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We demonstrate reliable machine-learned tuning of quantum-dot-based artificial Kitaev chains
to Majorana sweet spots, using the covariance matrix adaptation algorithm. We show that a loss
function based on local tunnelling-spectroscopy features of a chain with two additional sensor dots
added at its ends provides a reliable metric to navigate parameter space and find points where crossed
Andreev reflection and elastic cotunneling between neighbouring sites balance in such a way to yield
near-zero-energy modes with very high Majorana quality. We simulate tuning of two- and three-site
Kitaev chains, where the loss function is found from calculating the low-energy spectrum of a model
Hamiltonian that includes Coulomb interactions and finite Zeeman splitting. In both cases, the
algorithm consistently converges towards high-quality sweet spots. Since tunnelling spectroscopy
provides one global metric for tuning all on-site potentials simultaneously, this presents a promising
way towards tuning longer Kitaev chains, which are required for achieving topological protection of
the Majorana modes.

I. INTRODUCTION

Realization and control of Majorana bound states
(MBSs), which remain much sought after due to their
non-local and topological nature, are a topic of intense
study within condensed matter physics [1–6]. The simple
Kitaev model gives one example of a topological material
where MBSs can be found [7], and recreating the ingredi-
ents of the Kitaev model with engineered hybrid devices
is a very promising avenue in this pursuit [8]. While a
lot of work has focused on making artificial chains using
semiconductor nanowires proximitized by superconduc-
tors [9–16], device imperfections, such as material disor-
der, seem currently to be a major challenge for further
progress in this direction [17–29].

An alternative is to rather use arrays of alternating
normal and proximitized quantum dots to build an arti-
ficial Kitaev chain, which could circumvent some of the
material disorder issues [30–37]. Signatures of so-called
“Poor Man’s Majoranas” (PMMs), which are non-local
but lack topological protection, have been demonstrated
in a two-site minimal artificial Kitaev chain [38–40]. An
important challenge faced in this field is to make and
tune devices that are long enough that they can host
topologically protected Majoranas [30]. Recent progress
along these lines includes control over three-site devices
[41] and the observation of signatures of tuning to a Ma-
jorana sweet spot in three-site devices [42].

To tune these artificial Kitaev chains to a sweet spot,
where an even–odd ground-state degeneracy coincides
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with maximal Majorana quality (which we will define
later) of the part of the corresponding excitation that
lives on the outer sites of the chain, it is necessary to tune
the system parameters such that crossed Andreev reflec-
tion (CAR) and elastic cotunneling (ECT) processes via
the proximitized dots are pairwise balanced in each link
in the chain [43, 44]. In experiment, one faces the chal-
lenge of imperfect information about said tuning param-
eters, due to microscopic details such as material imper-
fections and varying gate lever arms. In practice, tuning
has so far been done by working with pairs of sites at a
time, since there are too many variables for navigating a
global metric manually, where all dots are tuned simulta-
neously. Such sequential manual tuning across the chain
can be time-consuming, and at the same time one must
be careful that the overall tuning remains correct each
time a new pair is tuned [41, 42]. Pairwise tuning be-
comes especially precarious for the case of strong tunnel
couplings, where multi-dot renormalization effects can be
expected. With single CAR and ECT processes thus de-
pending on parameters all along the chain, it will be dif-
ficult to tune the system while only considering pairs of
dots. Thus, tuning all dots simultaneously would be ad-
vantageous, and the fact that this would be very difficult
for a human to do motivates us to investigate machine-
learning methods to perform automated tuning.

Such automatic tuning has already been proposed as a
way to mitigate disorder in bulk hybrid nanowire sytems,
by using an Aharonov–Bohm interferometer to get a met-
ric of the Majorana quality that can be used as a global
loss function [45]. A simpler and more practical probe of
Majorana quality could be to perform a tunneling spec-
troscopy experiment while adding an extra sensor dot at
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FIG. 1. Sketch of the artificial Kitaev chain systems considered in this paper. In addition to the sensor dots marked L/R
on either side of the Kitaev chain, the array consists of (a) 3 dots or (b) 5 dots, where every other dot is proximitized by a
superconductor (blue square) to create an Andreev bound state that can mediate CAR and ECT processes between the normal
dots.

the end of the system [9, 46, 47], which was recently in-
vestigated in the context of artifical Kitaev chains based
on quantum dot arrays [48]. Work has also been done on
the machine-learned tuning of dot-based artificial Kitaev
chains, in the context of using generative neural networks
to automatically classify avoided crossings in charge sta-
bility diagrams [49].

