-- 2 - J s 16
(T ) a2( n jz; (A + om')?) n (A\j +ar)? (16)
2 (1_l ; 16 ) )2)71
~ n = ot
Via(ri Hoyy) = (1= - + - )o?. a7)

Next, we study the orders of error approximation formulas — in the high-dimensional ro-
tationally sparse setting, and compare them with our results, which are obtained without requiring

independence of the whiten covariates. The first result is about the small or moderate TER regime.

18



Corollary 8 (Matching error approximation formulas with small or moderate TER).

(i) Suppose that % <1, 74(¥) Sn, and ||0 d-‘rl)pHZ(d+1): S HG d”2 1)‘d+1 For M\gt1 S7 5 Ad,

we have

L . . d A2 ry(x2
Bout (73 H G 1) Vous (73 F 1) = 0572 4 0%(2 4 21 T

)- (18)

72 n

(ii) Suppose further that r4(3) < n. For \gy1 <7 S Ag, we have

N . § d N
Bin(T; Hna Gnvﬁy) + Vin(T; Hna'y) = ”elde;;éT? + UQ(E =+ ;i_;l ) (19)

For comparison, we notice that the conditions, £ < 1, r4(X) < n and |6} (d+1)p 12 < 1654112 _1/\d_~_1
correspond to, respectively, Assumption and i) used in Theorems [1| and [2l The order of the
approximation formula matches Theorem (ii). The order of the approximation formula
matches Theorem [2f(ii) when r4(X) < n and k1 (1) is activated.

Then we study the large TER regime and the results are summarized as follows.

Corollary 9 (Matching error approximation formulas with large TER).

).

(i) Suppose that % < L r4(E) > en for some ¢ > 10, ||0d+1)p“£(d+1); 03 d||2 d(id +
Zj:d)\j)_Q. For \g 2 7+ )\d_,_l@ and T > 0, we have
] a ' * ra(2 d by r 2
Bout(7—§ Hy, Gna’)/) + Vout(T; Hna’Y) = Helde;—l(T + )‘d+1ﬂ)2 + 0-2(7 + o rq(3) d( )
1d n no(r 4 A eE)2
(20)

ii) Suppose further that T > g4 -2 ( ). For A 2T+ Mgy 2= (2) and T > 0, we have
+ +

N ~ ~ E) d )\2 712(2)
Bin(1; Hp, Gy (73 Hoy ) =< 1071122 A ra®)ys 2. d+1 d .
(73 Hiy Gy 7) + Vin(7s Hay 7)< | MHZLi(T + A+l n ) to (n " (T 4+ it 1Td(2)) n2 )

(21)

The conditions, £ < £, 74(X) > cn for some ¢ > 10, ||6 1?2 < |10 dH2 ()\d + =)

2 j>d Aj
correspond to, respectively, Assumption and (ii) used in Theorems [3| I and 4| I The order of the

approximation formula matches Theorem (1) The order of the approximation formula

(d+1):p

matches Theorem [4|(i) when ry(7) is activated.

4.2 Comparison with Tsigler & Bartlett| (2023)

In this section, we compare our results to [Tsigler & Bartlett| (2023)), where the non-asymptotic out-
sample error bounds are studied for high-dimensional ridge regression. We make a comparison in

both upper bounds and lower bounds. In the following, denote Ay = X(d+1):an+1):p +nt1l,. The
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conditional number of Ay is defined pi(Ag)/pn(Aq), where p1(Ag) and py,(Ag) are the maximum

eigenvalue and minimum eigenvalue of Ay repectively.

Upper bound of MSE,;. Our upper bounds of MSE,; match the results in Tsigler & Bartlett
(2023)) for most ridge tuning parameters, but our result avoids making any oracle condition on
covariate vectors as used in [Tsigler & Bartlett| (2023). In fact, for any d small enough compared
to n, given that the conditional number of A4 is controlled by L, it is shown in [Tsigler & Bartlett

(2023)) that with a high probability:

. ra(%) .
Bout/c < HeldeZ;;(T + Ad-‘y—l n )2 + He(d—s-l):pH%(d_‘_l):p? (22)
d A2 »2
Vowfe< &y — Pen X)) (23)

n (T+)\d+1rd7(12))2 no

where ¢ is a constant depending on the o, and L. When r4(X) < n (i.e., in the small or moderate
TER regime), our result f in Proposition |1| matches f for Agr1 < 7 < A;. When
r4(X) > czn for some ¢, depending only on o, (i.e., in the large TER regime), our result (38)—(39)
in Proposition [7| matches f for 7 + )\dHLnE) < A1.

To control the the conditional number of A4, Tsigler & Bartlett| (2023]) requires an oracle small-

2

ball assumption on covariate vectors: > . x7; > (3 ;54Aj +n7) forall i = 1,...,n and some ¢

J
satisfying 0 < ¢ < 1 with a high probability.
Instead of requiring an extra oracle assumption, our analysis achieves the control of the con-
ditional number of A; using concentration inequalities specifically in the two TER regimes for
certain ranges of 7, which are summarized below. See Section and Supplement Section
for details. We derive an upper bound of 1 (Ay), using concentration properties of matrix operator
norms based on sub-gaussian covariate vectors, for 7 > A\;z11 in the small or moderate TER regime
and for 7 > 0 in the large TER regime. To obtain a lower bound of y,(A4), we handle the small or
moderate TER regime and the large TER regime separately. In small or moderate TER regime, we
use a trivial lower bound: p,(Ag) > n7. In the large TER regime, we use concentration properties
of quadratic forms of sub-gaussian random vectors (Zajkowski (2020)), Corollary 2.8) to show that

the oracle small-ball assumption in Tsigler & Bartlett| (2023) is satisfied for 7 > 0. Then we derive

a lower bound of y,,(Ay) following similar reasoning as in Tsigler & Bartlett, (2023]).

Lower bound of V. Our lower bound of Vgt also matches the result in [Tsigler & Bartlett
(2023)) for a certain range of ridge tuning parameters, but our result does not require the indepen-
dence of the components of the whiten covariate vector as assumed in [Tsigler & Bartlett| (2023)).

In fact, given that the components of whiten x; are independent, for any d small enough compared
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to m, it is shown in Tsigler & Bartlett (2023]) that with a high probability,

1 & A
Vout/c > — Y min{l, ] }. (24)
+
nE AL )2

where ¢ is a constant depending on o,. When r4(X) < n (i.e., in the small or moderate TER

regime), for Agr1 <7 < Mg, can be shown to reduce to

d )‘3+1 ra(2?)
Vout 2 o + =,

which matches our result in of Proposition |3| for small or moderate TER regime. When
rq(X) > czn for some ¢, depending on o, (i.e., in the large TER regime), for )\d+1LnE) +7 < Mgy
can be shown to reduce to

Vout Z

é + )\3-1-1 rd(EQ)
(T4 Ayt @)2 no’
which matches our result in of Proposition |§| for large TER regime.
Instead of requiring the assumption of independent components in whiten covariate vectors as

in Tsigler & Bartlett| (2023), we derive a lower bound of V4 using concentration properties of

sub-gaussian random vectors (see Section for further information).

Lower bound of B,,;. The lower bound of B, in Tsigler & Bartlett| (2023) is provided as a
probability lower bound on the expectation of B,y with respect to a prior distribution on #* under
an extra oracle assumption on certain modifications of matrix A = XX T 4+ n7I,,. Our lower bound
on Byt is a direct probability bound without assuming a prior distribution on #* and any extra

oracle assumption on covariate vectors, but focuses on the rotationally sparse setting.

4.3 Comparison with Bunea et al.| (2022)

For the min-norm interpolator (7 = 0), we compare Theorem |3| with Theorem 16 in Bunea et al.
(2022), which are both obtained in the large TER regime. See Supplement Section |V| for details.
Note that models and are related via ¥ = AX AT + X g and 0* = (Sg + Az AT)71AY 4.

To facilitate the comparison, we let ¥z = I, ¥ = Diag(Agt1, - - -, Ad+1, Adt1, - - - Ap) € RPXPand
N—
d entries
A Dlag(\/muv\/W) eRde
Op—d)xd

such that ¥ = Diag(A1,...,Ag) € RP*P and
VAL — A VA=A
VAL T Ad did"'l)ﬁj 0,...,0 )TERP.

N ey y 9.0

p — d entries

0* = (Diag(
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We further assume that A\; < A\g, Ay > c1Ag41 and r4(2) > cad for some ¢; > 1 and ¢a > 1. In this
setting, Theorem [3| with 7 = 0 shows that with a high probability,

A2 (D) d nrg(X?)
+1"¢d 2 d

-t —— for \
)\2 n2 +o (’I’L+ 7”3(2) )7 O Ad+1
Bout Vout

Td(z)

ra(X)

MSEout < [|05.4l1%,., =

MSEout 2 105413, ,»  for gt > A\
N——
Bout

After ignoring the log(n) factor, Theorem 16 in |Bunea et al.| (2022) gives that with a high proba-

bility,
Ad+1ra(X) d n
MSE,.. < (072 2.4
SEout < [101.4l15,.. N n te (n * ra(%)
Bout Vout

ra(X)

n

Hence for \g > Ag+1

, our result gives the order of out-sample MSE which is sharper than
the upper bound in Bunea et al. (2022)). For Ay < )\d+1rd7(172), our lower bound indicates that the

out-sample MSE is larger than |67, dezl.d up to a constant, and accordingly the upper bound in

Bunea et al|(2022) is larger than ||91‘:d||221'd up to a constant.

5 Proofs of main results (Theorems [1-4))

We provide proofs of the main results (Theorems , depending on auxiliary bounds on By,
Bin, Vout, Vin, for which the proofs are outlined in Section [6] Without loss of generality, we only

consider the case of Ag = 1 involved in the ranges of the ridge parameter .

5.1 Proof of Theorem [I]

We provide auxiliary bounds for the out-sample squared bias and variance Byt and Vot under the

small or moderate TER regime (Assumption [2)).

Proposition 1 (Upper bound of out-sample error with small or moderate TER). Under Assump-

tion and@ for any v satisfying 0 < v < %, the following inequalities hold uniformly in the range

of T stated with probability at least 1 — 2exp{— yon } - 18exp{fci0}: for > Agi1,

C3o2
(1+C1)*(A+v+m)*Polyg(ow) e 2 1 115 x 2
Bout < (1 — . _ 771)4 (”gldHE;i(I + ;) + ”9(d+1):pHZ(d+1):p)7 (25)
(14 C1)?Polyg(0s) o,d  Aiiirg(E?)
Vout < -+ ). 26
¢ (1—v—m)* g(n+ T2 n ) (26)

Further with Assumption [{(i),

(14 C1)3(1 + v + n1)?Polyg(0z)
(1—v—m)*

. 1 1.
Bout < ||91:d||;;§(/\*1 + ;) 2, (27)
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Proposition 2 (Lower bound of By, with small or moderate TER). Under Assumption (1] and
(i), for any v satisfying 0 < v < %, the following inequality holds uniformly in the range of T

stated with probability at least 1 — 2exp{— 02 4} 2exp{—¢}: for 7 > Agy1,
(1 —+/01)? s 1 1,

Bout > ———— —)“. 28
out_(1+y+77)2”1d" d()\ + ) ( )
Proposition 3 (Lower bound of V,; with small or moderate TER). Under Assumption |1 and @
for any v satisfying 0 < v < & 5 min{1, o2}, the followmg inequalities hold uniformly in the range of

QGXP{ CQ 4} 126Xp{_c’£0} fO’F T S )\d-‘rl;

T stated with probability at least 1 — 2exp{—&

(1=v—m)?(}-v) L ol

(14 C1)2(1 + v+ m)*Poly,(os) 14 % 2Ce02 © ' n
im

Vout

); (29)

and for A\g > 7 > Ay,
(1—v—m)(5—v) 1 Uz(ﬁ n A1 ra(2?)

(14 C)*(1+v+m)*Polyy(o.) 1 + 20002 n T2 n
5~ N

Vout Z

)- (30)

Theorem [I] can be deduced by combining the bounds for Boyt and Vet above. The probability

control is determined from the intersection of the relevant events included in the propositions.

o If 7 < A\jy1, then the lower bound for V, in Theorem (1) is obtained from in Proposi-
tion Bl

o If A\yy1 < 7 < Ay, then the upper bounds for Boy and Vo in Theorem (ii) are obtained
from and in Proposition |1} and the lower bounds for By and Vgt in Theorem (ii)
are obtained from in Proposition |2/ and in Proposition

o If 7 > )y, then the lower bound for Byy in Theorem (iii) is obtained from in Proposi-

tion 2

5.2 Proof of Theorem [2

We provide auxiliary bounds for the in-sample squared bias and variance B, and Vi, under the

small or moderate TER regime (Assumption [2).

Proposition 4 (Upper bound of in-sample error with small or moderate TER). Under Assumption

and@ for any v satisfying 0 < v < %, the following inequalities hold uniformly in the range of T

stated with probability at least 1 — 2exp{—%} - 2exp{—C”§(’f4} —8exp{—¢r}: for 7 > Aata,
0% x x

(14 C1)*Polyg(o,) 1 1

B < iy s 2 U0l G )7 Wy ) (31)
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d N ra(D)

2 2
Vin < (14 C1)“Poly,(oz)0 (ﬁ + 2 o ). (32)
Further with Assumption [{|(ii),
(14 C1)*Polyg (o) 2 1 1.y
Bin S — + - . 33
s o W G (33)

Proposition 5 (Lower bound of B, with small or moderate TER). Under Assumption[1], [ and

(z'), for any v satisfying 0 < v < %, the followmg inequality holds uniformly in the range of T

stated with probability at least 1 — 2exp{— CQ 4} Sexp{—cio}: for T > Agy1,
1 1

. 2
Lo ol 5 + )7 (59

B 2 M1 e

where sy (1) = max{1 — (222CEEL (1 4 16(2C0% + 1)(1+ C1) L) + 644), 0}

Proposition 6 (Lower bound of Vi, with small or moderate TER). Under Assumption[1],[3, [{|(1),

then for any v satisfying 0 < v < %min{l,ag}, the following inequalities hold uniformly in the

range of T stated with probability at least 1 — 2exp{— CQ 4} 2exp{—¢& — Gexp{— Co}
(Z) fOT’ T S )\d—‘rl}
1—v)? d 7r3(%
Vin > ( 2V> 1 202(7+Td(2 ))7 (35)
Poly,(0,)(1 + C1)%(1 + 7(1_%772)2) n n
(ii) for Aay1 <7 < Ag,
— )2 A2
P01Y4(O'x)(1 + 01)2(1 + W)Q n 7-2 n2
(iii) for T > Ag,
Vi (1 B V)Q Aﬁ-‘rl rd(z) ) (37)

T
"= Poly,(02)(1 + C1)?2 o’ 72 n?
Theorem [2| can be deduced by combining the bounds for B;, and Vj, above. The probability

control is determined from the intersection of the relevant events included in the propositions.

o If 7 < Ayi1, then the lower bound for Vj, in Theorem (1) is obtained from in Proposi-
tion [6

o If \j11 <7 < Ay, then the upper bounds for By, and Vi, in Theorem (ii) are obtained from
and in Proposition [4, and the lower bounds for B;, and Vi, in Theorem ii) are
obtained from in Proposition [5( and in Proposition @

e If 7 > )4, then the lower bounds for B;, and Vi, in Theorem (iii) are obtained from in
Proposition [5| and in Proposition @
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5.3 Proof of Theorem 3

We provide auxiliary bounds for the out-sample squared bias and variance Boyt and Vg, under the
large TER regime (Assumption .

Proposition 7 (Upper bound of out-sample error with large TER). Under Assumption @ for

rq(2)v?
02 4

> 1, the following inequalities hold uniformly in the range

N

of T stated with probability at least 1 — 2exp{— 02 4} 2nexp{——¢g; o2 }— 16exp{—¢ t: for 7 >0,

any v satisfying 0 < v < 2 and

(1+v+m)%(1 + v+ n2)?Poly, (o) 1 1 )

2 -2 *
Bout < A=) —v—m) (161.qll%- ()\*1 + m) F 10{ar1)p 15 a1y, )>
(38)
B T e R I i WIS R
Further with Assumption [{|(ii),
(1L +v+m)*(1+v+m)°Polyy(0z) e 12 1 1 2
Bout < glaci(—+ —m—mm= )~ 4
' (I=v—m)t(1—v—n)? Hgl'dHEl:}i(/\l " T+ )\d+1L(E) ) 1)

Proposition 8 (Lower bound of Boy with large TER). Under Assumption [1], [ and [j(ii), for any

rq()v?
C3o2

v satisfying 0 < v < i and > 1, the following inequality holds uniformly in the range of T

stated with probability at least 1 — 2exp{—o’;’;4} — 2nexp{—2Y ra(%) } = 6exp{—¢;}: for T =0,

Coo2
1—/62)?(1—v—np 1 1 -
By > L= V210 Pzt — ) (41)
(1—}—1/—}—77) Sha Mg T+)\d+1%

Proposition 9 (Lower bound of Vo, with large TER). Under Assumptz’on (md@ for any v sat-

rq(S)v?
024

> 1, the following inequality holds uniformly in the range

W)} gexp - &}

— 2exp{— Cz 4} — 2nexp{— Coo?Z

isfying 0 < v < 3min{1,02} and *

of T stated with probability 1 — 2exp{
>

f0r7+7jif L <\,
Vo > (1—v—m)P*A—v—m)*(—v) 8Cwoi(z —m) 02(§+ N1 Td(EQ))
T A4+ I+ v+ m)? 14+8Ce2(d —m) n (r+ g2y 0 7
(42)

Theorem (3| can be deduced by combining the bounds for Byt and Vo, above. The probability

control is determined from the intersection of the relevant events included in the propositions.

o If 7+ /\d+1m7(172) < Ag, then the upper bound for Boyt and Vg, in Theorem (1) are obtained
from and in Proposition m, and the lower bounds for Byyt and Vgyut in Theorem i)
are obtained from in Proposition |8| and in Proposition @

o If 7+ N\gy1” ( ) > A4, then the lower bound for By, in Theorem I(u is obtained from .

in Proposition [
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5.4 Proof of Theorem 4

We provide auxiliary bounds for the in-sample squared bias and variance By, and Vi, under the

large TER regime (Assumption .

Proposition 10 (Upper bound of in-sample error with large TER). Given Assumptionl and@ for

ra(S)v?
C24

any v satisfying 0 < v < 2 and * > 1, the following mequal@tzes hold umformly in the range of

Td

T stated with probability at least 1— 2exp{

0002
for >0,
(14 v+ 1)?Polyy(c) , 1 1
B, < _ 4
— (1_1/_771) (1 v — ,r] ) (He d|| d()\l +7’—|—>\ (Z)) +||9 d+1 ||E(d+1) ) ( 3)
A2 2
Vi, < (14 v +m)? P013;4(Uz)02 d n d+1 _ Td(?))‘ (44)
(1—v—mn) n (T+)\d+17rd7(l ))2 n
Further with Assumption ( it),
(1+ v + 1)*Poly(0.) 1 .
B; e (21 d||2 (5o ? (45)

T -v-m)PA-v—m)?

Proposition 11 (Lower bound of Bi, with large TER). Under Assumption[d] [ and[{|(ii), for any

rq(T)v?
C2 4

Ao+ Ad+17rd,(lz) :

v satisfying 0 < v < 4 and > 1, the following inequality holds uniformly in the range of T

n — 2nexp{—2Y ra(%) } —bexp{—¢-}: for 7 >0,

stated with probability at least 1 — 2exp{— Coo?

C24

_ 201 -y —
N S Y ———— (46)
(L+v+m)? A T gy )
_ Ay 2D LD
h = 1—(16—/——2+(1 112 4
where ra(7) = max{l — ( 6T+/\d+1 ( + \F) +6 \F) 0}.

Proposition 12 (Lower bound of Vi, with large TER). Under Assumption |1 and @ for any

ra(2)v?
Céol

1

v satisfying 0 < v < 5 and > 1, the following inequalities hold uniformly in the range

e

of T stated with probability at least 1 — 2exp{— 02 4} — 2nexp{— Coo? } 4exp{——} for T+
Ad+1%2) < Ad;

Vo > (1—v—mn2)? O_z(ﬂ + )‘¢21+1 7”?1(2)) (47)
T2 A POt ) P (T A A
and for T+ Agy1- ( ) > Ad;
v (1-v—m)? , N1 ri(%) (48)

in Z o
20040+ m)" (74 Agp A2 02

Theorem [4 can be deduced by combining the bounds for Bj, and V;, above. The probability

control is determined from the intersection of the relevant events included in the propositions.
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o If 7+ >\d+1@ < Ag, then the upper bounds for By and Vi, in Theorem (1) are obtained
from and of Proposition and the lower bounds for B;, and V;, in Theorem i)

are obtained from and of Proposition

o If 7+ Ay qu(f) > Mg, then the lower bounds for Bj, and Vj, are obtained from in
Proposition (11| and in Proposition

6 Proof outlines of auxiliary results (Propositions [1H12))

We provide proof outlines of the auxiliary bounds (Proposition used in the proofs in Section
In Section we discuss the results for out-sample error including Propositions and
Propositions [7H9} In Section we discuss the results for in-sample error including Propositions
[4H6] and Propositions We introduce the following notation.

o A=XXT 4 nrl,, Ay= X(dﬂ):pxgl 1y T 0T L.

)
e X4 denotes the the matrices comprised of the first d columns of X and X4 1),, denotes the

the matrices comprised of the last p — d columns of X.

A~ T
— Xl:Xmﬁd
n

XLy, X(dt1): o XT X g1,
° El:d— _ d41)p T (dtl)p and El:d, _ “1:d (d+1)~p‘

) 53(d+1):p = n (d+1):p — n

* Hy= E;(li/ZXEdv Hy = 2;111/2X1T:d'

o My= X(d+1):p2(d+1):pX(Td+1):p’ Mg = X(d+1):p2(d+1)ipX(Td+1):p’

e ,1j(M) is the j-th largest eigenvalue of symmetric semi-positive definite matrix M.

® ¢, c1, C9, c3 are absolute constants that may differ from line to line.

o ¢(0y), c1(04), c2(0y), c3(0y), ca(o,) are constants related to o, which may differ from line to

line.

e w.h.p. indicates that an event holds with probability at least 1 — Zexp(—cy/n) for a constant

c and sample size n.

The out-sample squared bias and variance can be decomposed as follows:

Bout = Heid - XI’I:‘dAilXH*HQELd + Hezkd-',-l):p - XdT+1:pA71X9*”%d+1:p7

-~

Bout ,1 Bout,2

Vout = U2TT(A_1X1:d21;dXEdA_1) + O'QTI"(A_IX(d_H):pz(d+1):ng‘i+l):pA_1) .

Vout,l Vout,2
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Similarly, the in-sample squared bias and variance can be shown to satisfy

Bin = ”efd - XEdAilXH*H%l:d + ||62<d+1):p - X(;F+1:pA 1X0*H

Ed+1 p

Bin,l Bin’g

2(01(7(; - G*TXTAilezd)21:d,(d+1):p(92<d+1):p - XdT—&-l:pAilXe*)a

Bin,12

Vin < 20°Tr(A7 X80 X A7) + 202Tr(A*1X(d+1):pi(d+1):pX(E AT

~~

Vin,l Vin,2

where the Cauchy—Schwartz inequality is used to bound Viy.

