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GENERALIZATIONS OF NONCOMMUTATIVE NOETHER’S

PROBLEM

JOÃO FERNANDO SCHWARZ

Abstract. Noether’s problem is a classical and very important problem in
algebra. It is an intrinsecally interesting problem in invariant theory, but with
far reaching applications in the sutdy of moduly spaces, PI-algebras, and the
Inverse problem of Galois theory, among others. To obtain a noncommutative
analogue of Noether’s problem, one would need a significant skew field that
shares a role similar to the field of ratioal functions. Given the importance
of the Weyl fields due to Gelfand-Kirillov’s Conjecture, in 2006 J. Alev and
F. Dumas introduced what is nowdays called the noncommutative Noether’s
problem. Many papers in recent years [26], [21], [28], [65] have been dedicated
to the subject. The aim of this article is to generalize the main result of [28]
for more general versions of Noether’s problem; and consider its analogue in
prime characteristic.
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Notions of rationality

Let k denote an arbitrary base field.
The question of rationality of fields is an important one, whose study goes back

to more than a century ago. One of the central problems in this area is the Lüroth
problem: let F be a finite extension of k, with k ( F ⊂ k(x1, . . . , xn). Is it true
that, then, F is also a purely transcendental extension of k?

There is a nice geometric interpretation of this problem. Let X be a variety
with k(X) = F . The embedding F ⊂ k(x1, . . . , xn) induces a dominat rational
map f : Pn → X . Varieties with this property are called unirational, and varieties
birationally equivalent with a Pm are called rational. So geometrically Lüroth’s
problem asks: is every unirational variety rational?

Lüroth problem has a positive solution when n = 1, by Lüroth’s Theorem (see,
e.g., [33]), and when n = 2 and the base field is algebraically closed of characteristic
0, by Castelnuovo’s rationality criterion (see, e.g., [67]). However, if the base field is
not algebraically closed, counter-examples exists already for n = 2 even for k = R.
For instance, the field of fractions of

R[x, y, z]/(x2 + y2 − z(z − 1)(z − 2))

is unirational but not a purely transcendental extension [22]. When n = 2,
counter-examples also were found in algebraically closed fields of prime character-
istic by Zariski [67]. When n ≥ 3, counter-examples exists even for algebraically
closed fields of zero characteristic [22].
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There is still another notion of rationality that is useful: let F be a finite ex-
tension of k. If for some indeterminates, F (x1, . . . , xr) is a purely transcendental
extension of k, we say that F is stably-rational. Geometrically, a variety X is
stably-rational if, for some m > 0, X × Pm is rational. It should be noticed that
rational ( stably-rational ( unirational. For this and other notions of rationality,
see [17].

Rationality of the field of invariants and Noether’s problem

There is an important subcase of Lüroth’s problem, which talks about the ra-
tionality of the ring of invariants of a purely transcendental extension. It was
introduced and studied by Emmy Noether [49], [50]:

Noether’s Problem: Let Sn acts by permutation of the variables in the
rational field k(x1, . . . , xn). Let G < Sn be a subgroup that permutes transi-
tively the variables. When k(x1, . . . , xn)

G is a purely transcendental extension of
k — with necessarily the same transcendence degree? Or, in other words, when
k(x1, . . . , xn)

G ≃ k(x1, . . . , xn)?

Remark 0.1. A more appropriate name would be Noether’s Conjecture, for she
believed the above question to have a positive solution for all G.

Noether introduced this question thinking in applications to the Inverse problem
in Galois theory. Consider k = Q (or any other Hilbertinian field, see, e.g. [35,
Chapter 3]). If Noether’s Problem has a positive solution for G, she showed that so
has the Inverse problem of Galois theory: there is a Galois extension L of Q such
that Gal(L,Q) = G.

We now introduce an useful terminology: let G be a finite group, and consider
the field of rational functions k(xh)h∈G, with the variables indexed by the elements
of G. There is a natural action by permutations of G on k(xh)h∈G: g ∈ G sends xh

to xgh. The field of invariants k(xh)
G
h∈G is denoted k(G).

Some important cases of positive solution to Noether’s Problem are:

Theorem 0.2. (1) Sn acting on the rational function field in n-indeterminates.
(2) An acting on the rational function field in n-indeterminates, for n = 3, 4, 5.

The case of alternating groups remains open for n > 5 [35].
(3) Sn action on k(x1, . . . , xn, y1, . . . , yn), permuting x’s and y’s simultaneously

[45]
(4) The action of the quaternion group Q8 in k(x1, x2, x3, x4) [35]
(5) Let G be a p-group, and char k = p. Then k(G) is a purely transcendental

extension. [32]
(6) G is a finite abelian group with exponent e such that either char k = 0 or

it is coprime with e; and the field possesses a primitive e-th root of unity.
[35]

(7) Let n be a positive integer. Then Q(Cn) if and only if n divides

22.3m.52.72.11.13.17.19.23.29.31.37.41.43.61.67.71

m ≥ 0. [53]

The first counter-examples to Noether’s problem are due to Swan [64] and Vokre-
senskii [66], independently, over the rational numbers. Their counter-examples con-
sisted of cyclic groups acting by permutation, the smallest one being C47.
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Later Lenstra [40] classified all finite abelian groups of permutations for which
Noether’s problem has a positive solution; he found that the smallest group that
can give a counter-example is C8. Finally, Saltman [57] obtained the first counter-
examples over algebraically closed fields.

