
EMBEDDING PRODUCTS OF TREES INTO HIGHER RANK
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Abstract. We show that there exists a quasi-isometric embedding of the product of n
copies of H2

R into any symmetric space of non-compact type of rank n, and there exists a
bi-Lipschitz embedding of the product of n copies of the 3-regular tree T3 into any thick
Euclidean building of rank n with co-compact affine Weyl group. This extends a previous
result of Fisher–Whyte. The proof is purely geometrical, and the result also applies to the
non Bruhat–Tits buildings.

1. Introduction

Symmetric spaces of non-compact type and Euclidean buildings are important classes
of non-positively curved metric spaces. They possess large symmetry groups and structures
that often distinguish them from other spaces, and also from one another, even if one only
considers the coarse geometry. The latter approach is part of Gromov’s program to classify
spaces and groups from their coarse geometry, and was partly motivated by a remarkable
theorem of Mostow [Mos73]. Some of the well-known theorems in this direction are by Pansu
[Pan89], Schwartz [Sch95, Sch96], Kleiner–Leeb [KL97], Eskin–Farb [EF97], Eskin [Esk98],
and Drutu [Dru00].

Besides distinguishing these spaces, it is also interesting to study their relationships, espe-
cially which space is a totally geodesic subspace of another. While this question can be
answered satisfactorily from the classification of semi-simple Lie groups and Lie triple sys-
tems, its coarse version is much more subtle. In other words, one might ask whether one
space can be quasi-isometrically embedded into another one, or whether there is an obstruc-
tion to the existence of such an embedding. While there are many examples of isometric and
quasi-isometric embeddings between rank one symmetric spaces, which can be constructed
by a result of Bonk–Schramm [BS11], and examples of quasi-isometric embeddings from rank
one into higher rank by Brady–Farb [BF98], see also [Lee00, Leu03] for Euclidean buildings,
examples of embeddings between two spaces of equal and higher rank are very limited.

Recently, Fisher and Whyte [FW18] gave a sufficient condition for the existence of a quasi-
isometric embedding between two symmetric spaces of non-compact type of equal rank. This
condition is formulated in terms of the existence of a linear map between Cartan subalgebras
preserving kernel of roots. A quasi-isometric embedding induced by this map is called an
AN -map. They also provided examples of embeddings when their condition is held. In
particular, they constructed a quasi-isometric embedding from the product of n copies of
the real hyperbolic plane into the symmetric spaces of SLn+1(R) and Sp2n(R). In [Ngu21],
the second author gave a splitting decomposition of embeddings. Namely, any embedding
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between spaces of equal rank is close to a product of embeddings into irreducible targets.
He further gave examples of quasi-isometric embeddings in rank 2 which are not AN -maps.
In this paper, we generalize this approach by showing the following.

Theorem 1.1. (see Theorem 1.4 for a more general statement)

(1) If X is a thick Euclidean building of rank n with co-compact affine Weyl group, there
exists a bi-Lipschitz embedding T3 × · · · × T3 → X of the product of n copies of the
3-regular tree into X.

(2) If X is a symmetric space of non-compact type of rank n, there exists a quasi-isometric
embedding H2

R × · · · ×H2
R → X of the product of n copies of the real hyperbolic plane

into X.

Our approach can be regarded as a geometric AN -map, which is much more flexible than
the one introduced by Fisher–Whyte, especially for Euclidean buildings. In particular, the
embeddings of products of trees into thick Euclidean buildings also hold for the exotic ones.
For example, the ones of type Ã2 [Ron86, VM87, Bar00], and the ones whose Weyl group
does not come from a root system [HKW10, BK12].

Since T3 embeds quasi-isometrically into H2
R, it follows that the product of n copies of T3

embeds quasi-isometrically into any symmetric space of non-compact type of rank n. More-
over, by combining Theorem 1.1 with the quasi-isometric embeddings of Gromov-hyperbolic
groups into products of binary trees [BDS07], we get exotic quasi-isometric embeddings of
Gromov hyperbolic groups into Euclidean buildings and symmetric spaces.

Corollary 1.2. Every Gromov hyperbolic group G admits a quasi-isometric embedding into
any thick Euclidean building with co-compact affine Weyl group or symmetric space of non-
compact type of rank n+ 1, where n is the topological dimension of ∂∞G.

For example, Hn
R embeds quasi-isometrically into any such Euclidean building of rank n. By

combining with the quasi-isometric embeddings Hn
R → (H2

R)
n−1 of [BF98] instead, we get

Corollary 1.3. For any n ≥ 1, Hn+1
R embeds quasi-isometrically into any symmetric space

of non-compact type of rank n.

Finally, let us note that the quasi-isometric embedding of the product of copies of H2
R into

a symmetric space can also obtained by an AN -map. This was pointed out to us by Yves
Benoist, and we give a proof in the Appendix.

Main result.
We refer to Section 2.1 for the background material. Let X be a Euclidean building or a
symmetric space of non-compact type of rank n, and let F0 be a fixed apartment/maximal-
flat. Given a wall H ⊂ F0, i.e. a singular (n − 1)-dimensional flat, we consider its cross
section CS(H), which can be seen as the set of (n − 1)-flats in X which are parallel to H,
and we define a projection map X → CS(H) (see Section 2). This projection map is defined
by considering a suitable point η in the boundary of H, and assigning to each x ∈ X the
unique (n− 1)-flat parallel to H to which the geodesic ray [x, η) is strongly asymptotic, see
Definition 2.5. We endow the cross sections with the Hausdorff distance. This projection
map is a variation of the projection onto the space of strong asymptotic classes introduced
by Leeb [Lee00].
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If ∆ is a subset of ∂TF0, we denote by X∆ the union of all apartments/maximal-flats in X
that contain ∆ in their boundary at infinity.

We show that there exist walls H1, . . . , Hn in F0, projection maps πi : X → CS(Hi), and
∆ ⊂ ∂TF0 a suitable union of chambers such that the following map

π : X∆ → CS(H1)× · · · × CS(Hn),

which is the restriction of the product map π1 × · · · × πn to X∆, satisfies the following.

Theorem 1.4.

(1) If X is a Euclidean building, π is a bi-Lipschitz map. Moreover, the inclusion of X∆,
equipped with the path-metric, in X is a bi-Lipschitz embedding, therefore it induces
a bi-Lipschitz embedding from CS(H1)× · · · × CS(Hn) into X.

(2) If X is a symmetric space of non-compact type, π is a quasi-isometry. Moreover,
the inclusion of some δ-neighborhood of X∆, equipped with the path-metric, in X is
a quasi-isometric embedding, therefore it induces a quasi-isometric embedding from
CS(H1)× · · · × CS(Hn) into X.

The target space is equipped with the L1 product metric. We refer to Section 4 for the con-
struction of the walls Hi and ∆. Theorem 1.1 is an immediate consequence of Theorem 1.4:

Proof of Theorem 1.1. (1) If X is a thick Euclidean building of rank n with co-compact
affine Weyl group, then all the cross sections are thick Euclidean buildings of rank 1, i.e.
thick metric trees [Lee00]. Therefore there exists a bi-Lipchitz embedding T3 → CS(Hi).
(2) When X is a symmetric space of non-compact type, the cross sections are rank one
symmetric space of non-compact type [Ebe96, Chap. 2.20], therefore H2

R → CS(Hi) isomet-
rically. □

Remark 1.5. The constants of the bi-Lipchitz/quasi-isometric embeddings do not depend on
the apartment/maximal-flat F0 we started with. Moreover, F0 is contained in the image of
such embeddings.

Let us note that when X is a Euclidean building (resp. a symmetric space), the fact that the
inclusion of X∆ (resp. its δ-neighbordhood), in X is a bi-Lipschitz (resp. quasi-isometric)
embedding, is a general result, as shown in step 4 of the proof of Theorem 1.4, and is true
when ∆ is any union of chambers in the boundary of some fixed apartment/maximal-flat
F0. For example, if ∆ consists of only one chamber, then X∆ = X. If ∆ = ∂TF0, then
X∆ = F0. Obviously, the more chambers we add to ∆, the smaller X∆ becomes. The
subset ∆ in Theorem 1.4 is the “smallest possible” for which the map π is injective (resp.
quasi-injective).