6.1 Derivation of bounds for out-sample error

To derive the bounds for out-sample error, we first build algebraic bounds of the out-sample error.
Then we provide intermediate bounds of the out-sample error by controlling some random quantities
in the algebraic bounds. We deduce the final bounds mainly by further controlling the extreme
eigenvalues u1(Ag) and pp(A44) (from Lemma in the intermediate bounds and incorporating

The details of

Assumptlonl (rotational sparsity) to control quantities related to H9 d41): [y

our derivation are presented in Supplement Section [[I.1]

6.1.1 Algebraic bounds of out-sample error

The first step of deriving the bounds is to build algebraic bounds for the out-sample bias and

variance. The lemmas below are inspired by Lemma 27 and 28 in Tsigler & Bartlett| (2023]).

Lemma 1 (Algebraic upper bounds of out-sample error). Given invertible ¥1.4, we have

_l(i n pn(HaH) o 2 (HaH]) 113 (Ag) X b 2
d A1 p1(Aq) p2(HgHT) 112 (Aq) (d+1):p%(d+1):p

pi(HeHY ) oo, 1 un(HgHY) | _

Bou < 2||9T:d”22

M ) B _ AT e""a /. * 2
+ 3(” d” ,un(Ad) ||91.dHE 1(}\1 ,ul(Ad) ) + ||0(d+1):p”2(d+1):p
[ Ma] 2
+ (A)2||X(d+1 pOla+1)pl0); (49)
Vo 18000 L) 0

o .
Ad) pa(HaHJ)? fin(Aa)?
Lemma 2 (Algebraic lower bounds of out-sample error). Given invertible ¥1.q, we have

odpa(HaHy) 1 m(HaHy) 2 Tr(Ma) — dpa (Ma)

Vout > 02 2 4+ max 0,0 .
A RS VI t md?
1/2
Further if ||0} d||zjcll > wHatla) JL)((Ad;)p ChEL ; then
By > (1— p1(HgHY) 1/2HX d+1)p9(g41); H) 25 H2 ( 1 n u1(Hde))
out = Hn(A2II6F 15 PR pn(Ad)

28



6.1.2 Intermediate bounds of out-sample error
Based on the sub-gaussianity of the covariate vectors, the following random quantities in Lemmas
and [2] can be controlled with high probability. See Supplement Lemma [S6| (i), (ii), (iii) and (iv).

e Bounds of eigenvalues of HdeT: w.h.p.

p(HaHJ) < cin,  pa(HgHJ) > com.

e Bounds of traces of random matrices: w.h.p.

Tr(HJ Hy) = Tr(X1.427 1 X1a) < c1(oy)nd,

TI‘(Md) = TI‘(X(d+1 p)Z(d+1) X(d+1 < 02 0’33 Z A
j>d

Tr(My) = TI“(X(d_H p)E(d+1) X(d+1 ) > Clnz A2
j>d

e Bounds of norms of random matrix and vector: w.h.p.
p1(Ma) = [|Mal| < e1(02)(nAGir + D AD, I1X @bz’ < c2(0)nll0fsiy )3 .y, -
j>d
Substituting the probability bounds above into the algebraic bounds in Lemmas [1] and [2] yields

the intermediate bounds below with high probability.
Upper bounds:

1 n -2 M%(Ad) * 2
Bout < Cngl dHE ()\1 + Ml(Ad)) + Cl(o—x),u,%(Ad) H (d+1):p”2(d+1>:p
(N*A3q + 1355 AS) 1 n
+ co(0 oF T -2
2( ) M%(Ad) || d”E 1()\1 ,UJl(Ad))
(nQ)\?lH +nd . d)\z)
2 )2
pi(Aa) od 2nzy>d J
Vou S x - T T A N0
c<alo )M%(Ad)a n T xlow)o pin(Ag)?
Lower bounds:
nd 1 n DIFPY- d d
V0u2602 — + _2+02max0,c#1—c o) (——+ —))}.
A MEL YRR 10 (age ol oy + 50
Hl(Hde)1/2||X(d+1): 0F 11yl
Further if |0} d”E_:(li > = P20l then
Cl(o-m)n||92<d+1 ||E(d+1)- 1 n
Bout > ¢(1 — V054020 (— 4+ ———) 2
vzl s, s+ i)
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6.1.3 Final bounds for out-sample error

The eigenvalues p1(Ag) and p,(Ag) in the intermediate bounds above can be controlled with high
probability respectively in the small or moderate TER regime and the large TER regime. See
Supplement Lemma [S7}

e Under the small or moderate TER regime (Assumption , for 7 > Agy1,
i(Ag) < clop)nr,  pn(Ag) > nr,

e Under the large TER regime (Assumption [3)), for 7 > 0,

ra(¥) ra(¥)

p(Ad) < ean(r + Aat1

); pn(Ag) > con(T + Ag+1

).

We deduce the final bounds for the out-sample error from the intermediate bounds as follows,
mainly by applying the probability bounds on u;(Ag4) and u,(Ag) and incorporating Assumption
(rotational sparsity).

Upper bounds of By, Vour (Proposition . We first substitute the bounds of uq(Ay)
and i, (Ag) into the intermediate bounds. Then we incorporate Assumption to control quantities

related to HH’(k . This leads to the final upper bounds for Byt and Vgyt.

d+1):p“2(d+1):p

Lower bound of By, (Proposition [2}f8)). We first show that, w.h.p.
i (HaHa) 1 X a8,

Nn(Ad) ’

if 7 > Aj41 under Assumption [2| (small or modereate TER) or if 7 > 0 under Assumption 3| (large

165l >

TER). Then we substitute the bounds of p,(Ag) into the intermediate lower bound of Bgy and
. This leads to the final

*

incorporate Assumption 4 to control quantities related to HH( ’ +1):p”22(d+1)-p

lower bound for Bgyt.
Lower bound of V,,;; (Proposition [3})9). The intermediate lower bound of the out-sample

variance in Section [6.1.2] is

nd (i—i- n
p1(Ad)? Ag - pn(Ag)

To deduce the final lower bound for V,y, our strategy is as follows. We first derive a lower

n2j>d )\? d d

Vout > co )72 4 02 max{0, cp (1-— cl(ax)(m + ﬁ))} (50)

2 nd n

1 -2 .
bound for the first term o W(/\—d + m) . Then we discuss two complementary cases.

See Supplement Section [[I.1.4] for details. The first case is that %?2) is upper bounded by a
ra(X?)
d

constant (possibly depending on o,). The second case is that is large enough such that

(1—0c (Jx)(ﬁ‘lzg) + 4)) > 0. Lastly, we show that in these two cases, Voy satisfies lower bounds

of the same order, which gives the final lower bound for V.
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For small or moderate TER, after substituting the bounds of p;(A4) and py,(Ag) into the first

term of the intermediate lower bound in , we have for 7 > A\g11, w.h.p.

9 nd 1 n o _g o d 1 1.,
0 ————=(—+ ——=) "> ()0 —(— + =) 7,
A g Ay 2o )

which implies that for Agyr1 <7 < Ay, w.h.p.

o nd 1 2y g Uzg
Nl(Ad)2()\d+7,Uzn(Ad)) 2 c(og)o”. (51)

g

=%

Then we discuss two cases which are complementary to each other. The first case is that ¢ o s

upper bounded by a constant ¢(o,). In this case, we have for 7 > A\g41,

2 2
L 2jsa o 1 2sa

d >
c(oz) Agﬂ ~ o) T2

and hence (allowing that ¢(o,) below may vary from the previous line)

d Lpdﬁ ). (52)

nrt

Combining , and shows that for A\gy1 < 7 < Ay, we have, w.h.p.

nd 1 n d d | YjsaX
Vo > o 2 -2 o2 > o2 5>d 75y
CE (A N - Mn(Ad)) Z eiloa)ey 2 aloa)en Gt =)
The second case is that @ is large enough such that 1 — cﬂaﬁ(ﬁgg) + 4) > 0. In this case,

after substituting the upper bound of p1(A4y) into the second term of the intermediate lower bound

in , we have for 7 > A\g11, w.h.p.

2 n3jsat d d > oo Zj>d)‘?_

o“ max{0, 5

(53)

Then combining , and yields that for Agy1 <7 < Ay, w.hop.

d  Yjsah
Vout > C<Uz)02(ﬁ + %)

In conclusion of the two cases, it holds that for A\gy1 <7 < Ay, w.hop.

2
Vout > C(O‘ )UZ(Q + )\d+1 Td(EQ)
=z x n

).

T2 n
For 7 < Agy1, the lower bound of Vg, follows by the monotonicity of variance: Voyu for 7 < Agqq
is no smaller than Vg, for 7 = A\g1q1. Hence for 7 < Agyq,

rq(3?)

d
Vout > C(O’;,;)O‘Q(ﬁ +

).

The lower bound of V,y in the large TER regime can be derived similarly to the small or

moderate TER regime. For succinctness, we omit the associated details.
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6.2 Derivation of bounds for in-sample error

Our strategy for deriving the bounds for in-sample error is similar to that for out-sample error.
The details of our derivation are presented in Supplement Section

6.2.1 Algebraic bounds of in-sample error

Similarly to the out-sample error, we first give the algebraic bounds for in-sample bias and variance.

Lemma 3 (Algebraic upper bounds of in-sample error). Given invertible il:d; we have

1 n® o 2 pi(Ag)
Bin < 2||6%. 1|21 (— R Xgr1)0F 2
< 2| 1.d‘|21:(11()\1 +M%(Ad)) n,u%(Ad)H (d+1)p0 (at1):pl
1 n | Ma]
3 s 0l 5+ )2+ Wil e a0yl )
Vi < 202D d o *TY(XMH) pX (1) )“1§X<d+1>:pX(d+1>:p).
i (Ag) n fin(Aa)

Lemma 4 (Algebraic lower bounds of in-sample error). Given invertible $1.q, we have

d n
21 1 Z IU”L Xl Xmd +lz lu’z X(d+1)p (d+1):p )
n

2 n i=1 Nz Xl dX1 d) + nT i—1 (d+1) PXgi+1):p) + nT)2

) 121X (a41) 07441
Further if (6074l > WEDr (AL D2D  then
: 1:d

bn(Ag)
12 x
Bin, 12| X @101yl 5 1 noo
Bin > max{0,1 — ’ 1-— - 0 4z (—+——F—)" "
in { Bin }( ,un(Ad)Hel;d”z);d ) || 1.d||21:(11()\d Mn(Ad))

6.2.2 Intermediate bounds of in-sample error

In addition to the probability bounds in Section the following probability bounds can be
obtained about random quantities in Lemmas |3| and 4] See Supplement Lemma (i), (v) and

(vii).
e Bounds of ||91‘:d|]2271, w.h.p.

Ulffals < 107alE s < call0Tall3

e Bounds of /'Ll(X(d+1)5ng;l+l):p) and || My||, w.h.p.

(PAd+1 + D jsq )

241 (X(d+1):pX(Ti+1);p) < Cl(ax)(n)\d+1 + Z )‘j)a HMd” < 02(056) n

j>d
e Bounds of Tr(X(d+1)5ng;l+l):p)7 w.h.p.

j>d
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Substituting the probability bounds in Section [6.1.2] and above into the algebraic bounds in
Lemmas [3] and [ yields the intermediate bounds below, w.h.p.
Upper bounds:

1 noo_ 13 (Aq)

= Cl” 1.dH21:;()\1 + 101 (Ad)) + 01(0' )#%(Ad) H (d+1):p||2(d+1):p
Wit 2 2oV g g (L

13 (Aa) CETN
(A1 + D ma M)

+ (e3(0z) + ca(or) ,Un(Ad;; : )He(d+1):p”22<d+1>:p’
5 13 (Ag) d + e5(02)0? (X2 Aj)(nAat + 30554 7))
pz(Ag) n ‘ fin(Ag)? '

+ c2 (Uw)

Vin < c30

Lower bounds:

n'/2 X (a41):p9 0041y

Further if H‘%:d”ﬁ);; > (A , then
|Bin,12] 1(92)0107 44 1)p IS a1y o 5 1 noo
Bin > ¢ max{0, 1 — 1om12ly g _ L O N2 (— 4 — )2
n L T 2 [ R L= AP v

6.2.3 Final bounds for in-sample error

We deduce the final bounds for the in-sample error from the intermediate bounds as follows, mainly
by applying the probability bounds on p1(Ay) and u,(Ag) (from Section and incorporating
Assumption [4| (rotational sparsity).

Upper bounds of Bj,, Vi, (Proposition . We first substitute the bounds of p;(Ag)
and p,(Ag) into the intermediate bounds. Then we incorporate Assumption [4] to control quantities
related to ||0’(kd+1):p\|22(d+1):p
Lower bound of B;, (Proposition . We first show that w.h.p.

. This leads to the final upper bounds for B;, and Vjj,.

n1/2 ’|X(d+1)1170>(kd+1):p ||

if 7 > Aj+1 under Assumption [2| (small or modereate TER) or if 7 > 0 under Assumption 3| (large
TER). Then we show that w.h.p.

B
max{0,1 — ‘Bn’2|} > k1(7),

in,1

if 7 > Ag41 under Assumption 2] (small or moderate regime TER regime) and Assumption [di) , or

|Biﬂ,2| }

max{0,1 — > ko(T),

in,1
if 7 > 0 under Assumption 3] (large TER regime) and Assumption [4(ii). See Theorems [2] and
for the definition of x1(7) and ko(7), and Supplement Lemma [S5| for details. We substitute the
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bounds of y,,(Ay) into the intermediate lower bound of By, and incorporate Assumptionto control

quantities related to ||6F This leads to the final lower bound of Bjj,.

(d+1): ||E(d+1>p
Lower bound of Vj, (Proposition |6,/12]). The algebraic lower bound of in-sample variance

from Section [6.2.1] is

d n
11 (X1 XT 1 uz (X(da41 )
2 (=Y : #E (X0 X ) S+ = § ( :)ﬁ 1 5): (54)
2'n IU,Z X1 Xm d) + 77,7' n d+1)p (d—l—l):p) + nT)

=1 =1

By the concentration of X ;X1.4 (see Supplement Lemma [S6| (i), we have w.h.p.
(X5 X1a) > -+ > pa( X)X 1) > ehg.

If 7 < A4, then the first term in the algebraic bound satisfies w.h.p.

d
1 12 (X1.aXiy) S Cﬂ

n i=1 (/"LI(deXird) + nT)2 N n.

For the second term of the algebraic lower bound, we first give the algebraic bound

0-21 i :LL1,2 (X(d‘f'l):pX('Ic‘H»l):p) S 0-2i TT(X(d+1):pX(’IC‘l+1):p)2
* (1i(X (@4 1)pX (1)) T 172 T 0P p1(Ag)?

By the control of p;(Ay) in Section and the fact that w.h.p. (see Supplement Lemma [SG (vii))

Tr(X(a41)pX (g1)p) = €0 YN,
j>d

the second term in the algebraic bound can be lower bounded as follows.

e In small or moderate TER regime, under Assumption [2| for 7 > Agy1, w.h.p.

)‘?l-l—l rd(E).

51 - N?(X(dJrl):pX(TdH):p)
g *Z T 7 > oo’ 505
—1 (Ni(X(d+1):pX(d+1);p) + Tl’T) T n
e In large TER regime, under Assumption [3| for 7 > 0, w.h.p.
2 T
022 n M (X(d+1):pX(d+1);p) > 00_2 Ai—&—l T;(Z)
n = (X @)X () T2 T (74 Ay )2 0

Combining the preceding bounds on the two terms of gives the lower bound of Vj,.

7 Numerical studies

We present numerical results in support of our theoretical results, including the sufficient conditions
and necessary conditions for MSE = O(%) and the conditions for when MSE{ ; can be much smaller

than MSE;, as described in Remark [1] and
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7.1 Data generation and MSE calculation

We first generate the covariance matrix ¥ and coefficient vector 6*.

Generating Y. Given 0 < d < p and p < 1, we generate a diagonal covariance matrix > as
follows. Welet \; =1 fort=1,...,d and let \; = p for i =d +1,...,p unless otherwise stated.
Here p represents the gap between the spiked and tail eigenvalues of 3.

Generating 6*. Given the covariance matrix ¥, we generate 0* € RP as follows. We let

Ta= 7 To generate 6(d+1) we first generate 8441y, ~ Np—a(0,1) and then let

Bla+1):p \/0 01||9{d||% 1)‘d+17 if r4(X) < 10n,

o* . 1B+l 411.p

(d+1):p Bas1): . =2
%\/0‘01”91#@;;% + o) ifra(¥) = 10n.

||/B(d+1):p”2(d+1);p

In the numerical study, we consider r4(¥X) < 10n as the small or moderate TER regime and consider
rq4(X) > 10n as the large TER regime. From the generating process above, [0} d||2 _1)\ =1 and
‘|9(d+1):p”2(d+1):p satisfies rotational sparsity Assumption (1) in small or moderate TER regime or
satisfies rotational sparsity Assumption (ii) in large TER regime.

Generating z; and y;. Given ¥ and 6* from above, we generate data x; and y; fort =1,...,n
as follows. We sample z1; ~ unif (\/f)Spfl) and zg; ~ N,(0,1), where SP~1 is the spherical surface
with radius 1 in RP. Then we let z; = \fzh + ‘[222 and z; = 21/%2; . By the generating process,
z; € RP is an isotropic random vector with dependent components. Then we sample ¢; ~ N(0,1)
and generate y; = x} 0* + ¢; by model .

With z; and y; generated from above, for different ridge parameters 7, we calculate MSE, or
MSE;, according to or @, where y;’s are averaged out. We report the MSE,,; and MSE;,

based on the average of 10 repeated runs of data generation.

7.2 Experiment settings
7.2.1 Study of conditions for MSE = O(%)

We use the following settings to study the sufficient conditions and the necessary conditions for
MSE = O(%) in Corollary and 5| We focus on the scenarios where the sufficient condition
matches the necessary condition up to a constant, that is, MSE = O(%) if and only if the ratio
)‘i—:l is smaller than or equal to a certain threshold.

Study of Corollary [1] !. Given the small or moderate TER regime, n > d and r4(X?) > d,
from Corollary the sufficient condition for MSEqu = O( @ f \ sy (22 and the

necessary condition for MSEq, = O(% is Ad—“ < \/> . To embody this condition, we set

d =5,n=1500,p = 1500 and p = [0.1,1, 10] x \/;, /m such that rg(3?) = 1495.
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Study of Corollary Given the small or moderate TER regime, n > d and r4(3) =< n, from

Corollary the sufficient condition for MSE;, = O(%) is Aizl S ﬁ‘lz) and the necessary condition

for MSE;, = O(é) is ’\f\zl < rd&)' To embody this condition, we set d = 5,n = 1500, p = 1500

such that r4(X) = 1495.

and p = [0.1,1,10] x (2)

Study of Corollary [4. Given the large TER regime and n > d, from Corollary [4] the sufficient
condition for MSEq,; = O(%) and the necessary condition for MSEq,; = O(%) are the same. The

e d+1<\/7d \/m ce e A < d . /T (22)
condition is == (e L \/Erd ) < 1 and the condition is == < ) if Vara(®) > 1. To

embody the first condition, we set d = 5, n = 50, p = 1500 such that ”\fiv((z)) =0.577 < 1 and

p=10.1,1,10] x T\/ET). To embody the second condition, we set d = 5,n = 150, p = 1500 such that

ny/rq(%2?) d
Sy = L2 > Land p=[0.0,1,10] x .

Study of Corollary [5 Given the large TER regime and n > d, from Corollary |5} the sufficient

condition for MSE;, = O(%) and the necessary condition for MSE;, = O(%) are the same, and the

condition is )‘izl < rd((jE)' To embody this condition, we set d = 5, n = 150,p = 1500 and

p=1[0.1,1,10] x .
7.2.2 Study of conditions for MSE; , much smaller than MSE;,

We use the following settings to study the conditions for when MSE? ; can be much smaller than

MSE? . which is discussed in Remark |1| and

m?

(i) In the small or moderate TER regime, MSE? ; can be much smaller than MSE}, if

Ad+1 d n n
Y) =< 2 — 1.
AR R R )
To embody this condition, we set d = 2, n = 300, p = 15000, A\y = --- =Xy =1, Agy1 = -+ =
Mia = p Arnagr =+ =Xy = 0.02p and p = § /-y such that r4(X) = 319.56, % = &, /-,
(ii) In the large TER regime, MSE} ; can be much smaller than MSE] if
NN 7 N RN

Ad nrq(X2) Vdrg(2) Ad ra(¥)

To embody this condition, we set d = 2, n = 150, p = 15000 and p = % min{1, 2 Td(é }
nrq Td
such that 1 = min{1, V” } Mt 0,0011549 and "Y74C2) — 0.0010002.
\/m"d(22 ra(X2)?

(iii) In the large TER regime, MSEOut can be much smaller than MSE;, if

Adt1 S d . n\/rd(22)} Adt1 <n\/nrd(22) rq(¥)?

mingl, A o ra(®)? 7 nrg(X2)

> 1.
Ad T /nrg(X2) Vdrg(%)
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15000 and p = ni”rd(v)} such

To embody this condition, we set d = 2, n = 300, p = min{1,

d
\/ nrq(32)

A Td A ny/nrg(Z r
that §\+1 = d mln{l, \/7} d+1 =0. 0009429 . = (0.0028290 and af 2?2 = 50.
d V/nra(52) Cra(X)? q(22)
05 . . 05
— p=o/i\ — p=03dy
— o] — o
T — p=10%;
— p=10VE oo
o3 ki 0s] T
g, g,
0.1 01
N
0.0 00
=75 -5.0 =25 0.0 25 5.0 75 10.0 125 =15 -5.0 =25 0.0 25 5.0 75 10.0 125
—log(1) log()

(b) Corollary Small or moderate TER,
n > d and rg(3) < n.

(a) Corollary Small or moderate TER,
n>>d, rq(2?) > d.

12 12
1.0
1.0 1.0
0.8
08 e 08 B
5 5 : 06
g? 0.6 50.5 §
0.4
0.4 0.4
02 02 \ 02
0.0 0.0 0.0
-75 -50 -25 00 25 50 75 100 125 -75 -50 -25 00 25 50 75 100 125 -75 -50 -25 00 25 50 75 100 125
~log(x) ~log(7) —log(t)
(C) Corollary Large TER, (d) Corollary Large TER, (e) Corollary Large TER,
/7 g (52 Vg (=2 d.
n»dandw_l. n>>dandL()>1. n>
Virg () Virg ()
. - d
Figure 1: Study of conditions for MSE = O(%).
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(a) Small or moderate TER: (b) Large TER: (C) Large TER:
A
rq(S) xn, S4EL > d o n s, LOTE ) ny/rq(=2) Nat1 s 4 ) ny/rq(=2)
d rg(22) 7 rq(22) —~ min{1, +, -~ 2 —%*—min{l, —=——2—1,
d \/nrd():z) Vdrg () d [rrq(22) Varg (=)
Ad41 N ny/nrg(£2) Ad+1 < ny/nrg(S2) and 7‘d(2)2 > 1
Ad N~ rg(m)2 Xa T rg(m)2 nrg(52) :

Figure 2: Study of conditions for MSE{; much smaller than MSE;, .