In this paper, we demonstrate automatic tuning in sim-
ulated two- and three-site artificial Kitaev chains using
the covariance matrix adaptation evolutionary strategy
(CMA-ES) [50–52] with tunneling spectroscopy through
sensor dots at both ends of the chain as a metric to nav-
igate parameter space. We first apply the tuning algo-
rithm to a minimal (two-site) Kitaev chain, where loca-
tions of the sweet spots can be relatively easily deter-
mined by numerical calculations for a given set of tight-
binding parameters [33], and we show how the algorithm
indeed converges towards these points. We then con-
sider a three-site chain, where the locations of the sweet
spots are not known a priori. Also in this case, the
algorithm converges to points with vanishing even–odd
ground-state splitting and very high Majorana quality.
We thus demonstrate the capability of the CMA-ES al-
gorithm to navigate a large tuning parameter space and
efficiently locate Majorana sweet spots, based on simple
tunneling-spectroscopy data.

The rest of this paper is structured as follows: In Sec-
tion II we introduce the Hamiltonian for our quantum-
dot-based artificial Kitaev model, and we explain the ba-
sic working of the CMA-ES algorithm used for the au-
tomatic tuning. In Section III we present our results for
the automatic tuning, first for a two-site model in Sec-
tion IIIA, and a three-site model in Section III B. Finally,
we present a short conclusion in Section IV.

II. MODEL

We consider a similar setup to that presented in
Refs. [34, 48]: a linear array of quantum dots where ev-
ery other dot is proximitized by a superconductor, and
with the addition of extra sensor dots at each end of the
chain. To make the optimization more robust, we probe
the low-energy physics of the system first with the sensor
dot added to the left side of the array and then a second

time with the sensor dot on the right side. In an exper-
iment, such freedom of changing sides for the sensor dot
could be achieved by defining extra dots on both ends
of the Kitaev chain and then “removing” the one that is
not being used by lowering its outer barrier such that the
dot becomes incorporated as a part of the lead.
We describe the full array of dots with the Hamiltonian

H(n,s) = H
(n)
Kit +H

(n,s)
S , (1)

where s = L,R indicates on which side the sensor dot is
located and n labels the number of “Kitaev-chain” sites,
i.e., the number of normal (non-proximitized) quantum
dots.
The first term in Eq. (1) describes the Kitaev-chain

part of the system, which includes normal dots and dots
proximitized by a superconductor, together with spin-
conserving and spin-non-conserving hopping between
them,

H
(n)
Kit =

n∑
j=1

∑
σ

εjσd
†
jσdjσ +

n∑
j=1

U

2
nj(nj − 1) (2)

+

n−1∑
j=1

[
εSjnSj +∆

(
d†Sj↑d

†
Sj↓ + dSj↓dSj↑

)]

+

n−1∑
j=1

∑
σ

[
tj,Sj d

†
jσdSjσ + tSj,j+1 d

†
Sjσd(j+1)σ

+ βσ

(
tSOj,Sj d

†
jσdSjσ̄ + tSOSj,j+1 d

†
Sjσd(j+1)σ̄

)
+H.c.

]
,

where d†jσ (d†Sjσ) is the creation operator for an elec-

tron with spin σ =↑, ↓ on (proximitized) dot j (Sj), and

nj = d†j↑dj↑ + d†j↓dj↓ (nSj = d†Sj↑dSj↑ + d†Sj↓dSj↓) is
the number operator on that dot. The normal dots are
described by the first line in Eq. (2). Their on-site single-
particle energy εjσ = εj + EZ δσ,↓ is spin-dependent,
where EZ is the Zeeman energy and εj can be tuned
by nearby electrostatic gates Vj , and the charging en-
ergy associated with a doubly occupied normal dot is
given by U . The second line in Eq. (2) describes the
proximitized dots, labeled Sj. The proximity of the su-
perconductor is expected to result in a strong reduction
of the effective on-site g-factors, which we incorporate
by using spin-independent potentials εSj , for simplicity.
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The superconductor will also efficiently screen the on-site
Coulomb interactions on these dots, which we thus ne-
glect here [53]. The proximity-induced pairing potential
∆ is assumed to be real and equal for all proximitized
dots. Finally, the last two lines in Eq. (2) describe the
coupling between the dots. The parameters ti,j (tSOi,j ) set
the amplitude of spin-conserving (spin-non-conserving)
hopping between dots i and j, where β↑,↓ = ±1.

The second term in Eq. (1) describes the sensor dots
and hopping between the sensors and the Kitaev chain,

H
(n,s)
S =

∑
σ

εsσd
†
sσdsσ +

U

2
ns(ns − 1) (3)

+ δs,L
∑
σ

[
tL,1 d

†
Lσd1σ + βσt

SO
L,1 d

†
Lσd1σ̄ +H.c.

]
+ δs,R

∑
σ

[
tn,R d†nσdRσ + βσt

SO
n,R d†nσdRσ̄ +H.c.

]
,

using similar notation as above. In this case, εsσ = εs +
EZ δσ,↓ while the Kronecker delta functions δs,L and δs,R
choose which sensor dot is included.

In the following, we will limit ourselves to the cases
where the number of sites is either n = 2 or n = 3.
For the case with n = 2, locations of the sweet spots are
known for the model we use [33] and we can thus use this
case as a test bed to assess the basic working of the tuning
algorithm. For the case with n = 3, we expect a larger
number of sweet spots, the locations of which are not
known a priori. This case will be used to investigate the
robustness of the algorithm when operating in a higher-
dimensional parameter space.