About the proof. The proof of Theorem 1.4 will be done in four steps. If X is a Euclidean
building (resp. a symmetric space), we will start by showing that π is a bi-Lipschitz embed-
ding when restricted to a flat containing ∆ at infinity. Then, in step 2, which represents the
core of the proof, we show the general case, i.e. that it is a bi-Lipschitz (resp. quasi-isometric)
embedding. In step 3, we show that it is surjective (resp. quasi-surjective), and finally that
the inclusion of X∆ (resp. a thickening of X∆), equipped with the path metric, in X is a
bi-Lipschitz (resp. quasi-isometric) embedding.
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Organisation of the paper. We start in Section 2.1 by recalling briefly the parallel sets and
cross sections in symmetric spaces and Euclidean buildings. After giving some preliminary
lemmas in Section 2.2, we define the projection map onto a cross section, to which Section 2.3
is devoted. We recall the generalized Iwasawa decomposition for semi-simple Lie groups in
Section 2.4. In Section 3, we define the maximally distributed vertices in a spherical Coxeter
complex. Finally, the main result is proved in Section 4.

Acknowledgements. We thank Yves Benoist for pointing out to us the AN -map for sym-
metric spaces. We are grateful to the Max-Planck Institute for Mathematics in Bonn for
its financial support. The second author thanks Institut des Hautes Études Scientifiques,
Institut Henri Poincaré and LabEx CARMIN for their support and hospitality.

2. Background and preliminary results

2.1. Background. We recall that if X,Y are two metric spaces, and f : X → Y a map,

(i) f is a bi-Lipschitz embedding if there exists λ ≥ 1 such that for any x, x′ ∈ X,
1

λ
dX(x, x

′) ≤ dY (f(x), f(x
′)) ≤ λdX(x, x

′).

If moreover f is surjective, it is called a bi-Lipschitz equivalence.
(ii) f is a quasi-isometric embedding if there exist λ ≥ 1 and C ≥ 0 such that for any

x, x′ ∈ X,
1

λ
dX(x, x

′)− C ≤ dY (f(x), f(x
′)) ≤ λdX(x, x

′) + C.

If moreover there exists M ≥ 0 such that for any x ∈ X there exists y ∈ Y such that
dY (f(x), y) ≤ M , f is called a quasi-isometry.

We refer to [BH13] for the background material on CAT(0) spaces, and to [Ebe96],[KL97],
and [Lee00] for symmetric spaces and Euclidean buildings.

Let X is a complete CAT(0) space. We denote by ∂X its visual boundary, and we equip it
with the angular metric ∠ defined, for any ξ, η ∈ ∂X, as

∠(ξ, η) = sup
x∈X

∠x(ξ, η).

Let X be a Euclidean building or a symmetric space of non-compact type. We recall that its
visual boundary ∂X, when equipped with the angular metric ∠, inherits a spherical building
structure, and we denote it by ∂TX. Let us note that we consider the angular metric ∠ and
not the Tits metric on the boundary, i.e. the associated length metric1.

The apartments of ∂TX are endowed with a structure of a spherical Coxeter complex [KL97,
sect. 3.1]. A spherical Coxeter complex is a unit sphere S with a finite Weyl group W <
Isom(S) generated by reflections at walls, i.e. totally geodesic subspheres of codimension 1.
A singular sphere s ⊂ S is an intersection of walls.

The apartments in ∂TX correspond to boundaries of apartments/maximal-flats in X. Each
apartment/maximal-flat F ⊂ X is endowed with a structure of a Euclidean Coxeter complex
[KL97, sect. 4.1]. A Euclidean Coxeter complex is a Euclidean space E with an affine Weyl

1When rank(X) ≥ 2, these two metrics on ∂X coincide
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group Waff < Isom(E) generated by reflections at walls, i.e. affine subspaces of codimension
1, so that the image of Waff in Isom(∂TE) is a finite reflection group. We call flat any totally
geodesic Euclidean subspace of X. A singular flat in X is an intersection of walls. Finally,
a singular half-space in X is a half apartment/maximal-flat bounded by a wall.

Remark 2.1. In the rest of the paper, by abuse of language, if X is a Euclidean building, we
will also say maximal-flat to refer to its apartments.

Let s be a singular sphere in ∂TX. The parallel set P (s) of s is the union of all flats with
boundary s. P (s) is a convex subset of X and is isometric to the product

P (s) = Rdim(s)+1 × CS(s).

CS(s) is called the cross section of s, and it can be seen as the set of flats with boundary
s. When X is a Euclidean building (resp. a symmetric space of non-compact type) of rank
n, CS(s) is a Euclidean building (resp. a symmetric space of non-compact type) of rank
n− dim(s)− 1, see [Ebe96, Chap. 2.20],[Lee00, Sect. 3],[KL97, Sect. 4.8]. If F is a flat such
that ∂TF = s, we define P (F ) := P (s).

2.2. Preliminary results. Unless stated otherwise, X is either a symmetric space of non-
compact type or a Euclidean building. Symmetric spaces are supposed of non-compact type.

If x ∈ X and η ∈ ∂TX, we denote by [x, η) the geodesic ray from x to η. If A ⊂ ∂TX, we
denote by [x,A) the cone

⋃{
[x, a), a ∈ A

}
.

If A ⊂ X and r ≥ 0, we denote by Nr(A) = {x ∈ X such that dX(x,A) ≤ r}.

Lemma 2.2. Let X be a symmetric space or a Euclidean building, α a geodesic in X with
endpoints {η, η̂}, and F a flat containing α. If η is an interior point of a top-dimensional
cell of ∂TF , then P (α) = P (F ). In other words, P ({η, η̂}) = P (∂TF ).

Proof. Since α ⊂ F , then P (F ) ⊂ P (α).
Let x ∈ P (α), and let us denote by c the top-dimensional cell of ∂TF containing η in its
interior. Let ĉ be its opposite such that η̂ ∈ ĉ. Consider a maximal-flat E in X containing
η, η̂, so c, ĉ ⊂ ∂TE because η, η̂ are interior points. Since s is the unique singular sphere
spanned by η and η̂, s ∈ ∂TE and x is contained in a flat F ′ ⊂ E with boundary s. □

We say that a geodesic ray γ is strongly asymptotic to a subset A ⊂ X if dX(α(t), A) −−→
+∞

0.

Lemma 2.3. Let X be a symmetric space or a Euclidean building, s a singular sphere in
∂TX, and η an interior point of a top-dimensional cell of s. For any x ∈ X, [x, η) is strongly
asymptotic to P (s). Moreover, if X is a Euclidean building, there exists T ≥ 0 such that for
t ≥ T , [x, η)(t) ∈ P (s).

Proof. Let η̂ be the opposite of η in s.
• If X is a symmetric space, let α be a geodesic with endpoints η, η̂. Consider the generalized
Iwasawa decomposition, see Theorem 2.15, Isom0(X) = KAηNη with respect to η and a point
in α. Let γ be the geodesic containing x and η at +∞, then there exists a ∈ Aη and n ∈ Nη

such that γ = anα. Note that aα is parallel to α so aα ⊂ P ({η, η̂}) = P (s). Moreover, for
any t ∈ R

dX(γ(t), aα(t)) = dX(anα(t), aα(t)) = dX(nα(t), α(t)) −−→
+∞

0.
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• If X is a Euclidean building: we denote the geodesic ray [x, η) by γ. By the angle
rigidity axiom [KL97, Sect. 4.1.2], ∠γ(t)(η, η̂) takes only finitely many values, and since
∠γ(t)(η, η̂) −−→

+∞
∠(η, η̂) = π, there exists T ≥ 0 such that if t ≥ T then ∠γ(t)(η, η̂) = π, i.e.

γ(t) is in a geodesic joining η and η̂. Therefore, for t ≥ T , γ(t) ∈ P ({η, η̂}) = P (s) by
Lemma 2.2. □

An immediate consequence of Lemma 2.3 is the following.

Corollary 2.4. If X be a symmetric space or a Euclidean building, s is a singular sphere in
∂TX, and η an interior point of a top-dimensional cell of s, then for any x ∈ X there exists
a unique flat H with boundary s to which [x, η) is strongly asymptotic.

2.3. The projection map. Corollary 2.4 allows us to define a projection onto the cross
section of a singular sphere via an interior point.

Definition 2.5. Let s be a singular sphere in ∂TX, and η an interior point of a top-
dimensional cell of s. We define the projection via η, π : X → CS(s), by assigning to
x the unique flat with boundary s to which [x, η) is strongly asymptotic.

Remark 2.6. Note that π depends of the top-dimensional cell of s, but does not depend on
the choice of its interior point.

We endow CS(s), viewed as the set of all flats with boundary s (hence all parallel), with the
Hausdorff distance.

Lemma 2.7. The map π is 1-Lipschitz.

Proof. Let x, x′ ∈ X, and γ = [x, η) and γ′ = [x′, η). For any t ≥ 0,

d(π(x), π(x′)) ≤ dX(π(x), γ(t)) + dX(γ(t), γ
′(t)) + dX(γ

′(t), π(x′)).