37



7.3 Results

The numerical results are summarized in Figure [[] and 2] From Figure [I, we see that when the

ratio /\izl is related to the thresholds described in Section |7.2.1| by a pre-factor equal to 0.1 or 1,

but not 10, the MSEs with near optimal choices of 7 are close to %, which gives numerical support
to our conditions for MSE = O(%) discussed in Corollary and [5| From Figure [2) we see that
MSE?

described in Section which embody the conditions from our theory for when MSE? . can be
much smaller than MSE;, in Section |3.1 and

is much smaller than MSE*

i, each associated with the optimal choices of 7, in the settings
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Supplementary Material for
“On Ridge Estimation in High-dimensional Rotationally Sparse Linear

Regression”

I Definition of sub-gaussianity

A random variable z € R is sub-gaussian if it has a finite sub-gaussian norm
12|y, = inf{t > 0 : Eexp(2?/t?) < 2}.

The sub-gaussian norm of a random vector Z € RP is

A
121, = sup 15221,
s#£0 HSH

II Proofs of main results

We provide proofs of Propositions in Section For convenience, we re-state the following

notation from Section [6l

o A=XXT 4 nrl,, Ay = X(dﬂ):pX(TdH):p +nrl,.

® X4 denotes the the matrices comprised of the first d columns of X and X4 1), denotes the

the matrices comprised of the last p — d columns of X.

XT X1.4 < X(Td+1): X(d+1):p & XT X (at1y:
%’ E(d-i-l)ip = + and Elidy(d-&-l)ip = %‘

b zAjlzd =
o Hy=X/°XT,, Hi= 20" X1,

_ T o 3 T
o My= X(d+1):pz(d—l-l):pX(d_;,_l):pa My = X(d+1):pz(d—l—l):pX(d_;,_l);p'

e 11;(M) is the j-th largest eigenvalue of symmetric semi-positive definite matrix M.

II.1  Proof of the bounds for out-sample error
I1.1.1  Algebraic bounds of the out-sample error

The bias and variance of the out-sample error can be decomposed as follows:

Bout = Heid - XI’I:‘dAilXH*H%Ld + Hezkd-',-l):p - XdT+1:pA71X9*”%d+l:p7

-~

Bout ,1 Bout,2

Vout = O'QTT(A_IXl:dELdXEdA_I) + UQTr(A_1X(d+1):pE(dH):pX(EH):pA_l) .

Vout,l Vout,Z



The following algebraic bounds are the foundation of the upper bounds and lower bounds for
the out-sample error. The algebraic upper bounds below are mainly inspired by Lemma 27 and 28

in Tsigler & Bartlett| (2023). Moreover, we provide new algebraic lower bounds for the out-sample

error.

Lemma S1 (Algebraic upper bounds of out-sample error). Given invertible ¥1.q, we have

1 ,Un(Hng) -2 QMI(HdHT) #1(14 )

Bout < 21|67.|12- + X 0% 2
t || 1d” 1()\1 ,Ul(Ad) ,Un(HdHT) /«Ln( )H (d+1):p pY(d+1):p ||
p (HaHY) 1 pn(HgH])
M r-r = a’ N T aZ
+3(1Mall U s 5+ P 1670 R
My
+ H( ‘)| 1 X (d41):p d+1 %),
Vo o g l(A) THHTHY | Te(My)

1

o }
12 (Aq) pa(HaHY )? pin(Ag)?
Proof.

Algebraic upper bound for the out-sample bias. From Section H.2 in Supplement of [Tsigler
& Bartlett| (2023)), we have

BOllta2 < 3(HX(Z;I+1):pA71X11d6T:d”%<d+1):p + HX d+1): AilX(d+1)5p0>(kd+1):pH%(dﬂ):p + Haikd+1):pH22(d+1):p)

T -1 * HMdH 2
3(HX(d+1):pA Xl:delzd”2<d+1>:p + [in(A)2 HX (d+1):p clJrl);DH + 116 (d+1): Hz(d+l)p)

From Lemma (ii), we have

|’X(7;l+l):pA_1X11d9T:d||%(d+1):p
= | X (s Xualla + XTgA7 X0a) 01403 0,
= 1X 1)y A7 XS P (Srh + Sy P X T AT Xuas ) 7 isny e

Ml(Hde ) HQ H 1( 1 :U’n(Hde ) -2
p2(Ag) UEIETN 1 (Aq)

< [|Mall

Hence we have

Nl(Hde TP 1 Nn(Hng) -2
Bout2 < 3(||Myl|——"+2=107./|l5-1 (— + ————2=
t,2 (” d” Mn(Ad) || 1.d”2 1()\1 Ml(Ad)

M,
+MH< ‘)‘2||X(d+1 (d+1)p 1+ 116 (d+1)p 17 (d+1)p)- (S1)

It remains to give an upper bound of Byy,1. From Lemma (i), we have
(T, X0 ) 1.a + XL gA7 X1.a0(7, X0 ) 1.0 = XTgA X 0",
Denote (q.q (7' X60%)1.qg — 67,4 Then

_ % —1 2 —1 2 —1/2 _
HdAle(d-i-l):pe(CH_l);p / 010 =214 Cra+ . / XiaA; X1.aC1a



= (S0h+ HaA7 HD) S 2 ¢, (S2)

By standard manipulations,

I(S1h + HaAZ " HD S 2¢all? > i (S0) + Ha A HT 2S00 ¢l

1 Nn(HdHc:lF) 2
> Bout1(+— + ———2= S3
? t’1()\1 p1(Aq) (83)
H AL X 0; _nT 20 12 < (16 H AT X 0; 2 S4
|| dig (d+1):pY(d+1):p 1:d d” (H 1:d”2;(11+” dig (d+1):p (d+1):p||) : ( )
From , and , we have
1 pn(HgH]) ¥ —1 " 2
Bout,l(rl + W) < (Hﬁ:d”z;é + HHdAd X(d+1):p9(d+1):p”) :
That is, we have
Boua < (|05alls 1 + 1 HuA7 X o DA+ L)
out,1 > 1:dlly (d+1): d+1 A M%(Ad)
1 pa(HgHY) . - 113 (Aa)
< 2|67 2 4+ B tdd /=2 ol ATIX PR | [t R eV
167415 d( 2(4y) ) [HaAy X (a+1)p8 41y | 2 (HyHT)
1 pi(HgH]) o 2u(HgH]) p3(Aq) 2 S
1 X (a1):p8 a1y (S5)

9 2
<2H9 dH ()\1 M%(Ad) ) Mn(HdHT) Hn( )

Combining and gives the upper bound of out-sample bias.
Algebraic upper bound for the out-sample variance. From Lemma 27 in [Tsigler &

Bartlett| (2023), we have
2 T
Voutd < o2 N;(Ad) Tr(H, }rfrd)?
pi(Aa) pa(HaHy )

To upper bound Vg2, we have

Vout,2 = 07 Tr(A™ X1 p S @) pX (@414 )

<52 Tr(MdQ)
fin(A)
o Tr(My)
<ot ———5.
pin(Aa)
Combining the preceding two displays gives the upper bound of out-sample variance. O
Lemma S2 (Algebraic lower bounds of out-sample error). Given invertible ¥1.4, we have
odua(HaHy) 1 m(HgHy) . o 2 Tr(Mg) — dpa (Ma)
Vout > 02 + max{0, o .
TR Nt A { wA? )
p1(HaHa) 2 (| X (11 Il
Further if |07 dHZ_:flz > = p9a+1):p . then
B > (1 B Ml(HdHT)1/2HX d+1): 0(d+1 H) ||¢9 H2 ( 1 4 Nl(Hde )) (86)
out = (A5 5 FE N (Ad)



Proof.
Algebraic lower bound for the out-sample variance: From Lemma 0| (i), we have

XEdAgle = él;d(T, €) + XEdAngl;délzd(T, €).

Multiplying the two sides with ¥~1/2, we have

HyA7'e = (ST 4+ HyA7' S 251 20(x, e,
and hence

- — — —1/2 1/24
| Hadg el = |(S1 + Hadg 'S )30 |12

< (Spg+ Hady 'S80 o)1
Taking the expectations of the two sides with respect to € yields

1 (STE 4 HyA7 S )2 Voun > B[ HaA €|

= o?Tr(A; ' HyH AYY).

By simple manipulations, we have
1 H.H] _
o+ “1”( (jldf D)2V 1 > 0P Tr(Hy A7 HY)
n
0 m(Ag)?
o2 dﬂd(Hng )
T m(Ag)?

and hence

o dpa(HaH,) i+ﬂ1(HdeT)

—2
p(Aa)? g pin(Ag) ) (57)

Vout,l >0
To lower bound Vg2, we have

Voutz = 02 Tr(A ' MzA™Y)

> ZMZ ,Un H—l(Md)

S Ei:l pin—it1(Mg)
- p11(Aa)?
Tr(Myg) — du (Myg)
p11(Aa)? '

The first inequality above is from Lemma For the second inequality, because the rank of

A — A, is at most d,

ﬂi(A—Ad):O Vi>d+ 1.



From Weyl’s inequality (Lemma , we have

i(A) — p1(Aag) < pi(A—A5) =0 Vi>d+1

= ui(A) <pm(Ag) Yi>d+1
1 1
— < Vi>d+1
p1(Ag) — pi(A)

1
< Z‘Ail Vz<n—d
Nl(Ad)_lu( ) -

By requiring Vous,2 > 0, we have

=

TI‘(Md) — d,u1 (Md)
pi1(Aq)?

Combining and gives the lower bound of out-sample variance.

Vout,2 > maX{O,

}- (S8)

Algebraic lower bound for the out-sample bias. The norms of the two sides of can be

bounded as follows:

- - 2
IS0k + HoAF HDZVGall? < mn(S1) + HaA  HT IS ¢l

1 p(HaHy) o
< Bout1(~— + ———-25)7, S9
- t’l()\d pin(Aq) ) (59)
— * 1/2 * * — *
1A X sty — S 208l > (10l — HaAT Xy lain 7. (S10)
From ([S2)), and (S10]), we have
1 :ul(HdH;lr) 2 * 1
Bout,l()\*d + m) > (”91;(1”21 L — [|HaAy" X(a41):p0(a1)p 1?2,
and hence
Bout 2 Bout,l
Ml(HdH})

(H91d||z—1 — |Ha A X (4110 (d+1)p )? ()\ )72

d Nn(Ad)

1 (HaHa) 211X (a11):p87 11y

With HQi‘:dHE;}i > oA , we have
. 1 (HaHa) || X @11 p874,1):p _ .
HaldeZ;}i > Mn(Ad> . > HHdAd 1X(d+1)1100(d+1):p||7

and hence

1 p(HgHY)

* —1 -2
Bout > (H‘%:d”z;é - ||HdAd X(d+1): 0(d+1)p||) (>\d + ,Un(Ad) )
> _ Nl(Hng)l/Q‘|X(d+1):p02<d+1);pH )QHQ* H2 (i 4 ul(HdeT))_z
- (A 1074l 2o P N T n(Ad)



I1.1.2 Intermediate bounds of the out-sample error

We give the intermediate bounds of out-sample error under the event that some random quantities
in the algebraic bounds above are controlled. In the event Q;(r) N2y N QY for 0 < v < l defined

in Lemma substituting the bounds of p1(HgH ), pa(HaHJ ), | X(as1)0 | and || Mg4]| into

d+1)p
the algebraic upper bound of Boyt yields
2 1 n_ o Polyy(ox)(1+v+m)* pi(Aa)
Bou < 9* 2_ - 2 2 1 9* 2
t > (1 o 771)4 || 1.d”21:(1i()\1 + ,Ufl(Ad)) (1 — - n1>4 M%(Ad) || (d+1):pHE<d+1):p
Poly,(02)(1 + v +m1)% (n®X5, + ny g A%) G2 (L 1 Lo -2
) -
(I—v—m) 13 (Aa) BRI i (Ag)
(”2)‘3 tny; d/\z) »
+ (3 + Poly, (o) +u (Ad)f IV a1l gy (S11)

In the event Q(r) N Qy for 0 < v < % defined in Lemma and with

(1 +V+771)(1 )1/211”9 d+1)pHE(d+1)p

07 lly1 > :
|| 1'd”21:¢11 = n(Ad)
substituting the bounds of i (HgH] ) and || X (441), O0lar1)p || into the algebraic lower bound of By
yields
B 1, Utvdmiite 220l ol B 0 s (o + )
t —) "
- (L4+v+m)? Nn(Ad)"‘gl;d||2;d hd Ad - pn(Aa)

(S12)

In the event € (1) N€231N Q32 for v < L defined in Lemma substituting the bounds of pg(HzHY ),
Tr(HdTHd) and Tr(M,) into the algebraic upper bound of Vg, yields

Poly,(0z)  #3(Aa) nzpd 7
(1 —v—m)* u3(Aq) fin(Aqg)?
In the event Q1 () Q2N Q3(v) for v < 3 min{1, 02} defined in Lemma substituting the bounds
of i (HgHY)), pa(HaHY), Tr(My) and py(My) into the algebraic lower bound of Vo yields

d
Vout S 025 + POIYQ(UI) (813)

(1—v—m)? nd 1 n Z>d>\32 2d d
v rmi” A N Ay 0 e (v = Gort sy + )b

Vout 2

I1.1.3 Final upper bounds of out-sample bias and variance

We give the final upper bounds of out-sample bias and variance as stated in Proposition [I] and [7}
From the intermediate bounds in Section we derive the final bounds by further controlling

u1(Aq) and pn(Ag) (from Lemma in the intermediate bounds and incorporating Assumption



Ito control the terms related to |67 We first discuss the small or moderate TER

d+1 HE(d+1) .
regime and then the large TER regime.
(i) Small or moderate TER

From Lemma(i), 1D and 1 , in the event Q1 (v)NQ2NQ31NN32 NN for v < % defined

in Lemma [S6{and Assumption [2 substituting the bounds of p1(A44) and u,(Ag) in (S47)—(S48]) into
(S11)) and (S13), we have for 7 > Agy1,

Poly,(0,)(1 + C1)? o 1 1.5 Polyg(oz)(1+v+m)? 211 o 2
Bout < (—v—m) 167.all5- ()\*1 + ;) + (1—v—m) A+ C) a1 l15 0,
Polyg (o) (1 + Cy)? (1+I/+771) 1 1
i Zolrs(e I+ ) (L 105 G+ 272 4 Polya(o) 1+ syl
Polyg(oa) (1 +C1)?  od | »2055a%
Vous < d ., 225>d%y
M=y )t (Un+0 nr2 )

Hence, we obtain the upper bounds

(1—1—01)3 +v+m)? Polyg(0y) 1 1

(1
(1—V—?71) (161 d||2 (/\71—’_ T) 2+ o d+1)pH2(d+1):p)a
(

Polyg(0,)(1 + C1)? LI AZq ra(2?)
(1—v—m) n 2 n

Bout S

Vout <

).

With Assumption (i)7 we have for 7 > A\g11,

1 1

1001150y < %67 alls-1 NG < 0ullO%allsy (5 + - (S15)

Further with (S15)), we have for 7 > A1,

1 1

Bout < (1 +Cl)3(1+V+771)2P01YG(0-I)H9 d||2 ( )72
ou )\1 .

B (1—v—m)*
This gives Proposition
(ii) Large TER

From Lemma (ii), and , in the event Q1(v) N N2 N Q31 N Q32 N Qg N Qg(v) for
0 < v < § defined in Lemma [S6|and Assumption [3| substituting the bounds of u1(Ay) and 1, (Aq)

in (S49)—(S50) into (S11)) and (S13)), for 7 > 0,

(1+v+m)? 1 1

< 2 2
BOUt—(l_y n)4H1dH d()\ +T+)\ rd(z))

Polyy(oz)(L+ v +m)? (1 + v +n2)? 1o 12
(1—v—m) (1 — v — )2 VP

Polyy(0z)(1+ v +m)* (1 + v +n2)° 165413 1(i + ;)_2
e ORI L N W]

Poly, (o)
m”e d+1): ”2<d+1>p



Poly, (o) (1 + v + 1) o2 §+ /\§+1 ra(2?)

Vout <
ME vl -v-m)? 'n (T 4+ Mg @22 n

).

Hence, we obtain the upper bounds

(1 + v +m)*(1 + v + n2)*Poly, (o) 1 1

* 2 - —2 * 2
Bout < (1_V_771>4(1 _V_n2)2 (||91d”2;(1i()\1 + i Zj>d)‘]'> + He(d—s—l):pHZ(dJrl):p)?
Vo < (1 + v+ n2)*Polyy(0s) 24y A Td(EQ))‘
SA—v—miG—r—m?” n g, e n
With Assumption [4](ii), we have for 7 > 0,
0 1 1 1) 1 1
* 2 < 72 * (= —2 < 72 * (= —2.

WlasnilBiarnn < FI0hallis (5, + ) < Flhlers iy + ) ™ (616)

Further with (S16|), we have for 7 > 0,
Bout < (1 + V+771)2(1 +v +772)2P01}’4(Um) He* ||271(i + 1 )—2
mE T G- e (Y T e

This gives Proposition [7]

I1.1.4 Final lower bounds of out-sample bias and variance

We give the final lower bounds of out-sample bias and variance. We first discuss the small or
moderate TER regime and then the large TER regime.

(i) Small or moderate TER

Lower bound of out-sample bias. For 7 > A\, we have p,(Ay) > n7t > nAgr1. Then from

Assumption (i)7 we have for 0 < v < % and 7 > Agyq,

167.allg;1 = e
v m)A 4 o) 20l 1 2 (s17)
- pin(Ad)

From 1) in the event Q4 (v) N Qy for v < % defined in Lemma [S6{ and Assumption (i), substi-
tuting the lower bound of i, (A4) in (S48)) into (S12]), we have for 7 > Ag41,

B 1 a u+u+mﬂ1+ﬁymwamﬁh%ﬂ”wm|P L1
M= (L v+m)? e - syt ) 7))

With Assumption (i), we also have for 7 > A\gi1,

4y +m)( 40D 10 l= 2040021001,

HE(d-H):p < \/a (S18)

Adt1ll07.qlls 1

5 gl



By applying (S18), in the event € (v) Ny for v < % defined in Lemma |S6{ and Assumption (i),
we have for 7 > Agy1,
1 1

+-)72
-

(1 - \/E)Q 9* 2
)2 || lsdHE;i(rd

B >~ Yo7
out = (I+v+m

This gives the results of Proposition

Lower bound of out-sample variance. To deduce the final lower bound of V4, our strategy is

as follows. We first derive a lower bound for the first term in the intermediate lower bound (S14]).

2
Then we discuss two complementary cases. The first case is that %JE) is upper bounded. The

second case is that %52) is large enough such that 1 — v — C’gag(% + 2) > 0. Lastly, we show

that in these two cases, Voyut satisfies lower bounds of the same order, which gives the final lower
bound for Vyut.

As preparation, we derive an equivalence relationship, which is useful in the following analysis.

Given Assumption [I we have

20{)0%d C()O'%d 1 2000'323(1 1 C()O'%d
- >~ = = -

rq(X?) n 2 rq(X?) — 2 n

2Cp02d _ 1
= Tj?;g) > 5 m (from Assumption

2Cyo2 >d A
foaxd > Z{jd J (S19)
1_ A\
53— d+1

Now, we are ready to give the lower bound of V. We first consider the first term of the
right-hand side in (S14). From Lemma [S7(i) and (S14), in the event () N Q2 N Q33(v) N Qs
for 0 < v < 3min{1,02} defined in Lemma substituting the bounds of p;(A4) and p,(Ag) in

(S47)—(S48) into the first term in (S14)), we have for 7 > Agy1,

(1—1/—771)202 nd (i—i- n = (1—v—m)? Uzi(i_i_l)—z
(I4+v+n)* w(Ag)? Aa pn(Ag) T 1+ C)2(1+v+m)*Polyy(or) nt2 Ny T

Then in the event Q1 (v) N Qs N Q33(v) N Qs for 0 < v < Fmin{l, 02} defined in Lemma [S6| and

Assumption [2, we have for Ay 1 <7 < Ay,

1—1/—7712 nd 1 n _ 1—V—?712 d
QC()U%d

o
(1+V+771)4 /Ll(Ad)z Ad (1+Cl)2(1 +V—|—7]1)4P01y4(0'56) n
Then we discuss two complementary cases. The first cases is that (50 +
equivalence in (S19) and with Assumption |1} for 7 > A\gi1,
2Coo3d 2j=a S 2jsa

Coai.d
n

> % From the

s—m Ny T
which implies that
2
d S 3= M 2j=d
n — 2Cy02  nt?