In an experiment, one would connect the chain to a
source and drain lead (also indicated in Fig. 1) and mea-
sure the differential conductance across the array of dots
as a function of εL or εR and the bias voltage applied
to the source and drain. The location of the lowest-bias
conductance peak then reveals the energy splitting be-
tween the lowest even and odd parity states of the array,
and its dependence on the sensor dot potential contains
information about the Majorana quality of the states on
the outer sites of the Kitaev chain [46–48]. The devia-
tion from the ideal case (zero splitting independent of εL
or εR) can then be quantified into a loss function used
by the tuning algorithm to navigate parameter space, as
we will detail in Sec. III. In our numerical simulations,
it suffices to diagonalize H(n,s) and extract the even–
odd ground state splitting directly from its eigenener-
gies as this corresponds to the location of the lowest-
bias peak [48], which saves considerable computational
overhead as compared to simulating a full differential-
conductance measurement.

To find the optimal set of tuning parameters εj,Sj we
use the CMA-ES algorithm [54], which is a simple evolu-
tion strategy optimization technique, relying on stochas-
tic sampling rather than derivatives, making it suitable
for problems where the objective function to be mini-
mized for instance has several local minima or is non-
smooth [50–52]. In our case, the limitation in sharpness

of the conductance curves in real tunneling-spectroscopy
measurements due to broadening from temperature and
tunnel coupling to the leads [55] was what motivated us
to use a stochastic and derivative-free method: we can
expect the limited resolution of an actual experiment to
make it difficult to accurately evaluate derivatives of the
loss function, likely rendering derivative-based unsuitable
for optimization of the loss. Additionally, we are dealing
with metrics containing several minima, where a purely
derivative-based method may get lost in a non-optimal
local minimum.
The CMA-ES algorithm performs the optimization by

iterative sampling from and updating of a multivariate
normal (MvN) distribution. For each generation g, a
number of λ ≥ 2 offspring ε(g), which in this case are
configurations of the gate voltages to tune, are randomly
drawn from a MvN distribution with mean µ(g) and co-
variance matrix Σ(g) = (σ(g))2C(g). The configurations
ε(g) and means µ(g) are thus (2n−1)-dimensional vectors,

e.g., for the two-site Kitaev chain ε(g) = {ε(g)1 , ε
(g)
S1 , ε

(g)
2 }.

The offspring are then ranked according to their “fit-
ness” using an objective (loss) function L(ε(g)), and the
MvN distribution is updated by calculating a new posi-
tion µ(g+1), “stepsize” (σ(g+1))2 and “search direction”
C(g+1), based on the η best-ranked offspring and the pre-
vious history of changes to the population. A diagram
of the CMA-ES optimization loop is shown in Fig. 2.
We will consistently use λ = 56 and η = 28, based
mainly on the computational resources available, and set
all other fine-tuning parameters of the algorithm to the
standard recommended values [50]. Specifically, the al-
gorithm achieves convergence if (i) the range of best loss
values across the last 10+ ⌈30(2n− 1)/λ⌉ generations or
the range of all loss values in the last generation is smaller
than 10−12 or (ii) if the standard deviation of all tuning
parameters εj,Sj becomes smaller than 10−12σ(0) [50].
We also terminate the algorithm if it exceeds 200 gen-
erations.

III. RESULTS

For the tuning of an artificial Kitaev chain, it has been
suggested that tracking the splitting between the lowest
conductance peaks while sweeping the sensor dot level
εs can provide a metric for the Majorana quality [48].
Following this idea, we will investigate the performance
of the CMA-ES algorithm using the loss function

f(ε(g)) =
1

2

∑
s=L,R

max
εs

∣∣∣∣∣Eodd
0,n,s − Eeven

0,n,s

∆

∣∣∣∣∣ , (4)

where Eodd
0,n,s and Eeven

0,n,s are the lowest eigenenergies of

H(n,s) with total odd and even number of electrons, re-
spectively. The loss function f(ε(g)) thus returns the
maximum of the absolute energy splitting between the
even and odd ground states over a sweep of the sensor
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FIG. 2. Diagram of the CMA-ES algorithm interfaced to
either a simulation or an actual experiment where local dif-
ferential conductances are measured. Each generation can be
divided into four stages: The first stage is to sample λ re-
alizations from the MvN distribution to generate parameter
configurations. In the second stage, each of these configura-
tions is used in an experiment, where the dependence of the
location of the low-bias conductance peaks (or the numerically
determined lowest even–odd splittings) on the sensor dot volt-
age provides a measure for the population fitness. The third
stage is to rank all the parameter configurations according to
this fitness. In the fourth stage, the MvN mean value and
covariance matrix are updated based on a subset of the η
best-ranked candidates.