Noether’s problem continues to be extremely relevant to the Inverse problem in
Galois theory [35]. For more information about permutation’s Noether’s problem,
see [35] and [32].

Linear Noether’s problem Let G < GLn(k) be a finite group acting linearly
on k(x1, . . . , xn). Is k(x1, . . . , xn)

G a purely transcendental extension?
The first person to consider this kind of question, althought not in a sistematic

way, was Burnside [14].
Here is an important list of cases of positive solution:

Theorem 0.3. (1) All permutation actions considered previously.
(2) n = 1, G arbitrary.
(3) n = 2, G arbitrary.
(4) n = 3, G arbitrary, k algebrically closed of zero characteristic. [20]
(5) By Chevalley-Shephard-Todd Theorem (see Theorem 3.11), whenever the

natural representation of G is by a pseudo-reflection group and char k and
|G| are coprime. [11], [20].

Again, as int the case of permutation groups, a positive solution of linear Noether’s
problem for a group G, shows that the Inverse problem in Galois theory has a pos-
itive solution for the same group, among other things [35]. In particular, this is be
far the easiest way to show that pseudo-reflection groups give a positive solution to
the Inverse problem.

Linear Noether’s problem and the original Noether’s problem are linked by the
no-name lemma [52]: Let G be a finite group. There exists a faithful, finite-
dimensional, linear k-representation G →֒ GL(V ) such that k(V )G is a purely
transcendental extension if and only if k(G) is stably-rational.

When we allow the action of infinite groups; that is, rational representations of
a linear connected algebraic group G on a finite dimensional vector space V , the
questions of the rationality of V/G or P (V )/G — which can also be understood as
the rationality of the invariants of k(V ), k(P (V )) — are related to the question of
rationality of many moduli spaces [10]. As an example, if G is a connected solvable
algebraic group over an algebraically closed field, and V is a rational representation,
V/G is rational — the action of G stailizes a flag of V (by Lie-Kolchin theorem)
and we may apply Miyata’s theorem [45]. This problem, in this generality, has also
many other important apllications: see [17] and [19].

Now let’s recall the following notion

Definition 0.4. A G-lattice is a faithful G-module M which is a finitely generated
free abelian group.

Multiplicative Noether’s Problem: Let M be a G-lattice. The group al-
gebra k[M ] is a ring of Laurient polynomials in rankM indeterminates, where G
acts by algebra automorphisms. When is the invariant subfield k(M)G a purely
transcendental extension?

Pherhaps the most spetacular application of multiplicative Noether’s problem is
due to Procesi [55]. He realized that the question of (stable)-rationality of the center
of the division ring of fractions of the ring of 2 n× n generic matrices is equivalent
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to the positive solution of particular case o multiplicaive Noether’s problem. A nice
simplification of his ideas can be found in [22]. The center is a purely trancendental
extension for n = 2, 3, 4. For greater values of n, it is still an open probelm [18].

There is a multiplicative analogue of the Chevalley-Shephard-Todd Thereom (see
Theorem 3.11 below ).

Definition 0.5. Let L be a G-lattice. We say that G is a reflection group if, with
its induced action on the Q-vector space Q⊗Z L, G acts as a reflection group.

Theorem 0.6. (Multiplicative Version of Chevalley-Shephard-Todd Theorem)
Let L be a G-lattice, with char k and |G| coprime. The following are equivalent:

(1) k[L]G is a regular ring.
(2) k[L] is a finitely generated projective k[L]G-module.
(3) k[L] is a finitely generated free k[L]G-module.
(4) k[L]G is mixed Laurient polynomial ring.
(5) G acts as a reflection group on L and Z[L]G is a unique factorization do-

main.

Proof. [42, Theorem 7.1.1.] �

Corollary 0.7. If L is a G-lattice that satisfy any of the above conditions, then
k(L)G is a purely transcendental extension. In particular, k[L]G is polynomial if
and only if L is isomorphic to the weight lattice of some reduced root system and
G is the Weyl group.

Proof. [42, Corollary 7.1.2]. �

Apart from this result, we remark that, in practice, is very difficult to find groups
G that satisfy the conditions of Theorem 0.6, and in general one needs computer
assistance [41]. Nonetheless

Theorem 0.8. If rank L of the G-lattice is 1 , 2 or 3, k(L)G will always be a purely
transcendental extension, independtly of G.

Proof. [32] �

More on multiplicative Noether’s problem can be found in the survey [32] and
on the book [42].

In this paper we will consider the most general form for Noether’s problem. We
will use the terminology in [35]:

General Noether’s problem Let G be any finite subgroup of automorphisms
of k(x1, . . . , xn) whatsoever. When is k(x1, . . . , xn)

G a purely transcendental ex-
tension?