25— 2
20002 d i Z]>d >\]

7 )

S
IV

Then from (S14) and (S20)), in the event Q; () N QN Q33(v) N Q5 for v < L min{1, 02} defined in

Lemma [S6, we have for Agy1 < 7 < Ag,

(1-v— 771)2 od
Vout > et
out = (1+C)2(1+v+ 771)4P01y4(0x)0 n
1
1-—v-— 1)2 2200212 Ug(g n Zj>d )‘3)
(14 C1)2(L+ v +m)*Polyy(oz) ¢ L2moon nr? 7
QCOG

The second case is that fggéf + Cogid < 1. From Lemma (1) and (S14), in the event Q1(v) N

QN Qa3(v)N Qs for 0 < v < %min{l, 02} defined in Lemma and Assumption 2| for 7 > A\j41,
the second term in (S14]) satisfies

DD ., 2d d 1 YisaA; 1
S b N Y T I > — 1
p11(Aq)? (d-v COUI(Td(EQ) " ”)} ~ (1+C1)?Polyy(0z) nr? (2 V). (B2

Then from (S14)), (S20) and (S21)), in the event () N Q2 N Q33(v) N Q5 for 0 < v < §min{1, 02}

max{0,

defined in Lemma [S6] and Assumption [, we have for 7 > Ag41,

Vo> (1—v—m)? (*—V) 0_2(§+23>d>‘§)
M= 14+ C2(1+v+m)*Poly,(or) 'n nr? 7

In conclusion, in the event Q1 () N Q2 N Qy3(v) N for 0 < v < 2 min{1, 02} defined in Lemma

and Assumption [2] we have for \g11 <7 < Ay,

1
1m
v Q—v=mPG-v)  Som ad,
out Z (1+C1)2(1 + v+ m)*Poly,(os) -mn nr? 7
1 + 20002
or equivalently
5—m
Voo (1—v—m)? (f —v) 20002 2 d n )‘3+1 Td(zz))
N (14 CO2(1+ v+ m)Polyy(o) noor2 on 7
+ Z 2C) 02

The result for 7 < Agy1 follows from the monotonicity of variance in Lemma This gives

Proposition [3]

(ii) Large TER
Lower bound of out-sample bias. In the event Qg(v) for 0 < v < i defined in Lemma [S6 and
Assumption [3| and [4](ii), incorporating the bound of p,,(Aq), we have for 7 > 0,
2(1+o )1/2||9(d+1 ||E(d+1) p
10" 1)

165l >

10



> (L+vtm)d+o )1/2n||9 (d+1): [T
B tin(Ad)
Then from (S12) and Lemma (ii), in the event Q1 ()N QuNQ() for 0 < v < I defined in Lemma
and Assumption [3] and [4{ii), substituting the lower bounds of u,(Aq) in (S50) into (S12), we

have for 7 > 0,

(S22)

(1 _V_772)2 (1+V+771)(1+U2)1/2H0*d+1 ||E(d+1)'1’ 2)1p% |12 1 1
(1 YU+ )2 1—- ra(3) ) ”ledefl()\i + ra(3)
n (I =v=m2) A1 =5 + 7)l0alls rAd (Mg =+ T)

n

Bout 2 )72-

With Assumption E 4{(ii), we have for 7 > 0,
(v +m) L+ 02) 2107141y S0 _ 2(1+02)"26;

(d+1): ol =
< - < /0. (S23)
(1= v —=m) a1 L2+ 7)[6;, 15 Iy )

167all st

Moreover, by applying 1) in the event Q1 (v) N QN Q(v) for 0 < v < 1 defined in Lemma

and Assumption [fii), we have for 7 > 0,

(1 — V= 772)2 2 1 1 -2
Bout > ——m—= 0 .
2 et VRl G )

This gives Proposition
Lower bound of out-sample variance. Our strategy for deriving the lower bound of out-sample
variance in large TER regime is similar to that in small or moderate TER regime. With Assumption

we have

and hence

1 Zj>d Aj

4000 % n
Moreover, with the(S19) under Assumption [If and (S24) under Assumption |3, we have for 7 > 0,
2Cyo2d n Coo2d S 1

> >\d+1. (824)

’I”d(22) n =2
2Co02d _ X j>a’]
—T > 32
2~ d+1
d Zj>d )‘3

(S25)

:80003(% —m) = ( ra(¥ )+T>

We first consider the first term of the right-hand side in (S14)). From Lemma [S7(ii) and (S14), in

the event Q1 (1) N Q2 N Q33(v) N Q(v) for 0 < v < 3 min{l, 0326} defined in Lemma substituting
the bounds of y11(Ag) and p,(Ag) in (S49)-(S50) into the first term in (S14)), we have for 7 > 0,

1—v—m)? nd 1 n _
( 1)40_2 2(7 + ) 2
(IT+v+m)t p(Ad)? Ad - pn(Ag)

11



S —v—mP—v—m) , d 1 1

= o — + —2_
A+v+m)PA+v+m)t pg, 2 4 7)2 Sy (Aapr 22 4 T))

Then in the event () N QN Q33(v) N Qg(v) for 0 < v < Fmin{l, 02} defined in Lemma
have for 7+ \gy1- ( ) < A4,

(1—1/—771)2 9 nd 1 n -2 (1—V—772)2(1—V—771)2 o d

Crorm)®” m@a2 o T s = A0 v At o tm)i” n (526)

2 2
Then we discuss two complementary cases. The first cases is that 25?;5? + Cozzd > % From ([S25)),

with Assumption [I] and [3] we have for 7 > 0,

d S Yisat
8C0oR(5 = m) — (a1 " 4 7)2
2
:>g - 8Coo? (f —m) (é—i- Zj>d>‘j ).

n = 1+8Co02(3—m) " n(hgp E 412

Combining with (526), we have for Agy; &) 4 7 < )y,

l-—v—m)® 5 nd 1 n
Vout > g ~ 1t
out (1+v+m)? /Ll(Ad)Q(/\d pin(Ad)
(1—v—m)*1—v—m)? Uzﬂ
A0 +v+m)t A+ +m)? n

N (1—v—m)21-v—m)? 8Coo2 (*—771) Ug(ﬁ_l_ Z]>d)\§
Ay (v )P 14 8C02 (5 —m) n o+ Agyy )2

)—2

)-

The second case is that 20‘();5%)61 + COU 4 < 1. From (S14) and Lemma (ii), in the event Q;(v)N
Q2 N Q33(v) N Q6(v) for 0 < v < Fmin{l, 02} defined in Lemma we have for 7 > 0,

N2 isd S 2d  d S g A2 1
max{0, —22% 1 (1 — v — Cyo? + =)= I>e - —). 527
{ ,Ul(Ad)2 ( 0 (T’d(ZQ) n)} = TL(Ad+1Td£lZ) +T)2(2 ) ( )

From (S14), (S26)) and (S27)), in the event € (v) Ny N Q33(v) NQ(v) for v < § min{l, 02} defined
in Lemma [S6| we have for 7 > 0,

(1-v—m)*d-v-—m)? (*_V) 2, d Z]>d)‘§
o (—+ >
41 +v+m)* (1 +v+n2)? n n(T—i—)\d_i_lird?(l ))2

Vout 2

).

In conclusion, in the event Q4 () N Q2 N Qs3(v) NQ(v) for 0 < v < S min{l, 02} defined in Lemma
[S6] and Assumption we have for 7 > 0,

v s v =m)*( v —m)® (3 —v) 8Cooi(z —m) 02(g+ YN
M A0+ ) At v+m)®  1+8C02(5—m) n n(r 4+ Zizatye”

or equivalently

(1—v—m)?’A—v-—m)*G—v) 8Cyoi(3—m) 02(§+ Nt ra(X?)
Al+v4+m)*(l+v+m)?  148Co02(3—m) n (T—l—)\dﬂ—”g))? n

vout Z )

This gives Proposition [9]

12



11.2  Proof of the bounds for in-sample error
I1.2.1 Algebraic bounds of the in-sample error

The bias and variance of the in-sample error can be decomposed or upper bounded as follows:

Bin = HGId - XEdAilXe*H%l:d + ||€2<d+1):p - X(;F+1:pA 1X0*H

Ed+1 :p

Bin,l Bin,g

2(01(7(; - Q*TXTAilezd)21:d,(d+1):p(9?d+1):p - Xcrl[‘—&-l:pAilXe*)a

Bin,12

Vin < 202 Tr(A7" X148 1.0 XA + 20" Te(A ™ X (g4 1)p B a1 X (13194 ) - (S28)

~~

Vin,l Vin,2

The following algebraic bounds are the foundation of the upper bounds and lower bounds for

the in-sample error.

Lemma S3 (Algebraic upper bounds of in-sample error). Given $1.q is invertible, we have

1 n’ 2 p3(Aq)

Bin < 2|67 dH2 ()\1 + (Ad))_2 n 12 (Ag )||X (d+ 1)@ 11)p &
30 s 0l G+ ) Wil M'%d')'znxdm )
($29)
Vi < 20? 13(Ag) d d o o Tr(X(gg1): X@H);p)m(X(d+1):pX(Td+1):p).
= 24 n 1in(Ag)?
Proof.

Algebraic upper bound for the in-sample bias. Given invertible Sid, 1’ can be derived
similarly as .
Algebraic upper bound for the in-sample variance. Similarly as the derivation in Lemma

27 in [Tsigler & Bartlett| (2023)), given invertible $1.4, we have

0?11 (Ag)?Tr(X1.a2 7 1 X10)
pin(Ag)2pa(HaHY )?

Nl(Ad) d

i (Ag) n

Vin,l = QUQTF(A_le:dZA]l:dXEdA_l) S 2

— % 2

Moreover, we have

X B Tr(X(d+1);p2(d+l):pXTd 1): )
Ving = 20° T (A7 Xg11)p (a4 1)p X (1) A1) < 207 pin(Ag)? o

) %Tr((X(dH):pX(THl):p)z)
,Un(Ad)2




1 T T
2 ﬁTr(X(d"‘l):PX(d—i-l):p)/‘Ll (X(d+1)1PX(d+1):p)
fin(Aa)? '
By ((S28)), combining the preceding bounds gives the algebraic upper bound of in-sample variance.
O

< 20

Lemma S4 (Algebraic lower bounds of in-sample error). Given invertible 21:d, we have

1 1 G lu’z Xl Xm d) " 1 n M?(X(d+1):ng\i+l):p) ) (830)
2 o (i(XiaXig) +nm)? - nem (i@ pX (gy,) +0m)?0
Purther if |0 ey > "l Xarnaflumnsl o,
1:d E1_:d pn(Ad)
1/2) x g
Busel, ¥l L 1
Bin > max{0,1 — d — or 12 (L 2
{ Bin }( Nn(Ad)||9 d”z 1 ) ” Ld”zl:;()\d Hn(Ad))

Proof.

Algebraic lower bound for the in-sample variance. The in-sample variance is

e _ 1< p2(XXT)
Vin =0’ Tr(AT' XEXTA™) = 02— ! :
o Ix( )=o nz (i (XXT) 4+ n1)?

From Weyl’s inequality (Lemma [S12)), we have
wi(XXT) > pi(X1.aXiy), i=1,....d,
MZ(XXT) > :U’Z'(X(d—i-l):pX&Ic‘l+1);p)' 1= 1’ s

Then Vi, can be lower bounded by

n

2 T
2(X g X 1 1 (X (a4 1):pX (q41):
,uz Xl dX ) + TlT) n i=1 (Ni(X(d+1):pX(d+1);p) + nT)
d n T
> Oj i Z Hz X1 Xm :d + i Z d+1) X(d+1)5p) )
~ 2'n uleXmd)—FnT n < '

=1 =1 MZ X(d+1) (d+1):p) +nT)2

Algebraic lower bound for the in-sample bias. Note that

Bin,12]
Bin 1

)

Bin 2 max{O, 1-— }Bin,l'

The result follows from the algebraic lower bound for By 1:

02| X 441y 1 n

2l
N2 62 (5

Bing > (1 — +——)7
pn(Ad) 1074l 5 Ad pin(Ag)
which can be derived similarly as (S6). O
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I1.2.2 Intermediate bounds of the in-sample error

We give the intermediate bounds of in-sample error under the event that some random quantities
in the algebraic bounds above are controlled. In the event Q;(rv) N2y N Q5 for 0 < v < % defined
in Lemma substituting the bounds of ||6f:d|]2;;, 1 X (@+1):p0{451):p |l and [[Ma]] into the algebraic
upper bound of By, yields

1 2 1 n\-2 13 (Aa) | 2
Bin S (1 —y— )2 He dH (71 + Ml(Ad)) + PO]yQ(Um)ILL%(Ad) He(d+1):pHE(d+1):p
1 (n)\d+1 + Z'>d )\])2 1 n
4+ —n——Poly,(0, J 0 4|2 1 (— + ————) 72
(1_1/_771)2 Y4( ) N%(A ) || 1.dHE 1()\1 ;ul(Ad))
(RAat1 + 2 qN)
+ (P01y2(0-$) + POlyG(UﬂC) Mn(A ;> H0 (d+1): pHE(d+1) ip’ (SS]')

In the event Q;(v) N Q4 for 0 < v < 3 defined in Lemma and with

1074l > (L +v+m)( +03) *nll6 (@+1:pl Sy
1:d 21_3 - n(Ad) )

substituting the bound of |67 d”z 1 and | X(g41): 9(d+1):pH into the algebraic lower bound of Bj,

yields

Bin
max{0,1 — ‘Bmf'} (1+v+m)(1+ 0220080 (S
(1+v+m)? Un(Ad)HHLdHE;}i

1 n
07 2 (4 ——
P10 (5 +

(532)

Bin Z )—2.

In the event Q5MQ7(v) for 0 < v < min{1, o2}, substituting the Tr(X(dH):pX(TdH):p) and p1 (X (g41):p°
X (Td Jrl):p) into the algebraic upper bound of Vj, yields

L2 (Ay) d o (M) (Wit + s Ns)

Vin < 20 — + Poly,(o)o
2 (Ag)n T PoWa(z)o (A2

(S33)

I1.2.3 Final upper bounds of in-sample bias and variance

We give the final upper bounds of in-sample bias and variance. We first discuss the small or
moderate TER regime and then the large TER regime.
(i) Small or moderate TER

From LemmaE and ((S31] , in the event Q1 (1)NQNQNQ7(v) for 0 < v < 1 min{l, 02}
defined in Lemma [S6 and Assumption [2] substituting the bounds of p1(Aq) and p,(A4) in (S47)-

(S48) into (S31) and 1) we have for 7 > A\g11,

(1+Cy)? POIYS(Um) L1
I—v—m)? 167.411%- 1(>\1+T)
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+ (Polys(0) + Polyg(02))[10441). p||2(d+1):pv
2(2jza M) (P A1 20550 2)

n272

d
Vin < Poly,(0,)(1 + 01)25 + Poly,(0,)o

Hence, we obtain the upper bounds

1+ C1)*Polyg (o, 1 1
PRS0 (g3 2y o+ 272 4 W)

|
Bin < (1—V—?71)

d  Aipra(S)

2 2
Vin < Poly,(02)(1 + C1)°0 (ﬁ T2, )-
Further with (S15)), we have for 7 > g1,
Bin < 7 — t-
OO g 3y o+ 5)

This gives Proposition [4
(ii) Large TER

From Lemma [S7(ii) and (S11)),(S13)), in the event Qy(r) N Qs N Q5 N Q(v) N Q7(v) for 0 <
v<s mln{l, 02} defined in Lemma [S6 and Assumption l substituting the bounds of ui(A4) and

tn(Ag) in - into and ( -, we have

Atv+m? oo 1 1 2 Atvtm? o o
Bin < ﬁ”el all5- ()\T + T Agey D )~ + Polyy(oz) 1—v—m)? 160a+1)p 115 a1y
Poly, (o) (1 + v + 172) 1 1 9
167.4ll5-1 (5~ + ———57)
A= v—m) (v - 3 T e
Poly
+Gmhwa+u_y“§weﬂln%mm

rq(X2
2(1+V+772)202§+ Poly,(02) o2 (Adﬂﬂ)?

Vin < C
A—v=—m)P? n (I-v-m)? (N\,4E 4 5y
Hence, we obtain the upper bound
(1+ v + n2)*Polyg(0z) 2 1 1 —2 x 2
B < 07 _ 0 _ ,
= (1 — - nl) (1 v — 1 ) (H dH ()\1 + i )\d+1 rd’r(lz) ) + ” (d—‘,—l).p”E(d_‘_l):p)
V. < (1+v+m)? P01Y4(U:c)02 d n N1 7}21(2)).
- (1—v—m)? n (T4 Ay 17",1(2)) n?
Further with (S16|), we have for 7 > 0,
Bin < _— ) S34
—(1_1/_771) (1 v — n)QHldH 1d(>‘1+7'—|—)\d+1@) ( )

n

This gives Proposition [10]
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I1.2.4 Final lower bounds of in-sample bias and variance

We give the final lower bounds of in-sample bias and variance. As preparation, we give the following

lemma to compare Bi, 1 and |Biy, 12|

Lemma S5 (Comparison between By, 1 and |Biy 12]).
(1) Given Assumptz’on@ and (2) and in the event Q1 (v) N QN Q5 for 0 < v < &, we have for
T 2 Adt1;

max{1 — ’Bl“ 12 L0} > Ky (1), (S35)

in,1

where £1(7) = max{l — (%(1 +16(2Ch02 +1)(1 + C4) \\FF) + 64 \\FF) 0}.

(ii) Given Assumption@ and (u) and in the event Q0 (v) N QN Q(v) for 0 < v < %, we have for

T >0,

|Bin,12]

0} = ka(7), (S36)

max{l — — 5
in,

_ (g e T /5 /5
where ko(T) = max{1 (16T+/\d+1 (1 + 1121 \/») + 641 \/») 0}.

The proof of Lemma is left to Section In the following, we first discuss the small or
moderate TER regime and then the large TER regime.
(i) Small or moderate TER
Lower bound of in-sample bias. From and Lemma [S5(i), in the event Q1 (v) N Q4 N Q5
for0 <v< 1 defined in Lemma [S6[ and Assumption i), substituting the lower bound of y,,(A44)

and lower bound of max{1 — 2 12' ,0} in (S35) into (S32|), we have for 7 > A\g41,
/411(’7') 2(1 +o )1/2”9d+1 ||E(d+1)p 9 1 1 _9
in > =5 (1— VIOTall5 (5 + )77
T+vrm) Ml YR

Moreover, by applying (S18]), we have for 7 > A\g11,

k1(7) 2)19% |12 1
o> N/ (=
Bin > (1 —|—I/—|—’I’]1)2(1 61) H01:d||21;cll()\d +

Lo
o

This gives the Proposition
Lower bound of in-sample variance. We first study the first term in (S30). In the event Q4 (v)
for0 < v < %, substituting the lower bound of Nd(Xlde%?d) = n,ud(fllzd) in , we have for

T S )\d7
T 2
pa(Xi.gX1:4) = Aan(l —v —m)~,
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>m(l—v— 771)2,
and hence

1

Then in the event Q4 (v) for 0 < v < 3, we have for 7 < Ay,

d
1 Z 13 (X1.aX{,) > ( 1
n (,ul-(XldeEd) +n7)2

2=, (S37)
Lt ey "

Then we study the second term in (S30)). Given Assumption [2| and in the event Q5 N Q7 (v) for

0 < v < o2, substituting the bounds of p;(A4) and TT(X(dH):pX(ZH);p) in )1j into the
second term in (S30]), we have for 7 > A\g11,

EIS 1 Ko X (@) ;>021§i*@¢Xw+an&+nm>
n = (XX gy, +07)° T 05 pi(Aq)
n T
X(d+1):p)

1 M%(X(dJrl):p
> g2= Z
. — (2C02 +1)2(1 4 C1)?n272

n
zl H(X(d+1):ngl+1);p)2
n (2Co02 + 1)2(1 4 C1)2n372
(1— )2 2(2j>d)‘j)2

>0

n

= (2002 +12(1+C1)2° 72

By combining the two terms, in the event Qi (v) N Q5 N Q7(v) for 0 < v < L min{1, 02}, we have
for Agy1 <7 < Ag,

1-v)’

n = S )
2(2Co03 + 1)2(1+ C1)’(1 + g52)? 1 72

Vi

or equivalently,

(1-v)?

n 2>
2(2C002 + 1)2(1 + C1)2(1 + g=y2)

2
O_z(ﬂ 4 Aap1 i (%)
20\ T T T2

Vi ).

For 7 > A4, we have

Vi > 0_27 :U’?(X(d-‘rl):pX(E_;'_l):p)
ST i=1 ('ui(X(dJrl):pX(TdH):p) +nT)?
(1- )2 , (M)Q

n

>
= 2(2Co02 + 1)2(1 + C1)2° 2

or equivalently

Vo> (1-v)? 2 N1 73(%)
"= 220002 +1)2(14+C1)27 2 n? ]
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The result for 7 < Agy1 follows from the monotonicity of variance in Lemma This gives
Proposition [6]

(ii) Large TER

Lower bound of in-sample bias. From and Lemma [SH[(ii), in the event Q1 (v) N Q4N Qe (v)
for 0 < v < 1 defined in Lemma [S6{ and Assumption (ii), substituting the bounds of p,(A4) in
S50) and the bound of max{0,1 — %} in (S53)) into (S32)), we have for 7 > 0,

k() (1 — 1 — )2 - (1+v+m)(l+ 02 )1/2””9(d+1 ||Z<d+1>p)2

Bi, > (S38)

P) A

(I+v+m) (1= v =) (22 4 1) 05l
1 n

Nl (- )
A (@Jﬁ))

Moreover, by applying (S23)), we have for 7 > 0,

Ra(7)(1 — v —1pp)? 2119% 112 1 n -2
Bin > 1 —+/02)7|07.4ll5- + .
(1 YU+ 771)2 ( 2) ” l'dHELi()\d (7_ 4 >\d+1rdibz)))

This gives Proposition
Lower bound of in-sample variance. The first term in (S30|) can be studied for 7 < A\; similarly
as (S37)) in the small or moderate TER regime. Then we study the second term in (S30). In the

event Qg(v) for 0 < v < %, we have for 7 > 0,

(1—-v—mn) Z Aj < Mn(X(d+1):an+1);p) < (1 +v+ 772) Z)‘ja

j>d j>d
and hence
n 2 T T
21 3 1 (X (19X (g41)p) Z X(d+1 pX(a11):p)
1 (Mi(X(d+1):pX(Tcz+1):p> +n7)? =1 (Aa)
5 1 T (X(d+1)2pX(d+1):p)2
>0 ) 2
n 11 (Aa)

(Zj>d Aj )2

1-v- 772)202
(1+V—|—T}2)2 (r + Z]>d)‘3)2

\Y]

2 )\?Prl Td(z) (839)
(r+/\d+17’"‘i§?>)2 n?

g

By combining the two terms, in the event Q1 (v) N Qs(v) for 0 < v < %, we have for 0 < 7 +

)\d—&-anE) < Ad,

Vi, > (1—v—m)? Jz(ﬂ 4 )‘3+1 rﬁ(E))'
T2+ v+ me)2(1+ - 771) z) n (T+Ad+17rd7(?))2 n?
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For 7+ Agy1- ( N Ad, we have

Ve > g2t 1 « M’?(X(d+1)5pXEi+1):p)
- — (i (X (a1)pX (g 1)) +17)°
(1 —v—m)? , Nit1 ri(%)

o
T2(L4+vEm)? (74 Ay 1Td(2)) n?

This gives Proposition

11.3 Bounds of random quantities

We give the probability bounds of some random quantities used in the proofs in Supplement Sections

[I.1] and [T.2 We define the related events and give the probability bounds for the events.

Lemma S6 (Bounds of random quantities).

(i) [Bounding p1(HqH]) and pg(HaH] )] For ny defined in Assumptz'on and 0 < v < 3, denote
by Q1 (v) the event that

(1 —v—m)*n < pa(HgH]) < pr(HgH]) < n(l+v +m)°. (S40)
In the event Q1 (v), we have

Aa(L=v—m)? < pa(S1a), (S41)
1074l . 167 de—

1:d

i |G R < 42
(1+V+771)2 - H l.d”Zl:(li - (1 V_T/l) (S )

Under the sub-gaussianity of S~ 2x; and Assumption P(Q1(v)) > 1 — 2exp{— 02 4}

(ii) [Bounding ||My||] Denote by Qo the event that

[Mal| < Coo2(2nAG ) + ) A3).
i>d

Under the sub-gaussianity of oy, P(Q2) > 1 — 6exp{—-}.
(iii) [Bounding the trace of Tr(HI Hy) and Tr(Mg)] Denote by Q31 the event that
Te(HTHy) < (1 + o2)nd.
Denote by €39 the event that

Tr(Mg) < (1+02)n Y A%,
7j>d
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For 0 < v < 02, denote by Q33(v) the event that
Tr(Mg) > (1—v)n ) AS.
j>d
Under the sub-gaussianity of 27%1:1-, P(Q31) > 1—2exp{—&-}, P(Q32) > 1 —2exp{—¢} and

P(Q35(v)) > 1 — 2exp{— &2 }.

(iv) [Bounding the || X (q41)p0 (d1)p |2] Denote by Q4 the event that

HX(d+1): 9(d+1)pH (1+o )nHG (d+1): ”E(dﬂ)p (543)
Under the sub-gaussianity of E_%xi, P(Q4) > 1 —2exp{—-}.

(v) [Bounding the p1 (X (q1)pX 5

(d+1):p) with rq(X) < Cin] Denote by Q5 the event that

1 (X (@) pX (1s1y) < Cooa(2nAars + Y Aj). (S44)
j>d

In the event Qs5, we have

N 1
| Mal| < E||X(d+1):pX(Tqu):pH2
40204
< 02 (g + Y A)?

j>d

Under the sub-gaussianity of Z_%$i, P(Qs5) > 1 — 6exp{—-}.