dot potential, averaged over the cases where the sensor
dot is attached to the left or right side of the chain. The
sweep range used for εs should cover both spin-species
resonances, the locations of which could, e.g., be found
roughly from estimates of EZ , U and ∆ [46].
In addition, we make use of an L2 regularization to

penalize on-site potentials that grow large, as the am-
plitudes of CAR and ECT are inversely proportional to
the energy difference between the bound states on neigh-
boring dots [43] and the magnitude of these amplitudes
ultimately sets the scale of the topological gap in longer
chains. Combining L2 regularization with the objective
function Eq. (4), the final loss function we use to rank
candidate parameter configurations is

L(ε(g)) = f(ε(g)) + α

∥∥∥∥ε(g)∆

∥∥∥∥
2

, (5)

where α parameterizes the L2 regularization. For such
regularization, one needs to establish some “origin” in
parameter space, to determine ∥ε(g)∥2. Identifying in
an experiment the true origin where ε(g) = 0 can be
challenging, but small deviations from this point are not
expected to pose an immediate problem as long as the
origin used is not too far away from high-quality sweet

spots.
Throughout, we will set all tunneling amplitudes to

ti,j = 0.5∆ and tSOi,j = 0.1∆, except for the ones de-
scribing the coupling to the sensor dot, where we use
tL,1 = tn,R = 0.25∆ and tSOL,1 = tSOn,R = 0.05∆. The
Zeeman energy is set to EZ = 1.5∆ and the onsite
Coulomb interaction strength for the normal dots to
U = 5∆. These values are on purpose chosen the same as
in Refs. [33, 48], allowing for a straightforward compari-
son of the results. The mean of the initial distribution for
the CMA-ES algorithm is always set to the origin, with
an initial covariance matrix of C(0) = I, and σ(0) = 0.5∆.
In all instances, we let the algorithm search for the

optimal set of tuning parameters until it converges, us-
ing the loss function given in Eq. (5). We then as-
sess the resulting set of tuning parameters εfin by eval-
uating (i) the resulting even–odd ground state splitting
in the Kitaev chain (without any sensor dot attached)
δEeo = |Eodd

0,n − Eeven
0,n |, as well as (ii) the Majorana po-

larization (MP), given by [34, 56–58]

Mj =

∑
σ(w

2
jσ − z2jσ)∑

σ(w
2
jσ + z2jσ)

, (6)

where

wjσ = ⟨O| djσ + d†jσ |E⟩ , (7)

zjσ = ⟨O| djσ − d†jσ |E⟩ , (8)

where |E⟩ and |O⟩ are the even and odd ground states of

H
(n)
Kit , respectively, and Eeven

0,n and Eodd
0,n the corresponding

ground-state energies. With this definition −1 ≤ Mj ≤
1, and |Mj | = 1 corresponds to having a well-behaved
single Majorana mode localized at site j. In Kitaev
chains with finite Zeeman energy and Coulomb interac-
tions, there exist in general no points in parameter space
that have δEeo = 0 and |M1| = |Mn| = 1, which would
indicate the existence of two “perfect” PMMs occupying
the outer dots of the chain. Instead, it is common to look
for sweet spots that maximize |M1,n| on the manifold in
parameter space where δEeo = 0 [33, 34]. Below we will
thus use δEeo and the average MP M ≡ (|M1|+ |Mn|)/2
as measures for the success of the tuning procedure.

A. Two-site Kitaev chain

As a first benchmark, we test the optimization routine
on a simulated minimal (two-site) Kitaev chain with n =
2, where the sweet spots for our set of system parameters
have been numerically calculated before [33], to see if it
can reproduce the same results.
In Fig. 3(a,b) we show the even–odd ground state split-

ting δEeo and average polarizationM as a function of ε1,2

and εS1, calculated numerically from H
(2)
Kit. As expected,

these plots are identical to the ones presented in Ref. [33],
since we use the same model and same parameters. The
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FIG. 3. (a) The difference between even and odd ground
state energy of the two-site Kitaev chain without a sensor
dot attached and (b) the average Majorana polarization at its
outer sites as a function of ε1,2 and εS1, cf. Ref. [33]. There are
two sweet spots within the given parameter range, indicated
by the black stars. (c,d) The 60 first generations for two
example runs of the CMA-ES algorithm for (c) a case that
converged to the left sweet spot shown in (a,b) and (d) a
case that found the right sweet spot. Solid lines show the
population mean of the parameters and the shaded regions
give their marginal standard deviation.

two sweet spots identified in [33] are indicated with the
two stars, and have δEeo = 0 and M = 0.986.

Fig. 3(c,d) display the first 60 generations of two ex-
ample runs out of in total 50 simulations for the CMA-ES
optimization algorithm, using the loss function given in
Eq. (5) while setting α = 0. In the case of the minimal
Kitaev chain, the objective function landscape is simple
enough that L2 regularization is unnecessary; including a
finite α would increase the probability for the algorithm
to discover the left sweet spot, as the right sweet spot
is further away from the origin ε = 0 and therefore re-
ceives a larger punishment from the regularization. The
solid lines in Fig. 3(c,d) show the evolution of the pop-
ulation mean of the three parameters and the shaded
regions represent their marginal standard deviation. We
see that from generation to generation the standard de-
viations of the population decrease, eventually vanishing
as the mean value approaches a minimum in the loss.