By convexity of the distance function, dX(γ(t), γ′(t)) ≤ dX(x, x
′), so when t → +∞ we get

the result. □

Remark 2.8. As mentioned in the introduction, this projection is a variation of the projection
onto the space of strong asymptotic classes introduced by Leeb [Lee00].

We end this section with some useful lemmas related to this projection map. Let us first
recall that if X is a CAT(0) space, x0 ∈ X, and η ∈ ∂X, the Busemann function with respect
to x0 and η is the map b : X → R such that for any x ∈ X,

b(x) = lim
t→+∞

dX([x0, η)(t), x)− t.

Lemma 2.9. Let X be a complete CAT(0) space, x ∈ X, F a flat in X, and η1, η2 ∈ ∂TF
such that ∠(η1, η2) < π. If [x, η1) is strongly asymptotic to F and ∠x(η1, η2) = ∠(η1, η2),
then for any interior point ξ of η1η2, [x, ξ) is strongly asymptotic to F .

Proof. ∠x(η1, η2) = dT (η1, η2) < π implies that [x, η1η2) is a flat sector, see [BH13, Chap. 2
Cor. 9.9]. Let ε > 0, there exists x1 ∈ [x, η1) such that dX(x1, F ) ≤ ε. By convexity of the
distance function to F , [x1, η1η2) ⊂ Nε(F ). Since [x, η1η2) is a flat sector, for any interior
point ξ of η1η2, [x, ξ) enters in [x1, η1η2), therefore dX([x, ξ), F ) ≤ ε. □
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Corollary 2.10. Let X be a complete CAT(0) space, F and F ′ two flats in X, x ∈ F ,
and η ∈ ∂TF ∩ ∂TF

′. If [x, η) is strongly asymptotic to F ′, then for any interior point ξ of
∂TF ∩ ∂TF

′, [x, ξ) is strongly asymptotic to F ′.

Proof. If F or F ′ is one-dimensional then the interior of ∂TF ∩ ∂TF
′ is empty. If not, let ξ

be an interior point. If ∠(η, ξ) = π, there exists a geodesic γ ⊂ F containing x and joining
ξ and η. [x, η) is strongly asymptotic to F ′ implies, by the flat stip theorem, that γ ⊂ F ′. If
∠(η, ξ) < π then, by convexity of ∂TF∩∂TF ′, ξ lies in a segment ηη′ for some η′ ∈ ∂TF∩∂TF ′

such that ∠(η1, η2) < π. The conclusion follows from Lemma 2.9. □

Lemma 2.11. Let X be a complete CAT(0) space, F a flat in X, η ∈ ∂TF , and x ∈ X such
that [x, η) is strongly asymptotic to F . Then [x, η) is strongly asymptotic to some geodesic
in F .

Proof. Let b be a Busemann function with respect to η, and H the intersection of F with
a level set of b, which is a hyperplane in F . Let (fn)n∈N be a sequence of points in F such
that dX(fn, [x, η)) ≤ 1

n
, and hn be the projection of fn on H (i.e. the intersection of H with

the geodesic containing fn and η). By convexity of the distance function,

dX([x, η), [hn, η)) = dX([x, η), [fn, η)) ≤ dX([x, η), fn) ≤
1

n
.

Let n,m ∈ N, and z ∈ [x, η) such that dX(z, [fn, η)) ≤ 2
n

and dX(z, [fm, η)) ≤ 2
m

. So for any
a ∈ [fn, η) and b ∈ [fm, η),

dX([fn, η)), [fm, η))) ≤ dX(a, z) + dX(z, b)

Therefore,

dX([fn, η)), [fm, η))) ≤ dX(z, [fn, η)) + dX(z, [fm, η)) ≤
2

n
+

2

m

Since b(hn) = b(hm),
dX(hn, hm) = dX([hn, η), [hm, η))

= dX([fn, η), [fm, η))

≤ 2

n
+

2

m
.

So (hn)n is a Cauchy sequence in H, and there exists h ∈ H such that hn −−→
+∞

h, and a same

argument as before shows that dX([h, η), [x, η)) = 0. So [x, η) is strongly asymptotic to the
extension, in F , of the geodesic ray [h, η). □

For the rest of this section, X is either a Euclidean building or a symmetric space.

Proposition 2.12. Let F, F ′ be singular flats such that dim ∂TF = dim ∂TF
′ = dim(∂TF ∩

∂TF
′), and let η be an interior point of a top-dimensional cell c of ∂TF ∩ ∂TF

′.

(1) If there exists x ∈ F such that [x, η) is strongly asymptotic to F ′, then for any y ∈ F ,
[y, η) is strongly asymptotic to F ′.

(2) Let s be a singular sphere in ∂TX containing c and dim s = dim ∂TF = dim ∂TF
′,

and let π : X → CS(s) be the projection via η. Then for any x, y ∈ F , π(x) = π(y).
Moreover, if there exist x ∈ F and x′ ∈ F ′ such that π(x) = π(x′), then [x, η) is
strongly asymptotic to F ′ (and [x′, η) is strongly asymptotic to F ).
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Proof. (1) Let ε > 0. There exists a ∈ [x, η) such that dX(a, F
′) ≤ ε. Let z′ ∈ F ′ such

that dX(a, z
′) ≤ ε. Let us denote by co the interior of c. For any ξ ∈ co, and any t ≥ 0, by

convexity of the distance function

dX([a, η)(t), [z
′, η)(t)) ≤ dX(a, z

′) ≤ ε.

So [a, co) ⊂ Nε(F
′). Since c is a top-dimensional cell in ∂TF and η ∈ co, for any y ∈ F , [y, η)

enters eventually in [a, co). So

lim
t→+∞

dX([y, η)(t), F
′) ≤ ε.

This holds for any ε > 0, so [y, η) is strongly asymptotic to F ′.

(2) Let H be the singular flat with boundary s to which [x, η) and [x′, η) are strongly
asymptotic. By Lemma 2.11, there exist z, z′ ∈ H such that [x, η) is strongly asymptotic to
[z, η) and [x′, η) is strongly asymptotic to [z′, η). In particular, [z′, η) is strongly asymptotic
to [x′, η) and thus to F ′. By (1), [z, η) is also strongly asymptotic to F ′ since z and z′ are
both in H. [x, η) is strongly asymptotic to [z, η), so [x, η) is strongly asymptotic to F ′. The
same argument show that [x′, η) is strongly asymptotic to F . □

Remark 2.13. The second point of Proposition 2.12 implies that under these conditions, if
there exist x ∈ F and x′ ∈ F ′ such that π(x) = π(x′), then π(F ) = π(F ′).

Corollary 2.14. Let F, F ′ be singular flats such that dim ∂TF = dim ∂TF
′ = dim(∂TF ∩

∂TF
′), and let η be an interior point of a top-dimensional cell c of ∂TF ∩ ∂TF

′.

(1) For any x, y ∈ F ,
dX([x, η), F

′) = dX([y, η), F
′).

(2) Let s be a singular sphere in ∂TX containing c and dim s = dim ∂TF = dim ∂TF
′,

and let π : X → CS(s) be the projection via η. For any x ∈ F and x′ ∈ F ′,

d(π(F ), π(F ′)) = d(π(x), π(x′)) = dX([x, η), F
′) = dX([x

′, η), F ).

Proof. (1) If we denote by s′ = ∂TF
′, by Corollary 2.4 there exists a flat F ′′ with boundary

s′, i.e. parallel to F ′, to which [x, η) is strongly asymptotic. By Proposition 2.12, [y, η) is
also strongly asymptotic to F ′′. Therefore,

dX([x, η), F
′) = dX(F

′, F ′′) = dX([y, η), F
′).

(2) Let x ∈ F and x′ ∈ F ′. By Proposition 2.12, π is constant on F and on F ′, so
d(π(F ), π(F ′)) = d(π(x), π(x′)), that we will denote by D. This implies that dX(F, F ′) ≥ D
(π is 1-Lipschitz) and in particular dX([x, η), F

′) ≥ D. Let H (resp. H ′) be the flat with
boundary s to which [x, η) (resp. [x′, η)) is strongly asymptotic. By Lemma 2.11, there exists
a geodesic γ in H to which [x, η) is strongly asymptotic. γ can be parameterized such that
dX([x, η)(t), γ(t)) −−→

+∞
0. H and H ′ are parallel, so there exists a geodesic γ′ in H ′, parallel

to γ such that for any t, dX(γ(t), γ′(t)) = dX(H,H ′) = D. Moreover, π(F ′) = H ′ and they
have the same dimension, so there exists x′′ ∈ F ′ such that [x′′, η) is strongly asymptotic to
γ′ (by Lemma 2.11). So for any t ≥ 0,

dX([x, η)(t), [x
′, η)(t)) ≤ dX([x, η)(t), γ(t)) + dX(γ(t), γ

′(t)) + dX(γ(t), [x
′, η)(t)).