(vi) [Bounding the ul(X(dH):pX(TdH):p) and un(X(dH):pX(TdH):p) with Assumption @/ For no de-
fined in Assumption@ and 0 < v < %, denote by Qe(v) the event that

(1= =m2) ) N < pn(Xar1pXdy1p) < 1 (Xap1:pXi11,) < L +v+m2) > A (S45)
j>d 7j>d

Under the sub-gaussianity of E_%xi and Assumption@ let Vzc%dé? > 1, P(Qs(v)) > 1 —
IIAE) Y dexpf{~ Tt

2nexp{——¢; —Coo?

(vii) [Bounding of Tr(X (g41)pX d+1)p)/ For 0 < v < min{1, 02}, denote by Q7(v) the event that

(=)0 N < Te(X(ginypX (ginyp) < T+ Y A (S46)
j>d j>d

Under the sub-gaussianity of ¥~/ 2x;, P(Q7(v)) > 1 — 2exp{— & 04}

Proof.

(i) Given the sub-gaussianity of E_%.’L‘i, from Lemma|S17], we have with probability 1—2exp{— ﬁ},
oYx

(Vn = CooaVd — Vt)? < pa(HgHY) < m(HgH]) < (v + CooaVd + V)2,
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which implies that

d t d t

Under Assumption with 0 < v < %, we have Cgag\/% +v <v+4+m < 1. Taking t = v?n, we
have with probability at least 1 — 2exp{— 02 4}

n(l—v—m)?* < pa(HaHy) < p(HgHg) < n(l+v+m)*
In the event Q;(v) for 0 < v < %, we also have

(X T Xa) = pa(S (S P X T X100
> Md(zlzd)ﬂd(zid/ X1T;dX1:dE;2ﬂ>

> A\n(l —v — 771)2,

or equivalently

T
S Xl:Xmid

pa(X1.a) = pral ) > Aa(l—v—m)>

n

Moreover, in the event ;(v) for v < 1,

o1 XX 1d « oro—1/2, HaHy ~1/2
107.all% - = OG (T T 0g = 07 () T e,
and hence
167 d” H H H;HT 167 d”
—_ 0% |2 ~1(d < |67 < 167 —1Zdd y < .
Ty < Wl (CAED) < 105l < 107l e (FA) < iy

(ii) Given the sub-gaussianity of Eféxi, from Lemma we have with probability at least 1 —

6eXp{_CLO}?

||X(d+1):p2(d+1):pX(Td+1);p” < Coo2(2nAjy + Z A?)-
j>d

(iii) Given the sub-gaussianity of S~ 214, from Lemma [S18] with probability at least 1 —2exp{—¢},

Tr(X1:45] 4 X 1) < (1+02)nd,

TI'(Xd-i-lszd—i-l:de-‘rl:p) < (1 + Ug)nz )\]2
j>d

(iv) Given the sub-gaussianity of E_%xi, from Lemma|S18| with probability at least 1 —2exp{—ci0},

2 o
< (L +o3)n||6; (d+1): ||z<d+1>p

1 X (@+1)p0(as1)ep
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(v) Given the sub-gaussianity of E_%wi, from Lemma [S16, with probability at least 1 — 6exp{—ClO},

1 (X (a1 pX(a41yp) < Cooz(2nAars + Y Aj)
j>d

(vi) Given the sub-gaussianity of E_%xi, from Lemma with probability at least

. 2
1 — 2exp{— mln{rd(E)ﬁ, m%ﬁ}}v

(1=6) SN < pn(Diag(Xas1pXTo1)) < i1 (Ding(Xey 1 Xy1)) < (1406) 30y,
j>d j>d

From Lemma we have with probability at least 1 — 4exp{—n/Cy},

j>d

1 Xar1:pX de1.p — Diag(Xa1:pXd415)| < Coo? \/4n2A§ L2 A

Then with probability at least 1 — 2nexp{— min{rd(E)i rd(E)ﬁ}} —dexp{—¢-},

2549
Cgoz

1-)> A - Coaﬁ\/zln?AgH +20 3 A < pn(Xar1pX 1)
j>d i>d

< (Xar1pXiyp) < (146D N+ Coo? \/4n2>\fl+1 +2n) A2
j>d j>d

which can be equivalently written as

4n? 2”2' A3
Z )\ 1 —t— C()U \/ 12 ; ) < Mn(Xd+1:ng+1:p)
2. 25 pa )

4712 2”2 i>d
< 1 (Xap1pXm1,) < A~<1+t+Coa§\/ + ! J>.
PRt Z;l J @R (Cnah)?

Hence

4n? 2n
Ni(1—t—Coo2y | —— < (X g1y X1
jgl J( 00-,7; 'I"CQI(Z) + T'd(Z)) = /"LTL( d+1:p d+1.p)

4n? 2n
< Ml(Xd+11ng+l:p) < Z AJ(l +t+ COUg\/r (2)2 + r (E))
j>d d d

Under Assumptlonl, w1th O<v<y L and chd(4) > 1, we have Cyo2 \/4(#2)2 + %4—1/ <v+m <1

vy/ra(8 } 4exp{——}

Coo2

L=v=m)D N < pn(Xar1pXiiry) < 1 (Xar1p X)) < L +v+m) D N
j>d j>d

Taking t = v, we have with probability at least 1 — 2exp{—

(vii) From LemmalS18| let ¢ = ’%f for 0 < v < min{c2, 1}, with probability at least 1—exp{— 0004 1,

(1- V)”Z/\j < Tr(Xd"rl:PXdT—l-lp < (I+v) Z)\

j>d j>d

23



II.4 Bounds of pu;(A,) and p,(Ag)

We give the following lemma to control u;(A4y) and p,(Ag) under the small or moderate TER

regime and the large TER regime.

Lemma S7 (Bounds of u1(Ag) and py,(Ag)).
(i)(Small or moderate TER regime) Given Assumption [ and in the event Q5 defined in Lemma
[S6, we have for T > Agi1,

,ul(Ad) < (200033 + 1)(1 + Cl)m', (847)

pn(Ag) = nT. (S48)

(ii)(Large TER regime) Given Assumption@ and in the event Qg(v) for 0 < v < L defined in

Lemma [S6, we have for T > 0,

pa(Ag) < (L+v+m) > X +nr, (S49)
j>d
pn(Ag) = (L —v—m2) Y Aj+n7. (S50)
j>d
Proof.
(i) By the definition of Ay,
pn(Aq) > nr.

Given Assumption [2| and in the event (25, we have

11 (X (@1 X (1)) < Coo2(2nAas1 + Y Aj).

j>d

Hence

w1 (Ag) < 2000'326(”/\d+1 + Z Aj) +nT
j>d

< 2Ch02(1 + C)nAgy1 + nr.
Further if 7 > Agy1, then

p1(Ag) < 2Co02(1 4+ Cr)ndgy1 +nr (Sh1)
< (2C02 + 1)(1 + Cy)nT.

(ii) Given Assumption [3[and in the event Qg(v), we have

L =v=m)> N < 1 (Xas1pXdi1yp) < tin(Xas1pXiy1,) < Qv +m) YN
j>d j>d
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Then we have for 7 > 0,

(L=v—=m2) > A +n7 < n(Ag) < pa(Ag) < (L4 +m) Y Nj+nr.

j>d j>d

O

In the large TER regime, an upper bound on p(A4y) similar to (S49) can be obtained by using

and then Assumption Td( ) > ¢,

p1(Ag) < 2Co02(1 + Cy)nAgp1 +nr

< 2C02(1+ Ci)ez D Aj + nr.
j>d

This inequality can be used to achieve a similar purpose as (S49)) in our proofs.

II.5 Comparison between B;,; and |Bj, 12|

We give a proof of Lemma which is re-stated as follows.

Lemma S5 (Comparison between Biy, 1 and |Biy 12]).

(i) Given Assumptian@ and (z) and in the event Q1 (v) NQy for 0 < v < i, we have for 7 > Agi1,

|Bin,12]

0} = ka(7), (S52)

max{l — — 5
in,

where r1(7) = max{l — (M(l +16(2Ch02 +1)(1 + C4) C») + 64 C») 0}.

(ii) Given Assumption@ and (u) and in the event O (v) N Qs N Q(v) for 0 < v < 1, we have for

T >0,

Bin
Binzl g3 5 o), (553)

max{l — — )
in,

rg(®
. _ Adq1 4 Vo2 Vo
where ko(T) = max{1l (167T+/\(lerl 2oy (1+ 11279 ﬁ) + 64 752), 0}.

n

in 12‘

We first give an algebraic bound of lB R

. < . 11 (X ar1):pX iy,
Lemma S8 (Algebraic bound of %). Given ™ (d:”(zd)(d“)‘p) <1, we have

Bin,12] < 2pn (X (ay1)pX d-l-l)p) 167, XEdA_leidQT:d”il;d
Bin1 pin(Aq) 1074 — XEdA_lXQ*Him

He(d+1)p ||2(d+1):p
105.4 — X 4A- X6 HEM
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X P XT
Proof. Given il M;:;('Zd)(dﬂ)zp ) < 1, we have from the Cauchy—Schwartz inequality and simple

manipulations,

|’92<d+1):p - X(rir—&—l:pAilX(dJrl):pg?dJrl):pHg

X(d+1):p

< 2167

(d+1):p”%(d+1); + 2H‘deT—i-lzp‘A_1)((d+1):pez|<

2
d+1):p”2(d+1):p

1 —
HnX(dH):pX(TdH):pA "X (a4, p9dr1)p 12

1
T —1 * 2
< 2”9 (d+1): p”z(dH)m + 2M1(X(d+1)1de+1:pA )H*X(d—l—l):pe(d—kl):pu

= 200yl

< (2—|—2/.L1(X(d+1):pX;lr+1p ))‘|0d+1)pHE(d+1)p

11 (X (ar1)pX gy 1)

2
<@+ r—— ST, R,

< 4]} (S54)

(d+1): p”z(d-&-l):p.
Then we apply the triangle inequality to |Bin,12]:
Bini2| = 2001 — 0T X" AT X1.0)S 10,4 1):p (O ag1yp — Xdr1pA~ X0
< |2(9T’§ - G*TXTAi1X1Id)21:d,(d+1):szrir-l-l:pAileidgik:d)’
+ 2’(9T1¢; - G*TXTAilXl:d)21:d,(d+1):p(02<d+1):p - XdT—i-lszilX(d+1):p02<d+1):p)|‘
The two terms on the right-hand side of the inequality above can be bounded as follows. First,
|2(0I7;l - H*TXTA_IXlld)il:d,(d-&—l):deTJrlsz_1X11d9f:d)‘
Xt X
= [2(6;F — 0" XTAT Xy, q) “ R DR N T AN a8
n

XlT:dX(d+1):pXT A1y (I XT A-lx. ) -lp*
. d+1:p“id 1d(dg + 1:d“1q l:d) 1:d|

= 20615 — 0T XT A1 X 1.g)
(from Lemma [S10](ii))

= 12(0{5 - 0T XT A7 X1.9)
(from Lemma [S10|(éii))

= 12075 — 0T XTAT X 1y)

XX (@) - - I
%Xz};rl:pfld "X1a(la — X1 A™ X1a)01.l

XleX d+1): — * - *
#X;F—i-l:pAd Xpa(Bl.g — XigA™ Xvathg)|

201 (X (g41)pX (d+1 )
Mn(Ad)

167, — X1g AT X0"||5

Oty = XE AT X b,
Second,

2|(0T5 - H*TXTA_IXlzd)ilzd,(d—&-l):p(ez(d—f—l):p - XdT-Q—].:pA_lX(d'i‘l):sz(d—f—l):p)‘
< 2[|01.q — XEdA_lXQ*||21:d||92ﬁd+1);p - XdT+1:pA_1X(d+1)2p9?d+1):pHﬁj(d_,'_l):p
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(Cauchy—Schwartz inequality)

<407, — Xi AT X0 (From ([S54))

*
||21:d ||0(d+1)p H 2(¢i<0—1):;7 ’
Combining the preceding three displays yields

2 (X(d+1):pX(Tcl+1):p)
pin(Ag)
+ 4[|67.q — XszdA_lXe*HihdHefdﬂ):

[Bin,12] < 1670 — XigA™' X 0" 1670 — X1:aA™ X1abially,,

Hil:d ||21:d

pHg(d-H):p’

or equivalently

|Bin, 12| 2“1(X(d+1):pX(Td+1);p) 167.4 — XEdA_leszT:dnﬁh;d 4 Hezﬁdﬂ):p”imﬂ);p

i - T A-1 . T A—1 Hi d’
Bin,1 pin(Aa) 1034 — XL ATIX 0|5, 107, — XL A1X G >
O
107.4—XEgA™ X1.a07.4ll5 HedeJrl):p”i .
e . . P : : : 1:d (d+1):p R
Next, it is desired to control the quantities 00 T A X0, d 10T —XT, A 1X0° 15100

which is stated in Lemma [S9| below. We discuss the small or moderate TER regime and the large

TER regime, respectively.

167.0—XTa A~ X1:a07 4lls; 16¢a41):p 5
Lemma S9 (Bound of — -4 and — Ca L R
( 0 X ATX g XTa A X0 15 )

(i) Given Assumption@ and(i), in the event Qi () NQuNQ5 for 0 < v < 3, we have for T > Agi1,

1674 — XA X1ty gllss, (2Co02 + 1)(1+C1) /o1

<1+ ,
07,4 — XT4ATI X0 s, QI-—v-m)? 1-v&
* N
“0(d+1):p”2(d+1):p < 1 VoL

1070 — X1g AT X0, — (L—v=m)? 1= V61

(ii) Given Assumption@ and (ii) and in the event Q0 (v) N QN Q(v) for 0 < v < 1, we have for

T>0,
167, — X1 A Xuabi llss, 14 (1+v+mn) V2
610 XL AXG]s . v m)(— v Pl Ve
||9Ekd+1)ip||2(d+1):p < 1 Vo2

1674 — XEgATIXO g~ (1—v—m)?1 -6
Proof. As preparation, we derive a useful identity. We have
T — XA X0 = 07 — X AT X1abi g — X{gA™ X (a8 a1y
= (I + X047 X1:a) 701 — (Ta + X10A7 X1a) ™ XiaAaX @ r1):p0as 1)

(from Lemma [S10|(ii) and (iii))
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= —(la+ X1q A7 X1.a) (X gAaX (@r1)p0 (a1 1)p — 07.0)- (S55)

Vhia X0 Xa%alls )y paye,
1654 —XT A- 1X9*H21d

(i) We first discuss the bound of

Heid B XlT:‘dA_leidQT:dHiltd
167.4 — XEdA_lXH*HEM
XL AT X0 — XA Xy gl

SRR XA X0a) XT3 AaX (010800410 — 01 s, (Uine (B50)

B ||XiF-dA71X(d+1):p9?d+1):p”iw

- ||21/2(11 A+ XL A X )™ (XEdAilX(dH):PQTdH):p — 0L

— 1230 U + XEaA7" X0a) " X7 X800 (from Lemma |[S10{(ii))
ISYV2(Lg + XT AT X ) L (XT AL Xt 18411y — Ora)

— 1+ (20 + HaAg " H) T HaAL X (ai)p8 gy |
|+ HaAg B (AT AT X 4154111 — Srd 010

<1 (S8 + Ha A7 HI 200 (Ag Y1 X (g1)0 d+1 I

B pin (S75 4+ HgAF HT) ||ﬁdA§1X(d+1):p9fd+1):p 1/20* all

(S + fIdAglﬁE>nl/2m<A;1>||X a0zl

_ PSR N 1 2 0
it (Ag VHaAZ X a41)08751y — Sl 20

<1+

Lall

n —1
<1+ (Md(z}ll:d) +un(Ad)) 1/2“1( d )”X(dﬂ)'pe(dﬂ |
- - T oA~ * 1 2 s
npin(Ag VM HaAT X as)08a11) = Erd Ot

(/Jd(él ) + (nAd)) 1/2/“( JI)HX d+1)'p‘9(d+1) |
g (Ag N0 glls 2 — | HaAy X a

(S56)
+1)p (d+1 |||

In the event Q(v) N €y and given [|0] 4|[¢-1 > |]fIdAng(d+1): 0 |, substituting (S40])—(S43
: 1:d

d+1)p‘

into ([S56)), we have
107, — X1 A Xrabgllss,
167.4 — XEdA—lXQ*Hng
1 1/2
<1+ 1 Nl(Ad)(7d+ ( ))(1+V+771)(1+U )'/216; (d+1): ol =i
ST T A [l
. \[91(1\!2;;
163 .allss—1 = IHaAG X (@1y:pBiz 1.,
1
<1+ 1 m(Aa) G + i) v 00+ oD 1000015000
N (I—=v—m)* pndq ”915‘1”2;(1
1
. S57
X - n(L4v+n) (4D 2100 1) I8 4y (857)

ATl |
lzd
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107 41,15
P Z(d+1):p
||9{:d*XEdA_1X9*Hi:1 4

Then we discuss . Substituting (S55)) in the denominator, we have

16 1. HE(d+1>p
16074 — XL 4A~ 1X9*H2
X
I <d21p‘9*d+1 ||

g+ XlT:dAEIXlzd)_l(X1~dAdX(d+1)rp92<d+1):p —0ills,,

_ Hmrw@ln

B2 + X AT X)X AT X (@) 0411y — 010)

i Hx<d+1>p92<d+1 I

_’mifé+ﬁmTA*%&ﬂifv%f(fmAd4&wumﬁ&+mpffﬁimﬁdm
m(zld+HdA V)| ey, (S58)
||HdA X(d+1):p9(d+1):p _1/29* )H

In the event Q1 () N Qyq and given ||0% |l«-1 > ||HzA7 X gi1150%, 1. ||, substituting (S40)—(S43
LdllsT} d (d+1):pY(d+1):p

into (S58)), we have

10 ae1yplls e, T e G A L 7 S
1074 — X1q AT X0 s, — (L—v—m)? 167all -1
167.all -
||H Ay X(d+1) 9(d+1) - 271/29*. all
- 1 (35 + ) L+ v+ )L+ )07 1) 5010
T (l=—v—m)? 167all 5t
1
. PRI T (859)
#n(Aa)07.4ll5 -1
We control ”?é:ﬁ%ﬁi Al)i;i:*”‘i'%ld an ||9T;|LGE§1T1;:Z12(§:91*)ile,d in small or moderate TER and

large TER respectively.
In small or moderate TER regime, given Assumption [2]and [4i), and in the event Q1 (v)NQ4NQ5

for0<v< Z’ we have for 7 > A\gq1,
105.all5o > 1HaAG X (@s1)p0ar 1yl

Substituting bounds of 111(Aq) and ju,(Aq) in Lemma [S7(i) into ( and (S59), we have

||9T:d - XiI:‘dA_le:deT:dHﬁ)l:d

167, = X0 AT X0l

(2000’3/, + 1)(1 + Cl) ( +v +771)()\d + )\d+1)(1 +o )1/2“9 (d+1): ”E(d+1>p 1
(L—v—m) Hehduz;; 1—+/0;

<1+
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(2Coo2 + 1)1+ C1) V61
<1+ :
(1—V—?71)2 1— /61

For 7 > A\g41,

* & 1 1 2 *
190a11):p /18011, B 1 (5 + o)A +v+m) A+ o) 00 s, 1
107, — XTEgATIXO g~ (L—v—m)? 167l 1— o,
1 Vo1

< .
T (l-v-=m)21—5
In large TER regime, under Assumption [3| and (i) and in the event () N Q4 N Q6(v) for

V< %, we have for 7 > 0,

105allss > 1 Hadg X gy oyl

Substituting bounds of y11(A4) and p,(Ag) in Lemma [S7(ii) into (S57) and (S59), we have
”ngd - XleAiledQTdHild
167, — XL,A-1X6*

”Elzd

<1+ (1+v+mn9) (1+V+771)(>%d+Wm)u+05)1/2Hezd+1)2p||z<d+1>:p 1
T (=v-m)PA-v—m) 167.all5- 1= /&
(L+v+m) Vs
Tl mv-mPA-v—m) 1= Ve
and
”e?dJrl):pHi(dH):p < 1 (I+v+ 771)(/\% T m)(l + U%)HazﬁdJrl)ipHE(d““’
167.g — XTgATI X0 g~ (L—v—m)? 167all 1
1
X 5
1 V2

< .
T (I-v—=m)?1—&
]

Proof of Lemma We obtain Lemma [S5| by combining Lemma [S8| and [S9. We discuss the
small or moderate TER regime and the large TER regime, respectively.
Small or moderate TER. We substitute the bounds from Lemma [S9|i) into Lemma Given

Assumption (1) and in the event Q1(v) N Q4 N Qs for 0 < v < I, we have for 7 > Agy1 and
“1(X(d+l):pXEl+1);p)

Nn(Ad) S 17
T
Binaa] _ 201(X(a+1):pX (g11)p) 9 Vo1 Vo1
12l 14 16(2Co02 + 1)(1 + C 464 .
Bin1 — pin(Ad) ( (20 ) 1)1 — \/51) 1— /&

Under Assumption [2| and in the event s, from (S44]), we have

11X a4 1)pX (a1 1)p) < Coo2(2nAar1 + > Aj) < Cooa(2+ Cr)ndgya.
j>d
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2
Note that pu,(Ag) > nr. We have for 7 > A\g41 and M <1,

IBin12| _ 2C002(2 + C1) Mgyt 2
J < x 1+ 16(2C, H(1+C
Bin,l = T ( + ( 00 + )( =+ 1) 1— \/E

Hence we have for 7 > Agy1,

maX{Bin,l - ’Bin,12|)0}
Bin,l

> K1(7),

where £ = max{1 — (M(l +16(2Co02 + 1)(1 + Cy )19) + 64 \F) 0}.

Large TER. We substitute the bounds from Lemma [S9(ii) into Lemma [S§ Given Assump-

tion 3 and (ii) and in the event Q(v) N Qy N Qg(v) for 0 < v < I, we have for 7 > 0 and

M1 (X(d+1):pXEl+1);p)

pn(Aa) < 17
Bin 2:“’1 X : XT .
Binz| Kty (d“)"’)u L VR gy VR ).
Bin,1 pin(Aa) 1 -4/ 1—+/52
In the event Qg(v) for 0 < v < 1, from and ( ., we have
1 (Xap1pXii1,) S L +v4m) > A <2> )
j>d j>d
1
pin(Ag) =2 (1= v —m2) Zx\ +n1) > Z(Z)\jJrnr).
j>d j>d
(22
Then for 7 > 0 and W <1, we have
Binio| _ 16(Z24%) NS NS
12l < L1122 62,
Bin,1 _— 2 j>d i 1 —+/9 1—+/&

Hence we have for 7 > 0,

max{Bin 1 — |Bin,12], 0}

> Kka(T7),
Bina Z r2(7)
(%)
_ _ Ay~ Vo Vo
where ko(7) = max{1 (16T+Ad+1’"d(2) (14112 \/5;) + 6417\/5),0}.