By Lüroth’s Theorem, this problem has a positive solution for any field when
n = 1, and by Castelnuovo rationality criterion, for n = 2 when k is algebraically
closed and char k = 0

Noncommutative Noether’s problem

In the paper [3] J. Alev and F. Dumas introduced the following noncommuta-
tive analogue of Noether’s problem, usually called just noncommutative Noether’s
problem. Let char k = 0, An(k) denote the Weyl algebras, and Fn(k) denote
their skew field of fractions, the Weyl fields. More generally, We write An,s(k)
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for An(k(x1, . . . , xs)), and Fn,s(k) their skew field of fractions. For the sake of
simplicity write F0,s(k) = k(x1, . . . , xs).

The point of view of noncommutative Noether’s problem was influenced by the
Gelfand-Kirillov conjecture [29], that had great influence in the study of enveloping
algebras, but was eventually shown to be false in general. The Conecture said
that given be an algebraic Lie algebra g, then the skew field of fractions of U(g)
is isomorphic to Fn,s(k) for adequate n, s. So the Weyl fields can be considered
good noncommutative analogues of the field of rational functions. For more on the
Conjecture, see [54].

Noncommutative Noether’s problem Let G be a finite group acting linearly
in An(k), and hence on Fn(k). When Fn(k)

G ≃ Fn(k)?

Remark 0.9. One might wonder why we don’t consider the possibilty that An(k)
G

is isomorphic to An(k). By a result of Alev and Polo [4], this is knwon to be
impossible.

Remark 0.10. The question for infinite G was also considered. In this case a
small modification on the statemente is necessary; see [3].

Remark 0.11. Invariants of the first Weyl field under other actions were consid-
ered in [2].

In [3] the problem was shown to have positive solution when n = 1, 2 and when
the natural action of G decomposes in a direct sum of one dimensional G-modules.
In [26] the problem was solved for the symmetric group with its permutation action,
and as an consequence it was obtained the analogue of Gelfand-Kirillov Conjecture
for finite W -algebras of type A. In [21] this fact was generalized for all complex
reflection groups, and as corollary it was obtained the analogue of the Gelfand-
Kirillov Conjecture for spherical subalgebras of rational Cherednik algebras and
linear Galois algebras (which includes U(gln), finite W -algebras of type A, OGZ
algebra, [43]). In [28] it was proved that if a finite linear action gives a positive
solution to linear Noether’s problem, then the same action gives a positive solution
of noncommutative Noether’s problem. This result was used to show the validity of
Gelfand-Kirillov Conjecture for spherical subalgebras of trigonometric Cherednik
algebras in [59] and certain algebras in the paper [34]. In [65] a kind of the converse
result was shown: if k = C, and G is a finite group of linear automorphsism defined
over Z and Fn(C)

G ≃ Fn(C), then for algebraically closed fields k of characteristic
big enough, k(x1, . . . , xn)

G is stably rational, and with this result counter-examples
to noncommutative Noether’s problem were found — in fact, the group actions were
the same as Saltman’s counter-examples to Noether’s problem, for in these counter-
examples, the invariant subfield is also not stably-rational. It remains an interesting
open problem to determine if linear Noether’s problem and its noncommutative
analogue are equivalent, although we conjecture that this does not hold.

Our purpose in this paper is two-fold. The first is to generalize the noncom-
mutative Noether’s problem, and the second is to consider its version in prime
characteristic. We will denote the usual (Grothendieck’s) differential operator ring
by D and its crystalline version (from [9]) by Dc.

The main theorem of [28] is Theorem 1.1: if G < GLn(k) is finite group of
automorphisms that act linearly on k(x1, . . . , xn) and on the Weyl algebra An(k)
in the same way, a positive solution to linear Noether’s problem implies a positive
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solution to noncommutative Noether’s problem: Fn(k)
G ≃ Fn(k). This theorem

was proven using purely ring theoretical methods.
To generalize this result, we will need some basic affine algebraic geometry.

Hence, from now on, we assume k algebraically closed.
Following the terminology in [51], we will call Bn(k) = D(k(x1, . . . , xn)) =

k(x1, . . . , xn)〈∂1, . . . , ∂n〉. Any finite group G of automorphisms of k(x1, . . . , xn)
extends to a group of automorphisms of Bn(k), and hence of Fn(k)

Theorem 0.12. In the context above, if general Noether’s problem has a positive
solution, then Fn(k)

G ≃ Fn(k)

We will offer also a direct, much simpler, proof of the next theorem, even it being
just a corollary of the previous one.

Theorem 0.13. Let M be an G-lattice. Identify k[M ] with k[x±1
1 , . . . , x±1

n ] =
O(k×n), where k

×n is the n-torus. Then G acts on D(k×n), and hence on Fn(k).
If multiplicative Noether’s problem has a positive solution, then Fn(k)

G ≃ Fn(k)

Now we move to prime characteristic (and keep the field algebraically closed).
The definition of the Weyl algebra by generators and relations make perfect sense
in prime characteristic, and An(k) is still a Noetherian domain (for more about
the Weyl algebra in prime characteristic, see [56]. In particular, it is an Azumaya
algebra over its center). In particular, its skew field of fractions, the Weyl fields
Fn(k), exists, although now they are finite dimensonal over their centers. It has
been stated explictly in this author PhD thesis that he conjectured some form of
noncommutative Noether’s problem would make sense in prime characteristic.