Therefore dX([x, η), [x
′, η)) ≤ D, and in particular dX([x, η), F

′) ≤ D. □
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2.4. Generalized Iwasawa decomposition. Let us recall briefly the generalized Iwasawa
decomposition for symmetric spaces, and we refer to [Ebe96] for more details. Let X be a
symmetric space of non-compact type, G = Isom0(X), g its Lie algebra, x0 ∈ X a basepoint,
K = StabG(x0), g = k ⊕ p the Cartan decomposition with respect to x0. Note that for any
geodesic γ through x0, there exists Y ∈ p such that for any t, γ(t) = exp(tY ).x0. Let us
fix γ and Y , and consider a a Cartan subspace of p that contains Y , Φ the restricted root
system of g relative to a, and g = g0 ⊕

⊕
α∈Φ gα the restricted root space decomposition.

Let η be the point at +∞ of γ, and let us denote aY = z(Y )∩p, where z(Y ) is the centralizer
of Y in g, nY =

⊕
α∈Φ,α(Y )>0 gα, Aη = exp(aY ), and Nη = exp(nY ).

Theorem 2.15 (Generalized Iwasawa decomposition).

G = KAηNη.

Moreover, we have

(i) Aη = A−1
η , and it normalizes Nη.

(ii) AηNη acts simply transitively on X.
(iii) For any a ∈ Aη, aγ and γ are parallel, i.e. dX(a.γ(t), γ(t)) is constant.

For any n ∈ Nη, dX(n.γ(t), γ(t)) −−→
+∞

0.

We refer to [Ebe96, Chap. 2.19]. Note that Aη is not necessarily a subgroup: aY is not
necessarily a Lie subalgebra, unless η, i.e. Y , is regular. In this case aY = a, and we recover
the usual Iwasawa decomposition.

3. Maximally distributed vertices in a spherical Coxeter complex

Let S be a spherical Coxeter complex, and A ⊂ S a subset. If A has diameter < π,
we denote by Hull(A) its convex hull in S. A hemisphere σ in S is called singular if its
boundary sphere ∂σ is a wall.
Let s be a singular sphere, and {ξi}i vertices in S. We say that the vertices {ξi}i span s if s
is the smallest sphere (with respect to inclusion) that contains them.

Proposition 3.1. Let S be a spherical Coxeter complex of dimension (n− 1).

(1) There exist vertices ξ1, . . . , ξn in S:
(i) which are not pairwise opposite, nor all contained in a wall;
(ii) for any i = 1 . . . n, {ξj}j ̸=i span a wall;
(iii) if σ is a singular hemisphere in S containing them, then (n − 1) of them must

lie in its boundary wall ∂σ.

(2) For i = 1, . . . , n, let si be the wall spanned by {ξj}j ̸=i in S. Then
n⋂

i=1

si = ∅.

Proof. (1) The set of vertices satisfying (i) and (ii) is nonempty since it contains the ver-
tices of a chamber. Take vertices ξ1, . . . , ξn satisfying (i) and (ii) such that Hull(ξ1, . . . , ξn)
contains the maximum number of chambers, and let us show that they satisfy (iii). Let σ
be a singular hemisphere containing all these vertices, and suppose that the interior of σ
contains more than one vertex. To simplify notations, suppose that ξ1, . . . , ξp ∈ σ\∂σ, with
p ≥ 2. We use ξ1 to “push” ξ2, . . . , ξp to ∂σ. For i = 2 . . . p, extend the geodesic segment
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ξ1ξi to ξ1ξ′i, where ξ′i is its first intersection with ∂σ. It is clear that the convex hull of
ξ1, ξ

′
2, . . . , ξ

′
p, ξp+1, . . . , ξn is bigger than the initial one, and we claim that they still satisfy

(i) and (ii), which leads to a contradiction.

Indeed, ξ1 is clearly not opposite to any ξ′i. If some ξ′i is opposite to some ξ′j (similarly if
some ξ′i is opposite to some ξj), then ξ1, ξi, ξj lie in a same singular 1-sphere, therefore any
(n − 1) vertices of ξ1, . . . , ξn that contain them span a sphere of dimension < n − 2, which
contradicts the fact that ξ1, . . . , ξn satisfy (ii). If ξ1, ξ′2, . . . , ξ′p, ξp+1, . . . , ξn are contained in
a wall s, then their convex hull is in s, in particular ξ1, . . . , ξn ∈ s, which contradicts (i).
Therefore they still satisfy (i).

Finally, note that ξ′2, . . . , ξ′p, ξp+1, . . . , ξn are all in ∂σ, which is a wall, and they do not span
a smaller singular sphere, otherwise the convex hull would not be (n− 1)-dimensional. Also,
for any k ∈ {2, . . . , p}, ξ1, ξ

′
2, . . . , ξ

′
k−1, ξ

′
k+1, . . . , ξ

′
p, ξp+1, . . . , ξn are in the same wall that

ξ1, . . . , ξk−1, ξk+1, . . . , ξn span, and they cannot span a smaller sphere by the same argument.
Similarly if one removes one of ξp+1, . . . , ξn. Therefore ξ1, ξ

′
2, . . . , ξ

′
p, ξp+1, . . . , ξn also satisfy

(ii).

(2) Let us denote the opposites of ξ1, . . . , ξn in S by ξ̂1, . . . , ξ̂n. Note that, by the same argu-
ment as before, for any ξk1 , . . . , ξkp , the singular sphere that they span is (p−1)-dimensional.
In particular, for any i ∈ {1, . . . , n}, ξi, ξ̂i ̸∈ si. Moreover, si ∩ sj is spanned by {ξk}k ̸=i,j. So
∩i ̸=jsi = {ξj, ξ̂j}, which are not in sj. □

Remark 3.2. If the spherical Coxeter complex S is an apartment in ∂TX, then the choice of
the vertices ξ1, . . . , ξn no longer depends on S: if S ′ is another apartment containing them,
then they also satisfy (1) and (2) of Proposition 3.1 in S ′.

Definition 3.3. Let S be a spherical Coxeter complex of dimension (n−1), and ξ1, . . . , ξn ∈ S
vertices. We say that ξ1, . . . , ξn are maximally distributed if they satisfy the condition (1) in
Proposition 3.1. See Figure 1 for some examples.

Figure 1. Maximally distributed vertices in A1 × A1, A2, and A3.
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Proposition 3.4. Let X be a symmetric space or a Euclidean building, F a maximal-flat
in X, and ξ1, . . . , ξn maximally distributed vertices in ∂TF . For i = 1, . . . , n, let si be the
wall in ∂TF spanned by {ξj}j ̸=i, and let ηi be an interior point of a top-dimensional cell of
Hull({ξj}j ̸=i) ⊂ si (see Figure 2 for an example in A3). Let πi be the projection map onto
CS(si) via ηi. Then for any maximal-flat F ′ containing all the ξi’s at infinity, the fibers of
πi in F ′ are the (n − 1)-flats with {ξj}j ̸=i at infinity. In particular, πi is constant on the
(n− 1)-flat containing {ξj}j ̸=i at infinity.

ξ1

ξ2

ξ3

η1

η2

η3

Figure 2

Proof. Suppose i = 1, let z ∈ F ′, and let H ′ be the (n − 1)-flat in F ′ containing z and
containing ξ2, . . . ξn at infinity. Let us denote H = π1(z). η1 is an interior point of a top-
dimensional cell of ∂TH ∩ ∂TH

′, and [z, η1) is strongly asymptotic to H, so for any y ∈ H ′

[y, η1) is also strongly asymptotic to H by Proposition 2.12, i.e. π1(H
′) = π1(z).

If z′ ∈ F ′ is not contained in H ′, then π1(z
′) ̸= π1(z) by Corollary 2.14. □

4. Proof of the main result

Let us recall the setting. Let X be a Euclidean building or a symmetric space of
non-compact type of rank n. Let F0 be a maximal-flat, and ξ1, . . . , ξn ∈ ∂TF0 maximally
distributed vertices, see Definition 3.3. For all i = 1, . . . , n, let si be the wall in ∂TF0 spanned
by {ξj}j ̸=i, and ηi an interior point of a top-dimensional cell of Hull({ξj}j ̸=i) ⊂ si.

We denote ∆ = Hull(ξ1, . . . , ξn), and let X∆ be the union of maximal-flats in X that contain
∆ at infinity, and let πi be the projection onto CS(si) via ηi defined in Definition 2.5. Finally,
let

π : X∆ → CS(s1)× · · · × CS(sn)

be the restriction of the product map π1 × · · · × πn to X∆. Each CS(si) is equipped with
the Hausdorff distance di, and we equip the product space with the L1 product metric. We
will show the following, which is a restatement of Theorem 1.4.