11.6 Useful identities and inequalities

Lemma S10 (Identities from Tsigler & Bartlett| (2023)).
Let O(r,y) = XT(XXT + nrl,) Yy and 0(r,y)T = [é(T,y)Ed,é()\,y)ngl:p]. Then
(1)

é(T, y)l:d + XlT:‘dAnglzdé(Tv y)l:d = XEdAglya
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(it)

A X0 = A7 X (g + XA X.a)
(iii)

(Ig+ X1 gA; X 1) = 1o — X{4A X4

Proof.
Lemma [S10[(i) is from Section F in [Tsigler & Bartlett| (2023). Lemma [S10[(ii) is from H.2 in [Tsigler
& Bartlett] (2023). To show Lemma [S10{iii), from Lemma [S10{ii),

AT X = A7 Xa(Ta + X1gA7 X 1) ™!
Then we have
XigA 7 X10 = X1 gA Xva(Ta + XTq A X1.0) 7!
= (X{gA; " Xvg + Lo — To)(Ta + XT4A] X1.0) 7!
=1;— (Ig+ XEdAEIXLd)_I,
which gives
(In + X1.gA; X1a) H = 1o — X{gA X1 0.

g

Lemma S11 (Monotoncity of variance). Denote by Vout(T) the Vout in (@ with the ridge parameter

7. If 0 < 71 < 719, then Vout(12) < Vour(11).
Proof. From the definition, we have

Vou(11) = *Tr((nrilp, + XX ) XEX T (nm I, + XXT)71)
= o*Tr(XSX T (nm I, + XX T)7%)

> ?Tr(XEX T (nrel, + XXT)72)

= o’Tr((nmod, + XX XSX T (nrp I, + XX

= Vout (7—2)

The inequality follows because (n1iI, + X XT)~2 — (nmol, + X XT)~2 is semi-positive definite. O]
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Lemma S12 (Weyl’s inequality). For M, N, R € C"*", suppose that M = N + R, R is Hermitian

matrices, and their respective eigenvalues are ordered as follows:

Then fori=1,2,...,n,
Vi + pn < Wi < Vit pr.

Lemma S13 (Ruhe’s trace inequality in Marshall et al.| (2011)). If U and V are n x n positive

semidefinite Hermitian matrices, then
((UV) 2 ZA An—i1(V)

In Lemma [S514] below, Cj is an absolute constant which may vary from lemma to lemma. For
simplicity, we treat Cy as a common absolute constant, by taking the maximum of such constants

from the individual lemmas.
Lemma S14 (Corollary 2.8 in |Zajkowski (2020)). Suppose that z € RP, with Cov(z,z) = I, is a
sub-gaussian vector with norm o,. Let x = zDiag(v/ A1, ....,\/Ap). Then

P p p 2
. J )
P(| Zx? - Z Aj| > Z Ajo) < 2exp{—mm{r0(2)70204, «/r0(2)70002 |38
j=1 j=1 j=1 v

0%z

That is, with probability at least 1 — 2exp{—min{r0(2)c‘g—24, \/TO(E)%}},
0%z O

p p p
(1—5)2&52 (1+38) Y\
=1 j=1 j=1

Lemma S15 (Lemma 23 in Tsigler & Bartlett| (2023))). Suppose that z1, . .., z, are independent sub-
gaussian vectors in RP, each with sub-gaussian norm o,. Let ¥ = Diag(A1, ..., \p) for some positive
non-increasing sequence {)\i}gzl. Denote Z to be the matriz with rows {z;X?}?_, and A = ZZ7.
Denote also A to be the matriz A with zeroed out diagonal elements: A” = (1 — 0;)A;;, where

0ij=01ifi#j ord;; =1ifi=j. Then for anyt > 0 with probability at least 1 — dexp{—t/Cp},

p
IA]] < CooZ, | (t+n)(A3(t+n)+ > A2).
=1
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Lemma S16 (Lemma 24 in Tsigler & Bartlett| (2023))). In the same setting as Lemma we
have with probability at least 1 — 6exp{—t/Cy},

p
1Al < CooZ(Aa(t +n) + D Ap).
j=1

Lemma S17 (Theorem 5.39 in [Vershynin (2012)). Let d < n and Z € R™*% whose rows z; are
independent sub-gaussian isotropic vectors in R® with sub-gaussian norm o,. Then for t > 0, with

probability at least 1 — Qexp{—#zgg},
Vn —Coo*Vd —t < spmin(Z) < smax(Z) < V/n + Coo?Vd + t.

Lemma S18 (Lemma 21 in Tsigler & Bartlett|(2023)). Let Z € R™*P whose rows z; are independent
isotropic sub-gaussian vectors in RP with sub-gaussian norm o,. Let ¥ = Diag(A1,....,\p) for
some positive non-increasing sequence {\;}t_,;. Then for any t € (0,n) with probability at least

1 — 2exp{—t/Cy},
(n = Vnto2) YA < D802 Zideol* < (n+ Vinto2) 3 ;.

i>k i=1 j>d
IIT Proofs of additional results in Section [3

We provide proofs of Corollaries [] and [5] which are re-stated below for convenience.

III.1 Sufficient and necessary conditions for MSE,,; = O(£) and MSE;, = O(%)

Corollary 1 (Conditions for MSEq,; = O(%) with small or moderate TER). In the setting of
Theorem 1, assume further that o> < 1 and ]\HT:d\|22;;AZ = 1.

(i) A sufficient condition for MSEqy = O(%) with a probability approaching 1 as n — oo is
that )‘i—zl S \/%min{l, W'IZQ)} and the ridge parameter T is chosen in the range Aal)\d-ﬂ <7<
Aoras1 if ra(22) < d or Ag' Ag max{dy/ %52), 1} <7 < Aphg min{c\/%, 1} if rq(32) > d, where
¢ is a constant satisfying ¢ > 1 and ’\‘;\—:1 < c\/gmin{l, WJEQ)}.

(i) Suppose that n > d and rq(X2) > d. Then a necessary condition for MSEoy = O(4) with
a probability bounded away from 0 is that /\j‘\—zl < \/%1 / dez) and the ridge parameter T is chosen
in the range \/ rd(dEQ))\dH <7< \/g)\d.

The sufficient and necessary conditions become matched, /\f\*d'l < \/%1 /Wdﬂ); if in the case where

n > d and r4(X?) > d in addition to the assumptions stated.

Proof. From Theorem|[l] for any 0 < € < 1, the bounds in Theorem|L|(i)(ii)(iii) hold with probability
at least 1 — e for n > N if N is large enough. From the bounds in Theorem (i)(ii)(iii), 02 <1 and
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63 dH2—1)\ = 1, we have

S8
<

4(%?)

MSEou 2 — + ===, for 7 < A Nyt (S60)
T2 d A ra(E? T2 d | Ny re(2? _

X +-+ j_“ d(n ) > MSEout > v + -+ j_;l d(n ), for Ag*Agr1 <7 < Aghg,  (S61)
MSEoy > 1, for 7 > Aghg. (S62)

@D Proof of Corollary [I](i):

Suppose /\+1 < f min{1, - (22 }. Then there exists a constant ¢ > 1, such that

Ad“ < C\f min{1, 22)} (S63)

Then we prove the sufficiency of the condition, /\f\—:l < \/% min{1, ﬁ‘lzg)}, in two cases d > ry(%?)
and d < 74(%?).

o If d > r4(X2), from (S63)), then

Ad+1 d
< —. S64
N, SV (S64)

If we let Aal)\d+1 <7< Aghgi, from (S64) and d > 74(X2), then

2 )\2 d
T 2 \d+1 2 42
)\2 — AO )\2 S A()i?

>‘d+1 ra(2?) < A%i
_— n'

T2 n
From the upper bound in 1j we have MSEqut = O(%).
o If d < ry(X2), from (S63)), then

Ad+1 .
A T nre(Z2)

Let 7 be in the range Ay'Agr1 < Ag'hays max{1 %‘?2), 1} <7 < Aphg min{c\/g, 1} <
AgAg, then

72 < QAQd
)\2 Op’

ra(3?) /\?l+1 < CzAzﬁ
> 0n~

n T2

From the upper bound in 1j we have MSEqut = O(%).
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In conclusion, Ad+1 < 4 min{l, ,/—%51 is a sufficient condition for MSEqyy = O(2) with a
Ad n rq(3?) n

probability approaching 1 as n — oo. The ridge parameter 7 is chosen in the range A, 1)\d+1 <
7 < Aghgyr if 7g(3?) < d or Aal)\d+1 max{%\/@, 1} <7 < Ag\g min{c\/g, 1} if rg(X?) > d,
where c¢ is a constant satisfying ¢ > 1 and )‘j‘\—zl < c\/gmin{l, W‘ZEQ)}.
@) Proof of Corollary [1f(ii):

We first show that MSE ,t = O(%) with a probability bounded away from 0 only when A N1 <

7 < AgAg by method of exclusion.

o If 7 > Ay, then from lower bound in (S62), we have MSEq,; = 1, which is contradictory to
MSEqu = O(£) and n>> d.

o If 7 < Ay'Agi1, then from lower bound in 1) we have MSEq; = ra=) % (because

n

r($%) > d), which is contradictory to MSEqy: = O(4).

By excluding the above two possibilities, MSEq,; = O(%) with a probability bounded away from
0 only when A61>\d+1 <7 < AgAg. From the lower bound in 1} we have

72 d
ra(2?) )‘¢2i+1 _ ﬂ
n T2 O(n)

That is,

Hence a necessary condition for MSE,,; = O(%) with a probability bounded away from 0 is that

Ad+1 d d ra(3?) d
VRS \/;\/ iy and \/ A ST S/ A

0

Corollary 2 (Conditions for MSE;, = O(£) with small or moderate TER). In the setting of
Theorem% assume further that 0® < 1 and HGf:dHZE;;)\Q = 1.

(i) A sufficient condition for MSE;, = O(%) with a probability approaching 1 as n — oo is
that )‘i—:l < \/gmin{l, \/%} and the ridge parameter T is chosen in the range Aal)\dH <7<
Aoyt if ra(8) < d or Ayt A max{1 #, 1} <7 < Ao\ min{c\/%, 1} if ra(¥) > d, where ¢
is a constant satisfying ¢ > 1 and ’\i—:l < c\/gmin{l, \/%}.
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(ii) Suppose that n > d, f > 1 and 64166— < 1. Then a necessary condition for

MSE;, = O(f) with a probabzlzty bounded away from 0 is that /\‘”1 < rd((iz) and the ridge parameter
T is chosen in the range \g4q1 -2+~ \/g <7< )\d\/j

The sufficient and necessary conditions become matched, d“ <

~ rq(%)

, if in the case where n > d

and rq(X) < n in addition to the assumptions stated.

Proof.
From Theorem 2 I, for 0 < € < 1, Theorem |2 I (ii)(iii) hold with probability at least 1 — € for
n > N if N is large enough. From the bounds in Theorem a(i)(ii)(iii), o? = land |0} ,]2 A3 =<1,
1:d

we have
d ri%
MSE;, z ﬁ + rd7§2), for 7 < Aal/\d_H, (865)
™ d )‘d—l-l 7“d(z) ™ d /\2 +1 Td(z) -1
)\—?l ; 2 . > MSE;, > Pe (’7’)/\*3 + g 7_2 2 for AO Adr1 <7 < Aghg, (866)
A r2(D
MSEin > k1 (1) + 4 al ), for 7 > Aghg. (S67)

2 2
D Proof of Corollary [2(i):

Suppose )‘f\—:l < \/gmin{l, ﬁdz)}v then there exists a constant ¢ such that ¢ > 1 and

)\;t:l < C\/gmin{l, \/ sziz)} (S68)

We prove the sufficiency of the condition, Af\—:l < \/g min{1, , /#‘ZE)}7 in two cases, d > r4(X) and
d< T’d(Z).

o If d > ry(X), from (S68|), we have

Ads d
< —.
N, S e\ (S69)

If we let Aal)\d+1 <7 < ApAgy1, from 1| and d > ry(X), we have

2

1< g < gt
d

)‘d+1 ra(X) <Ag7”d(2) <A%§
- n ~ 'n’

T2 n

Then from the upper bound in li we have MSE;, = O(%).

o If d < ry(X), from (S68]), we have

Ad+1 <ec d

A T /nrg(D)
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Let 7 be in the range Ay'A\gy1 < Aj'Agp1 max{l %f),l} <7< AO)\dmin{c\/g,l} <
Ag)g, then we have
T 2 2d
)\2 <A
)‘d—l-l rd(X) < CQA%Q.
- n

T2 n

From the upper bound in 1j we have MSE;, = O(%).

In conclusion, d+1 \[ min{1, \/%} is a sufficient condition for MSE;, = O(%) with a
probability approachlng 1 as n — oo. The ridge parameter 7 is chosen in the range A, 1)\d+1 <7<
Aghgyr if rg(X) < dor AalAd_A'_]_ max{% ngz),l} <7 < Ag)g min{c\/g, 1} if r¢(¥) > d, where ¢
is a constant satisfying ¢ > 1 and ’\f\—:l < c\/%min{l, \/%}.

@) Proof of Corollary [2[(ii):
First, we point out that with 64 Vo 1, we have ki(7) 2 1 if @ < 1. Then we show

1-V/61
that MSE;, = O(ﬁ) with a probability bounded away from 0 only when A 1)\d+1 <7 < Aghg by

method of exclusion.

o If 7 < Aglx\dﬂ, from lower bound in (S65|) and ”EL—Z) > \/g, we have MSE;, > %, which is

contradictory to MSE;, = O(%).

o If 7 > ApAg and MSE;, = O(%), from lower bound of 1' we have

by )y
d-2‘r-l ’rd( ) _ O(é)7

T

hence there exists a constant ¢ > 1 such that

)\2
17“d(2) <c§'
2 n2 T n

)\d+1 \/E n
< — 1.
T Ve nrq(X) <

With @\/% > 1, we have

Hence we have

/431(7') Z 1

=MSE;, 2 1, (from (S67)

m ~u

which is contradictory to MSE;, = O(%) if n>>d.

38



By excluding the above two possibilities, we know that MSE;, = O(%) with a probability
bounded away from 0 only when Ay 1>\d+1 <71 < ApNg. From lower bound in 1} and MSE;, =
O(£), we have

Nig1 73(%) d
2 2 O(g)

T n

Similarly to the derivation in the case of 7 > AgAq, We have 1(7) 2 1. Hence MSE;, = O(£) only
when AalAd+1 <7 < Ap)Agand k1(7) = 1. From the lower bound in 1' we have MSE;, = O(%)

only when Aal)\d_l,_l <7< Ap)g and

A?I—H rd(E) d
T2 2 _O(g)’
72 d
=06

That is,

by d
)\/EST,S)\d[ < Agg,
d n

_ Td
A N1 < Aag1

Ady1 o d
Aa "~ ra(E)

Hence a necessary condition for MSE;, = O(Z) with a probability bounded away from 0 is /\f\“ <

) /< <Ad\f

d
rq(¥)

Corollary 4 (Conditions for MSE; = O(i) with large TER). In the setting of Theorem @
assume further that 0® < 1 and |0} d||2 1)\d = 1.

(i) A sufficient condition for MSEout = O(E) with a probability approaching 1 asn — oo is that

’\d“ \[mm{,/ EOLE rd } and the ridge parameter T is chosen satisfying T + Agt 1”(2) <
T rq(22)
fAdffVZ(E)_lor W g £ 74+ dan 2 <[ if D)

1) Suppose that n > d. Then a necessary condition for MSEout = O(%) with a proba-
(ii) Y n

bility bounded away from 0 is that )‘d“ \/Emin{, /ﬁ, Td”—z)} and T 1is chosen satisfying
T+ At Z) < \[)\ f ,/rd T’d( )>‘d+1 <7+ Aa Td(E) < \/7)\ f rd(E

The sufficient and necessary condztwns become matched, i—zl < \/;mln{1 /m, m}, zf in the

case where n > d in addition to the assumptions stated.

Proof.
From Theorem [3] for 0 < e < 1, Theorem [3(i)(ii) hold with probability at least 1 — € for n > N

if N is large enough. Because Ag can be any unbounded positive value in Theorem (3| from the
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bounds in Theoreml ii), 02 < 1 and |0} d||2_1)\ = 1, we have

( d+21 ) Lo a1 - ra(>) 2 MSEout: 2
A (T4 Mgy -5 )?
g &2y A2 2 2
(T d+21 n) + =+ d+1r ) vl )’ f0r7+>\d+1rd( )5)% (570)
S (T Aa )2 "
ra(2)

MSEqut 2 1, for 74 Agy1 Z Ad- (871)

@D Proof of Corollary [](i):

We prove the sufficiency of the condition, d“ < \[ min{, /a5 } in two cases \/&L((ij) <
Td
n4/rq(2
1 and 7\/% ®) > 1.
A/ Td >\d+1 \/7
o If \/Erd(Z) < 1, from < mln{,/ e } we have
)\d+1 < V nd
Aa "~ ra(E)

Because )“f\ < X &Cf), we have )\dH@ < \/%/\d. Then we can choose non-negative 7 such

Td
that 7+ A\gp1- ra(= )g\/gxd and

d
n < —. ST72
)\?l ~n (572)
Moreover, with -4~ ra(2 < 1, we have ’”"3@2) < 4. Hence we have for 7 > 0,
\[Td( Td(E) n
)‘?Hl rq(X2) < n? ry(X?)
( N ng))2 no T r3%) n
d
< —. S73
<t (573)
Then from 1'1} and the upper bound in 1' we have MSEq .t = O(%).
o If %ﬁigj) > 1, from )‘d—;l < \/7m1n{,/ } we have
Ad+1 < d__ (S74)
Ad nrq(X?)
ny/ra(2?)
With Vara(®) > 1, we have
drg(2
) > YA (575)

Now we prove \/g)\d > )\d+1@- From (S74)), we have

d r (32
\/>)\d 2 Adr1 al )-
n d
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Further with (S75)), we have

d ra(2?)
—Ad 2 A
n d < Nd+1 d
by
> Aoy 1) (S76)
n
From (S76)), we let 7 > 0 such that
32 X d
Td(d )AM <74 Aam d( ) Sy A< A (S77)
Then we have
ra(X*) )‘§+1 < d
I
(r+ Zj;d)‘j)2 _d
A2 ~on

From upper bound in 1} we have MSEy,; = O(%).

In conclusion, we have MSE,; = O(%) with a high probability approaching 1 if n — oo given

@ < \/Emin{1 /71(%7 WL} The ridge parameter 7 is chosen such that 7+ /\dﬂ%x) < \/%/\d
\/Td(E ( ) < < \/> Td(E
\/ﬁrd( ) <1lor A1 ST+ AL A if & > 1.
@) Proof of Corollary [4](ii):
We first show that MSEq, = O(%) with a probability bounded away from 0 only when 7 +
)\d+1LnE) < A\g by method of exclusion.
If 7 2 Ay, from lower bound (S71|), we have MSEq,t = 1 , which is contradictory to MSEq,; =
O(%) and n > d.
By excluding the above possibility, MSEy; = O(%) with a probability bounded away from 0 only

rq(X2) . - . n4/rq(X2)
d+1 d- )
when 7 + Ag11 -2~ < Ag. Then we prove the necessity of the condition in two cases <1

Vidrg(S) —
and nyra(X?) > 1.

Vdra(%)
o If fv rd(E) <1, from 7 + A\gy1- ( ) < Ag and lower bound in (S70)), we have
( "2 ol
A2 T
Then we have
by d
T+ )\d+1rd( ) S/ A
n n



and

A d A
< \/>d+1E (S78)
Ad Nt Mgy 12

Obviously, we have

\/E Ad+1 < Vnd ‘ (579)

n7'+)\d+1rd,(12) ~ rq(X)

Combining (S78) and (| -, we have

Ad+1 vnd

S
)\d T'd(z)
o If fv Td(z) ( ) < Mg and the lower bound in (S70)), we have

ra(2?) )‘?Hl -0 d
PUEY - (*)7

n (T+ j>d 3)2 n

(r+ Zop )
A2 -7

Hence

I i>d A d
Td(d))\ngT+Eﬂ>dj§\/7)\d’
n n

Adv1 d
Ad ™ /nra(22)

In conclusion, a necessary condition for MSEq,t = O(%) with a probability bounded away from
0is M < \/Emin{1 /% % } and the ridge parameter 7 is chosen such that 7+ )\d+1m£—z) <
NDY if PO < or (/R gy S+ Mgy ) %) < fiag it LD ’"d 0

Corollary 5 (Conditions for MSE;, = O(%) with large TER). In the setting of Theorem assume
further that o < 1 and ||67% 4]|2_1 A2 < 1.
1:d
(i) A sufficient condition for MSE;, = O(%) with a probability approaching to 1 as n — oo is
’\31\:1 < sziz) and the ridge parameter T is chosen such that )\d+1%2)\/% < T+/\d+1LnE) < )\d\/%.

(i1) Suppose that n > d and 641% < 1. Then a necessary condition for MSEi, = O(£) with

a probability bounded away from 0 is )‘gl < rd((iz) and the ridge parameter T is chosen in the range

>\d+1@\/g<7'+)\d1 <A[

The sufficient and necessary conditions become matched, )‘d“ <

< rd(2)7 in the case where n > d in

addition to the assumptions stated.
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Proof.

From Theorem 4 ' for 0 < e < 1, Theorem {4 I (ii) hold with probability at least 1 — € for n > N
if N is large enough. Because Ag can be any unbounded positive value in Theorem [4], from the
bounds in Theorem (i)(ii), 0? =1 and |0} 4|21 23 < 1, we have

1:d

(7 + A ™2 d N 1i(®)

- >M Eln
)\2 +n+(7-+)\d 7“01(2)) n? SEin 2

T+ ra(2)\2 d )\2 2 )
162(7)( d;\r?l ) Tt T = (D) Td(z )’ for 7 + Agy1-
d (T A )R

/\¢21+1 7‘621(2)
(T+Ad+17rd,(12))2 n

5
d )<>\d, (S80)

~

rqa(2) >

MSE;, = Z (T) + for 7 + Ad+1 o~ d- (881)

D Proof of Corollary [f|(i):
If Ad+1 Sz (2)7 we have )\d\[ 2 Ad+1 f Hence we can choose 7 > 0 such that

Ad
v ) d
Adﬂ’“d( ) n o + )\d+1rd( ) < Ad\[. (S82)
n n n

Then

( @))

From the upper bound in 1’ we have MSE;, = O(%).
@) Proof of Corollary [f[(ii):

o gy 22
We point out that with 641‘9 < 1, we have ro(7) 2 1 if % < 1. If MSE;, = O(%),

from lower bound in 7-, we have
Nt ra(®) _ o).
(T + Agg1 )2 "

With n > d, we have

rq(2 rq(2 n rq(2
T+ At dfl ) > At dfl )\/;>>Ad+1 dfl ).

Equivalently, we have
)\d le(E)
T+ Ady1—

then



Hence MSE;, = O(d) only when k2(7) 2 1. Then we show that MSE;, = O(i) with a probability
( )

< A\g by method of exclusion.
If 74 g1 2= Td( ) 2 A4, from the lower bound in , we have

MSE;, 2 k(1) 2 1,

which is contradictory to MSE;, = O(%) and n > d.
By excluding the above possibility, MSE;, = O(%) with a probability bounded away from 0 only
when 7 + )\d+1@ < A¢. From the lower bound in l) MSE;, = O(%) only when

(

(

Then

by by d
Ad+1rd( ) [m S T+)\d+1rd( ) N )\d\/>7
n d n n

Ady1 o d
Ad m’Td(Z)

II1.2 Out-sample and in-sample errors with optimal ridge parameters

Corollary 3 (Optimal error orders with small or moderate TER). Suppose that Assumption

@ and |4 I(z) are satisfied and further o® =< 1, ||0; de 1)\ =1, rg(X) < n, \g = Ag+1, /ﬁ,

Ad > Aga1, and 6419 < 1. Then

(i) MSE? , < max{)‘”“rl Td(E) d} with a probability approaching to 1 and the optimal T is

out

¥2) . _ . L
chosen as T = 4/ AgAdt1 Td(n )mln{ cAO ,——Add } where ¢ is a constant satisfying

\/ Aaras1 ’d(ZQ’
)\d+11 /ﬁ S C)\d

(ii) MSE], < max{~§ )‘d“ d} with a probability approaching to 1 and the optimal T is chosen satis-

fying 7 = \/Ad+1Ad-

Therefore MSE? . < MSE!, with a probability approaching to 1, by noting r4(X?) < r4(X) < n.