However, Grothendieck’s rings of differential operators in prime characteristic
are not suitable for us, as they are not Noetherian or domains, and in particular,
An(k) and D(An) are very different rings.

On the contrary, rings of crystalline differential operators have the desired prop-
erties: if X is an smooth affine variety, Dc(X) is a Noetherian domain [9]. We also
have An(k) = Dc(A

n)
In [28, Theorem 1.2] we proved that given two affine varieties X,Y , and a finite

group G of automorphisms of X , if X/G is birationally equivalent to Y , then
FracD(X)G ≃ FracD(Y ).

We have an analogue for rings of crystalline differential operators.

Theorem 0.14. Let k be an algebraically closed field of prime characteristic. If X
is an smooth affine variety and G a finite group of automorphisms of it, such that
X/G is birationally equivalent to an affine smooth variety Y , then FracDc(X)G ≃
FracDc(Y ).

Remark 0.15. Notice that, unlike the characteristic 0 case, in prime characteristic
we must restrict attention to smooth varieties.

Corollary 0.16. Let G be a finite group of automorphisms of k[x1, . . . , xn]. If
k(x1, . . . , xn)

G is a purely transcendental extension, then Fn(k)
G ≃ Fn(k)

So, just like in characteristic 0 case, in prime characteristic a positive solution
to Noether’s problem implies a positive solution to its noncommutative analogue.

We also have

Corollary 0.17. Let G be a finite group of automorphisms of k[x±1
1 , . . . , x±1

n ].If
k(x1, . . . , xn)

G is a purely transcendental extension, then Fn(k)
G ≃ Fn(k).
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This last corollary includes multiplicative Noether’s problem.
Our next result is the version in prime charcteristic on the Gelfand-Kirillov

Conjecture for rational Cherednik algebras (rational Cherednik algebras in prime
characteristic were studied on a number of places, for instance, [12]).

Theorem 0.18. Assume 2|W | ∈ k
×. Let U1,c(h,W ) be a spherical subalgebra of a

rational Cherednik algebra. Then FracU1,c(h,W ) ≃ Fn(k), where n = dimh

We also have a generalization of [59, Theorem 3.14] to prime characteristic.

Theorem 0.19. Let k be an algebraically closed field of prime characteristic. Let
X be an smooth affine variety and G a finite group of automorphisms of it such
that X/G is birrationally equivalent to a smooth affine variety Y . Then O(T ∗X)G

has a field of fractions which is isomorphic as a Poisson field to the fraction field
of O(T ∗Y ).

With this result, we can consider J. Baudry’s Poisson Noether’s problem [5] in
prime characteristic.

Let (V, ω) be a symplectic vector space, n = dimV and call its Poisson function
field as Pn(k). Let X be a Poisson variety. We call X Poisson rational if k(X) is
isomorphic to Pn(k), n = dimX , as a Poisson field. Hence Poisson rationality is a
refinement of the notion of rationality in the class of Poisson varieties.

Poisson Noether’s problem asks: let (V, ω) a symplectic vector space and G a
finite group of symplectomorphisms. When is V/G Poisson rational?

Our contribution to this problem in prime characteristic will be Theorem 3.12.

Remark 0.20. Other noncommutative analogues of Noether’s problem can be found
in [39] for free skew fields, and in [25], [23], [31] for the skew field of tensor products
of quantum planes.

Rationaliy of rings of differential operators

In this section the base field is algebraically closed of zero characteristic.

Definition 0.21. Let X be an irreducible variety.

(1) D(X) is called rational if FracD(X) ≃ Fm(k) for some m.
(2) D(X) is called stably-rational if there exists an n and m such that Frac (D(X)⊗

An(k)) ≃ Fm(k).
(3) D(X) is called unirational if there is an embedding D(X) into some Fm(k),

for adequate m.

Theorem 0.22. (1) If X is rational, then D(X) is rational. More precisely,
if X is birationally equivalent to An, FracD(X) ≃ Fn(k).

(2) If X is stably rational , then D(X) is stably rational. More precisely, if
X×An is rational, then Frac (D(X)⊗An(k)) ≃ Fm(k), with m = dimX+n

(3) if X is unirational, then D(X) is unirational. More precisely, if there
is a rational dominant map An → X, then we have and embedding of
FracD(X) into Fn(k). If FracD(X) embedds into Fm(k), then necessar-
ily m ≥ dimX

1. Preliminaries

Suppose initially that k is an arbitrary field. Lets recall some definitions.
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Definition 1.1. The n-th Weyl algebra An(k) is the algebra generated by genera-
tors, x1, . . . , xn, y1, . . . , yn subject to relations

[xi, xj ] = [yi, yj ] = 0, [yi, xj ] = δij , i, j = 1, . . . , n

In case char k = 0, the Weyl algebras are simple Noetherian domains with center
k [51]. In case of positive characteristic, An(k) again is Noetherian domain, but
now the algebra is a finite module over its center k[xp

1, . . . , x
p
n, y

p
1 , . . . , x

p
n] [56].