Theorem 4.1.

(1) If X is a Euclidean building, π is a bi-Lipschitz map. Moreover, the inclusion of X∆,
equipped with the path-metric, in X is a bi-Lipschitz embedding, therefore it induces
a bi-Lipschitz embedding from CS(s1)× · · · × CS(sn) into X.
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(2) If X is a symmetric space of non-compact type, π is a quasi-isometry. Moreover,
the inclusion of some δ-neighborhood of X∆, equipped with the path-metric, in X is
a quasi-isometric embedding, therefore it induces a quasi-isometric embedding from
CS(s1)× · · · × CS(sn) into X.

We refer to Section 1 for an overview of the proof, and its steps.

Throughout the proof, n is the rank of X. Since Theorem 1.4 is trivial in rank 1, we suppose
n ≥ 2. In particular, the angular ∠ and Tits metric dT coincide in ∂TX.

Step 1: π is a bi-Lipschitz embedding when restricted to a flat containing ∆ at
infinity (with uniform constants):

Let F ⊂ X∆ be a maximal-flat in X containing ∆ at infinity.

• Substep 1: π is injective.

Let x, y ∈ F such that for all i = 1, . . . , n, πi(x) = πi(y). By Proposition 3.4, πi(x) = πi(y)
implies that x and y are in a same (n− 1)-flat Hi ⊂ F such that {ξj}j ̸=i ⊂ ∂THi. The flats
Hi intersect in a single point because ∩n

i=1∂THi = ∅ by Proposition 3.1. Therefore x = y.

• Substep 2: π is a bi-Lipschitz embedding.

The goal is to show that there exists α > 0 such that for any x, y ∈ F dX(x, y) ≤
α
∑n

i=1 di(πi(x), πi(y)).

Let us denote the opposites of ξ1, . . . , ξn in ∂TF by ξ̂1, . . . , ξ̂n. Let us start by noting that
for all i = 1, . . . , n, πi(F ) is a constant speed path in CS(si). Also, by Proposition 3.4,
when moving in F along a geodesic going to ξi, only πi changes, the rest of the projections
are constant. Therefore, to go from x to y, we start from x by following a geodesic with
endpoints {ξ1, ξ̂1} until we equalize π1, then we do the same for the other directions. After
equalizing all πi’s, by injectivity in the previous substep, we would have reached y.

Let θi = dT (ξi, si), and let x, y be in a same geodesic with endpoints ξi, ξ̂i. If θi = π/2,
dX(x, y) = di(πi(x), πi(y)).
If θi < π/2, dX(x, y) = αi di(πi(x), πi(y)), where αi =

1
tan(θi)

. Let us denote α = max
i

αi. By
concatenating such paths, we have ∀x, y ∈ F , dX(x, y) ≤ α

∑n
i=1 di(πi(x), πi(y)). Note that

α is independent of the maximal-flat F , and the previous inequality holds whenever x and
y are in a same maximal-flat containing ∆ at infinity.

Remark 4.2. Let us note that the maximal distribution of the vertices ξ1, . . . , ξn is not needed
for the injectivity of π inside a same flat containing ∆ at infinity. We only needed that the
walls spanned by {ξj}j ̸=i, for any i, have trivial intersection. So the result still holds in
a same flat if ∆ consisted of a single chamber for example. However, the injectivity fails
without the the maximal distribution of the vertices if one considers different maximal flats
with ∆ at infinity.

Step 2: π is a bi-Lipschitz (resp. quasi-isometric) embedding:

• Substep 1: π is injective (resp. quasi-injective).
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By quasi-injective, we mean that for any δ big enough, there exists D ≥ 0 such that for any
x, y ∈ X∆, if di(πi(x), πi(y)) ≤ δ for all i = 1, . . . , n then dX(x, y) ≤ D.
The proof for Euclidean buildings and for symmetric spaces is similar, but, for the sake of
clarity, we will treat them separately.

X is a Euclidean building: Let x, y ∈ X∆ such that πi(x) = πi(y) for i = 1, . . . , n. If they
lie in a same maximal-flat containing ∆ at infinity, then we are done by the previous step.
If not, let Fx and Fy be maximal-flats such that x ∈ Fx, y ∈ Fy and ∆ ⊂ ∂TFx ∩ ∂TFy.
∆ ⊂ ∂TFx ∩ ∂TFy, so Fx and Fy share a chamber at infinity and must intersect [KL97,
Lemma 4.6.5]. Moreover, by [KL97, Cor. 4.4.6], their intersection is a Weyl polyhedron, i.e.
an intersection of singular half-spaces {Mi}i∈I of Fx, so Fx ∩ Fy = ∩i∈IMi. Note that for all
i ∈ I, ∆ ⊂ ∂TMi. By assumption, x ̸∈ Fy, so it is not inside one of these singular half-spaces.
Let us denote it by M , and let H be its boundary wall. For every i = 1, . . . , n, ξi ∈ ∂TM ,
and ∂TM is a singular hemisphere in ∂TFx. Since ξ1, . . . , ξn are maximally distributed,
by Proposition 3.1, ∃i ∈ {1, . . . , n} such that for all j ̸= i, ξj ∈ ∂TH, and in particular
ηi ∈ ∂TH. With loss of generality, we suppose i = 1. This implies that [x, η1) stays parallel
to H (because η1 ∈ ∂TH), and therefore never enters in M , see Figure 3:

dX([x, η1), H) = dX(x,H) > 0.

On the other hand, π1(x) = π1(y) implies, by Proposition 2.12, that [x, η1) is strongly

Fx ∩ Fy

H

M

x
η1

[x, η1)

Figure 3. [x, η1) staying outside of M .

asymptotic to Fy. However, Fx ∩ Fy ⊂ M and H is convex so

0 = dX([x, η1), Fy) = dX([x, η1), Fx ∩ Fy) ≥ dX([x, η1),M) = dX([x, η1), H) > 0.

We get a contradiction. So the condition πi(x) = πi(y) for i = 1, . . . , n implies that x and y
lie in same maximal-flat containing ∆ at infinity, and we are done.

X is a symmetric space: let x, y ∈ X∆ such that di(πi(x), πi(y)) ≤ 1 for any i = 1, . . . , n. Let
Fx and Fy be maximal-flats such that x ∈ Fx, y ∈ Fy, and ∆ ⊂ ∂TFx ∩ ∂TFy. In particular,
Fx and Fy share a chamber at infinity so dX(Fx, Fy) = 0. The following lemma is a special
case of [Esk98, Lemma B.1] (see also [Mos73, Chapter 7]).

Lemma 4.3. There exist constants λ0 and λ depending only on X such that the following
holds: if F1 and F2 are maximal-flats in X with dX(F1, F2) = 0, then for any δ ≥ λ0, there
exist singular convex polyhedrons P and P ′ in F1 (i.e. intersections of singular half-spaces
in F1) such that dHaus(P, P

′) ≤ λδ and

P ′ ⊂ F1 ∩Nδ(F2) ⊂ P.
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Let us fix δ > λ0, and let P and P ′ be the singular convex polyhedrons in Fx such that
dHaus(P, P

′) ≤ λδ, P ′ ⊂ Fx ∩Nδ(Fy) ⊂ P , and let (Mi)i∈I be the singular half-spaces in Fx

such that P = ∩i∈IMi. Note that for any i ∈ I, ∆ ⊂ ∂TMi. Let us show that the condition
di(πi(x), πi(y)) ≤ δ for any i = 1, . . . , n implies that x ∈ P . If x ∈ Mi for any i ∈ I, we
are done. If not, let us denote this singular half-space by M , and let H be its wall. Again,
ξ1, . . . , ξn ∈ ∂TM are maximally distributed, so ∃i ∈ {1, . . . , n} such that for all j ̸= i,
ξj ∈ ∂TH, and in particular ηi ∈ ∂TH. We assume again that i = 1. So [x, η1) stays parallel
to H: dX(x,H) = dX([x, η1), H).
On the other hand, by Corollary 2.14, d1(π1(x), π1(y)) ≤ δ implies that dX([x, η1), Fy) ≤ δ.
Since [x, η1) ⊂ Fx, we get

d ([x, η1), Fx ∩Nδ(Fy)) = 0.

Fx ∩Nδ(Fy) ⊂ P ⊂ M , so d ([x, η1),M) = 0. However, x ̸∈ M and H is the boundary wall
of M , so

d ([x, η1),M) = d ([x, η1), H) = dX(x,H).