Fig. 3(c) shows a case where the algorithm converged

towards the left sweet spot shown in Fig. 3(a,b), set-
tling at the parameter configuration ε1 = ε2 = −0.171∆
and εS1 = −0.321∆. The “target” values, corre-
sponding to the corresponding sweet spot identified in
Ref. [33], are indicated at the right vertical axis, where
ε∗1 = ε∗2 = −0.151∆ and ε∗S1 = −0.319∆. In 41 cases
out of 50, the algorithm converged towards this sweet
spot. In the remaining 9 cases, the algorithm converged
towards the other sweet spot, an example of which is
shown in Fig. 3(d). Here the final tuning parameters
are ε1 = ε2 = 0.0622∆ and εS1 = 0.615∆, which is
again close the true location of the right sweet spot at
ε∗1 = ε∗2 = 0.0785∆ and ε∗S1 = 0.634∆. The bias towards
finding the left sweet spot is due to the initial MvN being
centered around ε = 0, which is closer to the left sweet
spot than the right one. Convergence in these simulations
was typically achieved after 80–100 generations.
Thus we see that the algorithm always converges to

tuning parameters that indeed lie very close to the sweet
spots found in Ref. [33], deviating from the sweet spots
by Euclidian distances ∥ε− ε∗∥2 of 0.028∆ and 0.030∆
for the left and right sweet spots respectively. As a result,
the left sweet spot estimate found by the algorithm has
δEeo = 2.7×10−3 ∆ and M = 0.967 while the right sweet
spot estimate has δEeo = 5.7 × 10−3 ∆ and M = 0.977.
In both cases we thus find high values for the MP and
low splittings δEeo [59], and the two-site Kitaev chain re-
sults indicate that the very simple tunneling spectroscopy
metric together with the CMA-ES algorithm can indeed
tune on-site potentials ε to their sweet spots.

B. Three-site Kitaev chain

To get an idea of how the automatic tuning will fare for
longer chains, where the existence and locations of sweet
spots are not known, we also tested it for the case of
n = 3, i.e., a five-dot array corresponding to a three-site
Kitaev chain. We again run the optimization 50 times,
to obtain statistics on what solutions the algorithm tends
to find. In this case we add an L2 term with α = 0.02
as described by Eq. (5). The larger α is set, the more
biased the algorithm is towards finding the sweet spot
that is closest to the origin ε = 0. In an experiment, this
parameter should be tuned empirically, where in order to
determine a suitable α one could run the algorithm first
without any regularization to find the typical order of
magnitude for the objective function, and based on this,
one can estimate how much regularization is needed to
keep the gate voltages inside a given parameter range.
The resulting automatically tuned potential configu-

rations are summarized in Table I and a histogram of
their occurrences is shown in the inset in Fig. 4(a). All
of the simulations converge to configurations with MPs
over 0.95 and even–odd splittings below 10−3 ∆. The ex-
act sweet spot locations should have exactly zero δEeo,
and while we do see some finite value for all solutions,
their small magnitude indicates that we get very close
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ε1/∆ εS1/∆ ε2/∆ εS2/∆ ε3/∆ MP δEeo/∆ Loss
▽ −0.10 0.12 0.14 0.12 −0.10 0.998 7.1 · 10−4 4.1 · 10−3

□ 0.19 0.14 −0.31 −0.28 −0.18 0.979 2.5 · 10−4 1.1 · 10−2

0.07 0.20 −0.40 −0.32 −0.18 0.985 8.7 · 10−4 1.2 · 10−2

TABLE I. (left) Overview of the three configurations of automatically tuned on-site potentials found in 50 simulated experiments
on a three-site Kitaev chain, using the loss function Eq. (5) with α = 0.02. (right) The corresponding Majorana polarization,
even–odd ground state energy splitting, and final loss. The number of occurrences of each configuration is shown in the inset
of Fig. 4(a).

to the sweet spots. We see that a large majority of the
runs (42 out of 50) ends up at a sweet spot with a MP
of 0.998, which is significantly larger than at the two-site
sweet spot. Indeed, the addition of extra sites is expected
to increase the maximal MPs that can be achieved, as
compared to the minimal two-site chain. To illustrate
the working of the algorithm, we show the optimization
process for one of these 42 high-MP simulations in Fig. 4.
In Fig. 4(a) we show the CMA-ES population means and
standard deviations for each parameter across genera-
tions and in Fig. 4(b) we plot the corresponding values
for the MP M and energy splitting δEeo.
We further note that for the 8 remaining cases the al-

gorithm tuned the system to non-symmetric parameter
configurations with high MP and low δEeo, see Table I,
which looks odd at first sight. However, a feature of the
three-site chain is that two pairs of ECT and CAR pro-
cesses must be balanced rather than just one as in the
minimal chain case. The balanced pairs may differ from
each other, allowing indeed for non-symmetrical configu-
rations of the tuned on-site potentials along the chain. In
principle, these non-symmetric configurations could thus
also correspond to valid sweet spots.