Proof.
Proof of MSE?

out*

For 0 < e < 1, Theorem ||| I ii)(iii) hold with probability at least 1 — €

for n > N if N is large enough under Assumption ' I 2| and (1) From the bounds in Theorem
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(i)(ii)(iii), 0? =1 and |6, _1)\3 = 1, (S60)—(S62|) hold. Denote MSE,,; with optimal 7 chosen

from 7 < Aa Ad+1 as MSELOUt, MSEyt with optimal 7 chosen from Aal)\d_l’_l < 7 < Ag)g as

MSE3 ¢ and MSEqy; with optimal 7 chosen from 7 > AgAg as MSE3 ;. Then we give orders of
bounds of MSE] ¢, MSE3 ¢ and MSE3 ,; and give the order of MSEG,; by the integrating the
orders of bounds of MSET i, MSE3 ,,; and MSE3 ;.

o If 7 < Ay ' A\g11, from lower bound in (S60)), we have MSE1 out = (d+@) = max{ 7, d Td E2)}

n n

Moreover, we have max{<, Td } > max{%, ’\d“ /= } because \g 2 Agi1

T’d(EQ)'

o If 7 > Ag)y, from lower bound in (S62), we have MSE3 ;; 2 1.

2
o If A;'Agi1 < 7 < Aoy, from (S61), we have MSEqy = o 4+ @M 4 d 49 I% +

)\73 n T2 n

ra(32) M1 > )\d+1 Td(Z ) Let

n 2 =
T = \//\d)\de mln{ cAO_ , AoAa
\/)\d>\d 11/ Td(EQ

where ¢ is a constant satisfying Az ﬁ < ¢y, then Aa Ad+1 < 7 < ApAg because

i1/ sy D) < cA\g. With the above choice of 7, we have MSEq; =< ’\f\“ ra(X?) Therefore,

n

A — A »?2) _ d A
if Ag'Agr1 <7 < AgAg, we have MSE3 < 4 + v % = max{ 5, “ }

By integrating the orders of bounds of MSE] ,;;, MSE3 ,; and MSE] ;, we have MSE]

out =

d /\d+1 Td(EQ)}

max {7y, =5

Proof of MSE}: For 0 < e < 1, Theorem [2(i)(ii)(iii) hold with probability at least 1 — €
for n > N if N is large enough under Assumption and (1) From the bounds in Theorem
(i)(ii)(iii), 0? <1 and ||6} dH 1)\3 = 1, (S65)—(S67) hold. Denote MSE;, with optimal 7 chosen

from 7 < Ay )\d+1 as MSE7; in and MSE;, with optimal 7 chosen from Aal)\d+1 <7 < Aphg as

MSE3 ;, and MSE;, with optimal 7 chosen from 7 > AgAg as MSE3;,. Then we give orders of
bounds of MSES ;,, MSE3 ;, and MSE3 ;, and give the order of MSE;, by the integrating the orders
of bounds of MSE] ;,,, MSE5 ;,, and MSE3 ;..

o If 7 < Aal)\d+1, from lower bound in l) and r4(X) < n, we have

d 732
MSElmN+TdT§2) = 1.

o If 7 > AgAg, then 7 > Mgy because A\g > Agi1. Further with 641% < 1, we have

k1(7) 2 1. Then from the lower bound in (S67)), we have for 7 > A4,

MSE;;in 2 k(1) 2 1.
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o If Ag'Agy1 < 7 < Ag\y, we first show that MSE}, i S < max{4, AdH} and then show that
MSEg,in 2 max{d >\d+1} These give MSES ; in < max{d Aat1 ).

~ n’ Ag

We first show that MSE3;, < max{<, )‘i—zl}. From the upper bound in (S66|), we have
)\2

d+1 Ad+1

MSE;i, < )\2 + ‘”1 i. Let 7 < \/Ag+1Ag, then AalAd+1 <K 7 K ApAg and ;—2 + - = VR
d

A A
Hence we have MSE;, $ “{* + 4 = max{4, o)

Next we show that MSE3 ;;, 2 max{; d )‘d“} From lower bound in (S66)), we have MSE;, 2>

\2
dat1l > Aii:l for AO 1)\d+1 <7 < Ag)g. For

T2 A~

k(T ))\2 + ‘”1 + %. Then we show that ml(q-);é +
d
AE Ait1 <75 \/m, we have

2 2 2

T )‘d+1 > )‘d+1 > Adt1

K (T)P > 2 2y
d T T d

T/ Agr1Ad S 7 < AgAg, from Ay > Agiq1, we have 7 > A\jy1. Further with 641% < 1,

we have k1(7) 2 1, and then

2 )\2
T d+1 > m(T) T Ad+1 _

K1(T) g +—5 =2
A T S Ad
A2
Hence we have /{1(7);—2%— 94 2 /\d“ for Ayt Agr1 <7 < Agg. That s, MSE3;, 2 n+7/\f\:1 =
d
max{4, 41},

From MSE3 ;, < < max{ 7, d )‘d“ } and MSE3 , in 2 max{d )‘d“} we have MSE3 ;)| < max{2 d Adt1 1.

~ n’ Ag

By integrating the orders of bounds of MSET ;,, MSE3 ;;, and MSE3 ;,,, we have MSE;, < max{ <, Ai—:l}.
O

Corollary 6 (Optimal error orders with large TER). Suppose that Assumption [} [§ and[{|(ii) are

satisfied, and further 0% < 1, |05 4|21 A3 < 1, Ag > /\d+1”(2) and 641‘? < 1. Then
1:d

)\2
(i) The order of MSEY is max{=§ ’\d“ Td(nZQ), ;l\JQ’l rdﬂ% 2, d} with a probability approaching to 1
(=)

ny/ra(¥?) < Adt1 Td(z)

and the optimal T is chosen as T = 0 if \/ér o) pw or satisfying T + )\dH’"dT =

ny/rq(X? r
Madasayf P i TS > KB

(ii) The order of MSES, is max{=§ ’\d“ z (E) d} with a probability approaching to 1 and the optimal

T is chosen satisfying T + Agy1 -2 ( ) PP VIR ( ).
Therefore MSEY , <
by noting 74(X2) < rg(X) and rq(X) = n (by AssumptionH) and ‘“1 ng)Q < At rd(z) by noting

~ )\d
A > Ay 45,

MSE}, with a probability approaching to 1 because /\)1\:1 Td(nEQ) < ’\‘;\:1 Tdflz)

Proof.

Proof of MSE} For 0 < e < 1, Theorem |3 I (ii) hold with probability at least 1 — e forn > N

out
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if N is large enough under Assumption and (ii). Because Ag can be any unbounded positive
value in Theorem from the bounds in Theorem i)(ii), 0? < 1 and [|07 4|21 A2 =< 1, we have

:dHEI:d
1’1' hold. Denote MSEq,; with optimal 7 chosen from 7 + Agiq Tdfzz) S Ag as MSE]
and MSE,; with optimal 7 chosen from 7 + )\d+1@ 2 Ag as MSE] - Then we give orders of

bounds of MSE] ,;; and MSE; ,; and give the order of MSE{,; by the integrating the orders of
bounds of MSE7 ,,; and MSE3 ;.

*
1,0u

o If 7+ )\d+1@ 2 Ag, from lower bound in 1) we have MSE3 ,,; 2 1.

n

2 Fhgpq 22 »? ¥
. 1fT+Ad+1Ln) < Ag, from (S70), we have MSEqy; = d*;g ) +”(n )(Tﬂdj::d(% +4,

Then we discuss the order of MSE] , in two cases, z f”d :‘Z(éj) < /\f\zl Tdflz) and %‘;EZ;)) >
Adt1 ra(E)

Ad n

rq(%2?) Adg1 rq(X)
<
Varg®) S A omo we have

rq (2
() AN A ra(®)? (4 den ")

n

n (T+)\d+1@)2_ ra(X2)2 T X2 n?2 — A2

Hence

(7 + AdH@)Q + rq(X?) Ao _ T+ A ng)y
)\2 n ra(X)\2 a AQ
d (T + Aa1-4=) d
> A?H—l Td(2)2
- )\3 n?2

If we let 7 = 0, we have

rq(2
(1 + )\d+1%)2 N rq(X2) )‘?z+1 ~ )‘3+1 rq(%)?
)‘?l noo(r+ >\d+1@)2 )‘?l n?

n

rq(32) > Adt1 Ta(X)

Varg®) 2 A omooWe have

(1+ Ad—&-l@ﬁ n rq(3?) Ao S Ad+1 ra(2?)
A2 n (T+)\d+17rd7(LE))2 T M "

We also have

(1+ Ad—&-l@ﬁ n rq(3?) Ao Adv1 [ra(E?)

A N7 A )2 T A "

n
when 7 4+ A\g41 Td,(?) = A/ AdAd+1 Td(nEQ) R

By combining two cases, - ra(®) o Aar1ralD) g MY raCR)

>\d 17‘(1(2) *
> Zdt Wi =
P Vdrg(s) — M on Vara®) = M om0 e have MSE]
Aa ra(32) A2 (D)2 g
max{ )\:1 d(n ), /\gl dﬁlz) ,ﬁ}.
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rq(%?)
n M

By integrating the order of bounds of MSE] ,,; and MSE] ¢, we have MSEG; < max{)‘i—zl
Nig1ra(2)? d

X2 a2 ol
Proof of MSE;,: For 0 < e < 1, we have Theorem |4 I (ii) hold with probability at least 1 — € for
n > N if N is large enough under Assumption ' I 3| and [4] I ii). Because Ag can be any unbounded
positive value in Theorem from the bounds in Theoreml i), 02 < 1 and ||6; d|| 1)\3 =1, we
have . hold. Denote MSE;, with optimal 7 chosen from 7 + Aj; 1~ ( ) S )\d as MSET ;,
and MSE;, with optimal 7 chosen from 7 + Agy1°- ( ) 2 Aa as MSE3;,. Then we give orders of
bounds of MSE] ;, and MSE3 ;, and give the order of MSE;, by the integrating the orders of bounds
of MSE];, and MSE3 ;..

( ) > Ag, then 74+ g 74 d( ) > Ad+ ( ) hecause Ag > Ay 2= d( )| Further with

64 ‘\ﬁﬁ < 1, we have k2(7) 2 1. From the lower bound in (S81)), we have MSES ;,, 2 x2(7) 2

1.

o If 74+ Agy 1”( ) < Ay, we first show that MSE? in S max{Z+ /\d“ rd(z )1 and then show that
MSET;, 2 maX{d + ’\d“ Td } which gives the order of MSET ;..

We first show that MSE] ;;, < < max{< + )‘d“ Td } From the upper bound in (S80)), we have

(rrasa P2 Qup ME2
MSE;, < ¥ Wiy + &. Note that
(7 + AdH@)Q ()\d+1@)2 S Adi ra(%)
A2 + 2i=ativa AN n
d (T + ?)
and the equality can be achieved when 7 + Ag+ 1@ AdAd+ ( ) < A\g. Hence we have
MSE; ;, S & + 2700 oy {d i1 ralB)y

Next we show that MSE];, 2 > max{Z + ’\d“ Td } From the lower bound in (S80), we

T rg(X)y2
rd(E)) —|— 2 Then we show %2(7’)(&;\%”) +

d,(f) )2 (May1 Td( 1)2

have MSE;,, 2 ko(7) (T )\3 P
d+

rqg(3)\2
((:“de(;))Z) > 20703 i -y 2 ) <A T T+ Aa ™ < /A A we have
TH+Ad+1 7%,

C+Aan ™) Qe ™ Qan™P) Aara(®)

Ko(T) > pe
)‘?l (T 4+ Aagr1 (2)) (T + At (2)) Adn
If >\d+1>\drd,(?) N ( ) < Ag¢, we have ( ) > Ad+ rd( 74®) ecause Ag >
)\dH@- Further with 64155 < 1, we have ko(7) 2 1. Then
(7 + M "2 ( > (7 + At "D A (D)
n > n > .
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r (3 rqg(Z
(T+Xd41 d( ))2 T ()\d+17d,(b ))2 > Adg1 ra(2)
Py ra@yo ~ Ay n
(T+Xa+1-%7)

A b
MSE; ;, 2 max{Z, 241 ra)

Hence we have ko(T) if 74+ g1 ( ) < < Ag and

From MSE7};, < max{<, /\f\zl 1)} and MSE?, in 2 max{Z, /\31\3-1 m Z)} we have MSE] ; <

d @Td(z)}.

max{ 2, S

By integrating the orders of bounds of MSE] ;, and MSE3 ;) , we have MSE;, = max{ data @}.

n’> Ag n

g

IV  Error approximation formulas

IV.1 Convergence of in-sample error approximation formulas

We provide a proof of Theorem [5]in Section which is re-stated below for convenience.

Theorem 5 (Convergence of in-sample error approximation formulas). Under Assumption @ fur-
ther assume that T > ﬁ and n=23HUM 7 < % Then for any D > 0, § > 0, with probability at
least 1 — C(M, D, &)n=P"

8M

72/3,(1=0)/3" 11, (1-0)/2 2

B 1 8M 1
(7 V. 2
|V1n (7—7 H,, ’7) v1n| <o C(M) (max{ 72/3,(1=8)/3" 11, (1-0)/2 } + n(1-0)/2 )

|Bin (T ﬁménﬁ) — Bin| < C(M) max{

where C(M, D, §) is a constant depending only on (M,D,d) and C(M) is a constant depending

only on M.

Proof. Our proof is inspired by the proof of Theorem 5 in [Hastie et al.| (2022)). We first give the
proof for bias and then the proof for variance. In the following proof, C(M) is a constant depending
on M and may differ from line to line.

Bias. We first define two functions, FT(n, v) and FT(n,v), and control the quantity |F(n,v) —
(o T) = Biy and —%2(0,7) = Bin(r; Hy, Gn,7). Then
5 (0,7) —

FE7(n, )] Moreover, we show tha

BBFj (0,7)| so that we can control |By, —

Bin(T;Hn,Gna’yN'
Without loss of generality, we let H9*||§ = 1. For 7 € R, ﬁ <7< % and 7 > n~2/3H/M e

define

Ey(n,v) = v{f", (£ + v+ %) 7'67)

= v(0*, (1 + )2 + vI)~1").
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Define D = {(n,v) € Rx C:n > —53-,Re(r) > 0 and Im(—v) > 0}. Because 0 < 7 < M, 7 (n,v)
is analytical in ID and it can be easily verified that

OF]
on

2 (0,7) = 720", (X + 7I)72260%)

= (0", (7S +7I) " HS(r (S + 1) 7)o"

= (0", (I -S(E+7)HE(I - XX+ 71)"He*)

= Bin.
Define Dy = {(n,v) € RxC :n > —537,0 < Re(r) < M,0 < Im(—v) < M}. By using the
anisotropic local law for covariance matrices in Theorem 3.16(i) of |Knowles & Yin (2017)), we

obtain that for any 6 > 0,¢9 > 0, D > 0, with probability at least 1 — C(eg, D, (g)n—D7 we have for
(n,v) € Dy and Re(v) > n=2/3+0,

|E5 (n,v) — i (n,v)] < \/ Im(f”é”’_”))n_m, (S83)

m(—v)
Fy(n,v) = (0", (I + n(n, —v)(1+70)2)716%),
where 7, (7, z) is defined in the demoain Dy = {(n,2) € RxC : 1 > —517,Re(z) < 0 and Im(z) > 0}

and it is defined as the unique solution satisfying Im(7,,(n, z)) > 0 if Im(z) > 0 or 7,(n,z) > 0 if
Im(z) =0 of

1 (T+71m)A
TR Zl—f— 1+7'77)\rn

Following a similar process as in Section A.1.2 of [Hastie et al.| (2022]), we have

[Im(v)|
Re(v)?’

Then taking the limit Im(v) — 0 in 1' and let ¢g = ﬁ,
— C(M,D,8)n= P, for n=2/3+1/M < < M and n >

Im (7 (1, —v))| <
we obtain, with probability at least

1
2M >

_ 1

|Ey (n,v) — Fp(n,v)| < Ha=0/2,,"

Let v = 7, we have

_ 1
[Ey (7)) = F(n,7)| < n(=0/2, (S84)

Then we reformulate F) (n,7) by substituting 7,(n, —v) with other quantity and show that
—aapyf (0,7) = Bin(7; Hp, Gy, ). Define Dy = {z € C : Re(z) < 0,Im(z) > 0}. For z € Dy, we define

rn(2) € R as the unique solution satisfying Im(ry,(z)) > 0 if Im(z) > 0 or r,(z) > 0 if Im(z) = 0 of

1 1<\
Tn ,yp = 1+ Ay (585)
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In the following discussion, we consider (n,v) € DNR?, that is n > —ﬁ and v > 0. Then we have,

5 1 v
Tn(777 _V) 71 +T17Tn(_1 +7'77)’
Fy(n,v) =0, (I + Tn(—m)z)fle*) (586)

Let my(z) = 2222 which by (S85) is the unique solution of

vz
1< 1
m = —_— .
n p;)\j(l—fy—yzmn)—z

Then we have

and

_W%(T(]m = (y*ml(=7) + 1 = )0, (I + (mp(=7)y + 1_77)2)72293

(1 =+ e —a o)

— P2 (yr2mly (1) + 1 — )[67] 2 /

== Bin(T; ﬁnv G’Vhfy)

In the following discussion, we give upper bounds on |8§j (0,7)—
ak

A~ ~ T k T A~ ~
Bin(7: Hy, Gy, )|. Our strategy is to control |25 (1, 7)., |25 (. 7). then [Byy — Bia(r: Hiy, G ).

aaFn; (0,7)|, equivalently |B;, —

can be controlled by |FT(n,7) — FI(n,7)|, \a;%(nﬁﬂ and \ak:;;

5.7 (1, 7)| based on the Lemma A.1

in Hastie et al.| (2022).

9

L nkd
We first give upper bound on | a;:y (n,7)|. ForO0<v < M,n> —ﬁ, we have for k > 1,

OFET
onk

(n,v) = Kl (=1)*1rku (0%, R¥SFE RE*),

where k! = k x --- x 1 and R = ((1+71)% 4 vI)~!. Then we have for v =7, 5 > —5t7 and k > 1,

akF’:L- k_k|n*2 k k
n,T)| < k12570 < K12FM". S87
onk

k T
Next we give the upper bound on |%(n,7’)’. From (|S86|), it is sufficient to upper bound

i+ l r "
[yt I (1) and ({67, (T + (-

bounds separately as follows.

1J:Tn)2)_(l+1)2l0*)| for 1 <1 < k. We give their upper

e Upper bound of ](HTTZ%| Because ﬁ <7< %, for —ﬁ <n< ﬁ and 1 <[ <k, we
have
I+1
T I+1
— | < M
|(1+7‘77)l+1‘ -

o1



e Upper bound of |(6*, (I+rn(—ljm)E)*(l“)Zlﬁ*H. We show 7 (—177) > 0. Let un(z) =

m Then for z > 0, u,(z) is the unique solution of

From Lemma A.2(a)(b) in Hastie et al. (2022), we have for 53+ < z < M,

un(2) > 37 (> 0), (555)

0 < |ul,(2)] < C(M). (S89)
By 1) and the definition u,(z) = ﬁ, we have for ﬁ <z< M,
rn(—2) > 0. (S90)

Because +; < 7 < &, then for —5t: < < 517, we have 5t < T <M and rp(— ) > 0.

T
1+7mn
Hencefor—ﬁ<n<ﬁandl§l§k,

(D) lpgxy| « _
(

< [I=llopll6”?

(07, (1 + (= ol ) Hop I lleplle™ 11

) >0)

because 7, (—

1+4+7mn
l *
< Ajflor)?

< M')|6%||*> (from Assumption

)|. Let up(z) = Tn(az). Then \rr(f)(—z)| can be controlled by

the polynomial of |un ( ) for 1 <m <l and | (Z)\

From 1) we have for ﬁ <z< M,

lut(2)] < 4M. (S91)

Upper bound of \7"7(1 (— 1

The upper bound of |u},(2)] is provided in 1| Then we give the upper bounds of |u7(1m)(z)]
for 2 < m <. We consider the following function
p

1 Ajtn,
f(un,z):un—i—z—fz ok

n = Up + Aj

From implicit function theorem and 1 , we have for ﬁ <z< M,

1
— / 71>
o = W™ 2

(S92)
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To give upper the bounds of |u£1m) (2)| for 2 < m <, from the implicit function theorem, it
is sufficient to further give the upper bounds of |%\ forall s+t <mand s>1,t>1or

s =0, t > 2. Denote

Filug) = L3 it
1\Un —nj:1un+)\j.

Then it is sufficient to give upper bounds of ]%&u"”for 1 < s <m. From (S88)), we have for

1
W<Z<M,

Then

1
<C(M). (from~y= % <M, M\ < M and u,(z) > m)
Hence from the implicit function theorem, for ﬁ <z<M,s+t<mands>0,t>1or

§s=0,1t>2,

as+t f
| Jus 0zt

| < C(M).

Combining the above with 1’ from implicit function theorem, we have for ﬁ <z< M

and 2 <m <1,
[ul™ (2)| < C(M). (593)

With the upper bound of |u,,(2)| in (S91)), upper bound of |u/,(2)| in (S89) and upper bound

of ]uglm)(z)] for2<m<lin l) we have for ﬁ <z< M andfor1 <<k,

[r (=) < C(M). (594)

Because ﬁ <7< %, for —ﬁ <n< ﬁ, we have ﬁ < ﬁ < M. From 1' we have

for—ﬁ<n<ﬁandl§l§k,




From the upper bounds of \ﬁ\, |(6%, (I + rn(—lJ:m)E)*(l“)Elﬁ*H and ]rg)(—lfm)] for

1§l§/~cabove,wehavefor—ﬁ<n<ﬁandk21,
OFFT

| 8n’“n (n,7)] < C(M). (595)

— kT
In the following discussion, we combine the upper bounds of |F] (n,7) — F] (n,7)], |88%(77, 7)|
oFFr
onk

8(;:7’: (0,7)|. Combining (|S84)),(S87) and (S95)), from Lemma A.1 in |Hastie et al. (2022), and letting

k = 3, we have for 0 < £ < 77, D > 0 and § > 0, with probability at least 1 — C(8, M, D)n~ P,

OFT
aq;l <O77—) -

(n,7)| from above and apply Lemma A.1 in [Hastie et al| (2022)) to control |

and |

OFT OFT L1 0
n _ n < _— .
| on (0.7) on 0.7l < C(]M)(Tn(l_é)/2 3 &)

That is, we have

Bin — Bin(m; Hy,, G <C(M L 1, e

’ mn IH(T7 ny n')f)/)’ = ( )(Wg—i_g )
Letting £ = min{ﬁml/?’n(l_‘;)/(ﬁ}, we have

8M
—2/35,(1-8)/3" 7y (1-0)/2 }-

’Bin(T;ﬁTMé?m’Y) - Bin‘ S C(M) max{

Variance. We have

2
Vin = iTr(Ez(EQ + 7‘])_2)
n
1 3 1 .
=y =2y (S 47D TS 4 7)),
From and my,(—7) = %:”(_T),

Vin (75 Hy,7) = 0 (1 = 270y (1) + 721}, (=7)).