Therefore x ∈ H, and we get a contradiction.

Hence, the condition di(πi(x), πi(y)) ≤ δ for all i = 1, . . . , n implies that x ∈ P . Therefore
x ∈ Nλ(Fx ∩Nλδ(Fy)), and in particular, x ∈ Nλ+λδ(Fy). Let y′ ∈ Fy such that dX(x, y

′) ≤
λ+ λδ. The projections are 1-Lipschitz, so for any i, di(πi(x), πi(y

′)) ≤ λ+ λδ. y and y′ lie
in a same flat, so by step 1

dX(y, y
′) ≤ α

n∑
i=1

di(πi(y), πi(y
′)).

Therefore
dX(x, y) ≤ dX(x, y

′) + dX(y
′, y)

≤ λ+ λδ + α
n∑

i=1

di(πi(y), πi(y
′))

≤ λ+ λδ + α

(
n∑

i=1

di(πi(y), πi(x)) +
n∑

i=1

di(πi(x), πi(y
′))

)
≤ λ+ λδ + α (0 + n(λ+ λδ))

≤ (1 + αn)(λ+ λδ).

(4.1)

Note that D = (1 + αn)(λ+ λδ) depends only on X.

• Substep 2: π is a bi-Lipschitz (resp. quasi-isometric) embedding

Again, for the sake of clarity, let us treat the Euclidean buildings and symmetric spaces
separately.

X is a Euclidean building: let x, y ∈ X∆. If they lie in a same maximal-flat containing ∆
at infinity, we are done by step 1. If not, let Fx and Fy be maximal-flats such that x ∈ Fx,
y ∈ Fy and ∆ ⊂ ∂TFx∩∂TFy. πi([x, ξi)) and πi([y, ξi)) are not necessarily equal, but they still
share a ray. Indeed, since CS(si) is a Euclidean building of dimension 1, i.e. a metric tree,
[x, ξi) and [y, ξi) stay at bounded distance near +∞, and πi is 1-Lipschitz, then πi([x, ξi))
and πi([y, ξi)) share a ray. We have two cases, either one of πi([x, ξi)), πi([y, ξi)) is a subset
of the other. Or there is a branching and they form a tripod. Let us start from i = 1.
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If we are in the first case, i.e. if π1([y, ξ1)) ⊂ π1([x, ξ1)), we can start from x and follow [x, ξ1)
until we equalize π1. In other words, ∃x1 ∈ [x, ξ1) such that π1(x1) = π1(y). Since x1 ∈ [x, ξ1),
∀i ̸= 1, πi(x1) = πi(x). And x, x1 ∈ [x, ξ1) ⊂ Fx so dX(x, x1) ≤ αd1(π1(x), π1(x1)) =
αd1(π1(x), π1(y)). We denote by y1 = y, and move to i = 2 to equalize π2. If π1([x, ξ1)) ⊂
π1([y, ξ1)), we take y1 ∈ [y, ξ1) such that π1(y1) = π1(x), and denote x1 = x.

If we are in the second case and there was a branching, let x1 ∈ [x, ξ1) and y1 ∈ [y, ξ1) such
that π1(x1) = π1(y1) is the branching point. Since x, x1 ∈ [x, ξ1) ⊂ Fx and y, y1 ∈ [y, ξ1) ⊂
Fy, we have

dX(x, x1) ≤ α d1(π1(x), π1(x1)),

dX(y, y1) ≤ α d1(π1(y), π1(y1)).
(4.2)

π1(x1) = π1(y1) is the branching point, so d1(π1(x), π1(y)) = d1(π1(x), π1(x1))+d1(π1(y1), π1(y))
and 4.2 implies that
(4.3) dX(x, x1) + dX(y, y1) ≤ α d1(π1(x), π1(y)).

We repeat this process by starting from x1, y1 and we equalize π2. We get at the end a path
x = x0 → x1 → · · · → xn−1 → xn = yn → yn−1 → · · · → y1 → y0 = y. Note that xn = yn by
injectivity because we’ve equalized all πi. By the triangle inequality and by 4.3:

dX(x, y) ≤
n∑

i=1

dX(xi−1, xi) + dX(yi−1, yi) ≤
n∑

i=1

α di(πi(x), πi(y)).

X is a symmetric space: Let x, y ∈ X∆. If they lie in a same maximal-flat containing ∆ at
infinity, we are done by step 1. If not, let Fx and Fy be maximal-flats such that x ∈ Fx,
y ∈ Fy and ∆ ⊂ ∂TFx ∩ ∂TFy. π1([x, ξ1)) and π1([y, ξ1)) are again geodesic rays with the
same point at +∞ in CS(s1), which is a rank one symmetric space of non-compact type.
The difference with the building case is that the rays no longer share a ray. To overcome
this, we need the following lemma.

Lemma 4.4. Let X be a symmetric space of non-compact type. For any regular point
η ∈ ∂TX, there exists δ > 0 such that if Isom0(X) = KAN is an Iwasawa decomposition
with respect to η, and x, y ∈ X are in a same N-orbit, then

dX ([x, η)(d), [y, η)(d)) ≤ δ,

where d = dX(x, y).

For a proof, see for example the proof of [Leu00, Lemma 4]. As an application, since in rank
one the stabilizer of any point acts transitively on the boundary, δ does not depend on η. If
η ∈ ∂TX, we denote by bη a Busemann function with respect to η and some base point in
X. Note that if x, y ∈ X, bη(x)− bη(y) does not depend on the basepoint. So, we have the
following.

Corollary 4.5 (see Figure 4). Let X be a rank one symmetric space of non-compact type.
There exists δ such that for any η ∈ ∂TX and for any x, y ∈ X the following holds:
If bη(x) − bη(y) ≥ 0, let x′ ∈ [x, η) such that bη(x

′) = bη(y), let x′′ ∈ [x′, η) such that
dX(x

′, x′′) = dX(x
′, y), and y′′ ∈ [y, η) such that dX(y, y′′) = dX(x

′, y). Then the path

x −→ x′′ −→ y′′ −→ y,

where each arrow is a geodesic segment, has total length ≤ 3 dX(x, y) + δ.
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η

x

x′
y

x′′y′′
≤ δ

Figure 4. The quasi-geodesic x −→ x′′ −→ y′′ −→ y.

Proof. Let B be the horoball whose boundary horosphere contains y, and let p : X → B be
the projection. p(x) = x′ so

(4.4) dX(x, x
′) ≤ dX(x, y).

B is convex so p is 1-Lipschitz [BH13, Chap. 2 Prop. 2.4], and we have

(4.5) dX(x
′, y) = dX(p(x), p(y)) ≤ dX(x, y).

bη(x
′) = bη(y) and X is rank one so x′ and y are in the same N -orbit for some Iwasawa

decomposition. By Lemma 4.4, dX(x′′, y′′) ≤ δ, and the path x′ −→ x′′ −→ y′′ −→ y has length
≤ 2dX(x

′, y) + δ. We conclude by using 4.4 and 4.5 in dX(x, y) ≤ dX(x, x
′) + dX(x

′, y). □

Let us go back to the proof. Let δ > 0 be as in Corollary 4.5, that works for all the cross
sections CS(si), for i = 1, . . . , n. Let us start from i = 1.

Let x1 ∈ [x, ξ1) and y1 ∈ [y, ξ1) such that, as in Corollary 4.5, the path, in CS(s1), π1(x) −→
π1(x1) −→ π1(y1) −→ π1(y) has length ≤ 3 d1(π1(x), π1(y)) + δ.

d1(π1(x), π1(x1)) + d1(π1(x1), π1(y1)) + d1(π1(y1), π1(y)) ≤ 3 d1(π1(x), π1(y)) + δ.

x, x1 ∈ [x, ξ1) ⊂ Fx, and y, y1 ∈ [y, ξ1) ⊂ Fy, so

dX(x, x1) ≤ α d1(π1(x), π1(x1)),

dX(y, y1) ≤ α d1(π1(y), π1(y1)).

Therefore,

dX(x, x1) + dX(y, y1) ≤ α (d1(π1(x), π1(x1)) + d1(π1(y), π1(y1)))

≤ 3α d1(π1(x), π1(y)) + αδ.
(4.6)

We repeat this process by starting from x1, y1. We get at the end a path x = x0 → x1 →
· · · → xn−1 → xn → yn → yn−1 → · · · → y1 → y0 = y. Let us note that, unline in the
building case, xn ̸= yn. However, since π(xn) = π(yn) for all i, by the quasi-injectivity in the
previous step,

dX(xn, yn) ≤ D,
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where D is the constant in 4.1. By the triangle inequality and by 4.6:

dX(x, y) ≤
n∑

i=1

(
dX(xi−1, xi) + dX(yi−1, yi)

)
+ dX(xn, yn)

≤
n∑

i=1

(
3α di(πi(x), πi(y)) + αδ

)
+D

≤ 3α
n∑

i=1

(
di(πi(x), πi(y))

)
+ (nαδ +D).