In the three-site chain simulations, convergence was
achieved almost always within 140–200 generations due
to the change in the loss function becoming smaller than
the set tolerance, two exceptions being experiments that
terminated as a result of reaching the 200-generation
limit. We finally note that, as one increases the sys-
tem size to longer and longer chains (without drastically
increasing λ), it can be expected that the algorithm will
to a lesser extent find one sweet spot most of the time,
and rather discover several different minima. This is a
result of the sample statistics becoming more and more
sparse as the dimensionality of the parameter space be-
comes large. In the opposite limit (small dimensionality
and many samples λ), we expect the algorithm to be-
come more and more deterministic, approaching a situa-
tion where one is essentially checking all solutions within
the search area given by the MvN.

IV. CONCLUSIONS

We have simulated short artificial Kitaev chains based
on arrays of quantum dots, through exact diagonaliza-
tion of a simple model Hamiltonian, and we showed that

FIG. 4. Development of the 100 first generations for an ex-
ample run of the CMA-ES algorithm for the three-site Kitaev
chain, where it converges to the most commonly found param-
eter configuration. (a) Population mean of the parameters
(solid lines) and their marginal standard deviation (shaded
regions). (b) Majorana polarization M (blue) and even–odd
ground state splitting in the Kitaev chain δEoe (red) for each
of the first 100 generations. (Inset in a) Histogram of the oc-
currences of the three different sweet spots discovered in 50
simulations.

tunneling spectroscopy in the presence of additional sen-
sor dots at the ends of the chain could be used to au-
tomatically tune the system to a Majorana sweet spot,
for which we specifically used the CMA-ES algorithm in
this work. We tested a simple metric based solely on
the maximum difference between even and odd ground
state energies as a function of the sensor dot voltages,
suggested by Ref. [48], together with L2 regularization
on the gate voltages. For a two-site chain, the algorithm
was able to find the known sweet spots for this system, as
identified in Ref. [33]. In the case of a three-site chain, the
algorithm was also capable of reliably tuning to appar-
ent sweet spots, provided sufficient L2 regularization was
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applied. We conclude that a simultaneous automatic tun-
ing of all on-site potentials using tunneling spectroscopy
through sensor dots and the CMA-ES algorithm presents
a promising way forward for automatizing the search for
Majorana sweet spots in quantum-dot-based artificial Ki-
taev chains.
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Bakkers, M. Quintero-Pérez, M. C. Cassidy, S. Koelling,
S. Goswami, K. Watanabe, T. Taniguchi, and L. P.
Kouwenhoven, Ballistic superconductivity in semicon-
ductor nanowires, Nat. Commun. 8, 16025 (2017).

[21] C. Reeg, O. Dmytruk, D. Chevallier, D. Loss, and J. Kli-
novaja, Zero-energy Andreev bound states from quantum
dots in proximitized Rashba nanowires, Phys. Rev. B 98,

https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.21468/SciPostPhysLectNotes.15
https://doi.org/10.21468/SciPostPhysLectNotes.15
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1038/s41578-021-00336-6
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1021/nl303758w
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1038/s42254-020-0228-y
https://doi.org/10.1103/PhysRevLett.109.267002
https://doi.org/10.1088/1367-2630/14/12/125011
https://doi.org/10.1103/physrevb.86.100503
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1103/physrevb.98.245407


8

245407 (2018).
[22] B. D. Woods, J. Chen, S. M. Frolov, and T. D. Stanescu,

Zero-energy pinning of topologically trivial bound states
in multiband semiconductor-superconductor nanowires,
Phys. Rev. B 100, 125407 (2019).

[23] H. Pan and S. Das Sarma, Physical mechanisms for zero-
bias conductance peaks in Majorana nanowires, Phys.
Rev. Research 2, 013377 (2020).

[24] S. Ahn, H. Pan, B. Woods, T. D. Stanescu, and
S. Das Sarma, Estimating disorder and its adverse ef-
fects in semiconductor Majorana nanowires, Phys. Rev.
Materials 5, 124602 (2021).

[25] S. Das Sarma and H. Pan, Disorder-induced zero-bias
peaks in Majorana nanowires, Phys. Rev. B 103, 195158
(2021).

[26] P. Yu, J. Chen, M. Gomanko, G. Badawy, E. P. A. M.
Bakkers, K. Zuo, V. Mourik, and S. M. Frolov, Non-
Majorana states yield nearly quantized conductance in
proximatized nanowires, Nat. Phys. 17, 482 (2021).

[27] R. Hess, H. F. Legg, D. Loss, and J. Klinovaja, Local
and nonlocal quantum transport due to Andreev bound
states in finite Rashba nanowires with superconducting
and normal sections, Phys. Rev. B 104, 075405 (2021).