We first give the equations and inequality below for the following analysis. From (S85)), we have

1 — 1
Trp(—7)+ v —1=7y- —
n(=T) + 7 vp; -y

1
= WISTr((l + 7 (—7)2)7h). (S96)
From (S96)), we have

= —7'27“;(—7') + 71 (—7).

Oy Tr((1 + 7 (=7)%) ™)
.
or
Hence we have
INTITY (X 4 71)7Y) OVEITr((1 + rp(—7)2) 7Y
’ P _
or or
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1 A 1 .
=7y=Tr((X + TI)fl) — TzfyfTr((E + 71)72) + 727”;(—7') — Trp(—T)
b p
1 A 1 N
= (T (-1 +y-1- TQVETT((E +71)7%) + (T’Y];Tr((E +70)7N) = (rra(=7) + 7 = 1))
From above, we have

1 .
T2 (=) + v —1 - TQVZ;TI"((E +71)7%)|

07%Tr((2+7[)_1) G%TT((I+7"”(_T)E)_1)

1 ~
<y =Te((E+ 707 = (rra(=7) + v = D] + |7y -7
P or or

or - or
(S97)

- |m;Tr<<2 e ’Y;Tf((l ra(=7)2) )] + |7y

We give the upper bound of [Viy, — Vin(7; Hy, )| by controlling ‘T%TI‘((S +7)7h) - %Tr((l +

OriTr(S+rD)—1 LTr((I+rp(—7)T) 1
T (—=7)E)7Y)| and |7 ”T((aT+ ) -7 Al +aT( )%) )|. In fact, we have

Vin = Vin(7; Hn, 7))

— (- QTV;Tr((f] I Tz’y;Tr((i] +71)72) = (1 = 27ra(=7) + 72, (=7))]

< 02 (2rra(—7) + 27— 2 277;%((2 L)Y+ (7'27]1)1‘1‘((2 +7I)?) — (P (—1) oy — 1))
< AT TH(E + 7)) = (a7 47 = D]+ e (S 7)) = (P (=r) + 9 - D)
< 027(3|T}19Tr((i] LD - ;Tr((l ra(—1)S) )|

oriTr((X + 7)1 LT ((I + rp(—7)X) L
i T r((aT+T) )_T R +;T( 7)%) )!) (By (598) and (ST7)).

(S98)

We first give the upper bound on \T%Tr((i +7)7hH - %Tr((l +rp(—7)X)71)|. Using Theorem
3.16(i) in Knowles & Yin| (2017), we have for D > 0, § > 0, Im(—7) > 0 and Re(r) > n~2/3+1/M
with probablity at least 1 — C(M, D,8)n=P,

1 - 1 Im(r,(—7
P 4 7)) = T (%) )] £ [P
Following a similar process in Section A.1.2 of Hastie et al| (2022), we have |[Im(r,(—7))] <
[Im(7)|/Re(7)?. Letting Im(7) — 0 shows that for D > 0,6 >0, & <7 < M and 7 > n~2/3+0/M)
with probability at least 1 — C(M, D, 8)n~P,
1 M

1 A 1 1 1
- — — < < .
]TpTr((Z +70)7) pTr((l +rp(—7)E) )| < — a2 S e (S99)
AT L Tr((S+r1)~? LT ((I+rp(—7)E)~?
Next, we give the upper bound on |r—2 r((a:r ) T2 il +Ta,r( ) )|. Our strategy is to

OF T L Te((S47)~1) OF LTr((Lrp (7))~

upper bound | 5T | and |—2 5% )| for K > 1, so that Lemma A.1 in Hastie

29

87117Tr(@ +71)71) 0, Te((I + rn(—7)%) 1)



O LTr((S47)" ! AL Tr((14rn(—7)8) 1 A
et al| (2022) can be applied again to bound |—2 r(((%-—i- ) o (m)) )] by |T%Tr((2 +

or
-~ _ Bk‘rlTr((iH»T)_l) Bler((1+rn(77')E)_l
7)) = 3T+ ra(=7)E) Y], | and |[———5
bound of \Tk%Tr((ﬁ] +7)7h - %T:E(l + rp(—7)¥)7Y)| is given in 1) Then we give the upper
OFriTr((X47m)~1t 0% = Tr rn(—7)2) 7!
bound of |—pT(;S—k+ o) pT((lng( =

. OFrITr((S+rn)t
We give the upper bound on | i ng )

) for k > 1. The upper
| pp

| and | )| as below.

)|. For k>1and 4; <7 <M,

‘ngﬁ«2+fn—w

5 PN
_ ™ —(k+1)
5ok | ]pTr(Z(E—i—TI) )|

I
|
A
Q
=

(S100)

F LT ((I+rn(—7)2) !
Then we give the upper bound to |—2 ul Jg;k( D= |. It is sufficient to upper bound |r,g)(—7)]

and |%Tr(El(I + 1 (=7)2) "D for 1 < 1 < k. From 1D we have for 51 <7 < M,

rn(—7) >0,
and
1 _ _
IETr(El(I+Tn(*T)E) EDN < NI+ (=) E) HEHIZIL,

< HZHf)p (because r,(—7) > 0)
<A

< M" (from Assumption
From ,forﬁ<T<Mand1§l§k,
r(=7)| < C(M).

Henceforﬁ<7’<Mandk21,

ak%Tr((I +rp(-7)E)7h)
| ork

| < C(M). (S101)

OFr L Tr((S47)71)

We combine the upper bounds of \T%Tr((ﬁl +7)7h - %Tr((l +ro(=7)2) Y, | 5 ]
Bk%Tr((l—l—rn(—T)E)_
otk
arl 7)1 o1 ran(—7)8) "1
P )OI CTS) ) Fyom (899)-(S101) and Lemma A.1 in [Hastie et al. (2022),

1
and | )| from above and apply Lemma A.1 in Hastie et al. (2022) to control

and letting £ = 3, we have for D >0, § > 0, £ < ﬁ, for 7 > n~2/3+(1/M) 4nq ﬁ <7 < M, with

probability at least 1 — C(D,d, M)n=P,

OriTr((L + )L ILTr((1 4 rp(—1)8) 7!
e (( ) )_T p 1r(( (=7)%) )’<C(M)(m(11_§)/22+§2). (S102)

or or
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8T%Tr((ﬁ]+7')_1)

With the upper bounds of |7'%T1"((i +70)7h) — %Tr((l + rp(—7)%) 71| and |1 —2—5—— —
93 Tr((14rn(=7)%)"1) . 5
T e | from above, we give the upper bound of |Viy(7; Hy,7y) — Vin|. From (S98)—

|D and (S102)), we have for any D >0, >0, 0 < { < 7, for 7 > n=2/3+A/M) anq G <T<M,
with probability at least 1 — C(D, 8, M)n™P,

Vin (75 Hpy y) — Vin| < UQC(M)(?* +¢

Letting £ = min{SLM,Tl/:Sn(l*‘s)/(s}, we have

8M 1

. (e F _V: 2
’VIH(T7 HTHP)/) Vln| S o C’(M)(max{ T2/3n(1_€)/37 Tn(l_e)/Q} + n(l_e)/Q)'

IV.2 Orders of error approximation formulas
We provide proofs of Corollaries [§] and [9] in Section [£.1} which are re-stated below for convenience.

Corollary 7 (Matching error approximation formulas with small or moderate TER).

(i) Suppose that % <1, r4(¥) Sn, and ||92‘ < HGT:dH;_}i)\ZH. For \gi1 <7< Mg,
1:

2
d+1):pHE((i+1):p

we have

SR N . d AN rg(n2
Bout('f; Hy, Gn7'7) + Vout(T; Hn:’)’) = Helzduéf}jj + Uz(ﬁ + ;i.;_l (n )

).

(ii) Suppose further that rq(X) < n. For A\gr1 S 7 S Ag, we have

N . d N
Bin(T; Hna Gn77) + Vin(T; HTL77) = ”91}1”22717'2 + 0-2(7 + d—gl )
1:d n T

Proof.
We first show that Ay > ar. From (13)), 7 2 Ag41 and n > d, we have

P .
(% n aT

Y
—ar = (74 =247

—ar <7 (from A1 S7and r4(X) Sn)

~

=g 2 ar (from 7 < \g). (S103)

Then we show o < 1. From , T 2 Ag+1 and n > d, we have

1 Zj>d )‘j

—(1 =1

Oé( + nTt )
2N

(1+7J;j N =a
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= ax1 (from A\gr1 <7 and rg(X) < n). (S104)

A2 o’ )\ 9 2 2
i _isw? __ %4 1N 7] i
Then we give the orders of 1 — - i=1 Dugar)® n 2wi=1 0, +M)2 and + § NFar)? which are

important in the formulas f. We have

11p A >11p A Loy ¢ 5104
TRl Tyran 2 T Nrar ol (fom (S10)

n
J=1

1 N

Hence
1 A
) - —J _=1. S105
n Z_; (A\j + ar)? ( )
From (S103)—(S104) and 7 2 A44+1, we have
1< A2 d A
N4t : (S106)
n ; Aj+ar)2 n ; nr?
1 P Oé27_2>\,0>1§2 29*2
rO DN swerm e Z (8107)
n = (A\j +ar) = =
Substituting (S105)—(S107)) into —, we have
d
Bout (7, Hy, Gy y) = Z s
j=1 j>d
[
= 72!!9i‘-d\\2—1 (from 1672101 F 0y S \!91‘;61!!22;;/\3“),
Vout(T 7a + Z nT
Hence we have
Bout (7 Hy, Gy v) + Vout (73 Hn, 7) = 7216741 +02(9+Zﬁ)
out\ 7, fn, Gn, Y out\7; 1n,7Y) = 1:d Z;cll n L 72
j>d
Note that Vi, (7; H,, ) can be also expressed as
1 D g s
Vin(7s Hoyy) = (1= —)%0% 4 —5 — L AFaTl 2 (S108)
@ o (1-1vP Aia)
j=1 (\j+ar)?
From (13)), (S103)), (S104) and 7 > X441, we have
1 d ~d A
oL 2 (S109)



Substituting (S104)—(S107)) into and (S108)), we have
+) N0

j>d

2

. 420
Bin(Ta Hn7Gn77) = Z )\j
j=1 "

o 2/p* |12 * 2
=T ||91:dH 1_¢11 + Ha(d+1)2p||2(d+1):p

*

o 2||p* |2 2 12 )2
= 77014l oL (from H‘g(dﬂ);p”z(dﬂ):p S [1607all ;(11)‘d+1)a

. d (Zj>d>‘j)2
Vin(75 Hn, ) = 0% (= 4+ —25—)

n T
d M
= o?(= + dgl) (from r4(X) < n).
n T
Hence we have
ENIN 2 * 112 2 2, d )‘?IH
Bin(T;Hn,Gn,’}/) + Vin(T;HTL?’Y) = ||61:d||2;é7- to (ﬁ + 72 ) (8110)

Corollary 8 (Matching error approximation formulas with large TER).

(i) Suppose that & < L ry(S) > en for some ¢ > 10, ||92‘d+1):pH2E(d+l):p < H@i‘:dﬂéfl(i +

:d

)2 For \g 2 T—i—)\dH@ and T > 0, we have

).

2iisaNi n
A 2 ra(X) 2 2, d )‘§+1 7“11(22)
Bout (13 Hn, G s Hy,y) < 107415 Ady1———> =
out (75 Hpy Giny ) + Vout (75 Hp, ) < || 1.d||21:(11(7_+ d+1 n ) to (n + (T+)\d+1rd7(12))2 n
(ii) Suppose further that T > Agi1 rd1(12). For A\g 2 7+ )\d+1Td£LE) and T > 0, we have
A 2 % ra(X) o 2, d )‘?Hl r3(%)
Bin(75 Hp, Gy y) + Vin (73 Hny v) < 1074l (7 4 Aan———5)% + 0%(= + )-
in n, Un in n 1 DI n n (T"')\d—&-l@)Q n2
Proof.
We first prove that ar > (¢ — 1)A\g41. From ((13)),
Aj
>
" Z )\j + aT
j>d
> Zj>d>‘j
Adr1 +ar
Zj>d )‘j 1
Aarr (T+555)
- 1
en————-.
I+ 5)
Hence we have
at > (¢ — 1)Age1- (S111)
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Then we prove that -4 > 1 4 l% > 2. We have,

1T 1D agN 1 1D :ugX
+72j>d J > +72]>d J

a n oT a  nA+ar
154 A,
:1_7721=1 . (from 1}
n>\j+047'
-
n
4 d 1

From and (S111)), we have

c ‘a n ot (%-1—) n(%—l—l)ow

C
1 Z]>d

1

E n)\d+1+oz7'

1 1Zj>dj

7+i7

a  nA+ar

d

_lZi:l)‘j
n)\j+a7

<

That is, we have

- lzj>d)‘f'< ¢

a n ar c—1"

Hence we have

1 12 isqX
¢ L1 1
c—1 a n oar

(S112)

and

T 12 5a
L thpadi g (S113)
« n T

Now we prove that Ay = ar. From (S113]), we have

p .
[0 n T
Y

>d
97)

—ar < (T+
n

=g 2 ar  (from \g 2 7+ ). (S114)

Zj>d Aj
n

We prove the order matching in two cases, Zj>d Aj < nt and Zj>d Aj > n7. We discuss the

two cases separately.
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From (S113)) and Zj>d Aj < nT, we have

a=1. (S115)

From (S111)), (S114) and (S115)), by a similar process as the proof in Corollary |8 (S105)), (S106)),
(S107) and (S109) hold. Substituting (S105), (S106) and (S107) into (14)), (15), we have

N N d A2
Bout (7, Hu, G ) + Vour (7, Hu, Gy ) = 72 61allfys + 0%+ Z )

( )2
= (74 Aap1 20207412 1+0 + )
g§>:d n(t + )\d E))Q
(from Z)\j < nr).
j>d

Substituting (S105)), (S106)), (S107) ,(S109) and (S115) into and (S108)), we have

d_ 29
Bin(7, Hp, G, 7y) < Z + ) N0

j=1 j>d

( )2
= (74 At LR+ 10y By, (rom ST A < nr)
j>d
rd(X) o R . 1
= (T + At )16 d” (from (67,1, [I” < ||91:d||;; ()\ + >\d+1m) %),
(Zj>d’\ )2
Vin(75 Hpy ) < 0% (= + —L5—)
T
A2 2=
= o2 d + dil "ol ’rd(2 )) (from Z)\j < nT).
(T Mg )2 " id
Hence
T A T - lp* 112 7d(X) 2 2 ﬂ /\3+1 7”?1@)
BIH<T7anGn77) + VIH(T7H’/Z77) - ||91:d”2;(11(7— + )‘dJrl n ) +o (n + (T+ )\d . (E)) n2 )
2
We first give the order of the term 1 — ‘;’ 1()\i7m)2, which is important in the following

analysis. We have

1y )‘? d Zj>d>\J2
2 Oy tar? Sut et
g=1"
d Z j >d j
0 Thtar
_g+(Z]>d ) nZ]>d J
n n202+2 (Zj>d/\j)2
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d C2 an>d )\3

<4y (from (T12))
n (c—1)? (2j>d Aj)?
< d n c? n
o (c—1)21r4(%)
< % + C _01)2 (from r4(X) > cn) (S116)
d 1
<2/5 (from <z and ¢ > 10). (S117)
From (S117)), we have
1 N 3
1>1—— 1 > S118
~ ]z:: Oy tan? 5 (S118)
and
1L A
1—=>» —1 =1 S119
n Z (Aj 4+ ar)? ( )
j=1
p 72,072 A2

Now we give the orders of % and %Z?Zl W, which are important in for-

=1 Tyan®
mulas and . From (S113|), we have

a n or

1) A Py
:>—7zj>d 1 (from 723>d /

n  or n
Zj>d Aj

n

> nr)

—aT X

From (S111)), (S114)), (S120) and ;. ,A; > n7, we have
22

P 2
EE LXQJFE — (S121)
n A\j+ar)2 n (Zj>d Aj )2’

j>d 1

(S120)

2)\ 9*2 d Z]>d>\ )2 *2

1 p
n ; (A\j +ar) Z
Substituting (S118)), (S120), (S121) and (S122) into (14)—(L5]), we have

o d (Zpd)‘ )2 *2
Bout(Ta HnyGna'Y) = Z + Z)\ 0*2

Jj=1 j>d

\/(§:j>dAJ
- n

— (Zj>d ]
- n

+) N0 (S122)

j>d

P87 alZ s+ 1615 g,

" 1 I
) 2 dH2— (from ||0d+1)pHE(d+1):p < H%;d”%;;(fd + m) 2)7

n

Vout(T; f{ + Z

j>dn J>d )
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That is,

A A > v
Bone (7., G 9) + Vo (7 H ) = [0l (Z200 )2 4 2L 57 0
Piid n >d
' j>d n J )
* > PRy d 22
= |’91:dH22—1(L+T)2+02(7+Z > J )
1:d n n ]>d n( J;d J + 7_)2
(from Z)\j > nT).
j>d
OJ

IV.3 Alternative calculation of error approximation formulas

The asymptotic out-sample and in-sample errors can also be calculated using a distributional ap-
proximation method in|Han & Shen| (2023) under the independent components assumption. By let-
ting p = v/nx1/20, the ridge estimator in (2) can be equivalently formulated as é(T) = ﬁﬂ_lmﬂ(r)
with

j(r) = arg mas { Y = Zu|l? + 75722},
HERP

where Z = ﬁX »~1/2 The rows in Z are covariate vectors with covariance matrix %Ip. Let

p* = /nxY26*. Following Han & Shen (2023), for z € RP, 7 > 0, we define

. 1 T e 21 z
3(e.7) = avgmincps { 3l = 27 + JIZ 20l | = (1 s

For an isotropic random vector zg € RP, suppose (a,3) is a unique solution in (0,00)? to the

following equations:

0427’2M;2

1 1 1
2 o2 _ 1 ok 2 27 72 32
pr-o nE‘w’\(u + Bz, 0m) =l = (A\j + ar)? ne (A +a7' ’ (5123)

1 1 1
o= =1- —Ele@DA(,u + Bz, aT) = 75 ; e
where div f(x1,...,zp) = f 1 gf Note that from (S123|), we have
1 A2 1 o 7'2,u*2
2 j 1,2
—1-=-N"__—" N
Fr= nZ(A-+aT)2) (U+nZ()\ +oz7'))
i Y i
1 A2 a2 )\20x2
=(1-=) —L )N o*+) —LL). S124
( n z]: (Aj+ Oé7')2) (o ZJ: (A + a7’)2) ( )
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Then under suitable conditions (see conditions (R1)-(R3) in Han & Shen| (2023))), the distributions

of i — p* and Z(f1 — p*) can be approximated as follows:

~ *d * *
fo— pt = s (et + Bro, 1) — pt,

S125
2wy &1 - Dy YT, o
@ «
where £ ~ N(0,0%) and h ~ N(0,021,).
Given the approximation results , the asymptotic error formulas in Corollary m can also
be calculated as follows. The out-sample error can be approximated by

N * 1 ~ *
16r) — 611 =~ — P

1 . .
~ s’ + Bz, a1) — |
1 . .
~ —Ellg5(u" + Bz, 1) — p I
=p? - o2 (S126)

Substituting (S124)) into (S126]) yields the sum of and . The in-sample error can be
approximated by

) * 1 ~ *
10(7) = 6*[1% = N2 —p )12
1 ﬁ2_0.2

~ (1 — =)252 .
( a)a—f— o2

(S127)

Substituting (S124)) into (S127)) yields the sum of and .

V  Comparison with Bunea et al. (2022)

V.1 Approximations of terms

In this section, we give the approximations of certain terms used in the comparison in Section [4.3

between our Theorem [3|and Theorem 16 of |Bunea et al.| (2022]). In the setting described in Section

4.3 we show that the following approximations hold: \|0;d||‘§,1/\§ = ||9T:d|]221'd, ||5H222 = ||01‘:d||221'd,
1:d : :

A A
/\d_d;dlﬂ = f\zl and 79o(Xg) < rqe(2).

© 167402133 = 167,413,

First, we have

)\2
16743, > ||9I:dH2E;;)‘3 > ||91‘:d||%11d7‘§-
; 1

Then from A; < A4, we have ||91‘:d||22,5)\§ = H‘%:d”zzm'
1: .
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A A
@ 1165413, < 18[%, and 25— =< 24t

Ad—Ad+1
From Ay > ... > Ay > c1A\g11 for some ¢; > 1, we have for i =1,...,d,
P> M T Ay l,
- Ai - 1
>\z )\z >\d+1 (1 i >\'L
Ad+1 Adv1 c1’ a1

Then for i =1,...,d,

% =1, (S128)
Ai = Adr1 N

= . S129
Ai Ad+1 ( )

From ([S129)), we have Aar1 Al pyom (9128 , we have

Ad—Ad+1 Ad
Ar=Aa) A= Aan
T

167.4l1%,., = " Diag(
= 67p

=8lI%, (with Xz =1I,).

)8

@ ro(Xg) < ra(¥)
By definition, ro(Xg) = d + r4(X). With rq(3) > cad, we have

(1 =+ CQ)T'd(E) > To(EE) > Td(Z)

That is, Td(z) = TO(EE‘).

V.2 Error bounds incorporated with approximations

In this section, we give the error order of our Theorem 3 and the error upper bound in Theorem 16
of Bunea et al.|(2022]) for the min-norm interpolator and incorporate the approximations of terms
in Supplement Section

Based on Theorem 3, for 7 = 0, we have

A2 (D) d nrg(X?)
MSEout < [|0%||q-1 A2 2441 2d 224 282y for A <A
out X || 1.d||21:; d )\?l n? o (n+ rfl(Z) ) OT A\g+1 ds
Bout Vout
* Td Y
MSEut Z Heliduxfé)‘i’ for )\d+1 ( ) > A\
~———
Bout
Incorporating 65,2123 < HﬁidHQEl_d, we have
1:d )
A2 r2(%) d nrg(X?) rqa(2)
- * 12 d+1"d 2 d d
MSEOUt - Heldeld )\3 n2 +0— (E + TZ(E) )7 for Ad“rl n S )\d7
Bout Vout
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. rq(2
MSEqut 2 ”Hlidu%lzd’ for )\d+1 d( ) > Ay
——— n

Bout

Based on Theorem 16 of |Bunea et al. (2022]), we have

)\d+1 To(zE) 2 d n
MSEqgu < 2 -4 —).
S bt~ HBHEZ )\d(AzzAT> n to (n + TO(EE))
Bout Vout

. A A
Incorporating [|8[%, = 107.41%, ,» =50 = "%

and ro(Xg) < r4(X), we have

. Adt17a(X) d n
MSEut 5 ”GldeQELd )\—:l_ n +0-2(E * Td(Z) ‘
Bout Vout
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