The Weyl algebras are related to rings of differential operators, introduced by
Grothendieck [30]:

Definition 1.2. Let A be a k-algebra. Set

D0(A) = {θ ∈ Endk A|[θ, a] = 0, ∀a ∈ A} ≃ A,

and, inductively,

Di(A) = {θ ∈ Endk A|[θ, a] ∈ Di−1(A), ∀a ∈ A}.

The ring of differential operators on A is D(A) =
⋃∞

i=0 Di(A).

For an affine variety X , we call the ring of differential operators in X , D(X) =
D(O(X)). In case char k = 0, D(X) is an Ore domain [28], and if moreover X
is smooth, D(X) is simple and left and right Noetherian [51]. Moreover, by the
definition, D(X) comes with a filtration such that the associated graded algebra is
O(T ∗X) (for smooth X) ([30], [51]). We have An(k) = D(An).

In caracteristic 0 and affine regular domains A, there is an alternative definition
of differential operators that coincides with the Grothendieck’s one: D(A) can be
described as the subalgebra of Endk A generated by A and Derk A [51, 15.5.5]. For
arbitrary A, if we denote this definition as ∆(A), we have that just htat∆(A) ⊂
D(A), and the inclusion may be proper if A is not regular. In fact, the famous
Nakai Conjecture [51] says that ∆A = D(A) if and only if A is a finitely generated
regular domain. Notice that some patological behavior can happen if A is not
finitely generated. In a recent preprint [48], an example of regular domain A but
not finitely generated is given such that Derk A = 0 and the natural inclusion map
A → D(A) is an isomorphism.

For smooth varieties in char k = p > 0, as shown first by Smith [61], the correct
definition of ring of differential operators is the Grothedieck’s one. However, the
situation changes drastically in positive characteristic. For instance, denoting by Pn

the polynomial algebra in n-indeterminates, D(Pn) is not Noetherian, not finitely
generated, and has a lot of zero-divisors and nilpotent elements. Its Gelfand-Kirillov
dimension also gives the “wrong” number: n, instead of 2n. However, the algebra
is still simple [6]. In particular, An(k) and D(An) are non-isomorphic rings.

It is clear that the classical notion of differential operator will lead us nowhere
in our task to considering the noncommutative Noether’s problem in prime char-
acteristic — they are not even domains. The solution is found in changing the
technology: we will need a modified version of differential operators introduced
in [9] (a particular case of a more general definition in [8]): crystaline differential
operators.

Definition 1.3. Let k be an algebraically closed field of prime characteristic, X an
smooth affine variety. Dc(X), the ring of crystalline differential operators on X, is
generated by O(X) and DerkO(X) subject to the relations
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f.∂ = f∂, ∂.f − f.∂ = ∂(f),

∂.∂′ − ∂′.∂ = [∂, ∂′], f ∈ O(X), ∂, ∂′ ∈ DerkO(X).

Remark 1.4. The notion of crystalline differential operators works only for smooth
varieties.

We have now that Dc(A
n) ≃ An(k).

Dc(X) has a natural filtration: D0
c(X) = O(X), Di

c(X) = Di
ci− 1(X)+DerkO(X).Di

ci− 1(X).

Proposition 1.5. [9]

(1) grDc(X) = O(T ∗X).
(2) The Poisson algebra structure on O(T ∗X) induced by the filtered quantiza-

tion by Dc(X) coincides with the usual Poisson algebra structure from the
standard symplectic form on T ∗X.

Since the associated graded algebra is a finitely generated Noetherian domain,
by usual filtered techniques [51], we have that Dc(X) is a finitely generated left and
right Noetherian domain. Hence we can study skew fields of fractions.

Moreover, we have ([51]):

Proposition 1.6. GK Dc(X) = 2dimX, gl.dimDc(X) ≤ dimX, KDc(X) ≤
dimX.

Remark 1.7. Proposition 1.5 is well known for fields of zero characteristic and
usual differential operators.

2. Proof of characteristic 0 results

Before we move to questions about the caracteristic prime case, let’s discuss the
results we have in characteristic 0.

2.1. Generalizations of noncommuative Noether’s problem. In this section
we will work over algebraically closed fields.

We want to use this result to prove Theorem 0.12. However, our automorphism
group comes from k(x1, . . . , xn), and not from an affine variety — so we can’t use
[28, Theorem 1.2]. But we are going to show that there always exists an open
affine variety X ⊂ An such that the group of birational automorphisms on An

restricts to biregular automorphism on X , and X/G is still rational. Clearly, then,
FracO(X)G ≃ k(x1, . . . , xn)

G ≃ k(x1, . . . , xn)

Lemma 2.1. Let G be a finite group of birational automorphisms of an affine
variety X. Then there is a G-invariant affine open subset U where G acts by
biregular automorphisms.

Proof. For each g ∈ G there is an affine open subset Ug ⊂ X such that g : Ug →
g(Ug) is a biregular isomorphism.