[28] J. Cayao and P. Burset, Confinement-induced zero-bias
peaks in conventional superconductor hybrids, Phys.
Rev. B 104, 134507 (2021).

[29] R. Hess, H. F. Legg, D. Loss, and J. Klinovaja, Trivial
Andreev band mimicking topological bulk gap reopening
in the nonlocal conductance of long Rashba nanowires,
Phys. Rev. Lett. 130, 207001 (2023).

[30] J. D. Sau and S. D. Sarma, Realizing a robust practical
Majorana chain in a quantum-dot-superconductor linear
array, Nat. Commun. 3, 964 (2012).

[31] M. Leijnse and K. Flensberg, Parity qubits and poor
man’s Majorana bound states in double quantum dots,
Phys. Rev. B 86, 134528 (2012).

[32] S. Miles, D. van Driel, M. Wimmer, and C.-X. Liu, Ki-
taev chain in an alternating quantum dot-Andreev bound
state array, arXiv:2309.15777 (2023).

[33] A. Tsintzis, R. S. Souto, and M. Leijnse, Creating and
detecting poor man’s Majorana bound states in interact-
ing quantum dots, Phys. Rev. B 106, L201404 (2022).

[34] A. Tsintzis, R. S. Souto, K. Flensberg, J. Danon, and
M. Leijnse, Majorana qubits and non-abelian physics in
quantum dot–based minimal kitaev chains, PRX Quan-
tum 5, 010323 (2024).

[35] J. D. T. Luna, A. M. Bozkurt, M. Wimmer, and C.-X.
Liu, Flux-tunable Kitaev chain in a quantum dot array,
arXiv:2402.07575 (2024).

[36] C.-X. Liu, H. Pan, F. Setiawan, M. Wimmer, and J. D.
Sau, Fusion protocol for Majorana modes in coupled
quantum dots, Phys. Rev. B 108, 085437 (2023).

[37] R. S. Souto and R. Aguado, Subgap states in
semiconductor-superconductor devices for quantum tech-
nologies: Andreev qubits and minimal Majorana chains,
arXiv:2404.06592 (2024).

[38] T. Dvir, G. Wang, N. van Loo, C.-X. Liu, G. P. Mazur,
A. Bordin, S. L. D. ten Haaf, J.-Y. Wang, D. van Driel,
F. Zatelli, X. Li, F. K. Malinowski, S. Gazibegovic,
G. Badawy, E. P. A. M. Bakkers, M. Wimmer, and L. P.
Kouwenhoven, Realization of a minimal Kitaev chain in
coupled quantum dots, Nature 614, 445 (2023).

[39] S. L. D. ten Haaf, Q. Wang, A. M. Bozkurt, C.-X. Liu,
I. Kulesh, P. Kim, D. Xiao, C. Thomas, M. J. Manfra,

T. Dvir, M. Wimmer, and S. Goswami, Engineering Ma-
jorana bound states in coupled quantum dots in a two-
dimensional electron gas, arXiv:2311.03208 (2023).

[40] F. Zatelli, D. van Driel, D. Xu, G. Wang, C.-X. Liu,
A. Bordin, B. Roovers, G. P. Mazur, N. van Loo, J. C.
Wolff, A. M. Bozkurt, G. Badawy, S. Gazibegovic, E. P.
A. M. Bakkers, M. Wimmer, L. P. Kouwenhoven, and
T. Dvir, Robust poor man’s Majorana zero modes using
Yu-Shiba-Rusinov states, arXiv:2311.03193 (2023).

[41] A. Bordin, X. Li, D. van Driel, J. C. Wolff, Q. Wang,
S. L. D. ten Haaf, G. Wang, N. van Loo, L. P. Kouwen-
hoven, and T. Dvir, Crossed Andreev reflection and elas-
tic cotunneling in three quantum dots coupled by super-
conductors, Phys. Rev. Lett. 132, 056602 (2024).

[42] A. Bordin, C.-X. Liu, T. Dvir, F. Zatelli, S. L. D. t. Haaf,
D. van Driel, G. Wang, N. van Loo, T. van Caekenberghe,
J. C. Wolff, Y. Zhang, G. Badawy, S. Gazibegovic, E. P.
A. M. Bakkers, M. Wimmer, L. P. Kouwenhoven, and
G. P. Mazur, Signatures of Majorana protection in a
three-site Kitaev chain, arXiv:2402.19382 (2024).

[43] C.-X. Liu, G. Wang, T. Dvir, and M. Wimmer, Tun-
able superconducting coupling of quantum dots via
Andreev bound states in semiconductor-superconductor
nanowires, Phys. Rev. Lett. 129, 267701 (2022).

[44] C.-X. Liu, A. M. Bozkurt, F. Zatelli, S. L. D. t. Haaf,
T. Dvir, and M. Wimmer, Enhancing the excitation gap
of a quantum-dot-based Kitaev chain, arXiv:2310.09106
(2023).

[45] M. Thamm and B. Rosenow, Machine learning optimiza-
tion of Majorana hybrid nanowires, Phys. Rev. Lett. 130,
116202 (2023).