Step 3: π is surjective (resp. quasi-surjective):

By quasi-surjective, we mean that if X is a symmetric space and if (H ′
1, . . . , H

′
n) ∈ CS(s1)×

· · · × CS(sn), there exists x ∈ X∆ such that for any i = 1, . . . , n, di(πi(x), H
′
i)) ≤ 1.

Let us start by the following observation.

Lemma 4.6. For any i = 1, . . . , n, P (si) ⊂ X∆.

Proof. Let i ∈ {1, . . . , n}, and let H be the flat in F0 with boundary si. Let σ be the singular
hemisphere of ∂TF0 bounded by si and containing ξi, and let m be its center. Therefore,
m ∈ ∂∞CS(si).
Now let H ′ ∈ CS(si). Then any geodesic in CS(si) that contains it and contains m at infinity
corresponds to a maximal-flat F in X whose boundary contains si and m. By convexity,
∂TF contains σ and therefore contains ξi. Recall that for any j ̸= i, ξj ∈ si ⊂ ∂TF . We
conclude that ∆ ⊂ ∂TF . □

Let x ∈ X∆, and F be the flat that contains x such that ∆ ⊂ ∂TF . Let us denote πi(x) = Hi

for any i. Let H ′
1 ∈ CS(s1).

Since π1(x) = H1, there exists x1 ∈ H1 such that [x, η1) is strongly asymptotic to [x1, η1).
As in Lemma 4.6, let m1 be the center of the singular hemisphere σ1 bounded by s1 and
containing ξ1. By considering, in CS(s1), two geodesic rays containing H1 and m1 at infinity
(resp. H ′

1 and m′
1), there exist two flats F1 and F ′

1 such that H1 ⊂ F1, H ′
1 ⊂ F ′

1, and
σ1 ⊂ ∂TF1∩∂TF

′
1. Moreover, since for any regular point µ in σ1, [x, µ) is strongly asymptotic

to F ′
1, it also holds, by Corollary 2.10, for any interior point of σ1, and in particular for ξ1.

By Lemma 2.11, there exists x′
1 ∈ F ′

1 such that [x1, ξ1) is strongly asymptotic to [x′
1, ξ1). H ′

1

is transverve to [x′
1, ξ1), so x′

1 can be taken in H ′
1. Let us denote the opposites of ξ1 and m1

in F ′
1 by ξ′1 and m′

1. see Figure 5 for the building case.
For the rest of the proof, let us treat the building and symmetric space cases separately.

X is a Euclidean building: Let us show that there exists z ∈ X∆ such that π1(z) = H ′
1 and

for any i ̸= 1 πi(z) = Hi. By repeating the process, this completes the proof.

Claim 4.7. [x, ξ1) enters in a maximal-flat F ′ satisfying ∆ ∪ {ξ′1} ⊂ ∂TF
′.

Proof of the claim. Let H be the (n − 1)-flat in F satisfying π1(H) = π1(x) (see Proposi-
tion 3.4), and let s = ∂TH. Note that ξ2, . . . , ξn ∈ s, therefore s1 and s both contain the
top-dimensional cell that contains η1. By [Lee00, Lemma 3.5], CS(s) and CS(s1) have the
same boundary, in particular m1,m

′
1 ∈ ∂CS(s). Since π1([x, ξ1)) is a parametrization of the
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x′′
1

x1

x′
1

H ′′
1

H1

H ′
1

η1

η1

η1

F1

F ′
1

p

x

y

z

ξ′1

ξ1

m1

m′
1

F1 ∩ F ′
1

Figure 5

geodesic ray [π1(x),m1) in CS(s), it enters in the geodesic joining m′
1 and m1. Such a geo-

desic in CS(s) corresponds to a maximal-flat F ′ that contains s,m1, and m′
1 in its boundary.

By convexity, as in Lemma 4.6, ξ1, ξ′1 ∈ ∂TF
′. □

Since π1(x) = π1(x1), it follows that π1([x, ξ1)) = π1([x1, ξ1)). Let p be the branching point of
[x1, ξ1) and [x′

1, ξ1). There exists y ∈ [x1, ξ1) such that π1(y) ∈ π1([p, ξ1)), and y is contained
in a flat F ′ that satisfies Claim 4.7.

Let us denote π1(y) = H ′′
1 , and let x′′

1 ∈ H ′′
1 ∩ [x1, ξ1) such that [y, η1) is strongly asymptotic

to [x′′
1, η1). Now we will move backwards in F ′ towards ξ′1. π1(y) = π1(x

′′
1), so π1([y, ξ

′
1)) =

π1([x
′′
1, ξ

′
1)). Since x′

1 ∈ [x′′
1, ξ

′
1), there exists z ∈ [y, ξ′1) such that π1(z) = π1(x

′
1) = H ′

1, see
Figure 5. y ∈ F ′ and ξ′1 ∈ ∂TF

′
1 so z ∈ F ′ ⊂ X∆. Moreover, in the path x −→ y −→ z, we

followed geodesics pointing towards ξ1 so π2, . . . , πn are constant along the path.

X is a symmetric space: we will show that for any ε > 0, there exists z ∈ X∆ such that
d1(π1(z), H

′
1) ≤ ε, and for any i ̸= 1, di(πi(z), Hi) ≤ ε.

We have the same setting except that F1 and F ′
1 do not share a singular half-space (if

they do then they are equal). As in Claim 4.7, there exists a maximal-flat F ′ such that
∆∪{ξ′1} ⊂ ∂TF

′, and to which [x, ξ1) is strongly asymptotic. The proof is similar. As in the
building case, π1([x, ξ1)) = π1([x1, ξ1)). Note also that [x1, ξ1) and [x′

1, ξ1) are strongly as-
ymptotic, so their images by π1 are also strongly asymptotic (π1 is 1-Lipschitz). In particular
d
(
π1([x, ξ1)(t)), π1([x

′
1, ξ1))

)
−−→
+∞

0. To sum up

[x, ξ1) is strongly asymptotic to F ′,

π1([x, ξ1)) is strongly asymptotic to π1([x
′
1, ξ1)).

So there exists y ∈ [x, ξ1) such that y ∈ Nε(F
′) and d1(π1(y), π1([x

′
1, ξ1))) ≤ ε. Let

y′ ∈ F ′ such that dX(y, y
′) ≤ ε, and let x′′

1 ∈ [x′
1, ξ1) such that d1(π1(y), π1(x

′′
1)) ≤ ε.

So d1(π1(y
′), π1(x

′′
1)) ≤ 2ε.
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Now that y′ ∈ F ′ which is in X∆ and contains ξ′1 in its boundary, we can move towards it
while staying in X∆. d1(π1(y

′), π1(x
′′
1)) ≤ 2ε, so the geodesic rays π1([y

′, ξ′1)) and π1([x
′′
1, ξ

′
1)),

in CS(s1), are at Hausdorff distance ≤ 2ε. H ′
1 ∈ π1([x

′′
1, ξ

′
1)) so there exists z ∈ [y′, ξ′1) such

that d1(π1(z), H
′
1) ≤ 2ε.

Note that in both paths x −→ y and y′ −→ z, only π1 changes so for any i ̸= 1, πi(z) = πi(y
′)

which is at distance ≤ ε from πi(y) = πi(x) = Hi. So z satisfies

d1(π1(z), H
′
1) ≤ 2ε,

d1(πi(z), Hi) ≤ ε, for any i ̸= 1.

By repeating the process for i ̸= 1, we have shown that: for any ε > 0, if Hi ∈ CS(si) for
i = 1, . . . , n, there exists x′ ∈ X∆ such that for any i, di(πi(x

′), Hi)) ≤ 2nε. By taking ε
small enough, this completes the proof of the quasi-surjectivity.

Remark 4.8. Let us note that π is also surjective for symmetric spaces, but the proof is
tedious and the quasi-surjectivity is enough for our purpose.

Remark 4.9. Note also that the maximal distribution of the vertices ξ1, . . . , ξn is not needed
for the surjectivity of π. We only needed that for any i, ξi ̸∈ si and ξi ∈ sj for any j ̸= i, so
that one can move in the direction of ξi and only changing πi.

Step 4: X∆ → X is a bi-Lipschitz (resp. quasi-isometric) embedding:

Let us threat the two cases separately.

X is a Euclidean building: let us prove a stronger result, from which the proof immediately
follows.