Calling U =
⋂

g∈G Ug, we have that g : U → g(U) is a biregular isomorphism
for every g ∈ G. U is again affine, since finite intersection of affine open subsets is
again affine.

Setting W =
⋂

g∈G g(U), we have that W is G-invariant, affine, and each g ∈ G
is a biregular isomorphism of W onto itself. �
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Example 2.2. Let G < GLn(Z) act on k(x1, . . . , xn) as follows:

g.xj =

n∏

i=1

x
aij

i , g = (aij)i,j=1,...,n ∈ GLn(Z), j = 1, . . . , n.

These are precisely the group actions that arise in the multiplicative Noether’s
problem mentioned in the Introduction. G corresponds to a finite group of bira-
tional automorphisms of the affine space An. A open affine subset U as in the
previous lemma is Spec k[x±1

1 , . . . , x±1
n ] = k

×n, the n torus. This is the case be-
cause G acts on k[x±1

1 , . . . , x±1
n ] by algebra automorphisms and on k

×n by biregular
automorphisms.

Lemma 2.3. Suppose X an affine variety, G a group acting on it, such that X/G
is rational. Then FracD(X/G) ≃ Fn(k), n = dimX.

Proof. Let S = O(X)G \ {0}. FracD(X/G) = FracD(X/G)S = FracD(OG
S ),

where we used [46, Proposition 1.8] and that O(X/G) = O(X)G. Since X/G is
rational, O(X)GS ≃ k(x1, . . . , xn). Hence FracD(X/G) ≃ FracBn(k) = Fn(k). �

The proof of the following lemma work in any characteristic.

Lemma 2.4. Let G a finite group acting on an affine variety X. Then there is an
open subset U ⊂ X where G restricts to a free action. Moreover, there is no loss
of generality in assuming U affine.

Proof. For each g 6= 1 in G call Yg = {x ∈ X |g(x) = x}. Yg is closed being the
inverse, uder the map (id, g) : X → X × X , of the diagonal. Since G is finite,
Y =

⋃
Yg is a closed subset of X in the Zarisk topology, and U = X \Y is an open

set where G acts freely. �

Theorem 2.5. Let X be a variety and G a group acting freely on it. Then D(X)G ≃
D(X/G)

Proof. [15, Theorem 3.7(1)] �

Now we return to our original situation. We have a group G of birational auto-
morphisms of An such that k(x1, . . . , xn)

G ≃ k(x1, . . . , xn).
By Lemmas 2.1 and 2.4, there is an open affine subset U ⊂ An such that G|U

acts freely by biregular automorphisms on U , and U/G is rational.
We have Fn(k)

G = FracD(U)G. By Theorem 2.5, FracD(U)G ≃ FracD(U/G),
which by Lemma 2.3, is isomorphic to Fn(k). Hence Theorem 0.12 is proved.

As promised, we now give a simpler proof for Theorem 0.13. By hypothesis,
we have a finite group G of biregular automorphisms of the torus k

×n, such that
k
×n/G is rational. By [28, Theorem 1.2], FracD(k×n)G = Fn(k)

G ≃ Fn(k).

2.2. Rationality for rings of differential operators. Let’s prove items 1, 2 and
3 of Theorem 0.22.

First we recall a well-known fact about rings of differential operators, which can
be found, for instance, in [46]

Proposition 2.6. Let A a finitely generated algebra which is also a domain. Let S
be a multiplicatively closed subset of A. Then the localizations of D(A) in the left
and on the righ by S exists, and they are isomorphic to D(A)S
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Lemma 2.7. Let A be an Ore domain and S any denominator set on A. FracA =
FracAS.

Proof. Proof of item 1

If X is rational, call by S its set of non-null elements, and by A its ring of
regular functions. Clearly AS ≃ k(x1, . . . , xn). , where n is the Krull dimen-
sion of A. FracD(A) = FracD(A)S = FracD(AS) = FracD(k(x1, . . . , xn)) =
FracBn(k) = Frac Fn(k). �

Let’s know prove item 3.

Proof. Proof of item 3 If X is unirational, we have an embedding of its function
field F into k(x1, . . . , xn), where n ≥ dimX by transcendence degree considerations.
Taking differential operators preserve the embedding D(F ) ⊂ Bn(k).

Using lemma 2.7, FracD(X) = FracD(F ) ⊂ Fn(k), as taking the skew-field of
fractions preserves embeddings. Finally, if FracD(X) embedds in some Fn(k), by
[24, Theorem 10], dimX ≤ n. �

The hardest one to prove is the second item. So we will need some preparation.

Proposition 2.8. Let A be an affine integral domain. There exists an element c
in A such that localization Ac is regular

Proof. [51, 15.2.10]
�

Let X be an affine variety, and A = O(X). Let c be one of the elements c of the
previous proposition such that Ac is regular. I will denote by Xc = Spec Ac; Xc is
a smooth open affine subvariety of X .