[46] E. Prada, R. Aguado, and P. San-Jose, Measuring Majo-
rana nonlocality and spin structure with a quantum dot,
Phys. Rev. B 96, 085418 (2017).

[47] D. J. Clarke, Experimentally accessible topological qual-
ity factor for wires with zero energy modes, Phys. Rev.
B 96, 201109 (2017).

[48] R. S. Souto, A. Tsintzis, M. Leijnse, and J. Danon,
Probing Majorana localization in minimal Kitaev chains
through a quantum dot, Phys. Rev. Research 5, 043182
(2023).

[49] R. Koch, D. van Driel, A. Bordin, J. L. Lado, and
E. Greplova, Adversarial Hamiltonian learning of quan-
tum dots in a minimal Kitaev chain, Phys. Rev. Applied
20, 044081 (2023).

[50] N. Hansen, The CMA evolution strategy: A tutorial,
arXiv:1604.00772 (2016).

[51] N. Hansen and A. Ostermeier, Completely derandomized
self-adaptation in evolution strategies, Evol. Comput. 9,
159 (2001).

[52] N. Hansen, S. D. Müller, and P. Koumoutsakos, Reduc-
ing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES),
Evol. Comput. 11, 1 (2003).

[53] Including small Coulomb interactions on the proximitized
dots does not change the qualitative results [33].

[54] We use the cma Python library from
pypi.org/project/cma.

[55] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen,
S. Tarucha, R. M. Westervelt, and N. S. Wingreen, Elec-
tron Transport in Quantum Dots, in Mesoscopic Electron
Transport , edited by L. L. Sohn, L. P. Kouwenhoven, and
G. Schön (Springer Netherlands, Dordrecht, 1997) pp.
105–214.

https://doi.org/10.1103/physrevb.98.245407
https://doi.org/10.1103/PhysRevB.100.125407
https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevMaterials.5.124602
https://doi.org/10.1103/PhysRevMaterials.5.124602
https://doi.org/10.1103/PhysRevB.103.195158
https://doi.org/10.1103/PhysRevB.103.195158
https://doi.org/10.1038/s41567-020-01107-w
https://doi.org/10.1103/PhysRevB.104.075405
https://doi.org/10.1103/PhysRevB.104.134507
https://doi.org/10.1103/PhysRevB.104.134507
https://doi.org/10.1103/PhysRevLett.130.207001
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1103/PhysRevB.86.134528
http://arxiv.org/abs/2309.15777
https://doi.org/10.1103/PhysRevB.106.L201404
https://doi.org/10.1103/PRXQuantum.5.010323
https://doi.org/10.1103/PRXQuantum.5.010323
http://arxiv.org/abs/2402.07575
https://doi.org/10.1103/PhysRevB.108.085437
http://arxiv.org/abs/2404.06592
https://doi.org/10.1038/s41586-022-05585-1
http://arxiv.org/abs/2311.03208
http://arxiv.org/abs/2311.03193
https://doi.org/10.1103/PhysRevLett.132.056602
http://arxiv.org/abs/2402.19382
https://doi.org/10.1103/PhysRevLett.129.267701
http://arxiv.org/abs/2310.09106
http://arxiv.org/abs/2310.09106
https://doi.org/10.1103/PhysRevLett.130.116202
https://doi.org/10.1103/PhysRevLett.130.116202
https://doi.org/10.1103/PhysRevB.96.085418
https://doi.org/10.1103/PhysRevB.96.201109
https://doi.org/10.1103/PhysRevB.96.201109
https://doi.org/10.1103/PhysRevResearch.5.043182
https://doi.org/10.1103/PhysRevResearch.5.043182
https://doi.org/10.1103/PhysRevApplied.20.044081
https://doi.org/10.1103/PhysRevApplied.20.044081
http://arxiv.org/abs/1604.00772
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365603321828970
https://pypi.org/project/cma/
https://doi.org/10.1007/978-94-015-8839-3_4
https://doi.org/10.1007/978-94-015-8839-3_4


9

[56] N. Sedlmayr and C. Bena, Visualizing Majorana bound
states in one and two dimensions using the generalized
Majorana polarization, Phys. Rev. B 92, 115115 (2015).

[57] D. Sticlet, C. Bena, and P. Simon, Spin and Majorana
polarization in topological superconducting wires, Phys.
Rev. Lett. 108, 096802 (2012).

[58] S. V. Aksenov, A. O. Zlotnikov, and M. S. Shustin, Strong
Coulomb interactions in the problem of Majorana modes
in a wire of the nontrivial topological class BDI, Phys.
Rev. B 101, 125431 (2020).

[59] Although such residual δEeo would still translate into a
relatively short upper-bound time scale for “Majorana

manipulation,” it lies well within the resolution of an
actual tunnelling-spectroscopy experiment, likely mak-
ing it impossible to resolve such small energy splitting
anyway. Furthermore, the automated tuning found here
could serve as the starting point for a finer search using
other methods.
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