Proposition 4.10. Let η be an interior point of a chamber C in ∂TX. There exists a
constant λ > 0 such that for any maximal-flats F1 and F2 such that η ∈ ∂TF1 ∩ ∂TF2, the
following holds:
If x ∈ F1 and y ∈ F2, then there exists a path in F1 ∪ F2 from x to y of length ≤ λdX(x, y).

Let us first prove the following lemma, which is the equivalent of Lemma 4.4 for buildings.

Lemma 4.11. Let η be an interior point of a chamber C in ∂TX. There exists β ≥ 0 such
that the following holds:
For any x, y ∈ X, if [x, η) is strongly asymptotic to [y, η) and bη(x) = bη(y), then

[x, η)(βd) = [y, η)(βd),

where d = dX(x, y). In other words, the branching point of [x, η) and [y, η) is at distance
≤ βdX(x, y) from x and y.

Proof. Let z be the branching point of [x, η) and [y, η). Note that bη(x) = bη(y) implies that
dX(x, z) = dX(y, z). Note also that, since η is a regular point, z is the entering point of [x, η)
in the cone [y, C). Let H be the wall in F2 by which [x, η) enters in [y, C). Then

∠z(x, y) = 2dT (η, ∂TH).

Since η is an interior point of C,

dT (η, ∂TH) ≥ dT (η, ∂C).
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Let θ = 2 dT (η, ∂C), which does not depend on x and y. By considering the geodesic triangle
[x, y],[y, z],[z, x], (see [BH13, Chap.2 Ex 1.9])

dX(x, y)
2 ≥ dX(x, z)

2 + dX(y, z)
2 − 2dX(x, z)dX(y, z) cos(∠z(x, y))

≥ 2(1− cos(θ))dX(x, z)
2.

Therefore,

dX(x, z) ≤
1√

2(1− cos(θ))
dX(x, y),

and the path x −→ z −→ y has length ≤ 2√
2(1−cos(θ))

dX(x, y). □

Proof of Proposition 4.10. Without loss of generality, suppose bη(x)− bη(y) ≥ 0.

• If [x, η) is strongly asymptotic to [y, η), let x′ ∈ [x, η) such that bη(x
′) = bη(y), and let z

be the branching point. By Lemma 4.11,

dX(x
′, z) = dX(y, z) ≤ β dX(x

′, y).

x′ is the projection of x onto the horoball, centered at η, and whose boundary horocycle
contains x′ and y, so

dX(x, x
′) ≤ dX(x, y).

This projection is 1-Lipschitz, so

dX(x
′, y) ≤ dX(x, y).

Therefore, the path x −→ x′ −→ z −→ y has length

dX(x, x
′) + dX(x

′, z) + dX(z, y) ≤ dX(x, y) + 2βdX(x
′, y) ≤ (2β + 1)dX(x, y).

• If not, let y1 ∈ F2 such that [x, η) is strongly asymptotic to [y1, η) and bη(y1) = bη(y). Let
z be the branching point of [x, η) and [y1, η), and z′ ∈ [y, η) such that bη(z

′) = bη(z). We
consider the path x −→ z −→ y1 −→ y. By the first case,

dX(x, z) + dX(z, y1) ≤ (2β + 1)dX(x, y).

bη(y1) = bη(y), bη(z′) = bη(z), and they are all in F2, so

dX(y, y1) = dX(z
′, z) = dX(p(y), p(x)) ≤ dX(x, y),

where p is the projection onto the horoball centered at η, and whose boundary horocycle
contains z′ and z. We conclude that this path has length ≤ (2β + 2)dX(x, y). □

X is a symmetric space: let us prove that for some δ > 0, Nδ(X∆), equipped with the path
metric, embeds quasi-isometrically in X. To do so, as in the building case, let us prove the
following result, which can be seen as a generalization of Corollary 4.5, and from which the
proof follows.

Proposition 4.12. Let η be an interior point of a chamber C in ∂TX. There exist constants
δ, λ,K > 0 such that for any maximal-flats F1 and F2 such that η ∈ ∂TF1∩∂TF2, the following
holds: if x ∈ F1 and y ∈ F2, then there exists a path in Nδ(F1 ∪ F2) from x to y of length
≤ λdX(x, y) +K.
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Proof. Let δ be the constant of Lemma 4.4 and, without loss of generality, we suppose
bη(x)− bη(y) ≥ 0.

• If [x, η) is strongly asymptotic to [y, η), Lemma 4.4 implies that there exists a path in
Nδ([x, η) ∪ [y, η)) ⊂ Nδ(F1 ∪ F2) of length ≤ 3 dX(x, y) + δ.

yy′

y1y2

x

x1

x2

F2

η

Figure 6. Path from x to y in Nδ(X∆).

• If not, let us consider the following points: y1 ∈ F2 such that [x, η) is strongly asymptotic
to [y1, η) and bη(y1) = bη(y), x1 ∈ [x, η) such that bη(x1) = bη(y1), x2 ∈ [x1, η) such that
dX(x1, x2) = dX(x1, y1), y2 ∈ [y1, η) such that dX(y1, y2) = dX(x1, y1), and y′ ∈ [y, η) such
that bη(y

′) = bη(x2) = bη(y2), see Figure 6.

The first case implies that the path x −→ x1 −→ x2 −→ y2 −→ y1, which is in Nδ(F1 ∪ F2), has
length ≤ 3dX(x, y1) + δ. And, as in the building case, dX(x, y1) ≤ dX(x, y), and dX(y1, y) =
dX(y2, y

′) ≤ dX(x, y). We conclude that the path x −→ x1 −→ x2 −→ y2 −→ y1 −→ y has length
≤ 4dX(x, y) + δ. □

This completes the proof of Theorem 1.4.

5. Appendix

In this appendix, we show that the quasi-isometric embedding of the product of n
copies of H2

R into any symmetric space of non-compact type of rank n can also be obtained
as an AN -map. The idea of the proof was communicated to the first author by Yves Benoist.

Let us recall the following theorem due to Fisher–Whyte [FW18, Theorem 1.5].

Theorem. Let G1 and G2 be semisimple Lie groups of equal rank with Iwasawa decompo-
sitions Gi = KiAiNi. Every injective homomorphism A1N1 → A2N2 is a quasi-isometric
embedding.

Let X be a symmetric space of non-compact type of rank n, and G = KAN an Iwasawa
decomposition, where G = Isom0(X). To show that there exists a quasi-isometric embedding
from the product of n copies of the real hyperbolic plane into X, we need to show that there
exists a subgroup of AN isomorphic to the product of n copies of the affine group{(

et set

0 e−t

) ∣∣∣ t, s ∈ R
}
.
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We use the notations from Section 2.4: Let a be a Cartan subspace such that A = exp(a),
and n =

⊕
α∈Φ,α(Y )>0 gα the sum of positive root spaces with respect to some regular vector

Y ∈ a such that N = exp(n). Let us show that it is enough to find linearly independent
positive roots α1, . . . , αn such that for any i ̸= j, αi + αj is not a root.

For any i = 1, . . . , n, take Zi ∈ gαi
\{0}. Since for any i ̸= j, αi + αj is not a root, eZi and

eZj commute. Therefore
n∏

i=1

exp(R.Zi) ≃ Rn,

on which A acts diagonally. Indeed, since α1, . . . , αn are linearly independent, pick, for any
i = 1, . . . , n, Xi ∈ ∩j ̸=i kerαj such that αi(Xi) = 2. So for any i ̸= j, eXi and eZj commute:

eXieZj = eXieZje−XieXi = exp(eαj(Xi)Zj)e
Xi = eZjeXi .

Therefore, for any t1, . . . , tn, s1, . . . , sn ∈ R,

H := exp

(
n∑

i=1

tiXi

)
exp

(
n∑

j=1

sjZj

)
=

n∏
i=1

etiXiesiZi .

It is easy to check that for any i = 1, . . . , n,{
etXiesZi

∣∣ t, s ∈ R
}
≃
{(

et set

0 e−t

) ∣∣∣ t, s ∈ R
}
.

Therefore H is the desired subgroup of AN which isomorphic to the product of n copies of
the affine group.
Finding the roots α1, . . . , αn: We recall that there exists a natural order on the set of

positive roots: given two roots α and β, α ≤ β iff β−α is a non-negative linear combination
of simple roots. We refer to [Bou81, Chap.6] for more details. We start by taking α1 the
biggest positive root, and let α2 be the biggest positive root than is not in span{α1}. α1+α2

is not a root, otherwise it would be bigger than α1. Take α3 the biggest positive root that is
not in span{α1, α2}. Again, and by the same argument, α1 + α3 and α2 + α3 are not roots.
We conclude by induction.
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