Proof. Proof of item 2 Let c ∈ O(X) be such that Xc is smooth. First notice
that we can localize D(X)⊗An(k) by c⊗ 1 beucase this element act ad-nilpotently
[38, Thm 4.9]. So D(Xc) ⊗ An(k) is a localization of of D(X) ⊗ An(k). Suppose
that X × An is birational, say, to Am.; then the same holds for Xc ⊗ An. By
transcendence degree considerations, dimX+n = m. Both Xc and An are smooth
affine varieties with finite Krull dimension, so using [8, Lemma 2.5], we have that
D(Xc)⊗An(k) is isomorphic to D(Xc×An). Using Theorem 0.22 item 1, we obtain
that FracD(Xc × An) = Fm(k). In fact, m must be dimX + n, by [24, Theorem
8]. �

3. The situation in prime characetristic

In this section k is an algebraically closed field of prime characteristic.

Proposition 3.1. Let X and Y be smooth affine varieties with k(X) ≃ k(Y ). Then
FracDc(X) ≃ FracDc(Y ).

Proof. Analogous to the case of zero characteristic (see remark below). The ring of
crystalline differential operators sheafifies [9]; that is, just as usual rings of differ-
ential operators, it is compatible with localization. �

Remark 3.2. For characteristic 0 and usual rings of differential operators the
above is [51, 15.1.25].
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If G is a finite group of automorphisms of a smooth variety X then we can define
an action on Dc(X) by defining the action on the generators as follows:

g.f = g(f), g.∂ = g ◦ ∂ ◦ g−1, g ∈ G, f ∈ O(X), ∂ ∈ DerkO(X).

Theorem 3.3. Let X be an smooth affine variety and G be a finite groups of
automorphisms of X that acts freely. Then

Dc(X)G ≃ Dc(X/G)

Proof. Since G acts freely on X , the projection π : X → X/G is étale ([47],
∮
II.7).

Hence the induced map on the tangent bundles dπ : TX → π∗TX/G is an isomo-
prhism. Hence we also have that SymO(X)TX ≃ π∗SymO(X/G)TX/G and clearly

we have O(X)G ≃ O(X/G). By the PBW theorem (which is just Proposition 1.5),
the result follows. �

Remark 3.4. Notice that the analogue result holds in characteristic zero: Theorem
2.5.

Proof of Theorem 0.14 Since G is finite, there is an open subset U of X such
that the restriction of the action of G to U is free. Without loss of generality, we
can assume U affine.

Hence by Theorem 3.3:

(1)Dc(U)G ≃ Dc(U/G).

Now, k(X) = k(U), hence by Proposition 3.1 (2)FracDc(X)G = FracDc(U)G.
Also k(U/G) = k(Y ) (as X/G and so U/G is birationally equivalent to Y ). So
again by Proposition 3.1 (3)FracDc(U/G) ≃ FracDc(Y ). Combining (1), (2), (3)
we have

FracDc(X)G ≃ FracDc(Y )

as desired.
I repeat now the corollary that says, essentially: Noethers problem implies non-

commutative Noether’s problem in prime characteristc

Corollary 3.5. Let G be a finite group of automorphisms of k[x1, . . . , xn]. If
k(x1, . . . , xn)

G is a purely transcendental extension, then Fn(k)
G ≃ Fn(k)

Remark 3.6. We did not impose that G acts linearly.

3.1. Rational Cherednik algebras in prime characterisc. The theory of ra-
tional Cherednik algebras over fields of prime characteristic parallel the one over C
developed in [27]. We follow [12].

Let k be an algebraically closed field of odd characteristic. Let (V, ω) be an
even dimensional vector space V with a non-degenerated sympletic form ω. A
finite subgroup of SP (V ) is called a symplectic reflection group if it is generated by
symplectic reflections, which are symplectic isomorphisms g such that rank 1− g =
2.

Let Γ be a sympectic reflection group, S the set of symplectic reflections, c :
S → k invariant under conjugation. Let t ∈ k. We allways assume

2|Γ| ∈ k
×.

The symplectic reflection algebra Ht,c is the quotient of T (V )∗Γ by the relations
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[x, y] = tω(x, y)−
∑

s∈S

c(s)ωs(x, y),

where x, y ∈ V and ωs is the skew-symmetric form with radical ker(I − s) and
coincides with ω in Im(I − s).

Let W be a pseudo-reflection group with representation h. W acts on V =
h⊕h∗, which has a W -invariant symplectic form ω((u, f), (x, g)) = g(u)− f(x). W
becomes in this way a symplectic reflection group, with the set of pseudo-reflections
corresponding to the symplectic reflections. Let 0 6= t ∈ k, c : S → k invariant
under conjugation. The symplectic reflection algebra Ht,c is then called a rational
Cherednik algebra and denoted Ht,c(h,W ).

Let e = 1/|W |
∑

w∈W be an indempotent in Ht,c(h,W ). The spherical subalge-
bra Ut,c(h,W ) is eHt,c(h,W )e (with unit e).

Proposition 3.7. The spherical subalgebra is a finitely generated Noetherian do-
main [12, Theorem 3.1].

Proof. Proof of Theorem 0.22
By [12, Theorem 4.5 and Remark 4.6], there is a W invariant element δ ∈ k[h]

such that Ht,c(h,W )δ−1 ≃ D(hreg) ∗ W . eDc(hreg) ∗ We ≃ Dc(hreg)
W , hence

Ut,c(h,W )δ−1 ≃ Dc(hreg)
W . W acts freely in hreq; hence may then use Theorem

3.3. We have Dc(hreg)
W ≃ Dc(hreg/W ).

By assumption, W is a pseudo-reflection group and |W | is coprime to char k.
Chevalley-Shephard-Todd Theorem also hold in this situation (Theorem 3.11).
Hence hreg/W is an affine rational variety and so by Theorem 0.14, the skew field
of fractions indeed is Fn(k), n = dimh. �

3.2. Contangent-bundle.

Theorem 3.8. Let X be an smooth affine variety, G a finite group that acts freely
on it. Then T ∗ (X/G) is isomorphic, as a Poisson variety, to (T ∗X)/G.

Proof. It follows the same steps as Theorem 3.3, but simpler, since we are now at
the level of contagente bundles �

Remark 3.9. In characteristic 0 the above result was shown in [59, Theorem 3.4].

Proposition 3.10. Let X and Y be birationally equivalent smooth affine varieties.
Then k(T ∗X) and k(T ∗Y ) are isomorphic as Poisson fields.

Proof. The proof of [59, Proposition 3.12] works on any characteristic. �

proof of Theorem 0.19
Let U be an affine open subset of X where G acts freely. As k(X) = k(U),

(1)FracO(T ∗X)G ≃ FracO(T ∗U)G, as Poisson fields, by Proposition 3.10. By
Theorem 3.8, (2)FracO(T ∗U)G ≃ FracO(T ∗(U/G)) as Poisson fields. As X/G is
birational to Y , U/G is also, and hence (3)FracO(T ∗(U/G)) ≃ O(T ∗Y ) as Poisson
fields, by Proposition 3.10 again. Combining (1), (2), (3), we obtain our result.

Now we will use this theorem for Poisson-Noether’s Problem. It is convenient to
recall Chevalley-Shephard-Todd-(Serre) Theorem:

Theorem 3.11. Let V be a finite dimensional vector space, G < GL(V ) a finite
group whose order is not divisible by char k. Then S(V ∗)G is again a polynomial
algebra if and only if G is a pseudo-reflection group.
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Proof. [11]. �

If the characteristic of the field divides the order of the group, Serre ([60]) has
shown that for S(V ∗)G to be a polynomial algebra, a necessary condition is that G
is a pseudo-reflection group; but it is not sufficient (see a counter-example in [36,
19-2])

In characteristic 0, the pseudo-reflection groups have long been classified using
the classification of Shephard and Todd for complex reflection groups and Clark-
Ewing Theorem (see, e.g., [36, Chapter 15]).

More recently the irreducible pseudo-reflection groups were classified over any
characteristic, by Kantor, Wagner, Zaleskii and Serezkin, and those for which the
invariants of the polynomial algebra ara again polynomial by Kemper and Malle
(see both aspects of the classification in [37]).

Let k be an algebraically closed field of prime characteristic, and G an irreducible
pseudo-reflection group. We will call the group K-M if it is in Kemper and Maller
list.

Theorem 3.12. Let G < GL(h) be a K-M group. Then if we make G act diagonally
on h⊕ h∗, with its canonical symplectic form, (h⊕ h∗)/G is Poisson rational.

Proof. Like our work in the C case ([59]) we may use Theorem 0.19. In our situ-
ation, X = h. h/G is clearly birationally equivalent to Y = h — they are in fact
isomorphic. Finally, recall that T ∗h = h ⊕ h∗. Apllying Theorem 0.19 we obtain
our desired result. �

Appendix

In the paper [27], Etingof and Ginzburg conjectured (see Proposition 17.6* of
their paper) an analogue of the Gelfand-Kirillov Conjecture for all spherical sub-
algebras (at t = 1) of symplectic reflection algebras. Namely, Let A1(V ) be the
Weyl algebra of the symplectic vector space (V, ω) at t = 1, and Γ the symplec-
tic reflection group. Let n = dimV . Then the skew field of fractions should be
Fn(C)

Γ. When Γ is a complex reflection group, the conjecture is true by the Dunkl
embedding, and the skew field of fractions is in fact isomorphic to Fn(C) ([21]).
The other non-expceptional family of symplectic reflection groups on Cohen’s clas-
sification [16] are the so called wreath product type G ≀ Sn, G a finite subgroup of
SL2(C), which are classified [63]. If Γ = G ≀ Sn, it is folkore that Fn(C)

Γ ≃ Fn(C).
We offer a proof of this fact. First notice that if G is a group of automorphisms
of a ring R and H a normal subgroup of G, RG = (RH)G/H . So when Γ is of
wreath product type, we have that Fn(C)

Γ = ((F1(C)
G)⊗n)Sn . By a result from

[1], F1(C)
G ≃ F1(C). Hence Fn(C)

Γ ≃ Fn(C)
Sn ≃ Fn(C). In the last isomorphism

we used [26, Theorem 4.1].
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